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Abstract
The process of mining blocks on a blockchain utilizing a Proof-of-Work consensus mechanism

carries inherent risks, particularly when the operational expenses associated with mining exceed
the rewards earned. Building on previous findings on mining in pools, this paper delves into the
question of whether the theoretical formulas for the ruin probability and the expected value of
future surplus obtained under particular model assumptions are indeed validated empirically. In
particular, we include the presence of transactions fees in the block rewards in our analysis. We
also provide algorithms to fit the involved generalized hyperexponential distributions to actual data.
Moreover, we perform a sensitivity analysis for different factors of interest, and we quantify the
relevance of incorporating temporal dependence and transaction fees in the model.

1. Introduction

A blockchain is a data ledger which is maintained by a Peer-to-Peer network. The database entries,
referred to as transactions, are recorded by batches called blocks resulting from the application of
a consensus protocol. In the case of the bitcoin, the consensus protocol is the Proof-of-Work. The
network participants, called miners, compete to solve a cryptoproblem via a trial and error approach.
Computers are running 24/7 which consumes a lot of electricity. This operational cost is borne by
the miners and compensated by a reward expressed in cryptocurrency units whenever a new block is
found. The stability of blockchain systems relies heavily on this incentive mechanism. The balance
between cost and reward is a stochastic process, denoted by (Rt)t≥0, which we model as

Rt = u− Ct +Bt, t ≥ 0, (1)

where the initial capital u is augmented by the income (Bt)t≥0 net of the expenses (Ct)t≥0. Such
models were studied in [3, 1, 21] assuming that

Ct = c · t, for c, t ≥ 0,

where c is the intensity of the mining cost, and

Bt =
Nt∑
i=1

Ui, t ≥ 0,
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where (Nt)t≥0 is a Poisson process and the block rewards Ui form a sequence of positive random
variables. One goal of this paper is to propose a more accurate model for these rewards.

Block rewards consist of a protocol-specified bounty augmented by transactions fees. When passing a
transaction, users will typically attach a transaction fee to it. This fee mostly depends on the trans-
action volume, since each block has a fixed allotted space inside. The pending transactions are stored
in the memory pool (often abbreviated as mempool), where they await confirmation, hereby forming
a queue. The transaction fee level closely relates to the network congestion that may be tracked by
looking at the mempool size. Algorithms have been developed to inform the users of the appropriate
transaction fee levels, see for instance the book of Antonopoulos [5, Chapter 5]. Although common
practice suggests that miners prioritize transactions with the highest transaction fee per byte rate,
some deviations can be observed due to potential arbitrage opportunities linked to include specific
transactions or ordering them in a given manner. Such considerations are beyond the scope of the
present study, and we refer the reader to the work of Messias et al. [25]. In the bitcoin blockchain, the
impact of the transaction fees is currently still minor when compared to the bounty for finding a new
block. However, as the reward gets halved approximately every four years, the need to understand
the underlying dynamics of transaction fees will become pivotal in the future. In Carlsten et al. [10],
the authors envision the stability of the system when the block reward reduces to the transaction fees.
Möser & Böhme [26] analyse the main drivers of the fees and conclude that higher fees lead to faster
transaction processing. Easly et al. [16] link the proportion of zero-fee transactions to the bitcoin price
and memory pool size through a linear model. Tedeschi et al. [30] build a neural net that outputs the
probability for a transaction to be included based on the transaction features. Finally, Rossi et al.
[27] consider a queueing model to estimate the confirmation time.

The block reward is expressed in crypto-currency units, but the operational cost in (1) is likely to
be expressed in fiat currency. The question of modelling the exchange rate of crypto against fiat
currencies naturally arises when studying the profit and losses of blockchain miners via model (1).
The evolution price of cryptocurrencies has been extensively studied in the literature. Ciaian et al.
[13] study the bitcoin price formation incorporating market information, such as the Dow Jones stock
market index or the oil price. Bouoiyour et al. [9] decompose the bitcoin price index using Empirical
Mode Decomposition, which is similar to signal-processing techniques, but does not assume period-
icity, see e.g. [33]. Many authors have applied neural network techniques to fit and predict bitcoin
prices. For instance, Almeida et al. [4] use Artificial Neural Networks (ANN) and find that trading
volumes are irrelevant. McNally et al. [24] use Recurrent Neural Networks (RNN) of Long Short Term
Memory type to accomododate their three-year long dataset. Time series models like GARCH [20]
and ARIMA [6, 32] have also been considered.

