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RESUME 
 

 
Introduction: Le cœur embryonnaire et fœtal est très sensible au manque d’oxygène et une 
hypoperfusion utéroplacentaire transitoire peut conduire à une surproduction d’espèces 
radicalaires (ROS). Dans le cœur en développement les mécanismes moléculaires impliqués 
en situation d’ischémie-reperfusion (I-R) ne sont pas connus. La voie de signalisation 
JAK2/STAT3 (Janus Kinase 2 / Signal Transducer and Activator of Transcription 3), 
impliquée aussi bien dans la cardiogenèse précoce que dans la protection du cœur adulte 
contre l’I-R, pourrait jouer un rôle clé dans la réponse du myocarde fœtal à un déficit en 
oxygène. Cette étude a permis d’étudier le rôle de la voie JAK2/STAT3 et son interaction 
avec d'autres voies de signalisation dans un modèle de cœur embryonnaire soumis à un 
épisode anoxique. En outre, les effets du stress oxydant endogène provoqué par la 
réoxygénation ont été comparés à ceux du stress oxydatif exogène induit par du peroxyde 
d’hydrogène (H2O2). 
 
Méthodes: Des cœurs isolés d’embryons de poulet âgés de 4 jours ont été soumis à une 
anoxie (30min) suivie d’une réoxygénation (80min) en présence ou non de l’antioxydant 
MPG et de l’inhibiteur de JAK2/STAT3 AG490 ou exposés à de l’H2O2 (50μM-1mM). 
L’évolution temporelle de la phosphorylation de STAT3αtyrosine705 (P-Tyr STAT3α) et celle de 
la phosphorylation des protéines de la voie RISK (Reperfusion Injury Salvage Kinase: PI3K, 
Akt, GSK3ß, glycogène synthase GS et ERK2) ont été déterminés dans l’homogénat et dans 
les fractions nucléaire et cytoplasmique du myocarde. La liaison de STAT3 à l'ADN a été 
déterminée par EMSA et l'expression de gènes cibles de STAT3 (iNOS, MnSOD, Cox2) par 
RT-PCR. Les effets chrono-, dromo- et inotropes ont été déterminés par les enregistrements 
de l’ECG et de l’activité contractile ventriculaire. 
 
Résultats: STAT3 et GSK3ß étaient présents dans les fractions nucléaire et cytoplasmique 
tandis que PI3K, Akt, GS et ERK2 n’étaient détectées que dans la fraction cytoplasmique. 
L’augmentation de P-Tyr STAT3α provoquée par la réoxygénation était significativement 
réduite par le MPG ou l’AG490. La réoxygénation entraînait l'accumulation nucléaire de 
STAT3, mais étonnamment sans liaison avec l'ADN. A la réoxygénation l’AG490 diminuait 
la phosphorylation d’Akt, GS et ERK2 ainsi que celle de GSK3ß mais exclusivement dans la 
fraction nucléaire. L'inhibition de JAK2/STAT3 retardait également la récupération du rythme 
cardiaque et prolongeait la durée des arythmies. L'activité cardiaque n’était perturbée par de 
l’H2O2 qu’à des concentrations >500μM. A 1mM, l’H2O2 supprimait l'activité auriculaire dans 
45% des cœurs et la conduction auriculo-ventriculaire dans 66% et augmentait la formation de 
P-Tyr STAT3α et sa liaison à l'ADN sans modifier l'expression des gènes cibles. 
 
Conclusion: Les ROS produits par l’anoxie-réoxygénation activent STAT3α qui subit une 
translocation dans le noyau sans se lier à l’ADN et interagit rapidement avec des protéines de 
la voie RISK dans les compartiments nucléaire et cytoplasmique du cœur embryonnaire. Ce 
dernier, en particulier au niveau des oreillettes, se révèle très résistant au puissant stress 
oxydatif de l’H2O2 qui se différencie du stress lié à la réoxygénation en favorisant la liaison 
de STAT3 à l’ADN. Ces résultats originaux permettent une meilleure compréhension des 
mécanismes qui peuvent améliorer la récupération du cœur en développement après un 
épisode hypoxique intra-utérin. 
 
 
 



SUMMARY 
 

 
Aim: The embryonic/fetal heart is highly sensitive to oxygenation level and a transient 
uteroplacental hypoperfusion can lead to oxyradicals overproduction. Information about the 
molecular mechanisms underlying ischemia-reperfusion (I-R) injury in the developing heart is 
lacking. The Janus Kinase 2 / Signal Transducer and Activator of Transcription 3 
(JAK2/STAT3) pathway, required for cardiogenesis and involved in protection of the adult 
heart against I-R, could also play a key role in the response of the fetal myocardium to 
transient oxygen deprivation. The aim of the study was to characterize the involvement of 
JAK2/STAT3 pathway and its interaction with other signalling pathways in the developing 
heart transiently submitted to anoxia. Furthermore, the response of the embryonic heart to an 
exogenous oxidant stress (H2O2) in comparison to reoxygenation-induced endogenous 
oxyradicals has been investigated. 
 
Methods: Hearts isolated from 4-day-old chick embryos were submitted to anoxia (30min) 
and reoxygenation (80min) with or without the antioxidant MPG, the JAK2/STAT3 inhibitor 
AG490 or exposed to H2O2 (50μM-1mM). The time course of phosphorylation of 
STAT3αtyrosine705 and Reperfusion Injury Salvage Kinase (RISK) proteins (PI3K, Akt, GSK3ß, 
Glycogen Synthase and ERK2) was determined in homogenate and in enriched nuclear and 
cytoplasmic fractions. The STAT3 DNA-binding was determined by EMSA and the 
expression of STAT3 specific target genes by RT-PCR. The chrono-, dromo- and inotropic 
disturbances were also investigated by ECG and mechanical recordings. 
 
Results: Phosphorylation of STAT3αtyr (P-Tyr STAT3α) was increased by reoxygenation and 
reduced by MPG or AG490. STAT3 and GSK3ß were detected both in nuclear and 
cytoplasmic fractions while PI3K, Akt, GS and ERK2 were restricted to cytoplasm. 
Reoxygenation led to nuclear accumulation of STAT3 but unexpectedly without DNA-
binding. AG490 decreased the reoxygenation-induced phosphorylation of STAT3αtyr, Akt, GS 
and ERK2 and phosphorylation/inhibition of GSK3ß in the nucleus, exclusively. Inhibition of 
JAK2/STAT3 delayed recovery of atrial rate, worsened RR variability and prolonged 
arrhythmias compared to control hearts. Cardiac activity was altered only at concentrations 
>500μM of H2O2. Moreover, 1mM of H2O2 suppressed atrial activity in 45% of the hearts, 
atrioventricular conduction in 66% and augmented P-Tyr STAT3α which led to an increase in 
the DNA-binding but no change in the expression of three STAT3 specific target genes 
(iNOS, MnSOD, Cox-2). 
 
Conclusion: In the developing heart, besides its nuclear translocation without transcriptional 
activity, ROS-activated STAT3 can rapidly interact with RISK proteins present in nucleus 
and cytoplasm and reduce the anoxia-reoxygenation-induced arrhythmias. Moreover, the 
embryonic heart is highly resistant to H2O2 and the atrial region is the less affected. The role 
of JAK2/STAT3 in the response to reoxygenation-induced oxyradicals is different from the 
response to strong exogenous oxidant stress where STAT3 DNA-binding activity is increased. 
Such findings provide a first step in understanding the modulation of signalling cascades in 
the fetal heart submitted to transient intrauterine oxygen deprivation. 
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Introduction 

INTRODUCTION 

 

During gestation, any deterioration of the intrauterine environment may be the cause of 

congenital cardiopathies affecting about 8 ‰ neonates (Keller et al., 2007). Even if the 

embryo develops in a relatively hypoxic environment (Burton and Jaunaiux, 2001), the 

cardiovascular function can still be impaired by a transient intrauterine lack of oxygen 

resulting in myocardial hypoplasia and reduced heart rate (Ream et al., 2008). This can lead to 

possible long-term deleterious consequences, like emergence of cardiovascular diseases 

(hypertension, coronary heart disease…) in adulthood (Thornburg et al., 2010). It is therefore 

important to better understand the adaptative mechanisms of the immature heart to hypoxia to 

improve therapeutic strategies. Despite recent advances in fetal and perinatal cardiology and 

surgery, the signalling pathways underlying functional disturbances occurring during 

intermittent or prolonged ischemia, due, for example, to torsion of the umbilical cord or 

placental abnormalities are still poorly understood. This study in the embryonic chick heart 

model specifically focuses on the Janus Kinase 2 / Signal Transducer and Activator of 

Transcription 3 (JAK2/STAT3) pathway known to be involved in the response to ischemia-

reperfusion (I-R) and protection of the adult heart (Negoro et al., 2000) and also required for 

normal cardiogenesis at early developmental stages (Foshay et al., 2005). 
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Introduction 

I. The Janus Kinase 2 / Signal Transducer and Activator of Transcription 3 

(JAK2/STAT3) pathway 

I.1 Definition of the JAK2/STAT3 pathway 

 

I.1.a Components of the JAK/STAT pathway 

The JAK proteins form a family of cytosolic non-receptor tyrosine kinases composed 

of four members in mammals: JAK1, JAK2, JAK3 and Tyrosine Kinase 2 (TYK2). The 

STAT proteins constitute a family of transcription factors composed of seven members in 

mammals: STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b and STAT6. It should be 

noticed that TYK2, STAT2, STAT5a and STAT6 are not present in the chick. JAKs are large 

tyrosine kinases (120-140kDa) ubiquitously expressed except JAK3 which is restricted to 

hematopoietic cells. JAK1 and JAK2 are the predominant members in cardiomyocytes. JAKs 

are characterized by seven highly conserved regions of homology called Janus Homology 

domain 1-7 (JH1-7) (fig. 1). JH1 is a kinase domain important for the enzymatic activity and 

contains conserved tyrosines (Y) necessary for JAKs activation (e.g. Y1038/Y1039 in JAK1, 

Y1007/Y1008 in JAK2, Y980/Y981 in JAK3 and Y1054/Y1055 in TYK2). JH2 is a 

pseudokinase domain, structurally similar to a kinase domain but lacking enzymatic activity, 

and can provide a potential docking site for STAT proteins. The JH3-JH4 domains share 

homology with Src homology 2 (SH2) domain but do not have phospho-Y binding ability. 

The amino terminal (NH2) end (JH4-JH7) is a FERM domain (4.1, Ezrin, Radixin, Moesin) 

involved in association of JAKs with cytokine receptors and/or other kinases (Leonard and 

O'Shea, 1998).  

 

 

Fig. 1: Domain structure of JAKs. JAKs are composed of several JAK homology domains (JH). 
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Introduction 

STATs are transcription factors (83-113kDa) ubiquitously expressed except STAT4 

which is restricted to thymus, spleen and testis (Zhong et al., 1994). STATs are characterized 

by seven domains. The NH2 domain is involved in dimerization, tetramerization, nuclear 

import and protein-protein interaction. The coiled-coil (CC) domain is implicated in receptor 

binding, nuclear import and export and is also an interacting domain with other proteins (fig. 

2). The DNA-binding domain, which has an immunoglobulin-fold structure, binds to DNA as 

a dimer and is also involved in nuclear import and export and protein-protein interaction (e.g. 

Genes associated with Retinoid-IFN-induced Mortality-19 for STAT3). The linker (LK) 

domain is implicated in DNA-binding, transcriptional activity, nuclear export and is also an 

interacting domain with other proteins. The SH2 domain, the most conserved domain among 

STATs, is involved in receptor binding, dimerization, nuclear export and protein-protein 

interaction. The C-terminal part is a transactivation domain (TAD), the least conserved, 

implicated in dimerization, transcriptional activity, nuclear export and is also an interacting 

domain with other proteins (Lim and Cao, 2006).  

All STATs contain a conserved Y residue in the TAD that undergoes phosphorylation 

upon activation and interacts with the SH2 domain of the dimer partner. In addition, STATs 

(except STAT2 and STAT6) contain a second conserved phospho-amino acid residue, a 

serine (S) also in the TAD (Decker and Kovarik, 2000).  

The full-length STATs, the α isoforms, can undergo alternative splicing at the 3’ end 

gene transcripts leading to shorter ß isoforms with truncated C-terminal TAD (Lim and Cao, 

2006). More specifically STAT3ß lacks the 55 C-terminal amino acids of STAT3α, and 

consequently the phospho-S residue, but gains seven amino acids (fig. 2). STAT3α and 

STAT3ß are distinctly different in their activation, transcriptional activities, and biological 

functions (Schaefer et al., 1997). For example, granulocyte-colony stimulating factor (G-CSF) 
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Introduction 

activates only STAT3ß but not STAT3α in normal human CD34+ bone marrow and HL60 

cells (Chakraborty et al., 1996). In cells being CV-1 (simian) in Origin, and carrying the 

SV40 genetic material (COS) in the absence of cytokine or growth factor (GF) only STAT3ß 

is active and in response to epidermal GF (EGF) stimulation activated STAT3ß dimers have a 

greater DNA-binding activity and are more stable than STAT3α dimers (Park et al., 2000). 

However, relative to DNA-binding activity, STAT3α shows greater transcriptional activity 

than STAT3ß (Schaefer et al., 1997). STAT3ß acts as a dominant negative regulator of 

transcription in interleukine-5 (IL-5)-stimulated COS cells (Caldenhoven et al., 1996) but 

studies with mice deficient in STAT3α or STAT3ß show that STAT3ß is capable of activating 

distinct STAT3 target genes in response to IL-6, suggesting that STAT3ß may not be a 

dominant-negative factor of STAT3α in vivo (Maritano et al., 2004). Moreover, STAT3α and 

STAT3ß activate their own distinct set of genes and possess unique and non-redundant 

functions, as STAT3α but not STAT3ß, is required for viability (Maritano et al., 2004). 

 

Fig. 2. Domain structure of STAT3α and STAT3ß. Src homology 2 (SH2), phospho-tyrosine705 (Y) and serine727 

(S) motifs (Dewilde et al., 2008). 

 

 I.1.b Activation of the JAK2/STAT3 pathway 

JAK2 activation is an immediate consequence of cytokine-induced receptor 

dimerization (Kurdi and Booz, 2009). The JAK2/STAT3 pathway is most often activated by 
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type I cytokines whose receptors share a common signal-transducing subunit glycoprotein 

130 (gp130), like IL-6, IL-11, oncostatin M (OSM), ciliary neurotrophic factor (CNTF), 

leukemia inhibitory factor (LIF) and cardiotrophin-1 (CT-1) (Leonard and O'Shea, 1998). 

This pathway is also stimulated by interferon-α and -γ (INF-α and -γ) (Brierley and Fish, 

2005) and hormones like growth hormone (GH), erythropoietin (EPO) (Piuhola et al., 2008) 

and leptin (McGaffin et al., 2008). JAK2 can also be activated in response to distinct ligands 

that bind to G-protein coupled receptors. Hormones, such as angiotensin II (Ang II) (Schieffer 

et al., 2000), or chemokines, like Chemokine (C-C motif) Ligand 5 (CCL5) (Wong and Fish, 

1998) and α-chemokine interleukin 12 (CXCL12), bind to this type of receptor. JAK2 

activation occurs upon dimerization and trans-autophosphorylation of conserved tandem Y 

found in the activation loop of JAK2 JH1 domain. Activated JAK2 phosphorylates Y sites on 

the cytoplasmic tail of the receptor that serve as docking sites for STAT3 SH2 domain (Kurdi 

and Booz, 2009) (fig. 3). STAT3 molecules are then phosphorylated on Y705 by JAK2 and 

form homodimers or STAT1-STAT3 heterodimers based on the interaction between the SH2 

domains and the phosphorylated Y. Alternatively, STAT3 Y phosphorylation can be induced 

by other protein tyrosine kinases (PTKs) that are intrinsic to receptors or that are present in 

the cytoplasm or nucleus (fig. 3). PTKs are coupled to GF receptors such as EGF, platelet-

derived GF (PDGF) (Reich and Liu, 2006), vascular endothelial GF (VEGF) (Ye et al., 2004), 

CSF-1, G-CSF and granulocyte macrophage-CSF (GM-CSF). In some cases, oncogenic 

derivatives of non-receptor tyrosine kinases such as viral-sarcoma (v-Src) or Bcr-Abl can 

phosphorylate STAT3 without receptor engagement (Buettner et al., 2002). STAT3 can also 

be phosphorylated independently of its Y residue on its S727 residue which is a substrate for 

extracellular-signal-regulated kinase 1/2 (ERK 1/2), p38 mitogen-activated protein kinase 

(MAPK) (Kovarik et al., 2001), mammalian target of rapamycin (mTOR) (Yonezawa et al., 

2004), cyclin-dependent kinase 1 (CDK 1) (Shi et al., 2006), ZIP kinase (Sato et al., 2005) 
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and nemo-like kinase (NLK) (Kovarik et al., 2001, Brierley and Fish, 2005, Kojima et al., 

2005, Kurdi and Booz, 2007a). Binding of STAT3 to DNA does not require S 

phosphorylation, however, S phosphorylation is essential for maximal STAT3 transcriptional 

activity (Wen et al., 1995b).  

 

 

Fig. 3. Multiple mechanisms for STATs Y 

phosphorylation by JAKs or other protein tyrosine 

kinases (PTKs) (Reich and Liu, 2006).  

 

Once phosphorylated dimers are stabilized by bivalent interactions and then translocate into 

the nucleus. Generally protein nuclear import involves importin-α which recognizes the 

protein nuclear localization signal (NLS) in the presence of importin-ß in the cytoplasm, and a 

nuclear pore complex (NPC) protein/importin-α/importin-ß is formed. Second, the NPC 

migrates into the nucleus via the interaction of importin-ß and several nucleoporins. Finally, 

Ran-GTP, the GTP-bound form of small GTPase Ran, directly binds to importin-ß in the 

complex, followed by disassembly of the complex inside the nucleus (Gorlich and Kutay, 

1999) (fig. 4). In COS cells OSM-stimulated import of STAT3 into the nucleus is mediated 

by various importin-αs (importin-α5/nucleoprotein I-1 (NPI-1), importin-ß and Ran (Ushijima 

et al., 2005). In EGF-treated cells STAT3 nuclear import is mediated by active NLS present in 
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the CC domain (amino acids 150–162) recognized by importin-α3 (Liu et al., 2005). On the 

other hand in HeLa cells importin-α5 (strong interaction) and -α7 (weak interaction), but not 

importin-α1, -α3, and -α4, bind to STAT3 upon OSM stimulation. Binding domain of STAT3 

and importin-α5 is an arginine (Arg)-214/215 motif in the CC domain (Ma and Cao, 2006).  

 

Fig. 4: STAT3 nuclear import and export. 

Chromosome region maintenance 1 (CRM1), 

protein tyrosine kinases (PTKs), protein tyrosine 

phosphatases (PTPases) (Reich and Liu, 2006). 

 

 

Dimers translocate into the nucleus to bind DNA in order to activate transcription from 

specific target gene promoters containing a Gamma INF-Activated Site (GAS)-like element, 

sometimes referred to as the sis-inducible element (SIE) (Lew et al., 1991, Aaronson and 

Horvath, 2002).  

Dissociation from DNA allows dephosphorylation of STAT3 by nuclear PTPases, such as 

TC45, SH2-containing phosphatase 1 and 2 (SHP1 and 2) (Kim et al., 2010). 

Dephosphorylated STAT3 are then export to the cytoplasm where they can be reactivated. 

Generally protein nuclear export involves an nuclear export signal (NES) sequence (Wen et 

al., 1995a) recognized by CRM1 (also known as exportin-1) (Fornerod et al., 1997) (fig. 4). 

The recognition of an NES by CRM1 requires it to associate with Ran-GTP to form a stable 

export complex (Petosa et al., 2004). The nuclear export of STAT3 is mediated by three NES 
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elements (amino acids 306-318, 404-414 and 524-535) (Bhattacharya and Schindler, 2003) 

recognized by exportin that remains to be identified.  

The figure 5 shows a summary of the different ways leading to JAK2/STAT3 

activation. 

 

G proteins

STAT3-P

nuclear translocation + DNA binding

MAPKs

STAT3 STAT3-PSer 727 STAT3 STAT3-PTyr 705

JAK2

transcription of target genes

(iNOS, MnSOD, Cox-2, Bax, BAD, NF-κB…)

cytokines

(dimer)

mTOR, CDK1, 
ZIPK, NLK

gp
1

30

interferons hormones
chemokines

Prot Tyr Kinases

growth
factors

G proteins

STAT3-P

nuclear translocation + DNA binding

MAPKs

STAT3 STAT3-PSer 727 STAT3 STAT3-PTyr 705

JAK2

transcription of target genes

(iNOS, MnSOD, Cox-2, Bax, BAD, NF-κB…)

cytokines

(dimer)

mTOR, CDK1, 
ZIPK, NLK

gp
1

30

interferons hormones
chemokines

Prot Tyr Kinases

growth
factors

 

Fig. 5. Classical regulation of the JAK2/STAT3 pathway 

 

I.1.c Localization of JAK2 and STAT3 

JAK2 is a cytosolic kinase but can eventually be found in the nucleus. Indeed in 

unstimulated serum deprived chinese hamster ovary cells there is a constitutive nuclear 

localization of JAK2 and a GH stimulation caused the appearance of Y phosphorylated JAK2 

in the nucleus (Lobie et al., 1996). In mouse mammary epithelial cells, prolactin activates 

JAK2 which translocates to the nucleus by an as-yet-unknown mechanism (Nilsson et al., 

2006) and it has been shown that human JAK2 is present in the nucleus of haematopoietic 

cells (Dawson et al., 2009).  
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STAT3 is a cytoplasmic transcription factor shuttling between cytoplasmic and 

nuclear compartments once phosphorylated. But there is a constitutive presence of STAT3 in 

the nucleus independent of its phosphorylation state (Liu et al., 2005, Reich and Liu, 2006). 

Nuclear STAT3 continuously shuttles between nucleus and cytoplasm (Pranada et al., 2004, 

Liu et al., 2005). Nuclear translocation of STAT3 independent of phosphorylation occurs 

through association between a defined sequence in the CC domain (amino acids 152-163) and 

importin-α3 (Liu et al., 2005). STAT3 is also present in mitochondria from mice livers and 

hearts probably located in either the intermembrane space, the inner mitochondrial membrane 

[in the complex I and II of the electron transport chain (ETC)] and/or the matrix. The amount 

of STAT3 in mitochondria is about one-tenth that in the cytosol (Wegrzyn et al., 2009). 

STAT3 is also detected in mitochondria from mouse embryo fibroblasts, mammary epithelial 

cells and bladder carcinoma cells. The presence of STAT3 in mitochondria does not require Y 

phosphorylation or intact SH2 or DNA binding domains (Gough et al., 2009). 