In this paper, we aim to compare two modelling strategies. The first one assumes an independence
framework, and the second one will adopt a time-dependent point of view. To introduce the ap-
proaches, we assume in the first part that the block rewards are independent and identically distributed
(i.i.d.) random variables with a generalized hyperexponential (GH) distribution, studied in Botta et
al. [8], also referred to as the combination of exponentials model by Dufresne [15]. The probability
density function of a GH distribution is a linear combination of exponentials which does not need
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to be convex (in contrast to mixture of exponential distributions). The GH class is a proper subset
of matrix-exponential (ME) distributions which are probability distributions with rational Laplace
transform, see already Cox [14] and Bladt & Nielsen [11] for a recent overview. The GH class leads to
tractable calculations and is itself already dense in the set of probability distributions on the positive
half-line. For applications in insurance risk theory, see e.g. Lin & Willmot [22, 23]. In that framework,
(1) is called the dual model of the standard insurance risk model, as the wealth process performs up-
ward jumps and decreases linearly in time. In our previous work [1], we found closed-form expressions
for the ruin probability and the expected profit when the rewards are GH distributed. In this paper
we want to go one step further and fit such a distribution to actual bitcoin data. With the help of the
obtained results, Bitcoin miners can assess their risk and profitability trade-off, thus adapting their
mining strategy by joining a pool if necessary, or, in the worst case, stop their activity.
Since the construction is not probabilistic, a priori one can not guarantee that a particular fitted
set of parameters for a GH (and more generally ME) distribution represents a proper probability
distribution. Conditions based on the roots and poles of the Laplace transform have been given in
the works of Bean et al. [8] and Fackrell [18]. These conditions apply to ME distributions and were
integrated in Fackrell [17] within a maximum likelihood estimation procedure. Dufresne [15] used GH
distributions to approximate any distribution on the positive half-line via an expansion in terms of
Jacobi polynomials. The non-negativity problem is addressed then by expanding the square root of the
probability density. In this work, we explore the polynomial approach to fit data to a GH distribution.
The non-negativity of the resulting probability density function is checked via a bisection procedure
suggested in the work of Hanzon & Holland [19]. To the best of our knowledge, this paper is the first
to fit combinations of exponentials to actual data in a non-parametric way instead of approximating
a predefined distribution. The results may therefore also be applicable in other modelling contexts
where such a distributional assumption is assumed, see e.g. [2] for an example in ruin theory.
The assumption of stationarity, a key premise in our first approach, might be considered too restric-
tive, as block rewards are influenced by transaction fees and fluctuations in cryptocurrency prices.
Consequently, we adopt a second approach that views block reward data as an ARIMA time series.
After fitting it to the data, we generate scenarios that enable us to estimate risk and performance
indicators through Monte Carlo simulations. We then conduct a numerical comparison between the
results obtained under this time series framework and the ones based on the i.i.d. assumption in our
first approach, together with a series of further sensitivity results on various assumptions underlying
the model for which a tractable formula for the key quantities is available. One of the main goals of
this paper is to assess the practical accuracy of formulas provided in [1] which relied on an i.i.d. as-
sumption for the rewards distributions and did not consider transaction fees. The results can be used
by the miner for his risk/profitability analysis. In addition, we provide a method to fit combinations
of exponentials to empirical data.

The rest of the paper is organized as follows. Section 2 provides a brief description of our data
together with reminders about the way that Proof-of-Work blockchains operate. Section 3 describes
the combination of exponentials model and our block reward distribution function estimators. The
proposed estimation is first back-tested on synthetic data, before it is applied to the actual block
reward data. Section 4 presents the result of our time series analysis. Section 5 compares the two
modelling approaches, looking at their impact on the profitability and ruin of blockchain miners. It
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also contains sensitivity tests with respect to the inclusion of transaction fees in the modelling as well
as the electricity price. Section 6 concludes.

2. Transaction fee concepts and descriptive data analysis

In this section, we will analyse empirical data on the transaction fees in the bitcoin cryptocurrency.
Let us first give a short reminder on the definition of transaction fees and their importance in the
mining process.

In the bitcoin Proof-of-Work verification algorithm, each miner solves a cryptoproblem in order to
validate a block. Whenever a block is validated or mined, the miner receives the corresponding block
reward set to 6.25 BTC at the time of writing. In addition, the sum of transaction fees attached to all
the transactions included in this block are also given as an additional reward to the miner. As part
of the validation system, the miner obtains the authorization from the community to choose which
transactions from the memory pool ("waiting line") are entering the newly mined block. The user will
typically attach a transaction fee to the required payment. This fee mostly depends on the transaction
volume, since a block has a fixed allotted space inside. It also depends on the market congestion and
the individual user’s decisions [5]. There exist algorithms that help the user choose an appropriate
fee. For example on https://privacypros.io/tools/bitcoin-fee-estimator/, one can estimate
the expected confirmation time as a function of the chosen fee. In the mining process, the miners have
to decide which transactions to incorporate in the block, since it has limited memory space. They will
consider the priority of the transaction based on the attached fee size per byte, but recent research
shows that there may be other (selfish) interests in promoting transactions [25]. It is important to
note again that with the scheduled halving of the fixed block rewards every four years, the share of
the transactions fees in the total rewards will gain decisive importance over time. Thus, including and
modelling this stochastic part will become even more relevant in the future.

For this analysis, we use publicly available data. Scrapping bitcoin-related data is possible by making
calls to some APIs. This was done by looping through necessary blocks. For example, to access block
number 650000 information, one can follow the address https://chain.api.btc.com/v3/block/

6500001. It extracts information in JSON format, which can then be reformatted to our needs. With
this method, we gather data for the period spanning from the last halving of the bitcoin reward on
May 12, 2020 until September 16, 2021. For this time frame, we collect the following information:

• The transaction fees per block;

• The exchange rate BTC-USD per minute;

• The current difficulty of the cryptoproblem (adjusts bi-weekly);

• The size of the memory pool of the transactions in bytes (daily);

• The number of transactions in the memory pool (daily).
1last accessed on 12/09/2023
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The difficulty of the cryptoproblem is the ratio between the current target of the Proof-of-work al-
gorithm and the maximal possible target value. For an example of a hash and the difficulty, see [1].
Figure 1 depicts the extracted data and Table 1 contains some statistics of the dataset. One can ob-
serve a strong correlation between the transaction fees and the number of transactions in the memory
pool, which is confirmed in Table 2.
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Figure 1: Illustration of the data

For the analysis in this paper, we consider a smaller sub-sample of the data containing 10,000 data
points ranging from February 10, 2021 to April 21, 2021. Also, we merge the series of fees and
prices by converting fees in USD, since we aim to model the latter. In the sequel of this paper,
we opt for modelling this latter time series directly, the dynamics of which then aggregate all the
potential covariate effects (in future work, one may want to refine that analysis to take into account
covariate information more explicitly). As illustrated in Figure 2, the time series of fees exhibits
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Table 1: Main statistics of the dataset.

Block Date Fees in BTC Price in USD Mempool size Mempool count Difficulty
Mean 0.594 29,535 36,090,588 25,610 1.86E+13
Min 630,014 12.05.2020 0 8,584 120,928 290 1.37E+13
25th pct. 0.1731 11,324 3,889,528 4,757 1.68E+13
Median 0.4652 31,700 27,446,996 18,670 1.86E+13
75th pct. 0.8872 46,331 70,698,937 38,942 2.08E+13
Max 700,851 16.09.2021 4.074 64,617 110,094,398 138,640 2.51E+13

Table 2: Pearson correlation matrix.

Fees in BTC Mempool size Mempool count Difficulty Price
Fees in BTC 1 0.489 0.636 0.331 -0.018
Mempool size 0.489 1 0.746 0.672 0.437
Mempool count 0.636 0.746 1 0.534 0.255
Difficulty 0.331 0.672 0.534 1 0.544
Price -0.018 0.437 0.255 0.544 1

strong autocorrelation, so that a stationarity assumption would not be appropriate. However, by
taking the first difference, the one-time differentiated series exhibits again features of stationarity to
a large extent, see the right-hand side of Figure 2; only one lag is still significant for the fees. We will
therefore consider only one lag when fitting a time series model in Section 4.
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Figure 2: Autocorrelation function of fees in USD (left) and its first differences (right)

3. Block reward as a combination of exponentials

A random variable U has a generalized hyperexponential distribution if its cumulative distribution
function (CDF) is given by

FU (x) = 1 −
d∑

i=1
aie

−λix, for x ≥ 0, (2)

where λ1, . . . , λd > 0 and a1, . . . , ad ∈ R with ∑d
i=1 ai = 1. In the sequel, we assume that λ1 < . . . < λd.

Define the vectors
λ = (λ1, . . . , λd) , a = (a1, . . . , ad) ,
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and the diagonal matrix Λ = diag(λ), so that

FU (x) = 1 − a · e−Λx · 1d, for x ≥ 0, (3)

where 1d = (1, . . . , 1). The probability density function (PDF) is given by

fU (x) = b · e−Λx · 1d, for x ≥ 0, (4)

with b = a · Λ.
The Laplace transform of U

E(e−θU ) = b · (Λ + θId)−1 · 1d, θ ≥ 0, (5)

where Id is the identity matrix, is rational, which implies that combinations of exponential distributions
are instances of matrix-exponential distributions.

3.1 Non-negativity of GH probability density functions

Given a set of parameters a and λ, there is no straightforward way to ensure that (3) is a proper
CDF or that (4) is a proper PDF. Some characterization, based on the Laplace transform, have been
provided by Bean et al. [7] and Fackrell [18] for ME distributions. We take a different road here,
following up on the work of Hanzon and Holland [19]. Consider the function

f(x) = b · e−Λx · 1d, x ≥ 0. (6)

In order for f to be a proper PDF, we need to ensure

f(x)≥0, ∀x > 0, and
∫ ∞

0
f(x)dx = 1. (7)

Necessary conditions for (7) to hold include b1 > 0 and b · Λ−11d = 1, but the latter are not sufficient.
We therefore use a verification method via bisection, suggested in Hanzon and Holland [19]. We define
the sequence

f0(x) = b · e−Λx · 1d = fU (x) and fk(x) = b ·
k∏

i=1
(λi · Id − Λ) · e−Λx · 1d, for k = 1, . . . , d.

For a given upper bound S, it is characterized by the following property: for x ∈ [0, S], the function
fk has at most one sign-changing zero between two sign-changing zeros or boundary points of fk+1

for k = 0, 1, . . . , d − 1. As fd(x) = 0 ∀x, one can recursively, starting from fd(x), check the presence
of sign-changing points on a closed interval through a bisection procedure.