 

I.1.d Roles of the JAK2/STAT3 pathway in biological functions 

STAT3 plays a crucial role in a variety of biological functions including cell growth and 

cell motility depending on the cell type and stimulus (Akira, 1999). For example, in murine 

hearts, LIF- and CT-1-stimulated STAT3 regulates VEGF expression and controls vessel 

growth during cardiac remodelling (Funamoto et al., 2000). STAT3 activation also mediates 

self-renewal in pluripotent embryonic stem cells (Boeuf et al., 1997, Niwa et al., 1998). In 

primary cortical neuroepithelial cells, STAT3 is involved in IL-6- or LIF-induced astrocyte 

differentiation (Bonni et al., 1997). Hepatocyte GF (HGF)-stimulated STAT3 mediates 

tubulogenesis in epithelial cells (Boccaccio et al., 1998). In remnant liver after partial 

hepatectomy, STAT3 participates in IL-6-dependent liver regeneration (Cressman et al., 

1995). STAT3 activation is involved in IL-6-dependent proliferation through prevention of 
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apoptosis independently of B-cell lymphoma 2 (Bcl-2) in T cells (Takeda et al., 1998). 

Cytoplasmic STAT3 is involved in microtubule dynamics by interacting with a microtubule-

destabilizing protein, stathmin, and antagonizing its function (Ng et al., 2006). Moreover, 

STAT3 is involved in skin wound healing by playing a role in EGF- and HGF-dependent 

motility (Sano et al., 1999).  

STAT3 activation also promotes proliferative processes including cellular transformation 

playing a role in oncogenesis (Bromberg et al., 1999). Lymphomas, leukemias, multiple 

myeloma, brain, prostate, breast, lung, head, neck, ovary and pancreas cancers contain 

activated STAT3 (Weber-Nordt et al., 1996, Garcia et al., 1997, Bromberg, 2001, Calo et al., 

2003). Activation of STAT3 appears to be associated with malignant transformation and are 

not found in benign lesions (Bowman et al., 2000). In myeloid leukemic cells, STAT3 

activation is essential for IL-6 or LIF-mediated terminal differentiation into macrophages 

(Minami et al., 1996, Nakajima et al., 1996) and in progenitor B cells, STAT3 activation 

appears to play a crucial role in the G1 to S cell-cycle transition by upregulating cyclin D1 

(Fukada et al., 1998). STAT3 activation is required and sufficient to mediate cellular 

transformation like for v-src transformation (Bromberg et al., 1998). More specifically, 

mitochondrial STAT3 appears to contribute to Ras-dependent malignant transformation by 

augmenting ETC activity (particularly complexes II and V) and also sustains altered 

glycolytic and oxidative phosphorylation activities characteristic of cancer cells (Gough et al., 

2009).  

STAT3 has also a role in inflammatory response mainly by mediating the effects of IL-6 and 

other gp130 ligands (Levy and Darnell, 2002). In macrophages and neutrophils, STAT3 

activation is essential for anti-inflammatory reactions mediated by IL-10 (Takeda et al., 

1999). In adult liver in response to bacterial infection, STAT3 is a mediator of induction of 

acute-phase genes (Alonzi et al., 2001).  
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As mentioned earlier STAT3 is expressed in the mitochondria where it modulates respiration 

exerting its actions not as a transcription factor that regulates nuclear gene expression, but 

rather through its localization. The precise mechanism by which STAT3 regulates complexes 

I and II of the ETC remains to be determined (Wegrzyn et al., 2009). In some cases, STAT3 

does not require to be phosphorylated to mediate transcription. Indeed, in untransformed 

human mammary epithelial cells, unphosphorylated STAT3 (U-STAT3) drives expression of 

genes such as RANTES, IL-6, IL-8, HGF-receptor, and muscle RAS that do not respond 

directly to phosphorylated STAT3. Many U-STAT3-responsive genes have κB elements that 

are activated when U-STAT3 binds to U-nuclear factor-κB (NFκB) (Yang et al., 2005, Yang 

et al., 2007). 

 

I.2 Role of the JAK2/STAT3 pathway in development 

I.2.a Role of the JAK2/STAT3 pathway in the embryo development 

To elucidate the in vivo function of JAK2, JAK2-deficient mice have been generated. 

JAK2-/- embryos are anemic and die between embryonic days 10 (E10) and E12 due to the 

absence of definitive erythropoiesis (fig. 6). Fetal liver myeloid progenitors fail to respond to 

EPO, thrombopoietin, IL-3 or GM-CSF and JAK2-deficient fibroblasts do not respond to 

IFN-γ meaning that JAK2 has pivotal functions for signal transduction of a set of cytokine 

receptors required in definitive erythropoiesis (Neubauer et al., 1998, Parganas et al., 1998).  

 

 

Fig. 6: JAK2+/+ (left side) and JAK2-/- embryos (right side) at day 

12.5 postcoitum (Neubauer et al., 1998). 
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Takeda et al. (1997) produce mice lacking STAT3 by gene targeting but no viable 

STAT3-/- mice could be obtained. STAT3-/- embryos die between E6.5 and E7.5. STAT3 

mRNA begins to be expressed exclusively in visceral endoderm around E6.0. The visceral 

endoderm, which covers the upper side of the egg cylinder embryo, is known to have an 

important function in mediating metabolic exchanges between the maternal and embryonic 

environments (Cross et al., 1994). Thus, the lethality may be due to defects in visceral 

endoderm functions, such as nutritional insufficiency. This study demonstrates that STAT3 is 

essential for the early development of mouse embryos. STAT3 mRNA is present in both 

maternal and extraembryonic tissues of the uterine epithelium during early postimplantation 

stages of murine development and activated STAT3 protein is present from E4.5 to E9.5 in 

decidual swellings of the visceral endoderm. This indicates that STAT3 is important both in 

preserving pregnancy and in the control of initial developmental processes (Duncan et al., 

1997). Functional blockade of STAT3 before implantation reduced embryo implantation 

meaning that successful implantation is dependent on STAT3 phosphorylation and activation 

in the endometrium before implantation (Catalano et al., 2005). A reduction in STAT3 

activation (alanine substituted for S727) attenuates neonatal growth leading to increased 

perinatal mortality in mice (Shen et al., 2004) (fig. 7).  

 

Fig. 7: SA/- (top) and SA/+ (bottom) mice at postnatal day 24. SA/- mice have 

alanine substituted for S727 in STAT3 (the SA allele) (Shen et al., 2004). 

 

 

I.2.b Role of the JAK2/STAT3 pathway in heart development 

STAT3-/- embryos die less than one day before the embryo would have presented 

beating cardiomyocytes, therefore the embryonic stem (ES) cell model system aptly served as 
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a powerful tool for determining the role of the JAK2/STAT3 pathway in the initial 

differentiation pathway of cardiac cells. The essential role of the JAK2/STAT3 pathway for 

initial stages of cardiomyogenesis is demonstrated by using beating cardiomyocytes 

differentiated from ES cells in which JAK2 and STAT3 expressions and activities are 

elevated compared with non-beating areas from the same embryoid bodies (EBs) (fig. 8). 

Inhibition of JAK2 before beating significantly diminishes beating within EBs, whereas JAK2 

overexpression induces beating areas. Inhibition of STAT3 causes an almost complete loss of 

beating areas (fig. 9) and STAT3-inhibited EBs result in lack of expression of several cardiac-

specific genes (Nkx2.5, α1 subunit of the L-type calcium channel, cardiac actin) (Foshay et 

al., 2005).  
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Fig. 8: Confocal microscopy reveals expression and activity of STAT3 in beating foci within embryoid bodies. 

(A–C): STAT3 (Rhodamine;  arrows in A) is elevated in beating cardiomyocytes derived from embryonic stem 

cells, as shown by anti-STAT3 antibodies. Arrows in (B) show cardiac troponin T (Tnnt2) staining (fluorescein 

isothiocyanate) representing cardiomyocyte differentiation in cells observed in (A). (C): DAPI staining reveals 

each nuclei within the field of view of (A, B). (D–F): When phosphorylated on Y705, STAT3 translocates to the 

nucleus and becomes transcriptionally active. Using an antibody directed against Y705-phosphorylated STAT3, 

staining (red) was clearly observed within nuclei (arrowheads in D) of Tnnt2+ cells (green staining cells in E). 

Dual label of (E) anti-pSTAT3 and Tnnt2 revealed in more detail pSTAT3 residing within each cardiomyocyte 

nucleus (arrowheads). Nucleoli within each nucleus were devoid of pSTAT3 (thin arrows). (G–H): Within a 

nonbeating area, arrowheads in (G, I) point to STAT3-free nuclei, whereas in (H), anti-Tnnt2 antibodies show 

no signal. Scale bar in (A) = 10 μm for A–I (Foshay et al., 2005). 
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ES cell lines: 

-8A: low expresser  

-7A and 8B: high expressers  

-10D: medium expresser of 

STAT3 dom/neg construct 

 

Fig. 9: Graph shows affects of STAT3 dom/neg construct expression on cardiomyocyte differentiation from ES 

cells (Foshay et al., 2005) 

 

JAK2-deficient embryos show a detectable delay in heart development which could be related 

to anoxia as a consequence of the reduced erythropoiesis (Parganas et al., 1998). 

 

I.3 Regulation of the JAK2/STAT3 pathway 

I.3.a Activation by hypoxia 

The effect of a transient lack of oxygen on the JAK2/STAT3 pathway has been 

demonstrated in different cells types and tissues. In adult cardiomyocytes, in response to 

hypoxia JAK2 is activated and mediates apoptosis via the increased phosphorylation of 

STAT1 and JNK, the increase expression of Bax protein and the increase in caspase-1 and 

caspase-3 activities (Mascareno et al., 2005). In contrast to STAT3, STAT1 induces a pro-

apoptotic signal (Stephanou and Latchman, 2005). In lung microvascular endothelial cells, 

JAK2 activation plays a role in xanthine dehydrogenase/oxidase (XDH/XO) activation (Wang 

et al., 2007a). STAT3 is activated in response to hypoxia and protects neonatal 

cardiomyocytes (Negoro et al., 2001) as well as adult rat hepatocytes (Terui et al., 2004) from 

cell death and reactive oxygen species (ROS). In addition activated STAT3 plays an 
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important role in hypoxia-induced cell activation and proliferation in pulmonary arterial 

smooth muscle cells (PASMC) (Bai et al., 2006). In response to hypoxia, activated STAT3 

can also mediate VEGF release in mesenchymal stem cells (Wang et al., 2007c) and in human 

renal carcinoma cells in a HIF-1α-dependent manner (Jung et al., 2005). Moreover, nuclear 

STAT3 phosphorylation and DNA-binding activity are increased during post-anoxic 

reoxygenation which lead to an anti-apoptotic effect in PASMC (Zhang et al., 2005). The 

expression of JAK2 and STAT3 transcripts is also increased in response to hypoxia like in 

PASMC (Wang et al., 2005) and in the perifornical region of adult rat (Volgin and Kubin, 

2006). Hypoxia can also stimulate the expression of STAT3 protein in mammary epithelial 

cells and human breast cancer cells (Lee et al., 2006). In v-Src–transformed cells and cancer 

cells with activated c-Src, under hypoxia STAT3 regulates hypoxia-inducible factor-1α (HIF-

1α) protein level (Niu et al., 2008). In contrast, in retinal capillary endothelial cells, hypoxia 

has no effect on STAT3 Y phosphorylation or nuclear accumulation (Dudley et al., 2005) and 

even impairs LIF-induced STAT3 phosphorylation indicating that hypoxia inhibits self-

renewal and induces early differentiation via suppression of the LIF-STAT3 signalling in ES 

cells (Jeong et al., 2007). It should be noticed that in the majority of the studies, cells or 

rgans are submitted to long periods of hypoxia (from 2 to 48h). 

 

o

I.3.b Activation by ischemia-reperfusion (I-R) 

The major pathological condition of activation of the JAK2/STAT3 pathway is the 

ischemia-reperfusion. Indeed, in in vivo myocardial ischemia model, phosphorylation of 

JAK2 (Hwang et al., 2005) and STAT3 is rapidly observed (5min) and STAT3 remains 

activated for 7 days (El-Adawi et al., 2003). More specifically, STAT3 Y phosphorylation 

increases (Omura et al., 2001) in the ischemic area and in the healthy border area adjacent to 

the infarcted area (Negoro et al., 2000). In rat heart, Y and S STAT3 phosphorylation occur 
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during ischemia, remains unchanged during reperfusion and is induced by ROS (McCormick 

et al., 2006). The effect of I-R is also observable in other organs like in kidney where STAT3 

Y phosphorylation is increased in an EGF and JAK2-dependent manner (Arany et al., 2006) ; 

or in brain where a transient middle cerebral artery occlusion increases JAK2 and STAT3 

phosphorylation after 6-72 h of reperfusion (Satriotomo et al., 2006). In contrast, in some 

studies there is no activation of JAK2 (Omura et al., 2001) or STAT3 in heart subjected to 

prolonged ischemia followed by reperfusion (Mascareno et al., 2001) or in ventricular 

samples from transplant patients with heart failure due to ischemic heart disease (Ng et al., 

2003). In neonatal cardiomyocytes submitted to simulated ischemia (no glucose, no O2) 

followed by simulated reperfusion (10mM glucose, 21% O2), STAT3 protein expression is 

not affected but overexpression of STAT3 reduced ischemia-induced apoptosis (Stephanou et 

al., 2000).  

hich includes the ischemic (IPC) and the pharmacological preconditioning 

 

I.3.c Role in pre- and postconditioning 

It is noteworthy that activation of the JAK2/STAT3 pathway appears as a key 

mechanism underlying the marked protection against I-R afforded by so-called 

preconditioning w

(PPC) protocols. 

First, the IPC is the phenomenon whereby brief and transient episodes of ischemia render the 

heart relatively resistant to a subsequent ischemic insult (Murry et al., 1986). The early phase 

of preconditioning is manifested within minutes after the ischemic stress and lasts less than 3h 

whereas the late phase (the so-called second window of protection) is characterized by a 

slower onset (≥20h) and last up to 72 hours. Both phases of preconditioning involve reduction 

of necrotic tissue mass, improvement of cardiac performance and reduction of arrhythmias. 

Activation of JAK2 and STAT3 within rat hearts exposed to three cycles of 5min of ischemia 
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and 5min of reperfusion followed by I-R, leads to a decrease in cardiomyocyte apoptosis and 

reduce myocardial infarction (Hattori et al., 2001). Nuclear STAT3 phosphorylation also 

increases (Lecour et al., 2005) in an IL-6-dependent manner 30min after the IPC stimulus 

(Dawn et al., 2004) or in a PKCε-Raf1-MEK-ERK way leading to cardioprotective effects 

(Xuan et al., 2005, Xuan et al., 2007). Treatment of isolated rat hearts with the coronary 

effluent of ischemic preconditioned hearts increases STAT3 phosphorylation which plays also 

a role in transferred cardioprotection (Huffman et al., 2008). In a mouse model for late IPC 

using six cycles of 4min of coronary occlusion followed by 4min of reperfusion, activation of 

JAK2 is observed concomitantly with transcriptional activation of STAT3 in vivo (Xuan et 

tosol, IPoC reduces phosphorylated STAT3 (Suleman et al., 2006, Lacerda et al., 

al., 2001, Xuan et al., 2003).  

Ischemic postconditioning (IPoC) consists of brief episodes of myocardial I-R employed 

during reperfusion after a prolonged ischemic insult which attenuates the total I-R injury (Na 

et al., 1996). In a young mouse model for IPoC using three cycles of 10s of ischemia and 10s 

of reperfusion, an increase in STAT3 phosphorylation is observed at 10min of reperfusion and 

mediates a reduction of the infarct size. Interestingly, STAT3 phosphorylation is reduced in 

aged mice compared with young mice hearts so this may contribute to the age-related loss of 

IPoC (Boengler et al., 2008a). Using IPoC, expression of phosphorylated STAT3 increases in 

myocardial nuclear fractions (Suleman et al., 2006, Lacerda et al., 2009b) and leads to 

recovery of myocardial function at end-reperfusion (Goodman et al., 2008). In the same time 

in the cy

2009b).  

Second, the heart can be pharmacologically preconditioned for example with tumor necrosis 

factor-α (TNF-α) administered in a time- and dose-dependent manner (Lecour et al., 2002). In 

isolated rat hearts preconditioned with TNF-α given for 7min followed by a 10min wash-out 

period before ischemia, nuclear S phosphorylation of STAT3 increases after 5min of 
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reperfusion and leads to reduction of the infarct size (Lecour et al., 2005). In isolated rat heart, 

PC with gadolinium given 15min prior to ischemia, STAT3 phosphorylation increases and 

plays a role in cardioprotection by reducing infarct size (Nicolosi et al., 2008). Like IPoC, the 

heart can also be pharmacologically postconditioned. In isolated perfused rat hearts 

preconditioned with insulin given at onset of reperfusion, Y phosphorylation of STAT3 

increases after 15min of reperfusion and leads to decrease in infarct size (Fuglesteg et al., 

2008). In mice hearts pharmacologically postconditioned by six alternating cycles of 10s 

reperfusion without TNF-α, 10s reperfusion with TNF-α, an increase in phosphorylated 

STAT3 occurs in the nuclear fraction during the first 15min of reperfusion and leads to 

cardioprotection whereas in the cytosol phosphorylation level of STAT3 does not change 

acerda et al., 2009b). 

 

I.3.d 

could damage nucleic acids, proteins, lipids and 

carbohydrates (Valko et al., 2007).  

 

(L

Activation by oxidant stress 

I.3.d.1 Definition of oxidant stress 

Oxidant stress is defined by an imbalance between the formation of ROS and/or 

reactive nitrogen species (RNS) (fig. 10) and antioxidant defenses which can lead to 

reversible or irreversible injury. ROS are molecules or ions formed by the incomplete 

reduction of O2 and have beneficial and deleterious effects. In a physiological context, ROS 

play a role in the regulation of signal transduction and gene expression but in a pathological 

situation (oxidative stress) ROS 

 26



Introduction 

RNS (Reactive Nitrogen Species)ROS (Reactive Oxygen Species)

 superoxide anion (O2•-)

 hydroxyl radical (OH•)

 hydrogen peroxide (H2O2)

 peroxynitrite (ONOO−)

 nitric oxide (NO•)

 hypochlorous acid (HOCl)
 

Fig. 10: ROS and RNS  

 

I.3.d.2 ROS sources  

After an ischemia, at reperfusion, radicals production is important (Xu et al., 2001) 

especia

he O2 consumed is reduced to water but 1-2% is partially 

reduced

embrane as well as in the membrane of phagosome, 

 and 2 (Duox 1 

and 2)

lly when ischemia is long (Li and Jackson, 2002). In the ischemic heart, the major 

ROS source are the mitochondrial electron transport chain (ETC), the nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidases (Nox) and the enzyme XO (Zweier and Talukder, 

2006) (fig. 11). 

During respiration, most of t

 to O2
•-. Under physiological conditions the ETC is composed of a series of electron 

carriers arranged spatially according to their redox potentials and organized into four 

complexes. The two major sites for O2
•- production are at complexe I (NADH dehydrogenase) 

and III (cytochrome bc1 complex).  

The Nox, located in the plasma m

is an ubiquitously distributed enzyme made up of six subunits (a GTPase and five "phox" 

units: gp91phox, p22phox, p40phox, p47phox and p67phox) (Brandes et al., 2010). The complex 

normally latent must be activated to assemble in the membranes. It catalyses the reaction: 

NADPH + 2O2 ↔ NADP+ + 2O2
•- + H+ 

Seven isoforms of Nox have been identified termed Nox1-5 and dual oxidase 1

. Nox1, Nox2 and Nox4 are the predominant isoforms expressed within the 

cardiovascular system but their expression profile differs between cell types, for instance 

 27

http://en.wikipedia.org/wiki/Phagosome
http://en.wikipedia.org/wiki/GTPase
http://en.wikipedia.org/wiki/GTPase
http://en.wikipedia.org/wiki/GTPase


Introduction 

cardiomyocytes express predominantly Nox2 and Nox4. More specifically, Nox4 is the major 

iac differentiation (Li et al., 2006).  

 posttranslational modifications 

isoform present during early stages of card

The XO is an ubiquitous enzyme composed of two flavin molecules, two molybdenum 

atoms and eight iron atoms. XO is derived from XDH through

and catalyses the reactions:  

hypoxanthine + H2O + O2  xanthine + H2O2 and   

xanthine + H2O + O2  uric acid + H2O2 

NO is also produced at reperfusion (Nonami, 1997). NO synthases (NOSs) (fig. 11) 

are enzymes that catalyze the production of NO• from L-Arg:  

L-Arg + NADPH + H+ + O2 → Nω-hydroxy-Larginine + NADP+ + H2O and  

Nω-hy

 or NOS1), inducible NOS 

(iNOS 

ei et al., 1996, Guo et al., 1999), while iNOS expression appears 

 cardiomyocytes of failing hearts (Satoh et al., 1997). 

Moreo d NO are stimulated during reperfusion and these 

two spe

 

droxy-Larginine + ½ NADPH + ½ H+ + O2 → L-citrulline + ½ NADP+ + NO + H2O 

There are three known NOS isoforms: neuronal NOS (nNOS

or NOS2) and endothelial NOS (eNOS or NOS3). Both nNOS and eNOS are present 

in human cardiomyocytes (W

in

ver production of both O2
•- an

cies react to form peroxynitrite (Beckman et al., 1990).  

Oxidant stress can also derive from ROS production by extracellular sources (i.e. 

paracrine effect).  

I.3.d.3 Antioxidant systems 

Cells possess systems to neutralize the physiological but potentially deleterious radical 

production, the rate of ROS remaining low. There are enzymatic and non enzymatic 

antioxidant systems (fig. 11).  
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The superoxide dismutase (SOD) catalyzes the dismutation of O2
•- into O2 and H2O2 

(McCo

01), cytoplasm 

es and catalyzes the decomposition of H2O2:  

sed of the glutathione reductase (GR) and the 

rd and Fridovich, 1969). In humans, three forms of SOD are present. SOD1 is located 

in the cytoplasm, SOD2 in the mitochondria, and SOD3 is extracellular. SOD1 and SOD3 

contain copper and zinc, whereas SOD2 has manganese in its reactive centre.  

Catalase is also located in mitochondria (Bai and Cederbaum, 20

(Ferrari et al., 2004) and peroxisom

2 H2O2 → 2 H2O + O2 

The glutathione redox cycle is compo

glutathione peroxidase (GPx), an enzyme composed of four subunits, present in extracellular 

fluids and in the cytosol and mitochondria (Jassem et al., 2002). There are eight different 

isoform

ascorbic acid (vitamin C) 

and α-tocopherol (vitamin E). Vitamin C is water-soluble and can react with many radicals 

f an 

lectron and reacts with ascorbic acid, which then becomes radical.  