3.2 Fitting GH distributions to data via polynomial expansions

Dufresne [15] presents a method to approximate any PDF of a distribution on the positive half-line via
a combination of exponentials. The approximation formula takes the form of an expansion in terms
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of the shifted Jacobi polynomials defined as

R
(α,β)
k (x) =

k∑
j=0

ρk,jx
j , x ∈ R, (8)

where
ρk,j = (−1)k(β + 1)k(−k)j(k + α+ β + 1)j

(β + 1)jk!j! , (9)

where (z)k = z · (z+ 1) · (z+ 2) · · · · · (z+ k− 1) denotes the Pochhammer symbol. These polynomials
are orthogonal on [0, 1] w.r.t. the weight function ϕ(x) = (1 − x)αxβ, where α > −1 and β > −1.
Any function g : (0, 1) 7→ R, square integrable w.r.t. ϕ(x) can be expanded as a shifted Jacobi
polynomial expansion with

g(x) =
∞∑

k=0
ckR

(α,β)
k (x), x ∈ [0, 1], (10)

where
ck = 1

hk

∫ 1

0
g(x)(1 − x)αxβR

(α,β)
k (x)dx, (11)

and
hk =

∫ 1

0
(1 − x)αxβR

(α,β)
k (x)2dx = Γ(k + α+ 1)Γ(k + β + 1)

(2k + α+ β + 1)k!Γ(k + α+ β + 1) . (12)

The convergence in (10) takes place in the L2 sense, see for instance the book of Nagy [12, Ch.7].
Our target is a PDF f on the positive half-line. Following Dufresne [15], we expand the function
f∗(t) = eprtf(t) for some p ∈ R and r > 0 and use the change of variable, that maps the interval (0, 1)
onto (0,∞), y = −1

r log x, such that

g(x) = f∗
[
−1
r

log x
]
.

The normalizing constant from Equation (12) is not affected by the change of variable and can be
expressed as hk = r

∫ ∞
0 (1 − e−ry)αe−rβyRα,β

k (e−ry)2e−rydy. The expansion of f is then

f(t) = e−rpt
∞∑

k=0
ckR

(α,β)
k (e−rpt), (13)

and the square integrability condition on g translates directly to∫ ∞

0
e−(β+1−p)rt(1 − e−rt)αf2(t)dt < ∞.

The coefficients of the polynomial expansion can also be expressed as an integral in terms of f as

ck = r

hk

∫ ∞

0
e−(β−p+1)rt(1 − e−rt)αR

(α,β)
k (e−rt)f(t)dt. (14)

A simple truncation of the infinite series in (13), followed by a normalization so that it integrates to
1, yields an aproximation

f(t) ≈ e−rpt
d−1∑
k=0

ckR
(α,β)
k (e−rt), (15)
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which is consistent with what is referred to as Method A in Dufresne’s work [15]. Replacing the
polynomials R(α,β)

k (x) by ∑k
j=0 ρk,jx

j in (15) yields

f(t) ≈
d∑

j=1

d−1∑
k=j−1

ckρk,j−1e
−(j−1+p)rt,

which is a combination of exponentials as in (4) where

b :=
( ∑d−1

k=0 ckρk,0, . . . , cd−1ρd−1,d−1
)

and λ :=
(
pr, (1 + p)r, . . . , (n+ p)r

)
.

Remark 3.1. The approximation method involves selecting parameters α, β, p, r, and determining the
truncation order d. In the absence of established selection guidelines, we draw upon the parameter
values utilized in Dufresne’s work [15]. The choice of the truncation order should strike a balance
between accuracy, computational efficiency, and numerical stability, favoring larger values wherever
possible. When considering f∗ instead of f , it ensures that f(t) approaches zero as t tends towards
infinity for any truncation order, provided that 0 < p < (β + 1)/2.

For our application, we do not have a known distribution function to approximate, but a dataset to fit.
Assume that {x1, . . . , xM } form an i.i.d. sample of size M . We can replace the expansion coefficients
defined in (14) by their empirical counterpart with

ĉk = r

hkM

M∑
m=1

e−(β−p+1)rxm(1 − e−rxm)R(α,β)
k (e−rxm), for k = 0, . . . , d− 1. (16)

An a posteriori control with the help of the bisection method from Section 3.1 can ensure the non-
negativity of the estimated PDF

f̂M (t) = e−rpt
d−1∑
k=0

ĉkR
(α,β)
k (e−rt). (17)

The estimated PDF is a nonparametric density estimator relying on orthogonal functions, a method
detailed in [31, Ch.8]. A recognized limitation of this approach is its susceptibility to occasional
negative values stemming from sampling errors. In instances where our estimates exhibit negativity,
we can employ what Dufresne [15] terms as ’Method B’ as a corrective measure. Instead of expanding
eprtf(t), consider expanding

f̃(t) = eprt
√
f(t).

We get an approximation formula of the form

√
f(t) ≈ e−prt

d−1∑
k=0

ckR
(α,β)
k (e−rt) =

d∑
j=1

bje
−λjt, (18)

and finally squaring it yields an approximation of f which is a proper PDF after normalization:

f(t) ≈
d∑

j=1

d∑
k=1

bjbke
−(λj+λk)t =

2d−1∑
m=1

b̃me
−(m−1+2p)rt,

with b̃m = ∑m
j=1 bjbm+1−j and bj>d := 0 (i.e. bj , j > d), since λj = (j − 1 + p)r, j = 1, 2, . . . , d. The
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coefficients of the polynomial expansion of
√
f are given by

bk = r

hk

∫ ∞

0
e−(β−p+1)rt(1 − e−rt)αR

(α,β)
k (e−rt)

√
f(t)dt. (19)

To get a statistical estimation of the coefficients, we replace f in (19) by a kernel density estimator

f̂h(x) = 1
M

M∑
m=1

Kh(x− xm) = 1
Mh

M∑
m=1

K
(x− xm

h

)
, (20)

where K(x) is the Gaussian kernel.

Remark 3.2. In contrast to Method A, Method B guarantees a valid PDF. However, this advantage
comes at the expense of significantly increased computational complexity due to doubling the number
of terms (with a numerical integration of the kernel density estimator for each term).

3.3 Simulation study

We illustrate our fitting procedure for a combination of exponentials through a brief simulation study.
Draw several samples of size n (x1, . . . , xn) from a right-shifted gamma random variable X = γ + Y ,
where γ > 0 and Y has PDF

f(x) = δrxr−1e−δx

Γ(r) , x > 0, r, δ > 0. (21)

The choice of this shift is motivated by the observed shape of the empirical distribution in our collected
block reward data later. We set the parameters to r = 3, δ = 0.5 and γ = 5. Figure 3 shows the
fit (in red) of the combination of exponentials distribution to the data when using Method A with
parameters α = 0, β = 0, r = 0.01, p = 0.9, d = 20 for samples of sizes n ∈ {100, 1000, 10000, 100000}.
The quality of the fit improves as the sample size increases. However, note that also, for larger sample
size, the density estimate occasionally exhibits negative values.
Figure 4 shows the fit (in red) of the combination of exponentials distribution to the data when
using Method B with parameters α = 0, β = 0, r = 0.01, p = 0.9, d = 20, for samples of sizes
n ∈ {100, 1000, 10000, 100000}. The fit is less good when using Method B; however, it consistently
results in a valid probability distribution. Due to this essential property, we have chosen to exclusively
employ Method B in our application to the block reward data in the sequel.

3.4 Real data application

The block reward comprises two components: the reward for discovering a new block, which currently
stands at BTC6.25 at the time of writing, and the transaction fees detailed in Section 2. Given that
miners typically operate within a fiat currency framework, such as USD, we apply the exchange rate
applicable at the moment of block discovery. Figure 5 depicts the histogram of total rewards received
by miners, presented both in BTC and USD. The data is indeed shifted away from zero due to the
fixed block reward addition, which poses a challenge for parametric fitting methods, as the support of
exponential random variables is the entire positive halfline. The non-parametric approach, utilizing a
polynomial expansion, provides an advantage by capturing variations in the central mass, even in the
absence of data points in the lower tail.
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(a) Sample size: 100. d = 20, α = 0, β = 0, r =
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x

f x

0 5 10 15 20 25

0
.0

0
0
.0

5
0
.1

0
0
.1

5

(b) Sample size: 1000. d = 20, α = 0, β = 0, r =
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(c) Sample size: 10000. d = 20, α = 0, β = 0, r =
0.01, p = 0.9.
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(d) Sample size: 100000. d = 20, α = 0, β = 0, r =
0.01, p = 0.9.

Figure 3: Fitting of the shifted Gamma random sample by modified Method A.
The bars depict the empirical density and the red line is the obtained fit.

Figure 6 shows the fit of the combination of exponentials using Method B with two parameterizations.

As the number of terms increases, the central part of the density aligns more closely with the actual
data, albeit with an increase in instability near the left end. Conversely, reducing the number of terms
results in a smoother shape, but the original density’s spikes are less pronounced. Renormalization
alleviates this effect to some extent (cf. the green line), and we choose to use the parametrization with
d = 10 for the numerical analysis later.

4. Block rewards as time series

Since we also want to test the model for its sensitivity to non-stationarities, we fit the block reward
data to an ARIMA model calibrated using the Box and Jenkins optimization method. Recall that a
time series Xt is ARIMA(p,D, q) if ∇DXt is an ARMA(p, q) process, where ∇D is the Dth difference

11



x

f x

0 5 10 15 20 25

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0

Histogram of data

Kernel density

Fit

(a) Sample size: 100. d = 20, α = 0, β = 0, r =
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(b) Sample size: 1000. d = 20, α = 0, β = 0, r =
0.05, p = 0.3.
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(c) Sample size: 10000. d = 20, α = 0, β = 0, r =
0.05, p = 0.3.
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(d) Sample size: 100000. d = 20, α = 0, β = 0, r =
0.05, p = 0.3.