There are also antioxidants agents such as N-(2-mercaptopropionyl)-glycine (MPG) or 

N-acetylcysteine (NAC), both thiol-containing compounds. MPG is an analog of glutathione 

s of GPx (GPx1-8) identified in humans. GPx catalyzes the reaction:  

2GSH + H2O2 → GS–SG + 2H2O 

The GR then reduces the oxidized glutathione to complete the cycle:  

GS-SG + NADPH + H+ → 2 GSH + NADP+ 

The thioredoxin is an ubiquitous protein which contains a dithiol-disulfide active site 

and reduces other proteins by cysteine thiol-disulfide exchange.  

There are also non enzymatic intracellular molecules such as 

generating the ascorbyl radical anion then ascorbyl. The ascorbyl radical can react with itself 

to regenerate. This regeneration is also possible by NADPH or glutathione.  

Vitamin E is a lipophilic compound, which allows it to localize at the membranes. It protects 

membrane lipids from oxidation. The α-tocopherol is reduced in radical by the exchange o

e
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and an effective scavenger of H2O2, ONOO- and OH•. NAC has free thiol group capable of 

interacting with the electrophilic groups of ROS, like OH• and H2O2. In addition, NAC exerts 

an indirect antioxidant effect related to its role as a GSH precursor (Raddatz et al., 2010). 
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Fig. 11: ROS sources and antioxidants systems 

 

I.3.d.4 JAK2/STAT3 pathway alteration by oxidant stress 

It is now well established that ROS/RNS play an important physiological role in cell 

signalling and many studies show the involvement of radicals in activation of the 

JAK2/STAT3 pathway. Indeed, in human ventricular myocytes, Ang II enhances JAK2 

activity via ROS generation (Modesti et al., 2005). Same result is observed in rat vascular 

SMC (VSMC), where Ang II inhibits the tyrosine phosphatase SHP-1 which mediates JAK2 

dephosphorylation (Shaw et al., 2003). In neonatal rat ventricular myocytes, H2O2 exposure 

increases the level of STAT3 mRNA, phophorylation and content in an Akt/NF-κB-dependent 

manner which leads to cell survival (Lu et al., 2008b). H2O2 also causes STAT3 activation 

within 5min independently of new protein synthesis in rat fibroblasts (Simon et al., 1998) and 

pheochromocytoma cells (Yu et al., 2006). In human fibroblasts, oxidized low-density 

lipoprotein, by generation of an intracellular oxidant stress, induces the phosphorylation of 

JAK2 and STAT3 which triggers STAT3 translocation into the nucleus. This activation is 
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prevented by addition of the antioxidant vitamin E (Simon et al., 1998, Maziere et al., 2001). 

In rat liver, chemically induced oxidative stress (buthionine-sulfoximine, a blocker of 

glutathione synthesis; phorone, a GSH depletory and nitrofurantoin, an O2
•- generator) 

activates STAT3 DNA-binding capacity with some minor differences in time-course and 

intensity (Tacchini et al., 2002). In human liver carcinoma cells, Nox leads to cadmium-

induced S phosphorylation of STAT3 and an increase in DNA-binding whereas antioxidant 

treatment reduces STAT3 activation. ERK contributes to this activation that could induce a 

protective mechanism against cadmium toxicity (Souza et al., 2009). In contrast, NO and thiol 

oxidants inhibit the autokinase activity of rat JAK2, presumably through oxidation of crucial 

dithiols to disulfides within JAK2. In murine progenitor B cells NO pre-treatment inhibits the 

IL-3-triggered activation of JAK2 which leads to proliferation inhibition (Duhe et al., 1998). 

Moreover, in neonatal rat cardiomyocytes, ROS generation via parthenolide blocks STAT3 

signalling of the IL-6-type cytokines (Kurdi and Booz, 2007b). In human neuroblastoma cells, 

neurons from chick ciliary ganglia and retina or mouse motor neuron, treatment with H2O2, a 

NO generator or a complex I inhibitor results in a decrease in the ability of CNTF and leptin 

 activate STAT3 and a blockade of STAT3 translocation (Kaur et al., 2005, Jang et al., 

ct that 

mediat o  non-

ner

to

2007). This inhibition in STAT3 activation is explained by the authors by the fa

ors of xidative stress have very different actions in nerve when compared with

ve cells. 

 

I.4 Interactions of the JAK2/STAT3 pathway with other signalling pathways 

I.4.a Interaction with the Reperfusion Injury Salvage Kinase (RISK) pathway  

The RISK pathway is a group of pro-survival protein kinases including PhosphoInositide-

3-Kinase (PI3K), Akt/Protein Kinase B (PKB), MEK 1/2 and ERK 1/2 capable of mediating 

cardioprotection at the time of myocardial reperfusion (Yellon and Baxter, 1999) (fig. 12). 
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Moreover, the RISK pathway is involved in the beneficial effects of protective strategies such 

as IPC and IPoC through different mechanisms. This may be mediated through the 

inhibition/phosphorylation of downstream Glycogen Synthase Kinase 3 (GSK3), causing 

the protective inhibition of the mitochondrial permeability transition pore (mPTP) a critical 

determinant of lethal myocardial reperfusion injury (Juhaszova et al., 2004). Another 

mechanism involves the activation of a variety of anti-apoptotic mechanisms including the 

phosphorylation and inhibition of pro-apoptotic factors such as Bad and Bax, and the 

inhibition of cytochrome c release (Hausenloy and Yellon, 2009). 

 

Fig. 12: Potential anti-apoptotic mechanisms through which activation of the pro-survival PI3K/Akt and ERK 

1/2 kinase cascades, which comprise the RISK pathway, protect the heart against reperfusion-induced injury. 

Growth factors, G-protein-coupled receptor ligands and atorvastatin administered during the first few minutes 

of reperfusion initiate cardioprotection by activating the RISK pathway, which then protects against the 

apoptotic and necrotic components of reperfusion-induced cell death. The scheme portrays the important anti-

apoptotic mechanisms that have been implicated in mediating cellular survival associated with the recruitment 

of these kinase cascades. Signalling through the PI3K/Akt and/or the MEK 1/2/ERK 1/2 cascades results in: (1) 

phosphorylation and inactivation of caspases 3 and 9, which inhibits apoptosis; (2) phosphorylation and 

inactivation of the proapoptotic proteins BIM, BAX, BAD and p53, one consequence of which is to prevent the 

release of mitochondrial cytochrome c in response to an apoptotic stimulus (shown by dashed arrows); (3) 

protect by inhibiting opening of the mitochondrial permeability transition pore (mPTP); (4) phosphorylation and 

activation of p70S6K which can protect by inactivating BAD or regulating protein translation; and (5) 

 

phosphorylation and activation of eNOS (endothelial nitric oxide synthase), producing nitric oxide which may 

regulating the expression of genes concerned with cellular survival (Hausenloy and Yellon, 2004).
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Recently, the existence of an alternative pro-survival signal transduction pathway for 

protecting the ischemic myocardium against lethal myocardial reperfusion injury has been 

 

 diminishes Akt expression (Lu et al., 2008b). In the IPC context, 

 IPoC without 

discovered. Lecour and co-workers have described this novel pro-survival pathway, which 

involves the activation of TNF and STAT3 as the Survivor Activating Factor Enhancement 

(SAFE) pathway. The SAFE pathway was first discovered in the setting of IPC, but its role in

IPoC has been recently confirmed (Lacerda et al., 2009a, Lecour, 2009). 

The JAK2/STAT3 and RISK pathways being both cardioprotective in the context of I-R 

injury, several studies have been performed to assess possible crosstalk (fig 13). Most studies 

evaluate interactions between JAK2/STAT3 and PI3K/Akt and provide controversial results.  

Some studies show a dual interaction between JAK2/STAT3 and PI3K/Akt, like in neonatal 

rat ventricular myocytes in which cells that survive from apoptotic insults (oxidant stress) 

have higher levels of Akt and STAT3. Inhibition of Akt activity reduces STAT3 expression 

and inhibition of STAT3

STAT3 knockout mice fail to increase Akt phosphorylation. In addition, Akt phosphorylation 

is reduced in the presence of the JAK/STAT3 pathway inhibitor (AG490) and vice versa 

STAT3 phosphorylation is diminished in the presence of a PI3K/Akt inhibitor (Wortmannin) 

(Suleman et al., 2008a).  

Other studies show only an effect of JAK2/STAT3 on PI3K/Akt like in a model for IPoC, 

where JAK2/STAT3 pathway may provide upstream initiation of RISK pathway signalling 

via PI3K/Akt activation but is insufficient to provide cardioprotection following

subsequent RISK activation (Goodman et al., 2008). Insulin-induced cardioprotection at 

reperfusion occurs through activation of STAT3. Inhibition of STAT3 affects activation of 

Akt meaning a close interaction between STAT3 and Akt in the cardioprotective signalling 

pathway activated by insulin treatment at reperfusion (Fuglesteg et al., 2008).  
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Other studies demonstrate only an effect of PI3K/Akt on JAK2/STAT3 like in an in vivo 

model of I-R together with a cell culture model (H9C2 cardiomyoblasts), where opioid-

008) and in hearts submitted to pharmacological preconditioning with 

3 (by AG490 or a dominant-negative STAT3 adenovirus) 

T3 signalling mediates the NO-associated decrease in 

ontractility (Yu et al., 2003).  

Althou A mic and nuclear 

com

induced cardioprotection occurs via the activation of both JAK/STAT3 and PI3K/Akt 

pathways and STAT3 phosphorylation is dependent on PI3K activation (Gross et al., 2006). 

In pulmonary artery endothelial cells, STAT3 activation by carbon monoxide is dependent on 

PI3K/Akt pathway with subsequent attenuation of pro-apoptotic factors (Zhang et al., 2005). 

By contrast in a model for IPoC, STAT3 phosphorylation does not require PI3K activation 

(Goodman et al., 2

TNF-α, STAT3 activation could also be achieved independent of Akt (Suleman et al., 2008a).  

The JAK2/STAT3 pathway interacts also with GSK3β, a downstream target of Akt, like in 

hepatocytes where STAT3 sensitizes the insulin signalling by negatively regulating GSK3β 

(Moh et al., 2008).  

And finally STAT3 can also act on ERK 1/2. For example, in H2O2-treated renal cells, 

inhibition of JAK2 or STAT

ameliorates survival through restoring ERK 1/2 activation (Arany et al., 2006). By contrast, in 

adult ventricular myocytes, IL-6 activates independently the JAK2/STAT3 and ERK 1/2 

pathways, but only JAK2/STA

c

gh ST T3 is basically a transcription factor shuttling between cytoplas

partments, the intracellular localization of its interactions with RISK pathway 

components remains unknown.  

 

I.4.b Interaction with the NF-κB (nuclear factor kappa-B) pathway  

NF-κB is a transcription factor involved in cellular responses to stimuli such as stress, 

cytokines, free radicals, ultraviolet irradiation, oxidized LDL, and bacterial or viral antigens 
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(Gilmore, 2006). NF-κB plays a key role in regulating the immune response to infection and it 

has been shown that it is necessary for the late phase of cardioprotection after IPC (Tranter et 

al., 2010). The JAK2/STAT3 and NF-κB pathways are both involved in cardioprotection in 

response to I-R injury, consequently some studies have evaluated possible interaction (fig. 

13). In neonatal rat ventricular myocytes, cells that survive from apoptotic insults (oxidative 

stress) have higher levels of STAT3. Direct activation of NF-κB enhances STAT3 expression, 

an effect abrogated by NF-κB inhibitor, meaning that cardiomyocytes possess an apoptosis-

resistant property as a cytoprotection mechanism which is likely conferred by mutual 

transactivation between NF-κB and JAK2/STAT3 (Lu et al., 2008b). In cardiomyocytes 

differentiated from murine ES cells and treated with CT-1, the activation of NF-κB requires 

the JAK2 phosphorylation (Sauer et al., 2004). In cancer and tumor-associated hematopoietic 

cells, maintenance of NF-κB activity requires STAT3 to upregulate anti-apoptotic and other 

oncogenic genes (Lee et al., 2009). By contrast, in murine mesangial cells, STAT3, via direct 

interactions with NF-κB p65, serves as a dominant-negative inhibitor of NF-κB activity to 

suppress indirectly cytokine (IL-1ß, LPS + IFN-γ) induction of the iNOS promoter (Yu et al., 

2002). 
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Fig. 13: Interactions between the JAK2/STAT3 and the RISK and NF-κB pathways in the context of 

cardioprotection. It should be noticed that GSK3ß exerts its cardioprotective effect when the protein is 

inhibited (phosphorylated).  

 

I.5 Role of the JAK2/STAT3 pathway in cardioprotective mechanisms  

 

It is known that the JAK2/STAT3 pathway plays a major role in cardioprotection after 

I-R injury by acting on the expression of specific target genes and/or the activity of proteins. 

In a rat model of left anterior descending coronary artery ligation, treatment with JAK2 

inhibitor reduces STAT3 phosphorylation and results in an increase in caspase-3 activity and 

Bax protein (Negoro et al., 2000). Caspase-3 is responsible for the cleavage of key cellular 
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proteins, such as cytoskeletal proteins, that leads to the typical morphological changes 

observed in cells undergoing apoptosis and Bax (Bcl-2-associated X protein) promotes 

mitochondrial outer membrane permeabilization and release of cytochrome c into the cytosol. 

In isolated hearts from endothelial cell-restricted STAT3 knockout mice, I-R induces greater 

expression of caspase-8 (Wang et al., 2007b) known to propagate the apoptotic signal by 

directly cleaving and activating downstream caspases. In isolated rat hearts submitted to IPC 

or TNF-α PC, inhibition of STAT3 activation at the time of reperfusion results in the 

deleterious loss of phosphorylation of the pro-apoptotic agent BAD (Bcl-2-associated death 

promoter) (Lecour et al., 2005). BAD phosphorylation causes the loss of BAD ability to 

heterodimerize with the survival proteins Bcl-xl or Bcl-2 and then leads to survival. In mouse 

hearts, JAK2 inhibition before the IPC abrogates completely the increase in iNOS protein and 

activity (Xuan et al., 2001) known to mediate late PC in vivo (Guo et al., 1999) as well as the 

upregulation of cyclooxygenase-2 (Cox-2) protein (Xuan et al., 2003), PGE2 and/or PGI2 

being the most likely effectors of Cox-2-dependent cardioprotection (Shinmura et al., 2000). 

In neonatal rat STAT3 activation protects cardiomyocytes against ROS caused by hypoxia-

reoxygenation through upregulation of the MnSOD gene and its anti-oxidant activity (Negoro 

et al., 2001). STAT consensus sequences (GAS elements) are present in the mouse iNOS, 

Cox-2 and MnSOD promoters (Boengler et al., 2008b) allowing STAT3 to directly control 

the transcription of these genes. In cardiac-specific transgenic mice expressing constitutively 

active STAT3 exposed to I-R, free radical scavenging enzymes metallothionein1 (MT1) and 

metallothionein2 (MT2) are markedly upregulated compared to nontransgenic littermates. 

Moreover, homozygous deletion of the MT1 and MT2 genes abrogates cardioprotective effect 

of STAT3 with the abolition of its ROS-scavenging effects (Oshima et al., 2005). In rat 

VSMC treated with H2O2, JAK2 inhibition abolishes H2O2-induced heat-shock protein 70 

(HSP70) expression, a chaperone known to protect cells from ROS (Madamanchi et al., 
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2001). In opioid-induced cardioprotection, inhibition of JAK2/STAT3 reduces GSK3β 

phosphorylation (Gross et al., 2006) and GSK3β phosphorylation/inhibition is suggested to be 

protective by preventing mPTP opening (Juhaszova et al., 2004). However, the protection of 

the cardiac electromechanical function afforded by the JAK2/STAT3 pathway under 

pathological conditions remains to be explored in the developing heart.  

The figure 14 shows a summary of the different ways leading to the cardioprotective 

effect of the JAK2/STAT3 pathway. 

 

Ischemia-reperfusion
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Hypoxia-reoxygenation
Oxidant stress

JAK2 ↑

P-STAT3 ↑

AG490

APOPTOSIS ↓

T

Caspases ↓ Bax ↓
BAD ↓
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iNOS ↑
Cox-2 ↑

MnSOD ↑ MT1 ↑
MT2 ↑

HSP70 ↑ GSK3ß
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Fig. 14: Cardioprotective actions of the JAK2/STAT3 pathway. 
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II. The embryonic heart 

II.1 Characteristics  

 

In vertebrate embryogenesis the heart is the first organ to form and become completely 

functional. A correct development of the embryo absolutely requires a normal cardiogenesis. 

The embryo and the fetus develop normally in a relatively hypoxic environment (PO2: 0-

8kPa) (Maltepe and Simon, 1998, Burton and Jaunaiux, 2001). The 4-day-old embryonic 

chick heart is composed of three different regions: atria will differentiate into pacemaker 

tissue, ventricle into working myocardium and outflow tract into aorta and pulmonary arteries 

(Moorman and Christoffels, 2003). At the stage investigated, the outflow tract undergoes 

important morphogenetic processes (remodeling) preparing the aorticopulmonary septation 

which require an important physiological apoptotic activity (Sugishita et al., 2004, Barbosky 

et al., 2006). Indeed, in our preparation, there was 8.4 ± 1.3, 9.5 ± 0.3, and 14.5 ± 0.8% (n = 3 

determinations) of apoptotic cells in atria, ventricle, and outflow tract, respectively (Gardier et 

al., 2010a). 

Embryonic mammalian cardiomyocytes have immatures sarcoplasmic reticulum (SR) (Porter 

et al., 2003) and T-tubules are absent or less developed than in adult heart (Brette and 

Orchard, 2003). In contrast all the components required for a functional SR and excitation-

contraction (E-C) coupling are expressed in the chick embryonic heart (at the 4 day stage) like 

ryanodine receptor 2 (Dutro et al., 1993), SR Ca2+-ATPase (SERCA2) (Jorgensen and Bashir, 

1984), L- and T-type voltage-dependent calcium channels (Brotto and Creazzo, 1996)and 

Na+/Ca2+ exchanger (Murphy et al., 1986).  

The sympathetic or parasympathetic extrinsic cardiac innervation is absent at early stages and 

the regulation of the cardiovascular function is directly dependent on intrinsic mechanisms at 

the tissue level. Embryonic heart has no myocardial vascularisation, the coronary vasculature 
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starting to expand only after day 32-37 in human (Reese et al., 2002), day 12 in mouse 

(Olivey et al., 2004) and day 5 in chick (Martinsen, 2005), oxygen and nutrients diffusing 

directly from the luminal blood.  

The content of glycolytic and mitochondrial enzymes is lower in the rapidly growing 

embryonic heart than in the mature heart (Seltzer and McDougal, 1975). In the embryonic 

chick heart, the mitochondrial oxidative capacity is rather moderate (i.e. about half of that in 

the mature myocardium) but the activity of the working ventricle depends predominantly on 

aerobic ATP synthesis as in the adult (Romano et al., 2001). The glycogen concentration is 

much higher (10-20 fold) in embryonic than in adult myocardium and atria contains more 

glycogen than ventricle (Tuganowski et al., 1975, Romano et al., 2001).  

In the embryo/fetus, the level of antioxidants is relatively low. Indeed, antioxidant enzymes 

like SOD and catalase appear to be lower in immature than in adult myocardium (Mover and 

Ar, 1997), but a high content of ascorbic acid has been found in the yolk sac as well as in liver 

and brain of the developing chick embryo (Surai et al., 1996). More specifically, in the 4-day-

old embryonic chick heart the activity of GPx and GR as well as the normalized content of 

reduced glutathione are comparable to those in adult cardiac tissue (Raddatz et al. 

unpublished).  

 

II.2 Response to anoxia-reoxygenation 

 

Early cardiogenesis is severely affected even by short period of hypoxia (Ream et al., 

2008) and cardiovascular function can be rapidly altered by oxygen deprivation (Jensen et al., 

1999, Raddatz et al., 2006). During intrauterine life the embryo/fetus can be exposed to 

transient reduction of perfusion and oxygenation, like torsion of the umbilical cord, maternal 

hypoxaemia or acute placental dysfunction, leading to adaptative mechanisms.  
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In the 4-day-old chick embryo model, it has already been shown that functional (chrono-, 

dromo- and inotropic) disturbances and ultrastructural modifications induced by 30min of 

anoxia followed by 60min of reoxygenation are reversible within a period of time that 

depends on the developmental stage (Sedmera et al., 2002). Atrial rate, PR interval, QT 

duration determined from the electrocardiogram (ECG), atrial and ventricular 

electromechanical delay (EMD) and ventricular shortening are rapidly impaired but fully 

recover after about 30min of reoxygenation (Raddatz et al., 2006) (fig. 15). Tenthorey et al. 

(1998) demonstrate a rapid decline of ventricular contractility (i.e. decreased myocardial 

shortening with contracture, reduction in velocities of contraction and relaxation) during 

anoxia. L-type calcium channels and SR calcium release channels are implicated in the 

myocardial dysfunction induced by anoxia-reoxygenation (Tenthorey et al., 1998). Hearts 

also display different types of arrhythmias like atrial ectopy, transient sinoatrial arrest leading 

to cardioplegia, brady- and tachycardia, 1st, 2nd and 3rd degree atrioventricular block and 

intermittent bursting activity (Tenthorey et al., 1998, Sarre et al., 2005, Sarre et al., 2006). 

Reoxygenation causes also Wenckebach phenomenon and rare ventricular escape beats. 

Moreover, there is an absence of increased incidence of cell death in the embryonic 

myocardium submitted to various periods of anoxia (Sedmera et al., 2002).  

A burst of ROS/RNS production is observable during the first 15min of reoxygenation and the 

reoxygenation-induced arrhythmias are related to the peak of ROS production (Rosa et al., 

2003, Sarre et al., 2005). This ROS production is maximal after 10min of reoxygenation 

(Sarre et al., 2005) and it has just been shown that the ETC and the Nox were the main 

sources of ROS and that glutathione redox cycle appeared to be the major antioxidant system 

(Raddatz et al., 2010). In the embryonic myocardium iNOS is strongly expressed and 

generates NO during anoxia-reoxygenation (Terrand et al., 2003), improving recovery of E-C 
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coupling in the ventricle (Maury et al., 2004), but no nitrosative stress was detectable 

(Raddatz et al., 2010). 

The myocardial dysfunction induced by anoxia-reoxygenation is also associated with a 

significant alteration of signalling pathways. In particular, the region-specific activation of 

MAPKs (p38, ERK and JNK) (Sarre et al., 2008, Gardier et al., 2010b) and stimulation of 

PKC and NOSs (Sarre et al., 2005) are part of the mechanisms involved in the response to 

anoxia-reoxygenation, with slight differences relative to the ischemic-reperfused adult heart 

(Hausenloy and Yellon, 2006). 

 

Fig. 15. Functional parameters of the 

isolated 4-day-old embryonic chick 

heart during anoxia-reoxygenation, 

expressed as percent changes of their 

preanoxic values (Raddatz et al., 

2006). 
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II.3 Fetal programming 

 

The JAK2/STAT3 pathway playing an important role in embryogenesis and more 

especially in cardiogenesis, alteration of this pathway by different stresses could have 

consequences on fetal programming. This is the concept that epigenetic factors in the 

intrauterine environment can profoundly influence the trajectory of prenatal development. 