Figure 4: Fitting of the shifted Gamma random sample by modified Method B.
The bars depict the empirical density and the red line is the obtained fit.
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Figure 5: Histogram of total rewards, period from February 10, 2021 to April 21,
2021.
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Figure 6: Approximation of the bitcoin rewards sample (Method B, α = 0, β = 0)

operator. An ARMA(p, q) time series is a stationary process defined as

Xt = ϕ1Xt−1 + · · · + ϕpXt−p + zt + θ1zt−1 + · · · + θqzt−q, (22)

with ϕp ̸= 0, θq ̸= 0 and zt is white noise with mean 0 and variance σ2
z , see e.g. [28]. Note that time

series modeling is not a focus of this paper, we refer to other papers for this purpose, see e.g. [6, 32].
Our choice of a simple ARIMA model is motivated by its suitability for generating plausible scenarios
over a short time horizon while departing from the i.i.d. assumption of Section 3. Also, we opted
against more complex GARCH models due to their tendency to overfit the data and their requirement
for an extensive number of lags to ensure reliability. Hence, we deliberately select a simple ARIMA
models as a pragmatic and reliable choice to conduct our risk analysis over a two weeks time horizon.
For fitting our model, we consider a data set from a time frame between February 10, 2021 and April
6, 2021 that we split into a training set and a consecutive test set for checking the data prediction.
In Table 3 we summarize the obtained results. The fitted model suggests indeed a once differentiated
series. In Figure 7 we show an illustration of the fitted model. On the left-hand side, one can see the

Table 3: Summary of ARIMA(1,1,7) model.

ar1 ma1 ma2 ma3 ma4 ma5 ma6 ma7
-0.7799 0.0989 -0.6543 -0.1146 -0.0337 -0.0330 -0.0075 -0.0267

s.e. 0.1122 0.1125 0.0771 0.0194 0.0136 0.0138 0.0123 0.0122
σ2 219226983
Log.Lik. -88159.57
AIC 176337.1
BIC 176400

fitted data points in comparison to the historical values of the training sample. On the right-hand side,
we show simulated paths in different colors and the true historical values from our test sample in black.
In addition to the statistical fit (cf. Figure 8 for a normal Q-Q plot for the remaining residuals), the fit
also seems quite satisfactory visually, which is remarkable for the case of only a few free parameters.
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Figure 7: ARIMA(1,1,7) fit to block reward data

−4 −2 0 2 4

−
4

−
2

0
2

4

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

Figure 8: Normal Q-Q plot of ARIMA(1,1,7) residuals.

5. Comparison of the two modelling approaches in terms of risk

In [1, 3], explicit formulas were derived for the ruin probability and the expected surplus of a miner,
taking into account the option of participating in a mining pool. Assume the miner’s surplus has the
form

Ri
t = u− ci · t+

Nt∑
j=1

Uj , t ≥ 0,

where Nt ∼ Poisson(piµt) and the Uj ’s are i.i.d. with PDF fU (x) = ∑d
j=1 ajλje

−λjx, x > 0. In [1],
it was shown that under the assumption of i.i.d. rewards of GH type, the ruin probability up to an
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exponential time horizon (with mean t) can be expressed as

ψ̂(u, t) = e−R·u, (23)

and the miner’s expected value of the surplus at that exponential time horizon, given that it did not
go negative until then, is given by

V̂ (u, t) = t

ci − piµ
d∑

j=1

aj

λj

 e−Ru + u+ t

piµ
d∑

j=1

aj

λj
− ci

 , u > 0, (24)

where R is the unique solution with positive real part of the equation

ciR+ piµ
d∑

j=1

ajλj

R+ λj
−

(1
t

+ piµ

)
= 0.

These metrics are of particular significance, given that the process of mining incurs considerable energy
costs, and real-world miners may face the risk of financial ruin, which in turn affects their expected
earnings.
Our goal in this section is to assess the sensitivity of the risk measures for which we have formulas
(23) and (24) w.r.t. some of the model assumptions. First, in Section 5.1 we compare the formulas
(using a GH fit to block rewards data from the time period February 10, 2021 to April 21, 2021) to the
actual historical realization of the occurrence of blocks and the sizes of the rewards in the period from
February 10, 2021 to a random time horizon in the future with a mean of 2 weeks. Note that there are
still three random elements to be implemented in the historical path: the actual length of the random
time horizon and the probability that a found block was found by a particular miner. Secondly, we
consider a ’Full Pay-per-Share’ reward system (FPPS) for the pool, in which pool managers instantly
reward miners for each share submitted, with the payout determined by the block reward and the
entire estimated transaction fees associated with the block. That is, we have to simulate the arrival
of shares in addition to the arrival of blocks. As the historical sample path both contains potential
time-dependence of transaction fees and the actual block reward values (rather than the GH fit), but
only one realization of the two latter effects, we subsequently compare in Section 5.2 the results of
(23) and (24) with the simulated counterparts under an i.i.d. assumption, but bootstrapping block
reward sizes from the empirical distribution function over the period February 10, 2021 to April 21,
2021. Subsequently, in Section 5.3 we provide a comparison of the formulas (23) and (24) with the
simulated counterparts under the ARIMA assumption calibrated in Section 4. Finally, Sections 5.4
and 5.5 consider the sensitivity of the model output concerning the inclusion of transaction fees at all,
as well as concerning the price of electricity.

5.1 Comparison with the historical path

With the collected data on the fees and prices, we can reconstitute the real surplus path of miners
or pools in any specific past time period. Indeed, if we position ourselves at some starting date, we
can replicate the outflows of mining costs and the inflows of block rewards for the individual miner
as well as for the pool. For the following example, we select a two weeks time frame. We select the
documented block arrival in the entire system to the particular pool by simulating a Bernoulli random
variable with probability equal to the pool’s proportion of computational power in the global mining
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network. For the individual miner, we also simulate the more frequent share payouts by assuming
Poisson distributed arrivals of their rewards. In Figures 9 and 10, one can see an illustration of the
surplus path for the pool and the miner, respectively. Figures 9a and 9b are almost indistinguishable
to the naked eye, but they are not identical. Indeed, for that short particular time horizon, the
exchange rate was not very volatile. Here we choose the same parameters as in [1]: t = 336h = 2
weeks, pi = 0.001, q = 0.1, f = 0.02, µ = 6pi = 0.006, u = $1M , the cost of electricity ci is given
by c = pi × eW × πW , where eW is the electricity consumption of the network expressed in kWh, and
πW = 0.04 is the price of electricity per kWh. For eW , we choose 115.541×109

365.25×24 .2
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Figure 9: Pool surplus path.
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Figure 10: Miner surplus path USD

Our analysis distinguishes between scenarios where the miner is engaging in solo mining or partici-
pating in a pool. More specifically, we implement the following approach:

1. We choose February 10, 2021 as the starting date.

2. We randomize the time horizon by simulating nsim durations following an exponential distri-
bution with mean equal to 2 weeks.

3. For each simulation run, we simulate nsim share reward payment times.
2https://cbeci.org/
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4. For each block found by an individual miner, mining alone, he will receive the block reward
and the transaction fees attached to this block. For a miner in a pool, the miner receives only
a fraction of the block reward and of the transaction fees, assuming a FFPS pooling scheme.
In practice, whereas the bitcoin block reward is known and fixed (at 6.25 BTC at the time
of writing), the transaction fees included in a block can only be discovered after the block is
appended to the blockchain. It means that the pool has to predict the future fee in order to pay
the miners before the block appears. What often happens in practice, is that the fee is computed
as the average fee over some short time frame, e.g. the last 24 hours [29]. This is the retained
approach in our framework.

5. Combine all data to produce sample paths of the miner’s surplus for different values of their
initial capital u. Averaging over all iterations yields simulated values for V̂ (u, t) and ψ̂(u, t).

On the other hand, we compute (23) and (24) under the i.i.d. assumption with a GH model for the block
rewards as calibrated in Section 3, using the moderate truncation parameter d = 10 (a higher number
of terms in the combinations of exponentials would significantly complicate the numerical evaluation).
Figures 11 and 12 display the ruin probability and expected surplus based on the theoretical formulas
and the historical path method, for both a stand-alone miner and one joining a pool. One can see
that the results are rather close for the two cases, and the shape as a function of initial capital u is
identified rather well. This suggests that the theoretical formulas are quite useful for practical use.

5.2 Sensitivity of the GH fit under the i.i.d. assumption

Under the assumption of i.i.d. block rewards, it is interesting to see how sensitive the results are w.r.t.
to the fitted GH model. For that purpose, we compare the formulas (23) and (24) to a situation,
where we resample block reward values from the empirical distribution function of rewards from the
period February 10, 2021 to April 21, 2021. In a sense, this may also be considered a fairer comparison
than the one in Section 5.1, since now the variability of block rewards is similar. Figures 13 and 14
depict the results, where the black lines represent the formulas using the GH fit, and the red lines
are simulated values under the resampling together with a 95% confidence interval (also in all the
remaining plots of this section, whenever we plot simulated values we do so together with theirs 95%
confidence interval). Since this data sample served as the basis for the GH fit calibration, one expects
a close similarity, which is indeed the case. Consequently, the GH approximation seems sufficient for
purposes of drawing conclusions for our quantities of interest.

5.3 Sensitivity w.r.t. time dependence of rewards

We use the ARIMA model calibrated in Section 4 to simulate trajectories for the transaction fees,
as well as another ARIMA model for the bitcoin price in USD relevant for the fixed 6.25 BTC con-
tributions (as was suggested by Azari [6]). For our time window, a calibration of the latter ARIMA
model suggests an ARIMA(5,1,1) model, as seen in Section 4. The sum of the two form our block
reward process, which feeds a Monte Carlo estimator of the ruin probability and expected surplus
under that assumption. As previously, we fit the block rewards expressed in USD. For the miner, the
price conversion seems interesting, as rewards enter less often, therefore the timing of the conversion is
important and taken in account. From the pool perspective, it virtually operates in BTC for both in-
flows and outflows and therefore does not suffer conversion risk. Figure 15 and 16 compare the results
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Figure 11: Simulation of a historical path vs i.i.d. GH fit, miner in a pool (starting date February 10,
2021).
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Figure 12: Simulation of a historical path vs i.i.d. GH fit, miner alone (starting date February 10,
2021)

(in red) with the formulas (23) and (24) (in black), which were derived under an i.i.d. assumption.
One observes that for the ruin probability, the deviation from the i.i.d. assumption observed in the
data is not relevant for the 2 weeks timeframe, and also for the expected value of the future surplus,
the deviations are minor. The difference in the expected profit for large initial capital (where ruin
becomes very unlikely) can be explained by the fact that for the calibration of the ARIMA model
the time period is shorter (by 20%) compared to the one of the i.i.d. GH fit due to out-of-sample
validation, cf. Section 4.