Programming effects can be induced by maternal diet alterations, maternal substance abuse 

(e.g. alcohol, nicotine, drugs), chronic fetal hypoxia and anemia. Intrauterine programming 

may involve structural and functional changes in genes, cells, tissues, and whole organs 

(Fowden et al., 2006). There are critical time windows when developing systems are most 

vulnerable to adverse conditions, and these critical periods differ among systems and species. 

Fetal programming has permanent effects that can alter responses to stress in later life and can 

modify susceptibility to diseases (Nijland et al., 2008). Indeed, this phenomenon is now 

recognized as a possible origin of many systemic adult diseases including coronary heart 

disease, hypertension, stroke, atherosclerosis, pre-eclampsia and diabetes. 



Aims of the work 

AIMS OF THE WORK 

 

I. Characterization of the JAK2/STAT3 pathway in the 4-day-old chick embryonic heart 

 

The first phase of this work characterized the JAK2/STAT3 pathway in the 4-day-old chick 

embryonic heart. We first checked the basal expression of JAK2 and STAT3 in atria, ventricle 

and outflow tract. In addition, we studied the response of the pathway to classical activation 

by IL-6. And finally we compared STAT3 expression in basal conditions (freshly isolated 

hearts) and in the culture chamber used for the experiment of anoxia-reoxygenation (after 

stabilization). 

 

II. Modulation of the JAK2/STAT3 pathway by anoxia-reoxygenation and functional 

consequences 

 

The second phase of this work determined the role of the JAK2/STAT3 pathway in the 

developing heart submitted to anoxia-reoxygenation. We therefore established the temporal 

profile of STAT3 phosphorylation and determined the role played by the reoxygenation-

induced ROS in this activation. STAT3 being a transcription factor, we studied its 

transcriptional activity including expression of specific target genes. We finally examined the 

role of activated STAT3 in the functional recovery of the embryonic heart at reoxygenation. 

 

III. Interaction of the JAK2/STAT3 and RISK pathways during anoxia-reoxygenation 

 

The third phase of this work firstly assessed the temporal profile of phosphorylation of 

RISK pathway components (PI3K, Akt, and ERK) and their direct targets GSK3ß and 

 44



Aims of the work 

 45

glycogen synthase (GS) and secondly assessed the crosstalk between STAT3 and RISK 

pathways in the nuclear and cytoplasmic compartments of the anoxic-reoxygenated 

embryonic heart. 

 

IV. Effects of an exogenous oxidant stress (H2O2) on cardiac activity and JAK2/STAT3 

pathway 

 

The last part of this work evaluated the response of the embryonic heart to an exogenous 

oxidant stress (H2O2) in comparison with the reoxygenation-induced endogenous ROS. We 

assessed the functional response of the heart to H2O2, the level of phosphorylation, the 

transcriptional activity of STAT3 and the expression of specific target genes. 



Material and Methods 

MATERIAL AND METHODS 

I. Preparation and in vitro mounting of the heart. 

 

Fertilized eggs from Lohman Brown hens were incubated during 96h at 38°C and 80% 

relative humidity to obtain stage 24HH embryo according to Hamburger and Hamilton 

(Hamburger and Hamilton, 1951). After opening a window in the shell, the embryo was 

explanted. The spontaneously beating hearts were carefully excised under a dissecting 

microscope (x12) from explanted embryos by section at the level of the truncus arteriosus as 

well as between the sinus venosus and the atria using micro-scissors. The heart was then 

placed in a stainless steel chamber, specially designed for this preparation (Raddatz et al., 

1992) (fig. 16). Briefly this chamber was equipped with two windows for observation and two 

electrodes for ECG recording. The heart was placed in the culture compartment. A thin and 

transparent silicone membrane (15μm), highly permeable to gas (O2, CO2, N2) but 

impermeable to liquids (RTV 141, Rhône-Poulenc) was gently placed on the heart. In these 

conditions, the thickness of the preparation was about 300μm. The volume of the lower 

compartment was approximately 300μl. The liquid of the upper compartment was removed 

allowing the passage of gas of selected composition. At the developmental stage investigated, 

the heart lacks vascularization and the myocardial oxygen requirement is met exclusively by 

diffusion. The culture chamber was then placed on the thermostabilized stage (37.5°C) of an 

inverted microscope (Olympus IMT2).  
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Fig. 16: From left to right, chicken embryo stage 24HH, isolated heart and culture chamber (upper panels). The 

lower compartment containing the heart in culture medium was separated from the upper compartment by a thin 

silicon membrane for gas exchanges (lower panel) (Raddatz et al., 1992). RA and LA: right and left atria, V: 

ventricle, OFT: outflow tract. 

 

The standard HCO3/CO2 buffered medium was composed of (in mmol/L): 99.25 NaCl; 0.3 

NaH2PO4; 10 NaHCO3; 4 KCl; 0.79 MgCl2; 0.75 CaCl2 and 8 D-glucose. This medium was 

equilibrated in the chamber with 2.31% CO2 in air containing 21% O2 (normoxia and 

reoxygenation) or in N2 (anoxia) yielding a pH of 7.4. The JAK2/STAT3 inhibitor AG490 

and the PI3K/Akt inhibitor LY-294002 (Calbiochem) were reconstituted in dimethylsulfoxide 

(DMSO, Sigma-Aldrich). MPG (Sigma-Aldrich), AG490 and LY-294002 were diluted in the 

standard medium containing 0.5% and 0.006% DMSO (vehicle, V), respectively, and present 

throughout the experimental protocol. 
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II. Determination of the optimal level of myocardial oxygenation.  

 

We have first determined the optimal level of oxygenation of the preparation to ensure a 

normal heart function. Under our experimental conditions 21% O2 corresponded to 141mmHg 

and 8% O2 to 54mmHg which was closer to in ovo environment. In a first series of 

experiments, hearts were submitted to steady normoxia (21% O2) (fig. 17, protocol A) or 

hypoxia (8% O2) (fig. 17, protocol B) during 165min at 37°C. In a second series of 

experiments hearts were equilibrated in normoxia (21% O2) during 105min and then 

submitted to hypoxia (8% O2) during 180min (fig. 17, protocol C). The reverse protocol was 

also tested: first hypoxia and then transition to normoxia (fig. 17, protocol D). Heart rate and 

atrioventricular conduction were determined after 45min of stabilization and then every hour. 

 

                                  

165min hypoxia (8% O2)

165min normoxia (21% O2)

3h hypoxia105min normoxia

165min hypoxia (8% O2)
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A
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C

D  

Fig. 17: Experimental protocols. Isolated hearts were submitted to normoxia (21% O2) or hypoxia (8% O2). 

 

III. Experimental protocols 

III.1 Exposure to interleukine-6 (IL-6). 

 

In order to determine the effect of a cytokine known to activate the JAK2/STAT3 

pathway, embryonic hearts were placed in a Petri dish (3cm of diameter) in the standard 

medium, stabilized 45min under normoxia and then exposed 1h to 1000 or 10000U/ml of 

recombinant human IL-6 (rHu-IL-6, GenScript) at 37°C (cardiac rhythmicity and contractility 

were not different between hearts maintained in Petri dishes and hearts mounted in the 

 48



Material and Methods 

chamber). Atrial rate was assessed throughout experiment. Ventricles were then carefully 

dissected on ice and stored at -80°C for subsequent determinations. We also treated rat 

neonatal cardiomyocytes with rHu-IL-6 as a positive control for the tyrosine phosphorylated 

form of STAT3 (P-Tyr STAT3). 

 

III.2 Anoxia-reoxygenation.  

 

After a 30min pretreament at room temperature in V, MPG [1Mm (Sarre et al., 2008)] 

AG490 (10μM) or LY-294002 (10μM), hearts were mounted in the chamber, stabilized 45min 

under normoxia and submitted to anoxia (30min) and reoxygenation (80min) (fig. 18). 

Control hearts were maintained under steady normoxia 60 and 90min after S, corresponding 

to the time points R30 and R60, respectively. At the end of the experiment atria, ventricle and 

outflow tract were carefully dissected on ice and stored at -80°C for subsequent 

determinations. 

 

stabilization 45min anoxia 30min reoxygenation 80min ± pharmacological agents

S A10 A30 R10 R30 R40 R50 R60 R80

stabilization 45min anoxia 30min reoxygenation 80min ± pharmacological agents

S A10 A30 R10 R30 R40 R50 R60 R80  

Fig. 18: Anoxia-reoxygenation protocol. Isolated hearts were stabilized 45min in normoxia and submitted to 

anoxia (30min) and reoxygenation (80min). Hearts were harvested after stabilization (S), 10 (A10) and 30min 

(A30) of anoxia and 10 (R10), 30 (R30), 40 (R40), 50 (R50), 60 (R60) and 80min (R80) of reoxygenation (time 

points indicated by the arrows). 

 

III.3 Exposure to hydrogen peroxyde (H2O2).  

 

With the aim of establishing the effect of an exogenous oxidant stress on the embryonic 

chick heart, hearts were placed in Petri dish in the standard medium, stabilized 45min under 
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normoxia and then exposed 1h to 50, 100, 200, 500 or 1000μM of H2O2 (Sigma-Aldrich) at 

37°C (Gardier et al., 2010b). The proportion of hearts still beating at the end of each 

experiment was determined and atrial rate was assessed at 1000μM of H2O2. Atria, ventricle 

and outflow tract were then carefully dissected on ice and stored at -80°C for subsequent 

determinations. 

 

IV. Protein expression and phosphorylation (JAK2, STAT3, PI3K, Akt, GSK3ß, GS, 

ERK). 

 

 The protein expression and level of phosphorylation of JAK2, STAT3, PI3K, Akt, 

GSK3ß, GS and ERK were determined by immunoblotting. 

 

IV.1 Protein homogenate. 

 

 Six atria, three ventricles and six outflow tracts were pooled because of the small size 

of the hearts. Atria, ventricle and outflow tract were homogenized by sonication 3 x 2s in the 

ice-cold lysis buffer (in mmol/L: 20 Tris-acetate (pH 7), 270 sucrose, 1 EGTA, 1 EDTA, 50 

NaF, 10 -glycerophosphate, 1 dithiothreitol (DTT), 10 4-nitrophenyl phosphate disodium 

salt hexahydrate (PNPP), 1% Triton X-100 and inhibitors of proteases) and protein content 

was measured by the method of Bradford (Coomassie protein assay kit, Pierce) with bovine 

serum albumin as standard.  
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IV.2 Enriched nuclear and cytoplasmic fractions preparation. 

 

Cytoplasmic and nuclear extracts were obtained as described elsewhere (Levrand et al., 

2005). Twelve ventricles were homogenized in hypotonic buffer (in mmol/L): 10 HEPES (pH 

7.9), 0.1 EDTA (pH 8), 0.1 EGTA (pH 8), 10 KCl, 1 DTT, 1 Na3VO4 and inhibitors of 

proteases. After addition of detergent Nonidet P-40 (0,625%) and centrifugation, supernatants 

containing the cytoplasmic proteins were stored at -80°C. Pellets were resuspended in 

hypertonic buffer (in mmol/L: 20 HEPES (pH 7.9), 400 NaCl, 1 EDTA (pH 8), 1 EGTA (pH 

8), 1 DTT, 1mM Na3VO4 and inhibitors of proteases), centrifugated and the resulting 

supernatants (nuclear fractions) were collected and stored at -80 °C. Protein content was 

measured in each fraction by the method of Bradford. 

 

IV.3 Immunoblotting. 

 

Proteins from cellular extracts (20μg) were boiled with 1/3 of SDS sample buffer (in 

mmol/L: 150 Tris-HCl (pH 6.8), 6% SDS, 30% glycerol, 7.5% β-mercaptoethanol and 0.2% 

bromophenol blue), separated on 10% SDS-polyacrylamide gels (1h, 185V), and transferred 

to nitrocellulose membranes (2h, 100V). Membranes were probed with primary antibodies 

against JAK2 (1:1500); phospho-Tyr705-STAT3 and phospho-GS (1:750); phospho-Ser727-

STAT3, phospho-PI3K, STAT3 and PI3K (1:500); phospho-Akt, phospho-GSK3β, phospho-

ERK, Akt, GSK3β, GS and ERK (1:1000) diluted in 5% bovine serum albumin in tris-

buffered saline tween [(TBS-T), in mmol/L: 20 Tris (pH 7.6), 150 NaCl and 0.00025% tween-

20)] (overnight, 4°C). Blots were then incubated (1h, room temperature) with the secondary 
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antibody (1:10000, goat anti-rabbit HRP conjugated, GE Healthcare) in 1% non-fat milk in 

TBS-T. Immunoreactive bands were detected using the ECL western blot reagent kit 

(PerkinElmer). Signal was semi-quantitatively analyzed using scanning densitometry 

(Quantity One software, Biorad). Protein bands (phospho) were normalized to expression of 

the total protein in the same sample and on the same membrane. More specifically for 

STAT3, the phospho-α isoform (P-STAT3α) was normalized to expression of the total α 

isoform. Phosphorylation level at each time point of anoxia and reoxygenation was 

normalized to the respective preanoxic S level. We used total cell extracts from serum-starved 

HeLa cells prepared with IFN-α treatment (Cell Signaling Technology) as a positive control 

for P-Tyr STAT3, in which the α isoform was largely predominant relative to the ß isoform. 

Rabbit antibodies against phospho-Ser727-STAT3, phospho-Tyr458-PI3K, PI3K, phospho-

Ser473-Akt, Akt, phospho-Ser9-GSK3β, GSK3β, phospho-Ser641-GS, GS, phosphorylated ERK 

and ERK were from Cell Signaling Technology, the one against JAK2 was from Sigma-

Aldrich, the one against phospho-Tyr705-STAT3 was from Ab Frontier and the one against 

STAT3 was from Santa Cruz Biotechnology. 

It should be noticed that antibodies used are not known to crossreact with avian proteins but 

rather with mammals. By checking protein sequences we found a high homology between the 

different species. 

 

V. Recordings of electrical and contractile activities. 

 

Electrical and contractile activities were recorded simultaneously and continuously 

throughout in vitro experiments according to Sarre et al, 2006.  
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V.1 Electrical activity. 

 

ECG recording of the spontaneously contracting intact heart was performed using two 

Ag/AgCl electrodes 1.2mm apart (diameter 0.625mm) inserted into the window facing the 

culture compartment (fig. 16). The atrial and ventricular regions of the whole heart were 

placed in the immediate vicinity of these electrodes, which were connected to a differential 

preamplifier (gain of 2000), resulting in an output signal of 1-5V peak-to-peak. This signal 

was digitized and processed using a powerful data acquisition (IOX, sampling rate: 2kHz) and 

analysis system (ECG-Auto) developed by EMKA Technologies (France).  

ECG of the heart displayed characteristic P, QRS and T components which allowed to 

determine PP, PR and QT intervals (ms) and amplitude of the QRS complex and T wave 

(mV). Atrial rate was determined from PP interval and ventricular rate from RR interval. We 

assessed QRS widening, reflecting a possible reduction of intraventricular conduction, by 

measuring the half-width of the QRS complex.  

The various types of arrhythmias, their scoring, and their duration were precisely determined 

on the basis of continuous ECG recording. Arrhythmias were characterized according to Sarre 

et al. (Sarre et al., 2006) i.e. atrial bradycardia: regular atrial rhythm with a rate below 

130bpm; atrial tachycardia: regular atrial rhythm with a rate superior to 200bpm; atrial 

arrest: sudden atrial pause leading to transient cardioplegia; atrial ectopy: atrial arrhythmias 

due to blocked atrial premature beats; n:1 atrioventricular block (AVB): sustained second-

degree AVB with a constant n:1 relation between atria and ventricle during regular atrial 

rhythm; second-degree AVB: Wenckebach phenomenon during regular atrial rhythm 

nonrelated to atrial tachycardia with PR prolongation preceding the dropped beats; third-

degree AVB: sustained (>20s) complete lack of AV conduction. 
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V.2 Contractile activity. 

 

Adjustable phototransistors were positioned over the projected image of the investigated 

regions allowing detection of edge motion of the myocardial wall, that is, at the level of atrial 

pacemaker and ventricular apex in the intact heart (fig. 19). Simultaneously with ECG, 

myocardial shortening was sampled at a rate of 1kHz using the same acquisition/analysis 

system as described above. The maximal velocity of contraction and relaxation was calculated 

from the maximal positive and negative values of the first derivative of shortening and 

relaxation respectively.  

 

V.3 Excitation-contraction coupling. 

 

The EMD, reflecting the efficiency of E-C coupling, was determined at the level of atria 

(EMDa) and ventricle (EMDv) by measuring the delay between the electrical and mechanical 

events, i.e., the interval of time between the very initial phase of the P and QRS components 

and the initiation of contraction in the atria and ventricle, respectively (fig. 19). 
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Fig. 19: Embryonic heart mounted in vitro and representative recordings of electrical and contractile activities. 

RA and LA: right and left atria, V: ventricle, OFT: outflow tract; AVC: atrioventricular canal; VCC: 

ventriculoconotruncal canal; P, QRS and T: P wave, QRS complex and T wave of ECG; EMDa and EMDv: 

atrial and ventricular electromechanical delay, respectively. The dotted lines indicate where hearts have been 

cut [modified from (Raddatz, 2007)]. 

 

VI. Electrophoretic Mobility Shift Assay (EMSA). 

 

A STAT3 oligonucleotide probe (5′-GAT CCA TTT CCC GTA AAT CAT GGA TC-3′) 

was labeled with α-32PdCTP using the Klenow enzyme (Roche Applied Science). It should be 

noticed that the probe was designed specifically for the chick. 10μg of nuclear proteins were 

incubated with EMSA buffer [in mmol/L: 20 HEPES (pH 7.9), 50 KCl, 0.5mM EDTA, 0.1% 

NP-40, 1 mg/ml bovine serum albumin, 5% glycerol and 170 μg/ml poly(dI-dC)] and the 

probe for 20min at room temperature. Samples were resolved on a nondenaturing 

polyacrylamide gel. Gels were transferred to Whatman 3M paper, dried under vacuum, and 

exposed to photographic films at -80°C. Densitometric analysis of autoradiographs was 
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performed. Negative controls were performed using either an antibody against total STAT3 or 

an unlabelled probe. 

 

VII. Quantitative RT-PCR. 

 

Twelve ventricles were homogenized in trizol (Invitrogen) and total RNA were purified by 

slight modifications of the method originally described by Chomczynski & Sacchi 

(Chomczynski and Sacchi, 1987). The reverse transcription (RT) reaction was performed 

using the high capacity cDNA reverse transcription kit and protocols from Applied 

Biosystem. Briefly, the RT was run with 1.5μg of total RNA in a reaction volume of 20μl and 

aliquots of this reaction mixture [(primers (150-300 mmol/l), 1× SYBR Green PCR master 

mix and H2O] were used for the subsequent PCR reactions. The level of mRNA expression of 

three STAT3 specific target genes in the context of I-R, i.e. iNOS, MnSOD and Cox-2 were 

investigated and the following sequences were used: iNOS, forward: TCT TCC AGC TAA 

AGA GCC AAA AG, reverse: CAC GTC CAA TGT CTG TTG TTC A; MnSOD, forward: 

CCC ACA TCA GTG CAG AGA TCA, reverse: TGA GCT GTA ACA TCA CCT TTT GC, 

COX-2, forward: CACCAC CAA TGG GTG TTA AAG GTA AGA, reverse: ATA AAT 

TTT CTC CGC AGC AAG AA and actine, forward: TCG TAC CAC AGG TAT TGT TCT 

TGA C, reverse: AGA TCC CTG CCA GCC AGA T. 5ng of cDNA was laid per well. 

Results are calculated using the ΔCt method (Livak and Schmittgen, 2001). It should be 

noticed that PCR primers were designed specifically for the chick. 
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VIII. Statistical analysis. 

 

Because of the very small size of the heart (circa 60μg proteins) a total of about 6100 chick 

embryos have been used in this study. Results are given as mean ± standard error of the mean 

(SEM) for immunoblotting densitometry (as otherwise indicated) and EMSA and as mean ± 

standard deviation (SD) for functional parameters and RT-PCR quantification. The 

significance of any difference between two cardiac areas, two time points or two conditions 

was assessed using Mann-Whitney test. The statistical significance was defined by a value of 

p≤0.05.



Results 

RESULTS 

 

I. Determination of the optimal level of myocardial oxygenation 

 

After 165min, under steady normoxia (21% O2) more than 80% of the hearts showed a 

normal conduction whereas under hypoxia (8% O2) it was the case in only 30% of the hearts 

(fig. 20). However the mean atrial rate was not different between normoxia and hypoxia, even 

after 165min. In the hearts initially exposed to normoxia, transition to hypoxia reduced by 40 

and 75% the number of hearts displaying normal conduction after 1h and 3h, respectively. 

Conversely in the hearts initially stabilized under hypoxia, passage to normoxia leaded to a 

130% increase in the proportion of the hearts with normal conduction (fig. 21). The mean 

atrial rate remained constant in the two different protocols. Thus, these results show clearly 

that an optimal oxygenation of the embryonic myocardium in our experimental model was 

obtained with 21% O2.  
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Fig. 20: Hypoxia altered the atrioventricular 

conduction. Effect of steady normoxia vs steady 

hypoxia on atrioventricular conduction of the 

embryonic chick heart in vitro. Percentage of 

hearts showing normal conduction under steady 

normoxia (21% O2) or hypoxia (8% O2) after 45, 

105 and 165min (37°C). ( ): number of hearts 

investigated. 
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Fig. 21: Embryonic hearts recovered rather well from an hypoxic episode. Effect of transition from normoxia to 

hypoxia (A) and reciprocally (B) on atrioventricular conduction of the embryonic chick heart. Percentage of 

hearts showing normal atrioventricular conduction. n: number of hearts investigated. 

 

II.Characterization of the JAK2/STAT3 pathway in the heart of the 4-day-old chick 

embryo  

II.1 Basal expression of JAK2 and STAT3 in atria, ventricle and outflow tract 

 

In freshly isolated embryonic heart, JAK2 content tended to be higher (+77%, p=0.08, 

n=4-9) in outflow tract compared to atria and ventricle (fig. 22). Although both α (~92kDa) 

and ß (~83kDa) STAT3 isoforms were expressed in the embryonic heart (fig. 23A), only the α 

isoform of P-Tyr STAT3 was detectable under our conditions (fig. 23B). STAT3 content, like 

JAK2, was significantly higher (+22%) in outflow tract compared to atria and ventricle 

whereas the phosphorylated STAT3α to total form ratio was higher in atria than in ventricle 

(+50%) and outflow tract (+35%) (fig. 23A, 23B).  
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Fig. 22: Distribution of the total form of JAK2 in atria, ventricle and outflow tract of the 4-day-old embryonic 

heart. (A) Representative immunoblots and (B) densitometric analysis of JAK2. N=4-9 determinations for each 

region. Data are expressed as fold change relative to atria. 
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Fig. 23: The content of STAT3 was the highest in outflow tract but the level of STAT3 phosphorylation was the 

highest in atria. Representative immunoblots and densitometric analysis of A) α and ß isoforms of STAT3 and B) 

α isoform of tyrosine phosphorylated STAT3 (P-Tyr STAT3α) normalized to STAT3α in atria, ventricle and 

outflow tract of the embryonic heart at stage 24HH. *: p<0.05 vs atria. N=6 determinations for each region 
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II.2 Activation of the JAK2/STAT3 pathway by interleukine-6 in the ventricle 

 

We wanted to check if in the 4-day-old chick embryonic heart model the JAK2/STAT3 

pathway could be activated by IL-6, like it is the case in almost all cell types of adult tissues.  

Atrial rate was not altered by 1h exposure to IL-6 at 1000 or 10000U/ml. Surprisingly, in 

the embryonic heart ventricle P-Tyr STAT3α was not altered by IL-6 stimulation whatever 

the concentration (fig. 24A, 24B). By contrast, neonatal rat cardiomyocytes treated with rHu-

IL-6 and used as a positive control, showed an increase of P-Tyr STAT3α from 15min of 

exposure at 1000U/ml onward (fig. 24C). This experience shows that the concentration of 

rHu-IL-6 used was able to stimulate the JAK2/STAT3 pathway. 

IL-6

10min

IL-6 1000U/ml

20min 40min 60min

+

IL-6 10000U/ml

A

B

95kDa
V V IL-6 V IL-6 V IL-6

P-Tyr STAT3 α

P-Tyr STAT3 α

+

95kDa
IL-6

10min 20min 40min 60min

V V IL-6 V IL-6 V IL-6

0

1

2

3

V IL6 1000U/ml
15min

IL6 1000U/ml
30min

IL6 10000U/ml
30min

F
o

ld
 in

cr
ea

se

95kDaP-Tyr STAT3 α

+ V IL-6 IL-6 IL-6
C

E
m

br
yo

ni
c

ch
ic

k
he

ar
t

N
eo

na
ta

lr
at

 c
a

rd
io

m
yo

cy
te

s

IL-6

10min

IL-6 1000U/ml

20min 40min 60min

+

IL-6 10000U/ml

A

B

95kDa
V V IL-6 V IL-6 V IL-6

P-Tyr STAT3 α

P-Tyr STAT3 α

+

95kDa
IL-6

10min 20min 40min 60min

V V IL-6 V IL-6 V IL-6

0

1

2

3

V IL6 1000U/ml
15min

IL6 1000U/ml
30min

IL6 10000U/ml
30min

F
o

ld
 in

cr
ea

se

95kDaP-Tyr STAT3 α

+ V IL-6 IL-6 IL-6
C

E
m

br
yo

ni
c

ch
ic

k
he

ar
t

N
eo

na
ta

lr
at

 c
a

rd
io

m
yo

cy
te

s

 

Fig. 24: P-Tyr STAT3α was not altered by IL-6 in the embryonic chick heart. Representative immunoblots of P-

Tyr STAT3α in embryonic chick heart ventricle in vehicle (V) or in IL-6 at 1000 A) or 10000U/ml B) after 10, 20, 

40 and 60min, n=2-4. C) Immunoblot and densitometric analysis of P-Tyr STAT3α in rat neonatal 

cardiomyocytes in V or in IL-6 at 1000 or 10000U/ml after 15 and 30min, n=1. +: commercial positive control 

for P-Tyr STAT3α.  
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II.3 STAT3 expression in basal and culture conditions.  

 

We wanted to compare STAT3 basal phosphorylation in freshly isolated hearts and after in 

vitro culture. We found that in the ventricle P-Tyr STAT3α was decreased after 45min of 

stabilization at 37°C compared to basal expression (fig. 25A), whereas STAT3 content was 

not significantly different between the two conditions (fig. 25B). 
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Fig. 25: P-Tyr STAT3α was decreased after 45min of stabilization in vitro at 37°C. Representative immunoblots 

and densitometric analysis of A) P-Tyr STAT3α and B) α and ß isoforms of STAT3 in ventricle freshly isolated 

(basal) and after 45min of stabilization (S) at 37°C. Data are expressed as fold change relative to S. *: p<0.05 

vs S. N=3-4 determinations.  

 

II.4 Discussion 

 

Information about the myocardial JAK2 and STAT3 content at very early stages of 

development in the chick was lacking whereas it exists in the whole mouse embryo (Takeda 

et al., 1997, Neubauer et al., 1998). However, no information exists regarding the specific 

cardiac distribution of JAK2 and STAT3 during development. In the heart of the chick 

embryo at stage 24HH, JAK2 tended to be inhomogeneously distributed, the outflow tract 

showing the highest level of total JAK2. Unfortunately it was technically difficult to reveal 
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the JAK2 phosphorylated form with antibodies available on the market. Our data indicate that 

α and ß isoforms of STAT3 were strongly expressed in the embryonic heart but that only the α 

isoform was phosphorylated in this model. STAT3ß is known to have a critical developmental 

function (Dewilde et al., 2008). STAT3α, like its classical upstream regulator JAK2, was 

differentially distributed in the three cardiac regions, the highest level being found in the 

outflow tract. At this developmental stage the outflow tract undergoes complex apoptosis-

dependent remodeling leading to a dual aortico-pulmonary circulation (Liu and Fisher, 2008). 

STAT3 could be involved into this morphogenetic process since it can regulate angiogenesis 

(Funamoto et al., 2000, Hilfiker-Kleiner et al., 2005). However, the level of STAT3α 

phosphorylation was the highest in the atria. The meaning of this observation will be 

discussed in the discussion section (paragraph V.4, page 88).  

Classically the JAK2/STAT3 pathway is stimulated by type I cytokines like IL-6, IL-11 and 

LIF (Leonard and O'Shea, 1998). We found that in the 4-day-old chick embryonic heart the 

JAK2/STAT3 pathway was not activated by IL-6, like it is the case in almost all adult or 

neonatal tissues. This absence of response may be due to the fact that at this early 

developmental stage cytokine receptors are not expressed or not functional. We hypothesize 

that the JAK2/STAT3 pathway is differently regulated according to the developmental stage. 

Kinugawa et al. used ventricular myocytes from 10-day-old chick and human IL-6 so the 

possibility of a lack of recognition of human IL-6 by the avian IL-6 receptors can be ruled out 

(Kinugawa et al., 1994). 

We observed that the level of STAT3α phosphorylation was decreased after 45min of 

stabilization at 37°C in the culture chamber compared to basal expression. Even if hearts were 

carefully excised from explanted embryos, such a procedure represents a strong and abrupt 

surgical stress for the tissue and could explain the peak of STAT3α phosphorylation observed 

 63



Results 

in just isolated hearts. It is conceivable that the period of stabilization (45min) was sufficient 

to recover the level of STAT3α phosphorylation in ovo. 
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III. Activation of the JAK2/STAT3 pathway in the embryonic heart submitted to anoxia-

reoxygenation 

 

In response to a temporary lack of oxygen, the embryonic heart shows reversible functional 

disturbances and ultrastructural modifications (Sedmera et al., 2002, Sarre et al., 2006) 

associated with overproduction of ROS/RNS (Sarre et al., 2005). In the adult heart, it is 

known that the JAK2/STAT3 pathway is implicated in protection against hypoxia-

reoxygenation by controlling gene expression (Negoro et al., 2001) whereas it is still 

undetermined whether this pathway is involved in the response of the embryonic heart to a 

transient lack of oxygen. We wanted to establish to what extent STAT3 phosphorylation level 

is modulated by anoxia-reoxygenation. 

 

III.1 Profile of STAT3α phosphorylation in atria, ventricle and outflow tract during 

anoxia-reoxygenation and role of ROS. 

 

In the ventricle, P-Tyr STAT3α was not affected by anoxia (A10, A30) but increased 

between R10 and R60 and returned to basal level at R80. It should be noted that P-Tyr 

STAT3α was not significantly different between R10 and R60 meaning that there were not 

really two peaks of phosphorylation during reoxygenation (fig. 26A, 26B). By contrast, P-Ser 

STAT3α was not altered throughout reoxygenation (fig. 26B). It should be mentioned that 

phosphorylation of the ß isoform, which does not bear a serine phosphorylation site was not 

detectable whatever the time point. The time-matched normoxic controls at S, R30 and R60 

did not exhibit change in P-Tyr STAT3α indicating that the culture conditions by themselves 

did not alter STAT3 activation relative to preanoxia (fig. 26B). The level of P-Tyr STAT3α 

was significantly decreased by the antioxidant MPG at R10 and R60, time-points at which 
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activation of STAT3 was the strongest, with no effect at S (fig. 26C). It should be remarked 

that the level of P-Tyr STAT3α in fig.26C was not the same that shown in fig. 26A, this 

difference could be due to the variability between experiments and/or the imunoblotting 

conditions. 

 

In atria, P-Tyr STAT3α was not affected by anoxia (A10, A30) but increased between R10 

and R50 and returned to basal level at R80 (fig. 27A).  

 In the outflow tract, P-Tyr STAT3α increased during reoxygenation but only 

significantly at R60 and returned to basal level at R80 (fig. 27B). We did not determine the 

level of P-Tyr STAT3α during anoxia (A10, A30) and at R30 and R50. 
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Fig. 26: Profile of STAT3 activation in the ventricle during anoxia-reoxygenation. A) Representative 

immunoblots of P-Tyr STAT3α, serine phosphorylated STAT3 (P-Ser STAT3α) and STAT3α and STAT3ß during 

anoxia (A10 and A30) and reoxygenation (R10 to R80). B) Densitometric analysis of P-STAT3α normalized to 

STAT3α. Black columns represent P-Tyr STAT3α, hatched columns P-Ser STAT3α and open columns P-Tyr 

STAT3α in time-matched normoxic controls. Data are expressed as fold increase relative to the preanoxic value 

(S). *: p<0.05, **: p<0.01, ***: p<0.001 vs S. N=4-9 determinations. C) Representative immunoblots of P-Tyr 

STAT3α, STAT3α and STAT3ß (upper panels) and densitometric analysis of P-Tyr STAT3α normalized to 

STAT3α in vehicle (V, open columns) or in 1mM MPG (black columns) at S, R10 and R60 (lower panel). Data 

are expressed as fold change relative to vehicle. **: p<0.01 vs vehicle. N= 6-15 determinations. 
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Fig. 27: Profile of STAT3 activation in the atria and the outflow tract during anoxia-reoxygenation. 

Representative immunoblots of P-Tyr STAT3α and STAT3α and STAT3ß and densitometric analysis of P-

STAT3α normalized to STAT3α during anoxia (A10 and A30) and reoxygenation (R10 to R80) in A) atria and B) 

outflow tract. Data are expressed as fold change relative to the preanoxic value (S). *: p<0.05, **: p<0.01, ***: 

p<0.001 vs S. N=2-8 determinations for A) and n=1-4 determinations for B). Nd: not determined. 
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The fig. 28 shows a summary of the temporal profile of STAT3 phosphorylation in the three 

cardiac regions during anoxia-reoxygenation.  
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Fig. 28: Profile of STAT3 activation in atria, ventricle and outflow tract of the embryonic heart during anoxia 

(A10 and A30) and reoxygenation (R10 to R80). Densitometric analysis of P-STAT3α was normalized to 

STAT3α. Data are expressed as fold increase relative to the preanoxic value (S). *: p<0.05, **: p<0.01, ***: 

p<0.001 vs S. N=1-10 determinations. Nd: not determined. 

 

III.2 Involvement of STAT3 in functional recovery of the embryonic heart. 

 
STAT3 being phosphorylated during reoxygenation in the three cardiac regions we wanted 

to study its possible functional role by performing ECG recordings of hearts treated with the 

JAK2/STAT3 inhibitor (AG490).  

First, we checked the effect of AG490 concentration under normoxia on the mean atrial rate 

and establish the dose response. AG490 at 10μM had no effect on atrial rate but from 50 to 

200μM decreased the mean atrial rate and at 1mM induced cardioplegia (fig. 29A, 29B). 

Consequently, the concentration of 10μM of AG490 was selected for the experiments.  
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Fig. 29: At concentrations higher than 10μM the JAK2/STAT3 inhibitor AG490 decreased the mean atrial rate 

under normoxia. A) Mean atrial rate of hearts in vehicle (open triangles) or in AG490 (colored diamonds) at 10 

(black), 50 (pink), 100 (blue), 200 (green) or 1000μM (purple). B) For the sake of clarity, detail of experiments 

with AG490 at 10 (black) and 50μM (pink). *: p<0.05, ***: p<0.001 vs vehicle. Mean ± SEM, n=29-36 hearts. 

 

The fig. 30A illustrating the mean atrial rate relative to the preanoxic level showed that 

the recovery of atrial rate during reoxygenation was impaired and the coefficient of variability 

of the mean atrial rate was increased by JAK2/STAT3 inhibition (table 1). It should be 
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noticed that during the first 15min of reoxygenation the coefficient of variability of the mean 

atrial rate was increased in untreated hearts as well (table 1) because of the unavoidable 

interferences of the reoxygenation-induced arrhythmias as described elsewhere (Sarre et al., 

2006). However, at R30 the RR variability was clearly higher in AG490-treated hearts (fig. 

30B, 30C). None of the other electrical and mechanical parameters were affected by AG490 

(table 1), i.e. atrioventricular (PR interval) and intraventricular conduction (QRS widening), 

QT duration and E-C coupling (EMDv). AG490 had no inotropic (shortening) or lusitropic 

(relaxation) effects (table 1). The types of arrhythmias (including atrial ectopy, 

atrioventricular block, Wenchebach) were similar in treated and untreated hearts. 

Furthermore, arrhythmias persisted throughout reoxygenation in 30% of the treated hearts, 

while they ceased at R30 in all other hearts. 
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Fig. 30: STAT3 inhibition affected recovery of atrial rhythm during reoxygenation. A) Mean atrial rate relative 

to the preanoxic level during anoxia-reoxygenation in vehicle (open triangles; n=5) or in 10μM AG490 (black 

diamonds; n=9). Note the greatest SD in treated hearts. *: p<0.05 vs vehicle. B) Representative ECGs with P, R 

and T components in vehicle (V2, upper left panel) or in AG490 illustrating arrhythmias i.e. PR prolongation 

followed by atrioventricular block AVB (AG2, lower left panel) and variations of RR interval from one cardiac 

cycle to another at R30 (AG5, right panel). C) Distribution of individual RR intervals in 5 untreated hearts 

(vehicle, V1-V5) and in 9 AG490-treated hearts (AG1-AG9) at R30. The beat to beat analysis was performed on 

100 successive cycles.  
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3.2 ± 1.53.5 ± 1.64.26 ± 2.03.0 ± 1.3AG

4.6 ± 2.03.2 ±0.83.7 ± 2.03.4 ± 1.5v

QRS half-width (ms)

27 ± 525 ± 328 ± 1025 ± 4AG

26±933±154±426 ± 10v

EMDv (ms)

26 ± 269 ± 89.0 ± 6.214.1± 7.9AG

10.7 ± 8.518 ± 157.8 ± 8.716.5 ± 9.6v

Ventricular shortening (μm)

1.20 ± 0.181.03 ± 0.300.91± 0.281.05 ± 0.12AG

1.00 ± 0.211.00 ± 0.140.93 ± 0.280.96 ± 0.26v

Contraction / relaxation velocity ratio

139 ± 11131 ± 9137 ± 9149 ± 12AG

150 ± 26153 ± 19182±5153 ± 10v

QT duration (ms)

119 ± 33126 ± 29145 ± 25128 ± 33AG

126 ± 32143 ± 35169 ± 34133 ± 22v

PR interval (ms)

17181416AG

44154v

Coefficient of variability of the mean atrial rate (%)

170 ± 28180 ± 33193 ± 27160 ± 26AG

185 ± 8198 ± 8202 ± 31191 ± 8v

Mean atrial rate (bpm)

R60R30R10S

3.2 ± 1.53.5 ± 1.64.26 ± 2.03.0 ± 1.3AG

4.6 ± 2.03.2 ±0.83.7 ± 2.03.4 ± 1.5v

QRS half-width (ms)

27 ± 525 ± 328 ± 1025 ± 4AG

26±933±154±426 ± 10v

EMDv (ms)

26 ± 269 ± 89.0 ± 6.214.1± 7.9AG

10.7 ± 8.518 ± 157.8 ± 8.716.5 ± 9.6v

Ventricular shortening (μm)

1.20 ± 0.181.03 ± 0.300.91± 0.281.05 ± 0.12AG

1.00 ± 0.211.00 ± 0.140.93 ± 0.280.96 ± 0.26v

Contraction / relaxation velocity ratio

139 ± 11131 ± 9137 ± 9149 ± 12AG

150 ± 26153 ± 19182±5153 ± 10v

QT duration (ms)

119 ± 33126 ± 29145 ± 25128 ± 33AG

126 ± 32143 ± 35169 ± 34133 ± 22v

PR interval (ms)

17181416AG

44154v

Coefficient of variability of the mean atrial rate (%)

170 ± 28180 ± 33193 ± 27160 ± 26AG

185 ± 8198 ± 8202 ± 31191 ± 8v

Mean atrial rate (bpm)

R60R30R10S

 

 

Table 1. Functional parameters under normoxic stabilization and during reoxygenation. Electrical and 

mechanical parameters were systematically determined at S, R10, R30 and R60 in vehicle (V) or in 10μM 

AG490 (AG). Only the coefficient of variability of the mean atrial rate was different in AG490-treated hearts at 

S, R30 and R60. EMDv: ventricular electromechanical delay. N=3-9 determinations. 
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III.3 STAT3 nuclear translocation, transcriptional activity and expression of specific 

target genes during anoxia- reoxygenation in the ventricle. 

 

Usually once phosphorylated, STAT3 forms homo/heterodimer with another STAT 

protein and can then translocate into the nucleus. We wanted to assess if this happens at 

reoxygenation by checking STAT3 phosphorylation level and content in nuclear and 

cytoplasmic compartments.  

In the nuclear fraction P-Tyr STAT3α increased at R10 and tended to increase at R60 (fig. 

31A) whereas STAT3 was significantly increased throughout reoxygenation (fig. 31B). By 

contrast, in the cytoplasmic fraction P-Tyr STAT3α and STAT3 were not affected (fig. 31C, 

31D).  

Generally when STAT3 is translocated into the nucleus, like every transcription factor, it 

binds to DNA in order to initiate the transcription of target genes. We checked by EMSA the 

ability of STAT3 to bind to DNA at reoxygenation.  

STAT3 DNA-binding activity (fig. 31E) unexpectedly did not vary during reoxygenation 

as illustrated by densitometry (fig. 31F). Ventricles from hearts treated with H2O2 were used 

as a positive control and showed that STAT3 DNA-binding activity was increased (+33% in 

hearts treated with H2O2); ensuring that the technique was sensitive enough to detect any 

change in STAT3 DNA-binding activity (fig. 31G). A negative control of DNA-binding 

performed by adding an antibody against total STAT3 or an unlabelled probe to the samples 

showed that the upper band corresponding to STAT3 disappeared under these two conditions 

(fig. 31G).  
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Fig. 31: At reoxygenation STAT3 translocated into the nuclear compartment without DNA-binding activity. 

Representative immunoblots at S, R10, R60 and R80 and densitometric analysis of A) P-Tyr STAT3α and B) 

STAT3α and STAT3ß in enriched nuclear fraction; C) P-Tyr STAT3α and D) STAT3α and STAT3ß in 

cytoplasmic fraction. E) Representative EMSA of STAT3 at S, R10, R60 and R80 (duplicates) and F) 

densitometric analysis of STAT3. Data are expressed as fold change relative to S. G) Negative control with 

antibody (Ab) against STAT3 and unlabelled probe. *: p<0.05, **: p<0.01 vs S. N=4-13 determinations for A to 

D and n=3-6 determinations for F. 
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To support our unexpected finding that STAT3 was translocated into the nucleus without 

binding to DNA we checked the level of mRNA expression of three known STAT3 specific 

target genes in the context of the response to I-R, i.e. inducible NO synthase (iNOS), 

manganese superoxide dismutase (MnSOD) and cyclooxygenase-2 (Cox-2). We found that 

the level of mRNA expression of iNOS (fig. 32A) and MnSOD (fig. 32B) was not increased 

even at R80. The level of mRNA expression of Cox-2 was increased at R60 and R80 but it 

was also the case in the time-matched normoxic controls indicating that the culture conditions 

could alter mRNA expression of Cox-2 relative to preanoxia (fig. 32C). 