5.4 Sensitivity w.r.t. transaction fees

Transaction fees represent an additional element of randomness in the block rewards, adding to the
inherent volatility of the bitcoin (fiat) price. Our objective is to illustrate the effects of including or
excluding transaction fees in the reward modelling process. Figures 17 and 18 depict the changes in
the ruin probability and expected surplus for miners, both solo and within a pool, when transaction
fees are inlcuded or left out (that is, only the ARIMA model for the bitcoin price is simulated in
the latter case). One observes that the expected surplus converges to different limits as the initial
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Figure 13: Empirical reward distribution vs i.i.d. GH fit, miner in a pool (starting date February 10,
2021).
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Figure 14: Empirical reward distribution vs i.i.d. GH fit, miner alone (starting date February 10,
2021).

capital u grows large. In that case, the impact of ruin on the miner’s surplus diminishes, and only
the positive effect of higher block rewards materializes (statistically, for the period May 12, 2020 to
September 16, 2021, the transaction fees mounted to 8.6% of the fixed part of the block rewards 6.25
BTC per bounty). In terms of ruin probabilities, while the model including fees prevails over the one
without fees, the difference is in fact very small. However, it is important to consider that the fixed
block reward undergoes a scheduled halving approximately every four years. According to the current
countdown3, the next halving is expected in April 2024, reducing the fixed reward to 3.125 BTC. In
Figures 19 and 20, we therefore conduct the same analysis with 3.125 BTC for the fixed part, all other
factors held constant (and assuming that the fee dynamics remain unchanged after that halving). In
the latter case, the differences become much more pronounced.

3See, for example, https://www.nicehash.com/countdown/btc-halving-2024-05-10-12-00.
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Figure 15: ARIMA simulation vs i.i.d. GH fit, miner in a pool (starting date February 10, 2021)
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Figure 16: ARIMA simulation vs i.i.d. GH fit, miner alone (starting date February 10, 2021).

5.5 Sensitivity w.r.t. electricity costs

Finally, let us consider the sensitivity of the results to electricity costs under the ARIMA model.
Figures 21 and 22 show the ruin probability and expected surplus as a function of the price of electricity
for a solo miner and a mining pool participant for a fixed initial capital of u = 100, 000. Such a graph
can help to identify upper bounds for affordable electricity prices needed to ensure specific target levels
of ruin probability or expected surplus for a given level of u.
Notably, the results reveal a substantial difference in the ruin probability between individual miners
and those participating in a pool, emphasizing the risk mitigation benefits of pooling (already observed
in [1]). Additionally, this quantifies the influence of increased electricity costs, underlining the exposure
and vulnerability of ’Proof-of-Work’ cryptocurrencies to energy-related crises. Such considerations may
(even economically) motivate the transition to alternative, less energy-intensive consensus protocols.
For instance, Ethereum, the second-largest cryptocurrency, shifted from ’Proof-of-Work’ to ’Proof-of-
Stake’ on September 15, 2022, reducing its energy consumption by a remarkable 99.95%.4

4Source: https://ethereum.org/en/upgrades/merge/ (last accessed on 13/09/2023).
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Figure 17: Sensitivity to presence/absence of fees, miner in a pool.
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Figure 18: Sensitivity to presence/absence of fees, miner alone.

6. Conclusion

In this paper, we have delved deeper into the framework for analyzing bitcoin mining from the perspec-
tive of risk and profitability. Previously, quantifying the choices available to miners, such as entering
a mining pool and selecting the most suitable one, relied on formulas based on assumptions involving
combinations of exponential distributions. In this work, we introduce a straightforward and efficient
approach for fitting real-world data to these distributions, allowing us to apply theoretical results in
practical mining scenarios. The remarkable flexibility of the resulting method enables us to explore
shapes that are typically challenging to achieve using other approaches. The code for this work is
available upon request.
Furthermore, we have explored the stochastic nature of block rewards, breaking down their variability
into two key components: price volatility and the inclusion of transaction fees. Our findings highlight
the growing importance of incorporating fees in modeling, especially with the scheduled halving of the
fixed block reward.
By expressing transaction fees as a time series, we can simulate our key metrics of interest — namely,
the expected surplus and ruin probability — and compare them to theoretical results. This analysis
confirms that the formulas derived in [1, 3], originally under an i.i.d. assumption, stand up well when
compared to the outcomes derived from modeling strategies that incorporate time dependency or use
empirical data more generally.
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Figure 19: Sensitivity to presence/absence of fees, miner in a pool, block reward 3.125 BTC.
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Figure 20: Sensitivity to presence/absence of fees, miner alone, block reward 3.125 BTC.

Finally, we emphasize the sensitivity of our key metrics to the inclusion of transaction fees. While
the differences in magnitude are currently still small, we anticipate significant shifts in results after
the next halving, making fees a more substantial factor in modeling. Our analysis also underlines the
substantial impact of electricity costs on a miner’s profitability and ruin probability. These insights
contribute to the ongoing debate surrounding the viability of ’Proof-of-Work’ consensus protocols in
an increasingly energy-constrained world.
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Figure 21: Sensitivity to change of electricity price πW , miner in a pool (starting date February 10,
2021).
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Figure 22: Sensitivity to change of electricity price πW , miner alone (starting date February 10, 2021).
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