 76



Results 

0.0

1.0

2.0

3.0

4.0

Basal S R10 R30 R60 R80

F
o

ld
 c

h
an

g
e

mRNA Cox-2

Normoxic controls

0.0

0.5

1.0

1.5

Basal S R10 R30 R60 R80

F
o

ld
 c

h
a

n
g

e

0.0

0.5

1.0

1.5

Basal S R10 R30 R60 R80

F
o

ld
 c

h
a

n
g

e

iNOS mRNAA

B

*

* *

*

MnSOD mRNA

C

Basal    S     R10   R30   R60   R80

Basal    S     R10   R30   R60   R80

Cox-2 mRNA

0.0

1.0

2.0

3.0

4.0

Basal S R10 R30 R60 R80

F
o

ld
 c

h
an

g
e

mRNA Cox-2

Normoxic controls

0.0

0.5

1.0

1.5

Basal S R10 R30 R60 R80

F
o

ld
 c

h
a

n
g

e

0.0

0.5

1.0

1.5

Basal S R10 R30 R60 R80

F
o

ld
 c

h
a

n
g

e

iNOS mRNAA

B

*

* *

*

MnSOD mRNA

C

Basal    S     R10   R30   R60   R80

Basal    S     R10   R30   R60   R80

Cox-2 mRNA

 

Fig. 32: The level of mRNA expression of STAT3 target genes was not increased during the 80min of 

reoxygenation. Level of mRNA expression in ventricle freshly isolated (basal), at S, R10, R30, R60 and R80 of A) 

inducible NO synthase (iNOS), B) manganese superoxide dismutase (MnSOD) and C) cyclooxygenase-2 (Cox-

2). In C) grey columns represent Cox-2 mRNA during anoxia-reoxygenation and hatched columns Cox-2 mRNA 

in normoxic controls. *: p<0.05 vs S. N=3-4 determinations. 
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III.4 Discussion 

 

Our data show that in the embryonic heart ventricle tyrosine rather than serine site was 

phosphorylated by reoxygenation, suggesting that STAT3 activation by other kinases like 

ERK 1/2, p38MAPK (Kovarik et al., 2001) or mTOR (Yonezawa et al., 2004) can be ruled 

out under our conditions since these pathways are known to phosphorylate preferentially 

serine. More specifically, although p38MAPK and ERK are activated at R10 and R30 

respectively (Gardier et al., 2010b), they did not phosphorylate STAT3 on serine. Our present 

finding that STAT3α tyrosine phosphorylation was ROS-dependent at R10 and R60 is 

consistent with studies performed in neonatal cardiomyocytes (Lu et al., 2008b) and adult 

myocardium (McCormick et al., 2006). However, at R10 there is a strong burst of ROS 

whereas at R60 ROS production returns to its preanoxic level (Sarre et al., 2005) suggesting 

that the ROS-dependent mechanisms of STAT3 activation are different during the early (R10) 

and late (R60) phases of reoxygenation. This phenomenon could be partly due to chemical 

differences between radical species produced at R10 and R60 (i.e. superoxide anion O2
•-being 

predominantly generated during early reoxygenation). In atria, STAT3α was tyrosine 

phosphorylated during reoxygenation like in the ventricle, and also returned to preanoxic 

level at the end of the reoxygenation, even if it was slightly earlier than in ventricle. Even if 

STAT3 phosphorylation in the outflow tract was not determined at all time points, the general 

pattern appears to be the same as in the ventricle, namely an increase during reoxygenation 

and a return to basal level at R80. Thus, in the embryonic heart STAT3 was not 

phosphorylated in a region-specific manner during anoxia-reoxygenation like it is the case for 

p38MAPK, ERK and JNK (Gardier et al., 2010b) but displayed the same temporal profile of 

phosphorylation in the three cardiac regions. 
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It has been previously shown that the embryonic heart fully recovers at R60 after anoxia 

(Sarre et al., 2005, Sarre et al., 2006) but the signalling pathways underlying the mechanisms 

of recovery remain relatively unexplored. Activated STAT3 is known to exert its late 

cardioprotective action (antiapoptotic properties (Lu et al., 2008b)) mainly via alteration of 

transcription of target genes principally induced by pre- or postconditioning. However, the 

short-term consequences of STAT3 activation on the electrical and mechanical activities have 

never been investigated in the developing, neonatal or adult failing heart. Here we provided 

for the first time data about the involvement of STAT3 in the functional response to a 

transient hypoxic stress. At R30, inhibition of JAK2/STAT3 gave rise to the highest 

variability of atrial rate and RR interval, suggesting that activation of STAT3 is involved in 

recovery of atrial and ventricular rhythm. As there are no extrinsic innervation at the 

embryonic stage investigated and no neurohumoral influence in the culture chamber, the 

fluctuations of rhythm (dysrhythmias) originated exclusively at the level of the pacemaker 

tissues, independently of the physiological spontaneous oscillations of heart rate reported 

previously (Sarre et al., 2006). These observations and the fact that arrhythmias persisted 

throughout reoxygenation in 30% of the AG490-treated hearts, strongly suggest that activated 

STAT3 can protect cardiac automaticity by interacting with pacemaking mechanisms, 

especially under pathological conditions. It has been previously shown that subtle 

modulations of L-type calcium, KATP and HCN channels can improve postanoxic recovery of 

the embryonic heart (Sarre et al., 2005, Bruchez et al., 2008, Sarre et al., 2010). It is 

conceivable that the JAK2/STAT3 pathway may directly or indirectly control finely these ion 

channels affecting membrane potential, and contributing to protect pacemaker activity under 

adverse conditions. However, the present findings show clearly that activated STAT3 had no 

dromo-, ino- and lusitropic effects in the anoxic-reoxygenated embryonic heart since 

atrioventricular (PR) and intraventricular (QRS widening) conduction, ventricular 
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contractility (shortening) and relaxation (ratio contraction/relaxation velocity) as well as E-C 

coupling (EMDv) were not affected by STAT3 inhibition. Additionally, the types of 

arrhythmias during anoxia and reoxygenation previously documented (Sarre et al., 2006) were 

similar in untreated and AG490-treated hearts. It should be noticed that the isolated 

embryonic heart displays noticeable interindividual variations of the functional parameters 

and ECGs performed in similar conditions can also modestly differ in morphology from one 

experiment to another (Sarre et al., 2005). Such variations could be due to slight 

interindividual differences in developmental stage, three-dimensional geometry of the hearts 

in the chamber and vicinity of the recording electrodes. 

In addition to its direct or indirect involvement in heart function, the transcription factor 

STAT3 should also control expression of specific target genes. At R10 activation of STAT3 

observed in homogenate of ventricle principally reflected what took place in the nuclear 

compartment since only the nuclear STAT3α tyrosine phosphorylation increased 

significantly. At R60 nuclear P-Tyr STAT3α was above the preanoxic level and the rise in 

nuclear STAT3 observed at R10 persisted throughout reoxygenation suggesting that 

translocated STAT3 remained in the nuclear compartment. Furthermore, the fact that mRNA 

level of specific STAT3 target genes including iNOS, MnSOD and Cox-2 known to be 

involved in cardioprotection (Negoro et al., 2001, Bolli et al., 2003, Sarre et al., 2005) 

remained stable throughout reoxygenation corroborates the finding that translocated STAT3 

had no detectable transcriptional activity. Additionally, the level of STAT3 phosphorylation 

on serine remained constant throughout all experimental protocols (~2h), STAT3 requiring 

phosphorylation on both sites (tyrosine and serine) to be maximally active in the assembly of 

active transcription complexes (Wen et al., 1995b). 
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IV. Interaction of the JAK2/STAT3 and RISK pathways in the embryonic heart submitted 

to anoxia-reoxygenation 

 

As activated STAT3 was not linked to DNA, interaction with other signalling pathways 

could not be ruled out, in particular with the RISK pathway. We first checked if proteins of 

this pathway were modulated by anoxia-reoxygenation. 

 

IV.1 Phosphorylation of PI3K, Akt, GSK3ß, GS and ERK2 in the ventricle. 

 

The temporal pattern of phosphorylation varied from one component of the RISK pathway 

to another. PI3K and Akt phosphorylation peaked at R10 (fig. 33A, 33B) while GSK3β and 

GS phosphorylation increased at R10 and R60 (fig. 33C, 33D). Relative to other proteins, 

ERK2 phosphorylation was delayed at R60 (fig. 33E). 
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Fig. 33: Profile of PI3K, Akt, GSK3ß, GS and ERK2 activation in the ventricle during post-anoxic 

reoxygenation. Representative immunoblots and densitometry of phosphorylated PI3K, Akt, GSK3ß, GS and 

ERK2 (A, B, C, D and E, respectively) normalized to total protein in homogenates at S, R10 and R60. Data are 

expressed as fold increase relative to S. *: p<0.05, **: p<0.01, ***: p<0.001 vs S. N=5-12 determinations.  

 

IV.2 Crosstalk between STAT3 and RISK pathways in nuclear and cytoplasmic 

compartments in the ventricle. 

 

Using histone H1 and GAPDH as specific markers of enriched nuclear and cytoplasmic 

fractions respectively, we found that phosphorylated and total forms of PI3K, Akt, GS and 
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ERK2 were restricted to cytoplasm. Basal level of phosphorylated GSK3ß was markedly 

higher in the nuclear fraction than in the cytoplasmic fraction whereas the total form of 

GSK3ß was comparable in the two compartments (fig. 34).  
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Figure 34: Distribution and level of phosphorylation of PI3K, Akt, 

GSK3ß, GS and ERK2 in nuclear and cytoplasmic fractions of the 

ventricle. Representative immunoblots of basal content of 

phosphorylated and total forms of PI3K, Akt, GSK3ß, GS and ERK2 in 

enriched nuclear and cytoplasmic fractions of the ventricle. Histone 

H1 was used as a nuclear marker and GAPDH as a cytoplasmic 

marker (upper panels). 

 

The possibility of interaction between RISK and JAK2/STAT3 pathways was assessed 

pharmacologically by blocking the JAK2/STAT3 pathway with AG490. As expected, AG490 

significantly decreased P-Tyr STAT3α and P-Akt at R10 and R60 as well (fig. 35A, 35C). 

AG490 reduced GS (fig. 35D) and ERK2 (fig. 35E) phosphorylation at R10 only with no 

effect on PI3K phosphorylation (fig. 35B).  
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Fig. 35: JAK2/STAT3 inhibition by AG490 significantly reduced reoxygenation-induced phosphorylation of Akt, 

GS and ERK2. On left panels, immunoblots of phosphorylated Tyr STAT3α, PI3K, Akt, GS and ERK2 (A, B, C, 

D, and E, respectively) in vehicle (V) or in 10μM AG490 (AG) at S, R10 and R60 in homogenates. On right 

panels, densitometric analysis of phosphorylated proteins normalized to total protein and to vehicle (open 

columns) in 10μM AG490 (black columns,) at S, R10 and R60. Data are expressed relative to vehicle. *: p<0.05, 

**: p<0.01, ***: p<0.001 vs vehicle.  N=4-11 determinations. 

 

GSK3β being the only protein of the RISK pathway present in the nuclear compartment, 

together with STAT3, we checked separately the effect of STAT3 inhibition on the 
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phosphorylation level of nuclear GSK3β. Nuclear and cytoplasmic P-GSK3β significantly 

increased between S and R10 while GSK3β did not vary (fig. 36A). GSK3β phosphorylation 

was decreased by AG490 in the nuclear fraction at R10 (fig. 36B) but remained unchanged in 

the cytoplasmic fraction (fig. 36C). 
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Fig. 36: Reoxygenation-induced phosphorylation/inhibition of GSKß in the nuclear compartment depended on 

JAK2/STAT3 activation. A) Representative immunoblots of P-GSK3ß and GSK3ß in enriched nuclear and 

cytoplasmic fractions in vehicle (V) or in 10μM AG490 (AG) at S and R10. Histone H1 was used as a nuclear 

marker and GAPDH as a cytoplasmic marker. B) Representative immunoblots (upper panels) and densitometric 

analysis (lower panels) of phosphorylated GSK3ß in enriched nuclear fraction and C) in cytoplasmic fraction in 

vehicle (V, open columns) and in AG490 (AG, black columns) at S, R10 and R60. Data are expressed as fold 

change relative to vehicle. ***: p<0.001 vs vehicle. N=3-6 determinations. 
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The possible effect of PI3K/Akt on STAT3 phosphorylation was evaluated pharmacologically 

using LY-294002, a common PI3K/Akt pathway inhibitor. As expected, LY-294002 

decreased P-Akt by 55% at R10 (fig. 37A) but did not affect P-Tyr STAT3α (fig. 37B). 
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Fig. 37: PI3K/Akt inhibition by LY-294002 did not affect reoxygenation-induced phosphorylation of STAT3. On 

left panels, immunoblots of phosphorylated and total forms of A) Akt and B) STAT3 in vehicle (V) or in 10μM 

LY-294002 (LY) at S, R10 and R60 in homogenates. On right panels, densitometric analysis of phosphorylated 

A) Akt and B) Tyr STAT3α normalized to total protein in 10μM LY-294002 (black columns) and expressed 

relative to vehicle (open columns) at S, R10 and R60 in homogenates. *p<0.05 vs vehicle. N=3 determinations. 

 

IV.3 Discussion 

 

Unexpectedly, we found that activated STAT3 did not bind to DNA in response to a 

transient hypoxia but could interact with other signalling pathways. We focused our attention 

on the RISK pathway which is able to mediate cardioprotection at the time of myocardial 

reperfusion (Yellon and Baxter, 1999). It is still unknown whether the survival kinases of the 

RISK pathway are activated by anoxia-reoxygenation as opposed to ischemia-reperfusion. 

The profile of phosphorylation shows that in the ventricle, PI3K, Akt and ERK2 were 

differently modulated during the early (R10) and late (R60) phases of reoxygenation. 
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Phosphorylation of PI3K, Akt and GSK3 was maximal at R10 whereas activation of ERK2 

was delayed at R60 as previously described (Gardier et al., 2010b). Regarding ERK, as 

previously shown, only the p42 isoform (ERK2) is detectable in the embryonic and adult 

chicken heart, in contrast to neonatal and adult murine heart. Furthermore, GS which is a 

downstream target of GSK3, was strongly phosphorylated/inhibited from R10 onward, 

despite the fact that the phosphorylated form of GSK3 was inactive. Other kinases such as 

PKA, AMPK, CK1 or CK2 (Marks et al., 2009) may phosphorylate/inhibit GS, reducing 

glycogen storage which is known to be specially important and to play a cardioprotective role 

in the embryonic myocardium (Romano et al., 2001). 

In the embryonic ventricle, only STAT3 and GSK3 were present both in the nuclear and 

cytoplasmic fractions. PI3K, Akt, GS and ERK2 were restricted to the cytoplasm in the 

developing myocardium, whereas in neonatal and adult cardiomyocytes PI3K (Rubio et al., 

2009), Akt (Miyamoto et al., 2009) and ERK 1/2 (Pantos et al., 2007) are also detected in the 

nuclear compartment. These observations suggest that the cytoplasm-nucleus shuttling of 

proteins, including transcription factors, may well depend on the level of differentiation and 

maturation of the cardiomyocytes. The inhibition of the JAK2/STAT3 pathway by AG490 

significantly decreased the reoxygenation-induced STAT3 phosphorylation as expected, 

which validates this pharmacological approach to interfere rapidly with the JAK2/STAT3 

pathway. The AG490-mediated reduction of phosphorylation of Akt, ERK2 and nuclear 

GSK3 indicates clearly that activation of the JAK2/STAT3 pathway can modulate RISK 

components upon reoxygenation (R10) both in the cytoplasmic (Akt and ERK2) and nuclear 

(GSK3) compartments. We checked the presence of ERK2 in the nuclear compartment in 

basal conditions whereas ERK 1/2 translocates into the nucleus only when it is 

phosphorylated. At R10 we found an interaction between ERK2 and STAT3 in homogenate 

but did not assess specifically the effect of AG490 on ERK2 phosphorylation in nucleus and 
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cytoplasm because ERK2 was not phosphorylated at R10 and consequently not present in the 

nucleus. The transient inhibitory effect of STAT3 on nuclear GSK3 in the first 10 minutes of 

reoxygenation may be determinant as GSK3 is known to regulate many transcription factors 

and modulate cellular functions (Meares and Jope, 2007). In H2O2-treated neonatal (Lu et al., 

2008b) and ischemic-reperfused adult (Gross et al., 2006, Fuglesteg et al., 2008, Goodman et 

al., 2008) cardiomyocytes STAT3 inhibition reduces also Akt and GSK3 phosphorylation 

but the intracellular localization is not established. However, our results show that a 

preferential and predominant interaction between JAK2/STAT3 pathway and Akt persists 

throughout reoxygenation since AG490 leads to strong inactivation of Akt up to R60, which 

is not the case for GSK3ß, ERK2 and GS. Whatever the time point investigated, 

reoxygenation-induced activation of PI3K was unrelated with JAK2/STAT3 pathway in the 

embryonic heart like in an ischemic-reperfused heart model (Goodman et al., 2008), although 

such a dissociation remains controversial (Suleman et al., 2008a). The mechanisms by which 

activation of JAK2/STAT3 pathway phosphorylates GS at R10 and might transiently reduce 

glycogen synthesis remain to be elucidated. At R10, it appears that there is no dual interaction 

between PI3K/Akt and JAK2/STAT3 pathways in the embryonic heart. Such an interaction 

remains controversial in neonatal and adult cardiomyocytes and depends on the type of 

pathological situation such as ischemic (Suleman et al., 2008b) and pharmacological pre-

(Gross et al., 2006, Suleman et al., 2008b) and postconditioning (Goodman et al., 2008) and 

oxidant stress (Lu et al., 2008a). As STAT3 activation improved recovery of heart rhythm 

during reoxygenation, a crosstalk between JAK2/STAT3 and RISK pathways may directly or 

indirectly take part in this protection. 
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V. Tolerance of the embryonic heart to exogenous H2O2 and activation of the 

JAK2/STAT3 pathway 

 

V.1 Effect of H2O2 on heart function. 

 

In response to a transient lack of oxygen, the embryo shows reversible functional disorders 

(Sedmera et al., 2002) associated with overproduction of ROS/RNS (Sarre et al., 2005) and in 

neonatal and adult heart the JAK2/STAT3 pathway is stimulated in response to oxidant stress 

(Modesti et al., 2005, Lu et al., 2008b). To what extent the response of the embryonic heart to 

an exogenous oxidant stress (H2O2) is different from the response to a reoxygenation-induced 

endogenous stress is still unknown.  

We established the dose-response curve in the three cardiac regions to H2O2. At 

concentrations ≤500μM of H2O2, cardiac activity was not significantly altered but was 

markedly affected at 1mM. Indeed, spontaneous atrial activity was lost in 45% of the hearts 

and atrioventricular propagation persisted in only 34% (fig. 38A). The mean atrial rate in 

hearts submitted to 1mM H2O2 rapidly decreased after 15min (-25%) and this negative 

chronotropic effect continued onward (fig. 38B). 
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Fig. 38: Atria was the most resistant to H2O2. A) Percentage of beating atria (open diamonds), ventricle (grey 

squares) and outflow tract (black triangles) after 1h exposure to H2O2 at concentrations ranging between 50 and 

1000μM. N=20-75 hearts. B) Mean atrial rate in vehicle (open triangles) or in H2O2 1mM (black diamonds). *: 

p<0.05, ***: p<0.001 vs vehicle. N=10-76 hearts. 

 

V.2 STAT3 phosphorylation in atria, ventricle and outflow tract after exposure to 

H2O2. 

 

In order to determine to what extent STAT3 is stimulated by H2O2, as in adult myocardium, 

hearts were exposed to concentrations ranging from 50 to 1000μM.  

Whatever the cardiac region examined P-Tyr STAT3α did not significantly increase after 1h 

of exposure to H2O2 at concentrations ≤500μΜ (fig. 39A, 39B, 39C), except at 200μM in the 

ventricle (fig. 39B). It should be noticed that there was a large variability in these 

experiments. 
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Fig. 39: STAT3 phosphorylation was increased by severe exogenous oxidant stress. Densitometric analysis of P-

Tyr STAT3α normalized to STAT3α in vehicle (V, open columns) or in H2O2 at 50, 100, 200, 500 and 1000μM 

(dotted, hatched and black columns) after 1h in A) atria, B) ventricle and C) ouftlow tract. Data are expressed 

as fold change relative to vehicle. Mean ± SD. *: p<0.05, **: p<0.01, ***: p<0.001 vs vehicle. N=1-14 

determinations. 
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By contrast, at 1mM of H2O2 P-Tyr STAT3α was increased in the three cardiac regions 

studied (fig. 40A, 40B).  
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Fig. 40: STAT3α phosphorylation was 

increased in all the parts of the embryonic 

heart exposed to H2O2. A) Representative 

immunoblots of P-Tyr STAT3α, STAT3α and 

STAT3ß and B) densitometric analysis of P-Tyr 

STAT3α normalized to STAT3α in vehicle (V, 

open columns) or in 1mM H2O2 (dotted, 

hatched and black columns) after 1h in atria, 

ventricle and outflow tract respectively. Data 

are expressed as fold change relative to 

vehicle. *: p<0.05, **: p<0.01, ***: p<0.001 

vs vehicle. N=7-14 determinations. 
 

More specifically in the ventricle, a time course showed that P-Tyr STAT3α was increased 

only after 1h of exposure to 1mM of H2O2 (fig. 41A, 41B). 

 

Fig. 41: STAT3 phosphorylation was 

increased in ventricle only after 1h 

exposure to H2O2. A) Representative 

immunoblots of P-Tyr STAT3α, STAT3α 

and STAT3ß and B) densitometric 

analysis of P-Tyr STAT3α normalized to 

STAT3α in vehicle (V, open columns) or 

in H2O2 1mM (hatched columns) after 

15, 30, 45 and 60min. Data are 

expressed as fold change relative to 

vehicle. Mean ± SD. **: p<0.01 vs 

vehicle. N=2-14 determinations. 
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V.3 STAT3 transcriptional activity and expression of specific target genes after 

exposure to H2O2 in the ventricle. 

 

H2O2 inducing phosphorylation of STAT3, we wanted to know whether STAT3 

transcriptional activity could be also modified.  

STAT3 DNA-binding activity detected by EMSA (fig. 42A) was significantly increased 

after 1h exposure to 1mM of H2O2 as illustrated by densitometry (fig. 42B) but the level of 

mRNA expression of iNOS (fig. 43A), MnSOD (fig. 43B) and Cox-2 (fig. 43C) was not 

increased. 
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Fig. 42: STAT3 DNA-binding activity was increased by H2O2. A) Representative EMSA of STAT3 and B) 

densitometric analysis of STAT3 after 1h in vehicle (open column) or in 1mM H2O2 (hatched column) in 

ventricle. Data are expressed as fold change relative to vehicle. *: p<0.05 vs S. N=4 determinations. 
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Fig. 43: The level of mRNA expression of STAT3 target genes was not increased by H2O2. Level of mRNA 

expression in ventricle of A) inducible NO synthase (iNOS), B) manganese superoxide dismutase (MnSOD) and 

C) cyclooxygenase-2 (Cox-2) in vehicle (V, open columns) or in 1mM H2O2 (hatched columns) after 1h. Data are 

expressed as fold change relative to vehicle. N=3-4 determinations. 
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V.4 Discussion 

 

It has been shown that in neonatal and adult heart the JAK2/STAT3 pathway is activated in 

response to oxidant stress (Ang II-mediated or H2O2) (Modesti et al., 2005, Lu et al., 2008b). 

Nevertheless whether the response of the embryonic heart to exogenous oxidant stress (H2O2) 

resembles the response to reoxygenation-induced oxyradicals is still undertermined.  

Surprisingly, an especially severe oxidant stress was necessary to significantly affect 

embryonic heart function since H2O2 at the highest concentration (1mM) decreased atrial 

pacemaker activity and impaired atrioventricular conduction, whereas lower concentrations 

had no detectable effect. By comparison, in adult rats, 100μM of H2O2 is sufficient to 

decrease contractile function in a time-dependent manner (Lakomkin et al., 2007). In neonatal 

cardiac myocytes only 5min of exposure to H2O2 at 50μM decreased contraction amplitude 

(Sabri et al., 1998). Our observations unexpectedly suggest that the embryonic heart is more 

resistant to an oxidant stress than newborn or adult hearts. Furthermore, atria appears to be 

more resistant than the ventricle and the outflow tract to a potentially deleterious oxidant 

stress. It is conceivable that the high resistance of atrial activity to oxyradicals (like H2O2) 

could be related to the high basal level of STAT3 phosphorylation in this area. At the same 

developmental stage, a comparable differential resistance to H2O2 (assessed by tissue viability 

and caspase-3/7 activity) between atria, ventricle and outflow tract has been observed at 

nanomolar concentrations (Fisher, 2007). The mean atrial rate was decreased by an exogenous 

oxidant stress from 15min whereas it was increased during the first 10 to 12min of 

reoxygenation reaching a maximum (slight tachycardia) before returning to its preanoxic 

value (Sarre, 2006). 

Oxidants, such as H2O2, are known to activate intracellular signal transduction pathways 

(Fruehauf and Meyskens, 2007). STAT3 tyrosine phosphorylation increased in response to a 
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severe oxidant stress (1h H2O2 1mM) in the three investigated cardiac regions in our model. 

By contrast, in neonatal ventricular myocytes only 70μM of H2O2 are sufficient to increase 

STAT3 tyrosine phosphorylation (Lu et al., 2008b). Taken together our data and these 

observations indicate that the embryonic heart is less sensitive than neonatal or adult hearts to 

oxyradicals (as well as H2O2). More specifically in the ventricle, STAT3 tyrosine 

phosphorylation was increased only after 1h of exposure to H2O2 whereas in neonatal cardiac 

fibroblasts, it reaches a peak after only 15min of exposure and returns to a near-basal level by 

1h (Wang et al., 2002). These data suggest that in the embryonic myocardium STAT3 

activation by a severe oxidant stress is delayed relative to newborn rats or that this activation 

is maintained during time. We can also hypothesize that the increase observed in STAT3 

tyrosine phosphorylation is the result of an inhibition of tyrosine phosphatases, known to be 

extremely sensitive to oxidative stress. As expected, STAT3 DNA-binding activity was 

increased after 1h exposure to H2O2. Same results are found in lymphocytes, where the DNA-

binding increases after 30min of exposure to H2O2 (Carballo et al., 1999). By contrast, in 

neonatal cardiac fibroblasts, even if STAT3 is phosphorylated, the DNA-binding is not altered 

even after 2h of exposure to H2O2 (Wang et al., 2002). These differences might be explained 

by the fact that contrary to the adult, the ventricle of the 4-day-old embryonic chick heart is 

mostly composed of proliferating and differentiating cardiomyocytes and mesenchymal cells 

with only few endothelial and epicardial cells and no differentiated fibroblasts (Sedmera et 

al., 2000). The fact that mRNA level of specific STAT3 target genes iNOS, MnSOD and 

Cox-2 was not altered by 1h exposure to H2O2 suggests that such exposure may be too short 

to enhance expression of theses genes or that none of these three genes are responsive to 

H2O2. These observations illustrate the remarkable tolerance of the embryonic heart to strong 

oxidant stress. 



Conclusions and Perspectives 

CONCLUSIONS AND PERSPECTIVES 

 

In the context of current advances in fetal and neonatal medicine, this work provides a 

first step in understanding the modulation of JAK2/STAT3 pathway in the fetal heart 

submitted to intrauterine oxygen deprivation. The experimental approach has been 

biochemical (immunoblotting), molecular (EMSA and RT-PCR), functional (ECG and 

contractility) and pharmacological (antioxidant, JAK2/STAT3 and PI3K/Akt pathways 

inhibitors). 

For the first time in the developing heart, the myocardial JAK2 and STAT3 proteins and 

their inhomogeneous distribution and phosphorylation between the different cardiac regions 

have been investigated. Moreover we showed that in the developing heart the JAK2/STAT3 

pathway is not activated by IL-6, like it is classically the case in almost all adult or neonatal 

tissues.  

This work also demonstrates that the JAK2/STAT3 pathway plays a complex role in the 

myocardial response to anoxia-reoxygenation during a critical period of cardiogenesis and 

that this role is different during the early and late phases of reoxygenation. The 

reoxygenation-activated transcription factor STAT3 translocates into the nucleus but does not 

bind to DNA and can also interact rapidly with various signalling proteins of the RISK 

pathway differently in nuclear and cytoplasmic compartments (fig. 44). Furthermore, the fact 

that STAT3 activation improved post-anoxic recovery of cardiac rhythm illustrates the 

potential role that STAT3 plays in the protection of the cardiovascular function against a 

transient oxygen lack. 
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Fig. 44. Schematic representation based on our findings and illustrating STAT3 activation and its possible 

interaction with the RISK pathway components during the early phase of reoxygenation (10min) in the 

embryonic ventricle. In the cytoplasm, mitochondria- and NADPH oxidase-derived ROS stimulate the 

JAK2/STAT3 pathway which in turn activates Akt and ERK2 and inhibits GS. Activated STAT3 translocates into 

the nucleus and induces GSK3ß inhibition without binding to DNA. Activation of STAT3 stabilized cardiac 

rhythm. Arrow, activation; T-shaped symbol, inhibition. Pharmacological agents used are indicated in italics. 

Dotted lines indicate putative activation/inhibition. Representations in light grey were not explored in the 

present work.  

 

Finally this work shows that the embryonic heart is remarkably resistant to a potentially 

deleterious oxidant stress and that the atrial region is the most resistant. The response of the 

JAK2/STAT3 pathway to reoxygenation-induced oxyradicals is different from the response to 

exogenous oxidant stress which increases STAT3 DNA-binding activity. 
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To complete our experimental approach of the JAK2/STAT3 pathway, the role of JAK2 

remains to be assessed in the embryonic heart to identify the possible molecular trigger of 

JAK2 activation under hypoxic conditions or oxidative stress.  

Although this study focused exclusively on the ventricle, it would be necessary to find out 

about a possible correlation between the regional differences in myocardial tolerance to 

anoxia-reoxygenation and the differential activation of the JAK2/STAT3 and RISK pathways 

along the heart tube. Especially in the outflow tract in which a deleterious environment during 

early development can lead to congenital cardiac malformations and dysfunction (e.g. 

tetralogy of Fallot, the most common heart defect in children). 

The subtle mechanisms by which STAT3 activation reduced arrhythmias during 

reoxygenation deserve to be investigated at the level of the ion channels known to be involved 

in pacemaking during early cardiogenesis. 

A surprising finding of this work was that the developing heart displayed remarkable 

endogenous capabilities to cope with a strong oxidant stress (H2O2), especially in the 

sinoatrial region. As little is known about the mechanisms underlying this tolerance, we 

suggest investigating whether the high basal level of STAT3 phosphorylation can regulate 

some target genes involved in the protection against oxyradicals. 

Furthermore, it would be interesting to elucidate the mechanisms involved in early and late 

phases of reoxygenation. 

 

The findings of the present work give new insights into the cellular mechanisms 

involved in the adaptative response of the developing heart to oxygen deprivation during early 

fetal life and could be useful in the context of the fetal medicine. 
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Abstract Activation of the Janus Kinase 2/Signal

Transducer and Activator of Transcription 3 (JAK2/

STAT3) pathway is known to play a key role in cardio-

genesis and to afford cardioprotection against ischemia–

reperfusion in adult. However, involvement of JAK2/

STAT3 pathway and its interaction with other signaling

pathways in developing heart transiently submitted to anoxia

remains to be explored. Hearts isolated from 4-day-old

chick embryos were submitted to anoxia (30 min) and

reoxygenation (80 min) with or without the antioxidant

MPG, the JAK2/STAT3 inhibitor AG490 or the Phos-

phoInositide-3-Kinase (PI3K)/Akt inhibitor LY-294002.

Time course of phosphorylation of STAT3atyrosine705 and

Reperfusion Injury Salvage Kinase (RISK) proteins [PI3K,

Akt, Glycogen Synthase Kinase 3beta (GSK3beta), Extra-

cellular signal-Regulated Kinase 2 (ERK2)] was deter-

mined in homogenate and in enriched nuclear and

cytoplasmic fractions of the ventricle. STAT3 DNA-binding

was determined. The chrono-, dromo- and inotropic dis-

turbances were also investigated by electrocardiogram and

mechanical recordings. Phosphorylation of STAT3atyr705

was increased by reoxygenation, reduced (*50%) by MPG

or AG490 but not affected by LY-294002. STAT3 and

GSK3beta were detected both in nuclear and cytoplasmic

fractions while PI3K, Akt and ERK2 were restricted

to cytoplasm. Reoxygenation led to nuclear accumulation

of STAT3 but unexpectedly without DNA-binding.

AG490 decreased the reoxygenation-induced phosphory-

lation of Akt and ERK2 and phosphorylation/inhibition of

GSK3beta in the nucleus, exclusively. Inhibition of JAK2/

STAT3 delayed recovery of atrial rate, worsened vari-

ability of cardiac cycle length and prolonged arrhythmias

as compared to control hearts. Thus, besides its nuclear

translocation without transcriptional activity, oxyradicals-

activated STAT3a can rapidly interact with RISK proteins

present in nucleus and cytoplasm, without dual interaction,

and reduce the anoxia–reoxygenation-induced arrhythmias

in the embryonic heart.

Keywords JAK2/STAT3 pathway �
Anoxia–reoxygenation � Embryonic heart �
Oxyradicals � RISK pathway

Introduction

Although the embryo and the fetus develop normally in a

relatively hypoxic environment [7, 31], cardiovascular

function can be rapidly impaired by an accidental and

transient intrauterine lack of oxygen [21] with possible

long-term deleterious consequences. In the embryonic

heart, the chrono-, dromo- and inotropic disturbances

induced by anoxia–reoxygenation [39, 48] are associated

with overproduction of Reactive Oxygen Species (ROS)

and significant alterations of signaling pathways. In par-

ticular, the region-specific activation of Mitogen-Activated

Protein Kinases (MAPKs) [12, 43] such as p38MAPK,

extracellular signal-regulated kinase (ERK2) and c-jun

N-terminal kinase (JNK) and stimulation of protein kinase

C and nitric oxide synthases [44] are part of the mecha-

nisms involved in the response to anoxia–reoxygenation,
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with slight differences relative to the ischemic-reperfused

adult heart [18]. In addition to these signaling pathways,

the Janus Kinase 2/Signal Transducer and Activator of

Transcription 3 (JAK2/STAT3) pathway is also activated

by ischemia–reperfusion [1, 19]. JAK2 is a receptor-asso-

ciated cytosolic protein which mediates signals to the

nucleus by the subsequent phosphorylation/activation of

STAT3 transcription factor. STAT3 can be phosphorylated

on tyrosine705 by JAK upon activation and on serine727

mainly by ERK and p38MAPK [24]. It should also be

noticed that expression of STAT3 is necessary for normal

embryogenesis [53] and that JAK2/STAT3 activation is a

prerequisite for the differentiation of embryonic stem cells

into spontaneously beating cardiomyocytes [10]. More-

over, the JAK2/STAT3 pathway affords protection against

reperfusion-induced injury in neonatal [51] and adult [19,

37] cardiomyocytes and can interact with other pathways

including the Reperfusion Injury Salvage Kinase (RISK)

pathway [11, 13, 15, 17, 30]. The RISK pathway is a group

of pro-survival protein kinases including PhosphoInositide-

3-Kinase (PI3K), Akt/PKB, Glycogen Synthase Kinase

3beta (GSK3beta) and ERK1/2 which confers cardiopro-

tection when activated at reperfusion but not in all species

[50]. Although STAT3 is basically a transcription factor

shuttling between cytoplasmic and nuclear compartments,

the intracellular localization of its interactions with RISK

pathway components as well as its role in cardiac function

under pathological conditions remains to be explored. This

work aimed (1) to establish the temporal profile of phos-

phorylation, the mechanisms of activation and the tran-

scriptional activity of STAT3, (2) to assess the crosstalk

between STAT3 and RISK pathway in the nuclear and the

cytoplasmic compartments, and (3) to examine the role of

activated STAT3 in the functional recovery of the anoxic-

reoxygenated embryonic heart.

Materials and methods

Reagents

Dimethylsulfoxide (DMSO) and antioxidant N2-mercap-

topropionylglycine (MPG) were purchased from Sigma–

Aldrich, JAK2/STAT3 inhibitor AG490 and PI3K/Akt

inhibitor LY-294002 from Calbiochem and proteases

inhibitors from Roche Biosciences. Rabbit antibody against

phospho-Tyr705-STAT3 was from Ab Frontier. Antibodies

against phospho-Ser727-STAT3, phospho-Tyr458-PI3K,

PI3K, phospho-Ser473-Akt, Akt, phospho-Ser9-GSK3beta,

GSK3beta, phospho-Ser641-GS, GS, phosphorylated ERK

and ERK were from Cell Signaling Technology. Antibody

against STAT3 was from Santa Cruz Biotechnology and

the secondary antibody (goat anti-rabbit HRP conjugated)

was from GE Healthcare. The enhanced chemilumines-

cence (ECL) western blot reagent kit was from PerkinElmer

and films from GE Healthcare.

Preparation and in vitro mounting of the heart

Fertilized eggs from Lohman Brown hens were incubated

during 96 h at 38�C and 90% relative humidity to obtain

stage 24HH embryo (according to Hamburger and Hamil-

ton [16]). The spontaneously beating hearts were carefully

excised from explanted embryos by section at the level of

the truncus arteriosus as well as between the sinus venosus

and the atria. As previously described [45], the hearts were

then placed in the culture compartment of a stainless steel

chamber equipped with two windows for observation and

maintained under controlled conditions on the thermosta-

bilized stage (37.5�C) of an inverted microscope (IMT2

Olympus, Tokyo, Japan). Briefly, the incubation compart-

ment (300 lL) was separated from the gas compartment by

a 15 lm transparent and gas-permeable silicone membrane

(RTV 141, Rhône-Poulenc, Lyon, France). Thus, PO2 at

the tissue level was strictly controlled and rapidly modified

(within less than 5 s) by flushing high-grade gas of selected

composition through the gas compartment. The standard

HCO3/CO2 buffered tyrode (supp. file) medium was

equilibrated in the chamber with 2.31% CO2 in air con-

taining 19.5% O2 (normoxia and reoxygenation) or in N2

(anoxia) yielding a pH of 7.4. AG490 was reconstituted in

DMSO. MPG, AG490 and LY-294002 were diluted in

tyrode containing 0.5, 0.006 and 0.006% DMSO (vehicle),

respectively, and present throughout the experimental

protocol.

Anoxia–reoxygenation protocol

After a 30 min pretreatment at room temperature in vehi-

cle, MPG (1 mM), AG490 (10 lM) or LY-294002

(10 lM), hearts were mounted in the chamber, stabilized

45 min under normoxia and submitted to anoxia (30 min)

and reoxygenation (80 min). The hearts were harvested

after stabilization (S), 10 (A10) and 30 min (A30) of

anoxia and 10 (R10), 30 (R30), 40 (R40), 50 (R50), 60

(R60) and 80 min (R80) of reoxygenation. Control hearts

were maintained under steady normoxia 60 and 90 min

after S, corresponding to the time points R30 and R60,

respectively. At the end of the experiment, the ventricles

were carefully dissected on ice and stored at -80�C for

subsequent determinations.

Protein homogenate

For each sample, three ventricles were pooled because of

the very small size of hearts. Ventricles were homogenized
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by sonication 3 9 2 s in the ice-cold lysis buffer (supp.

file) and protein content was measured by the method of

Bradford (Coomassie protein assay kit, Pierce) with bovine

serum albumin as standard.

Immunoblotting

Proteins from cellular extracts (20 lg) were boiled with 1/3

of SDS sample buffer (supp. file), separated on 10% SDS-

polyacrylamide gels (1 h, 185 V), and transferred to

nitrocellulose membranes (2 h, 100 V). The equal loading

in the membranes was systematically verified by per-

forming Red Ponceau and by determining densitometry of

total proteins and GAPDH. Membranes were probed with

primary antibodies against phospho-Tyr705-STAT3 and

phospho-GS (1:750); phospho-Ser727-STAT3, phospho-

PI3K, STAT3 and PI3K (1:500); phospho-Akt, phospho-

GSK3beta, phospho-ERK, Akt, GSK3beta, GS and ERK

(1:1,000) diluted in 5% bovine serum albumin in tris-buf-

fered saline tween (TBS-T, supp. file) (overnight, 4�C).

Blots were then incubated (1 h, room temperature) with the

secondary antibody (1:10,000) in 1% non-fat milk in TBS-

T. Immunoreactive bands were detected using the ECL

western blot reagent kit. Signal was semi-quantitatively

analyzed using scanning densitometry (Quantity One

software, Biorad). Bands of phosphorylated proteins were

normalized to the total protein in the same sample and in

the same membrane. More specifically for STAT3, the

phospho-a isoform (P-STAT3a) was normalized to the

total a isoform. Phosphorylation level at each time point of

anoxia and reoxygenation was normalized to the respective

preanoxic S level. We used total cell extracts from serum-

starved HeLa cells prepared with IFN-a treatment (Cell

Signaling Technology) as a positive control for P-Tyr

STAT3, in which the a isoform was largely predominant

relative to the beta isoform.

Enriched nuclear and cytoplasmic fractions preparation

Cytoplasmic and nuclear extracts were obtained as descri-

bed elsewhere [27]. Twelve ventricles were homogenized in

hypotonic buffer (supp. file). After addition of detergent

Nonidet P-40 (0,625%) and centrifugation, supernatants

containing the cytoplasmic proteins were stored at -80�C.

Pellets were resuspended in hypertonic buffer (supp. file),

centrifugated and the resulting supernatants (nuclear frac-

tions) were collected and stored at -80�C. Protein content

was measured by the method of Bradford.

Electrophoretic mobility shift assay

A STAT3 oligonucleotide probe (supp. file) was labeled

with a-32PdCTP using the Klenow enzyme (Roche Applied

Science). 10 lg of nuclear proteins were incubated with

EMSA buffer (supp. file) and the probe for 20 min at room

temperature. Samples were resolved on a nondenaturing

polyacrylamide gel. Gels were transferred to Whatman

3 M paper, dried under vacuum, and exposed to photo-

graphic films at -80�C with intensifying screens. Densi-

tometric analysis of autoradiographs was performed. A

negative control was performed using either an antibody

against STAT3 or an unlabeled probe. Ventricles isolated

from hearts treated with H2O2 at 1 mM for 1 h were used

as a positive control for STAT3.

Quantitative RT-PCR

Twelve ventricles were homogenized in trizol (Invitrogen)

and total RNA were purified by slight modifications of the

method originally described by Chomczynski & Sacchi [8].

The reverse transcription (RT) reaction was performed

using the High capacity cDNA Reverse Transcription Kit

and protocols from Applied Biosystem (ABI, Foster City,

CA, USA). Briefly, the RT was run with 1.5 lg of total

RNA in a reaction volume of 20 ll and aliquots of this

reaction mixture (supp. file) were used for the subsequent

PCR reactions. 5 ng of cDNA was laid per well. Results

are calculated using the DCt method [29].

Recording of electrical and contractile activities

Electrical and contractile activities were recorded simul-

taneously and continuously throughout in vitro experiments

as previously described [45]. The PR and RR intervals, the

QT duration, the ventricular apical shortening and the

electromechanical delay (EMDv) were determined as pre-

viously described [45]. The maximal velocity of contrac-

tion and relaxation was calculated from the maximal

positive and negative values of the first derivative of

shortening and relaxation, respectively. Atrial rate was

determined by measuring the delay between two P waves

and the RR interval by the delay between peaks of two

successive QRS complexes. We also assessed QRS wide-

ning, reflecting a possible reduction of ventricular con-

duction, by measuring the half-width of the QRS complex.

Statistical analysis

Because of the very small size of the heart (circa 60 lg pro-

teins) a total of about 2,300 chick embryos have been used in

this study. Results are given as mean ± standard error of the

mean (SEM) for immunoblotting densitometry and as

mean ± standard deviation (SD) for functional parameters.

The significance of any difference between two time points or

two conditions was assessed using Mann–Whitney test. The

statistical significance was defined by a value of p B 0.05.
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Results

Profile of STAT3 phosphorylation and STAT3 nuclear

translocation during anoxia–reoxygenation

Only the a isoform of P-Tyr STAT3 was detectable under

our conditions although both a (*92 kDa) and beta

(*83 kDa) STAT3 isoforms were expressed in the ven-

tricle (Fig. 1a). P-Tyr STAT3a was not affected by anoxia

(A10, A30) but increased during the first 60 min of

reoxygenation (from R10 to R60) and returned to basal

level at R80 (Fig. 1b). It should be noted that P-Tyr

STAT3a increase was more pronounced at R10 and R60.

By contrast, P-Ser STAT3a was not altered throughout

reoxygenation compared to preanoxic level (Fig. 1b), the

beta isoform bearing no serine phosphorylation site. The

time-matched normoxic controls at S, R30 and R60 did not

exhibit change in P-Tyr STAT3a indicating that the culture

conditions did not alter STAT3 activation relative to pre-

anoxia (Fig. 1b). In the nuclear fraction P-Tyr STAT3a
increased at R10 and tend to increase at R60 (p = 0.095)

(Fig. 1c) whereas STAT3 was significantly increased
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Fig. 1 Profile of STAT3a
activation in homogenates,

nuclear and cytoplasmic

fractions of the ventricle during

anoxia–reoxygenation.

a Representative immunoblots

of the a isoform of tyrosine

phosphorylated STAT3 (P-Tyr

STAT3a), serine

phosphorylated STAT3 (P-Ser

STAT3a) and a and beta

isoforms of STAT3 during

anoxia (A10 and A30) and

reoxygenation (R10 to R80) in

homogenates. b Densitometric

analysis of P-STAT3a
normalized to STAT3a. Black
columns represent P-Tyr

STAT3a and hatched columns
P-Ser STAT3a during anoxia–

reoxygenation and open
columns P-Tyr STAT3a in

normoxic controls at matching

time-points S, R30 and R60.

Representative immunoblots at

S, R10, R60 and R80 and

densitometric analysis of P-Tyr

STAT3a (c) and STAT3a and

STAT3beta (d) in enriched

nuclear fraction; P-Tyr STAT3a
(e) and STAT3a and

STAT3beta (f) in cytoplasmic

fraction. Data are expressed as

fold change relative to the

preanoxic value (S). *p \ 0.05,

**p \ 0.01, ***p \ 0.001

versus S. N = 4–9

determinations for b and

N = 4–13 determinations

for c–f
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throughout reoxygenation (Fig. 1d). By contrast, in the

cytoplasmic fraction P-Tyr STAT3a and STAT3 were not

affected (Fig. 1e, f). As total STAT3 increased in the

nuclear fraction (Fig. 1d), P-Tyr STAT3a obtained in both

fractions was not corrected for total STAT3 in Fig. 1c, e.

Involvement of STAT3 in functional recovery

of the anoxic-reoxygenated embryonic heart

The recovery of atrial rate during reoxygenation was

impaired and the coefficient of variability of the mean

atrial rate was worsened by JAK2/STAT3 inhibition

(Fig. 2a; Table 1). It should be noticed that during the first

15 min of reoxygenation the coefficient of variability of the

mean atrial rate was increased in untreated hearts as well

because of the unavoidable interferences of the reoxygen-

ation-induced arrhythmias as described elsewhere [45].

However, at R30 the beat-to-beat variability of RR was

clearly higher in AG490-treated hearts (Fig. 2b, c). All the

other electrical and mechanical parameters were not sig-

nificantly affected by AG490 (Table 1), i.e. atrioventricular

(PR interval) and intraventricular conduction (QRS wid-

ening), QT duration and excitation–contraction coupling

(EMDv). AG490 had no inotropic (shortening) or lusitropic

(relaxation) effects. The types of arrhythmias (including

atrial ectopy, atrioventricular block, Wenchebach) were

similar in treated and untreated hearts. Furthermore,

arrhythmias persisted throughout reoxygenation in 30% of
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affected recovery of atrial

rhythm during reoxygenation.

a Mean atrial rate during

anoxia–reoxygenation relative

to the preanoxic level in vehicle

(open triangles, n = 5) or in

10 lM AG490 (black diamonds,

n = 9), mean ± SD. Note the

greatest SD in treated hearts

throughout reoxygenation.

*p \ 0.05 versus vehicle.

b Representative ECGs with P,

R and T components in vehicle

(V2, upper left panel) or in

AG490 illustrating arrhythmias,

i.e. PR prolongation followed

by atrioventricular block (AVB;

AG2, lower left panel) and

variations of RR interval from

one cardiac cycle to another at

R30 (AG5, right panel).
c Distribution of individual RR

intervals in five untreated hearts

(vehicle, V1–V5) and in nine

AG490-treated hearts (AG1–

AG9) at R30. The beat-to-beat

analysis was performed on 100

successive cycles
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the treated hearts, while they ceased at R30 in all other

hearts.

ROS-dependent STAT3a activation during post-anoxic

reoxygenation

The level of P-Tyr STAT3a was significantly decreased

by MPG at R10 and R60, time-points at which activation

of STAT3 was the strongest, with no effect at S (Fig. 3).

The level of P-Tyr STAT3a at R10 in Fig. 3 was lower

than that shown in Fig. 1a, this effect was due to vari-

ability between experiments and/or the conditions of

immunoblotting.

STAT3 DNA-binding

STAT3 DNA-binding activity determined by EMSA

(Fig. 4a) did not vary during reoxygenation as illustrated

by densitometry (Fig. 4b). Ventricles from hearts treated

with H2O2 were used as a positive control to show that the

technique was sensitive enough to detect any change in

STAT3 DNA-binding activity in this embryonic tissue

(?33% in hearts treated with H2O2) (Fig. 4c). A negative

control of DNA-binding performed by adding an antibody

against STAT3 or an unlabeled probe to the samples

showed that the upper band corresponding to STAT3

disappeared under these two conditions (Fig. 4c). The

unexpected finding that STAT3 was translocated without

DNA-binding was supported by the fact that the level of

mRNA expression of three STAT3 specific target genes in

the context of ischemia–reperfusion, i.e. inducible NO

synthase (iNOS), manganese superoxide dismutase (MnSOD)

and cyclooxygenase-2 (Cox-2), was not increased even at R80

(data not shown).

Table 1 Functional parameters under normoxia and during

reoxygenation

S R10 R30 R60

Mean atrial rate (bpm)

v 191 ± 8 202 ± 31 198 ± 8 185 ± 8

AG 160 ± 26 193 ± 27 180 ± 33 170 ± 28

Coefficient of variability of the mean atrial rate (%)

v 4 15 4 4

AG 16 14 18 17

PR interval (ms)

v 133 ± 22 169 ± 34 143 ± 35 126 ± 32

AG 128 ± 33 145 ± 25 126 ± 29 119 ± 33

QT duration (ms)

v 153 ± 10 182 ± 5 153 ± 19 150 ± 26

AG 149 ± 12 137 ± 9 131 ± 9 139 ± 11

Contraction/relaxation velocity ratio

v 0.96 ± 0.26 0.93 ± 0.28 1.00 ± 0.14 1.00 ± 0.21

AG 1.05 ± 0.12 0.91 ± 0.28 1.03 ± 0.30 1.20 ± 0.18

Ventricular shortening (lm)

v 16.5 ± 9.6 7.8 ± 8.7 18 ± 15 10.7 ± 8.5

AG 14.1 ± 7.9 9.0 ± 6.2 9 ± 8 26 ± 26

EMDv (ms)

v 26 ± 10 54 ± 4 33 ± 1 26 ± 9

AG 25 ± 4 28 ± 10 25 ± 3 27 ± 5

QRS half-width (ms)

v 3.4 ± 1.5 3.7 ± 2.0 3.2 ± 0.8 4.6 ± 2.0

AG 3.0 ± 1.3 4.26 ± 2.0 3.5 ± 1.6 3.2 ± 1.5

Electrical and mechanical parameters were not different in vehicle

(V) and in 10 lM AG490 (AG) at S, R10, R30 and R60. However, the

interindividual coefficient of variability of the mean atrial rate

appeared to be the highest in AG490-treated group at S, R30 and R60.

Mean ± SD; Mann–Whitney test, N = 3–9 determinations
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Distribution of PI3K, Akt, GSK3beta, glycogen

synthase (GS) and ERK2 and possible crosstalk

with STAT3

Using histone H1 and GAPDH as specific markers of

enriched nuclear and cytoplasmic fractions, respectively,

we found that phosphorylated and total forms of PI3K, Akt,

GS and ERK2 were restricted to cytoplasm. Basal level of

phosphorylated GSK3beta was markedly higher in the

nuclear fraction than in the cytoplasmic fraction whereas

the total form of GSK3beta was comparable in the two

compartments (Fig. 5). The temporal pattern of phosphory-

lation varied from one component of the RISK pathway to

another. PI3K and Akt phosphorylation peaked at R10

(Fig. 6a, b) while GSK3beta as well as GS phosphorylation

was increased at R10 and R60 (Fig. 6c, d). Relative to the

latest proteins, ERK2 phosphorylation was delayed at R60

(Fig. 6e). The possibility of interaction between RISK and

JAK2/STAT3 pathways was assessed pharmacologically

by AG490, a common JAK2/STAT3 pathway inhibitor. As

expected, AG490 significantly decreased P-Tyr STAT3a
and P-Akt at R10 and R60 as well (Fig. 7a, c). AG490

reduced GS (Fig. 7d) and ERK2 (Fig. 7e) phosphorylation

at R10 only with no effect on PI3K phosphorylation

(Fig. 7b). GSK3beta being the only protein of the RISK

pathway present in the nuclear compartment, together with

STAT3, we checked separately the effect of STAT3 inhi-

bition on the phosphorylation level of nuclear GSK3beta

(Fig. 8). Nuclear and cytoplasmic P-GSK3beta signifi-

cantly increased between S and R10 while GSK3beta did

not vary (Fig. 8a). GSK3beta phosphorylation was

decreased by AG490 in the nuclear fraction at R10

(Fig. 8b) but remained unchanged in the cytoplasmic

fraction (Fig. 8c). The possible effect of PI3K/Akt on

STAT3 phosphorylation was evaluated pharmacologically

using LY-294002, a common PI3K/Akt pathway inhibitor.

As expected, LY-294002 decreased P-Akt by 55% at R10

(Fig. 9a) but did not affect P-Tyr STAT3a (Fig. 9b).

Discussion

To the best of our knowledge, this is the first time that the

modulation of the JAK2/STAT3 pathway by a transient

anoxic stress and its functional consequences are explored

during early cardiogenesis. Our main findings indicate that

(1) reoxygenation induces ROS-dependent phosphorylation
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of Tyr-STAT3a but not Ser-STAT3a, (2) P-Tyr STAT3a
translocates into the nuclear compartment without binding

to DNA and inhibits GSK3beta, (3) phosphorylation of

STAT3a activates Akt and ERK2 and inhibits GS in the

cytoplasmic compartment, (4) there is no dual interaction

of STAT3 with proteins of the RISK pathway, and (5)

activation of the JAK2/STAT3 pathway reduces the

reoxygenation-induced arrhythmias.

Characteristics and limitations of the model

In the embryonic ventricle, only STAT3 and GSK3beta

appeared to be present both in the nuclear and cytoplasmic

fractions. PI3K, Akt, GS and ERK2 were restricted to the

cytoplasm, whereas in neonatal and adult cardiomyocytes

PI3K [42], Akt [35] and ERK [38] are detected also in the

nuclear compartment. These observations suggest that the

cytoplasm–nucleus shuttling of proteins, including tran-

scription factors, may well depend on the level of differ-

entiation and maturation of the cardiomyocytes. We were

able to detect JAK2 by immunoblotting (not shown) but it

was technically difficult to reveal its phosphorylated form

with antibodies available on the market. AG490, a tyrosine

kinase inhibitor which reduces JAK2 activity, significantly

decreased the reoxygenation-induced STAT3 phosphory-

lation as expected, which validates this pharmacological

approach to rapidly interfere with the JAK2/STAT3 path-

way. Regarding ERK, as previously shown [12], only the

p42 isoform (ERK2) is detectable in the embryonic and

adult chicken heart, in contrast to neonatal and adult

murine heart. As mentioned elsewhere [44], the isolated

embryonic heart displays noticeable interindividual
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Fig. 6 Profile of PI3K, Akt,

GSK3beta, GS and ERK2

activation in the ventricle during

post-anoxic reoxygenation.

Representative immunoblots

and densitometry of

phosphorylated PI3K, Akt,

GSK3beta, GS and ERK2 (a–e,

respectively) normalized to total

protein in homogenates at S,

R10 and R60. Data are

expressed as fold increase

relative to S. *p \ 0.05,

**p \ 0.01, ***p \ 0.001 vs S.
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variations of the functional parameters and ECGs per-

formed in similar conditions can also modestly differ in

morphology from one experiment to another. Such varia-

tions could be due to slight interindividual differences in

developmental stage, three-dimensional geometry of the

hearts mounted in the chamber and variable vicinity of the

recording electrodes. It is also conceivable that intrinsic

oscillations of activation of signaling pathways in the

embryonic cardiomyocytes [23], combined with variable

rate of proliferation and differentiation in the different cell

populations, could partly contribute to increase the inter-

individual variations of STAT3 phosphorylation deter-

mined at a given time point (specially at R60). A

significant variability of the phosphorylation level of sig-

naling proteins such as JNK, p38 and ERK2, has also been

observed in the same experimental setting [12, 43]. It

should be noticed that, contrary to the adult, the ventricle

of the 4-day old embryonic chick heart is mostly composed

of proliferating and differentiating cardiomyocytes with

few endothelial and epicardial cells and no fibroblasts [49].

STAT3 phosphorylation and translocation

during anoxia–reoxygenation

The full-length STAT, the a isoform, can undergo alter-

native splicing at the 30 end gene transcripts leading to

shorter beta isoform with truncated C-terminal domain

(lacking 48 amino acids) [28]. STAT3a and STAT3beta are

distinctly different in their activation, transcriptional

activities, and biological functions [47]. Our data indicate
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that a and beta isoforms of STAT3 are strongly expressed

in the embryonic heart but that only the a isoform is

responsive to post-anoxic reoxygenation whereas

STAT3beta is known to have a critical developmental

function [9] which was not investigated in this work. As

tyrosine rather than serine site was phosphorylated by
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reoxygenation, the possibility of STAT3 activation by

MAPKs [24] can be ruled out under our conditions since

serine is preferentially phosphorylated by these pathways.

More specifically, although p38MAPK and ERK2 are

known to be activated at R10 and R30, respectively [12],

they did not phosphorylate STAT3Ser727. At R10 activation

of STAT3 observed in homogenate principally reflected

what took place in the nuclear compartment since only

nuclear P-Tyr STAT3a increased significantly as in phar-

macological postconditioned adult murine hearts [26]. At

R60 nuclear P-Tyr STAT3a tended to remain higher than

the preanoxic level and the rise in nuclear STAT3 observed

at R10 persisted throughout reoxygenation suggesting that

translocated STAT3 was sequestered in the nuclear com-

partment. An increase in nuclear phosphorylated STAT3 is

observed also in the ethanolamine-induced protection of

the adult heart against ischemia–reperfusion injury [22].

The presence of mitochondrial STAT3 in our prepara-

tion cannot be ruled out since STAT3 is known to be

present in mitochondria of several tissues [2, 14, 55] and it

has also recently been shown that mitochondrial activated

STAT3 contributes to cardioprotection by stimulation of

respiration and inhibition of mPTP opening [4]. However,

in embryonic myocardium mitochondria are scarce and not

fully differentiated by contrast with adult tissue and their

contribution to the cellular content of STAT3, if any,

should be minor.

Involvement of the JAK2/STAT3 pathway

in cardiac rhythm

We have previously shown that the embryonic heart fully

recovers at R60 [44] but the signaling pathways underlying

the mechanisms of recovery remain relatively unexplored.

Activated STAT3 is known to exert its late cardioprotec-

tive action (e.g., antiapoptotic properties [30]) mainly via

alteration of transcription of target genes principally

induced by pre- or postconditioning [3]. However, the

short-term consequences of STAT3 activation on the

electrical and mechanical activities have never been

investigated, including those in the developing heart. At

R30, inhibition of JAK2/STAT3 gave rise to the highest

variability of atrial rate and RR interval, indicating that

activation of STAT3 is involved in recovery of atrial and

ventricular rhythm. As there are no extrinsic innervation at

the embryonic stage investigated and no neurohumoral

influence in the culture chamber, the fluctuations of rhythm

(dysrhythmias) originated exclusively at the level of the

pacemaker tissues, independently of the physiological

spontaneous oscillations of heart rate reported previously

[45]. These observations and the fact that arrhythmias

persisted throughout reoxygenation in 30% of the AG-

treated hearts, strongly suggest that activated STAT3 can

protect cardiac automaticity by interacting with pacemak-

ing mechanisms, especially under pathological conditions.

We have previously shown that subtle modulation of

L-type calcium, KATP and HCN channels can improve

postanoxic recovery of the embryonic heart [6, 44, 46, 54].

It is conceivable that crosstalk between JAK2/STAT3 and

RISK pathways may directly or indirectly control finely

these ion channels affecting membrane potential, and

contributing to protect pacemaker rate under adverse con-

ditions. However, our present findings show clearly that

activated STAT3 has no dromo-, ino- and lusitropic effects

in the anoxic-reoxygenated embryonic heart since atrio-

ventricular (PR) and intraventricular (QRS widening)

conduction, ventricular contractility (shortening) and

relaxation (ratio contraction/relaxation velocity) as well as

excitation–contraction coupling (EMDv) were not affected

by STAT3 inhibition. Additionally, the types of arrhyth-

mias during anoxia and reoxygenation we previously

documented [45] were similar in untreated and AG-treated

hearts.

ROS-dependent STAT3a activation during post-anoxic

reoxygenation

Our present finding that STAT3a phosphorylation on

tyrosine was ROS-dependent at R10 and R60 is consistent

with our preliminary data showing that exogenous H2O2

also activates STAT3 [Pedretti et al. (personal communi-

cation)] and with studies performed in neonatal cardio-

myocytes [30] and adult myocardium [33]. However, at

R10 there is a strong burst of ROS whereas at R60 ROS

production returns to its preanoxic level [44] suggesting

that the ROS-dependent mechanisms of STAT3 activation

are different during the early (R10) and late (R60) phases

of reoxygenation. This phenomenon could be partly due to

chemical differences between radical species produced at

R10 and R60 (i.e. superoxide anion O2
•- being predomi-

nantly generated during early reoxygenation) and to vari-

ations of the relative contribution of mitochondrial and

extramitochondrial (mainly NADPH oxidases) sources of

oxyradicals throughout reoxygenation [40]. This issue

deserves further investigation. The concept of the ROS-

mediated protection is also verified in permeabilized car-

diac muscle fibers in which the mitochondrial tolerance to

anoxia–reoxygenation is improved by TNFa through ROS

production [25].

STAT3 DNA-binding during anoxia–reoxygenation

After its activation STAT3 is known to dimerize and

subsequently translocate into the nuclear compartment,

where it can modulate expression of specific target genes

[20] including iNOS, MnSOD and Cox-2 known to be
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involved in cardioprotection [5, 36, 44]. The facts that

STAT3 DNA-binding activity was not altered and that

mRNA level of these genes remained stable throughout

reoxygenation indicate that translocated STAT3 had no

detectable transcriptional activity. Additionally, the level

of STAT3 phosphorylation on serine remained constant

throughout the experimental protocol (*2 h), STAT3

requiring phosphorylation on both sites (tyrosine and ser-

ine) to be maximally active in the assembly of active

transcription complexes [56]. As activated STAT3 was not

linked to DNA, we investigated the possible interaction

with other signaling pathways, in particular with the RISK

pathway.

Crosstalk between JAK2/STAT3 and RISK pathways

It is still unknown to what extent the survival kinases of the

RISK pathway are activated by anoxia–reoxygenation as

opposed to ischemia–reperfusion. The temporal profile of

phosphorylation shows that components of the RISK

pathway (ERK and PI3K-Akt-GSK3beta cascade) were

differently modulated during the early (R10) and late (R60)

phases of reoxygenation. Phosphorylation of PI3K, Akt and

GSK3beta was maximal at R10 whereas activation of

ERK2 was delayed at R60 as previously described [12].

The AG490-mediated reduction of phosphorylation of Akt,

ERK2 and nuclear GSK3beta indicates clearly that acti-

vation of the JAK2/STAT3 pathway can modulate RISK

components upon reoxygenation (R10) both in the cyto-

plasmic (Akt and ERK2) and nuclear (GSK3beta) com-

partments. We checked the presence of ERK2 in the

nuclear compartment in basal conditions whereas ERK2

translocates into the nucleus only when it is phosphory-

lated. At R10 we found an interaction between ERK2 and

STAT3 in homogenate but did not assess specifically the

effect of AG490 on ERK2 phosphorylation in nucleus and

cytoplasm because ERK2 was not phosphorylated at R10

and consequently not present in the nucleus. The strong

basal phosphorylation/inhibition of GSK3beta in the

nuclear compartment might be a characteristic of the rap-

idly growing embryonic ventricle. The additional inhibi-

tory effect of STAT3 on nuclear GSK3beta in the first

10 min of reoxygenation may be determinant as GSK3beta

is known to regulate many transcription factors and mod-

ulate cellular functions [34]. In H2O2-treated neonatal [30]

and ischemic-reperfused adult [11, 13, 15] cardiomyocytes

STAT3 inhibition reduces also Akt and GSK3beta phos-

phorylation but the intracellular localization has not yet

been established. However, our results show that a pref-

erential and predominant interaction between JAK2/

STAT3 pathway and Akt persists throughout reoxygena-

tion since AG490 leads to strong inactivation of Akt up to

R60, which is not the case for GSK3beta, ERK2 and GS.

Whatever the time point investigated, reoxygenation-

induced activation of PI3K was unrelated with JAK2/

STAT3 pathway in the embryonic heart like an ischemic-

reperfused heart model [13], although such a dissociation

remains controversial [52]. Furthermore, GS which is a

downstream target of GSK3beta, was strongly phosphory-

lated/inhibited from R10 onward, despite the fact that the

phosphorylated form of GSK3beta was inactive. Conse-

quently, other kinases such as PKA, AMPK, CK1 or CK2

[32] may phosphorylate/inhibit GS, reducing glycogen

storage which is known to be specially important in the

embryonic myocardium and to play a cardioprotective role

[41]. The mechanisms by which activation of JAK2/

STAT3 pathway phosphorylate GS at R10 and might

transiently reduce glycogen synthesis are beyond the scope

of this work. At R10, it appears that there is no dual

interaction between PI3K/Akt and JAK2/STAT3 pathways

in the embryonic heart. Such an interaction remains con-

troversial in neonatal and adult cardiomyocytes and

depends on the type of pathological situation such as

ischemic [52] and pharmacological pre- [15, 52] and

postconditioning [13] and oxidant stress [30]. Regarding
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the importance and the relevance of the RISK pathway, it

should be noticed that Skyschally et al. [50] showed that, in

hearts of larger mammals like pigs, RISK activation might

not be necessary for postconditioning.

In conclusion, this study shows for the first time that

the JAK2/STAT3 pathway plays a complex role in the

myocardial response to anoxia–reoxygenation during a

critical period of cardiogenesis. Indeed, besides its nuclear

translocation, the reoxygenation-activated transcription

factor STAT3 is also capable of interacting rapidly with

various signaling proteins of the RISK pathway present in

distinct cellular compartments (Fig. 10). Furthermore, the

fact that STAT3 activation improved post-anoxic recovery

of cardiac rhythm illustrates the potential role that STAT3

could play in the protection of cardiovascular function in

a developing organism. Our findings might be of rele-

vance to better understand the adaptative response of

the heart to intermittent, transient or chronic oxygen

deprivation during early fetal life, a relatively unexplored

area.
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Abstract We have previously reported in the early sep-

tating embryonic heart that electromechanical disturbances

induced by anoxia-reoxygenation are distinct in atria,

ventricle, and outflow tract, and are attenuated in ventricle

by opening of mitochondrial KATP (mitoKATP) channels.

Here, we assessed the regional activation of mitogen-

activated protein kinases (MAPKs) ERK, p38, and JNK

in response to anoxia-reoxygenation and H2O2. Hearts

isolated from 4-day-old chick embryos were subjected to

30-min anoxia and 60-min reoxygenation or exposed to

H2O2 (50 lM–1 mM). The temporal pattern of activation

of ERK, p38, and JNK in atria, ventricle, and outflow tract

was determined using immunoblotting and/or kinase assay.

The effect of the mitoKATP channel opener diazoxide

(50 lM) on JNK phosphorylation was also analyzed.

Under basal conditions, total ERK and JNK were homo-

geneously distributed within the heart, whereas total p38

was the lowest in outflow tract. The phosphorylated/total

form ratio of each MAPK was similar in all regions.

Phosphorylation of ERK increased in atria and ventricle at

the end of reoxygenation without change in outflow tract.

Phosphorylation of p38 was augmented by anoxia in the

three regions, and returned to basal level at the end of

reoxygenation except in the outflow tract. JNK activity was

not altered by anoxia-reoxygenation in atria and outflow

tract. In ventricle, however, the diazoxide-inhibitable peak

of JNK activity known to occur during reoxygenation was

not accompanied by a change in phosphorylation level.

H2O2 over 500 lM impaired cardiac function, phosphor-

ylated ERK in all the regions and p38 in atria and outflow

tract, but did not affect JNK phosphorylation. At a critical

stage of early cardiogenesis, anoxia, reoxygenation, exog-

enous H2O2 and opening of mitoKATP channels can subtly

modulate ERK, p38, and JNK pathways in a region-specific

manner.

Keywords p38 MAP kinase � ERK � JNK �
Anoxia-reoxygenation � Embryonic heart � Oxyradicals

Introduction

The embryonic/fetal heart develops and operates normally

in a relatively hypoxic intrauterine environment, but reacts

rapidly to oxygen lack [1–3]. Oxygen deprivation during

critical periods of embryogenesis impairs heart develop-

ment and function, resulting in growth retardation and

increasing the risk of cardiovascular disease in adulthood

[4–6]. Maternal hypoxemia, reduction in umbilical blood

flow or placental dysfunction can rapidly lead to acute or

chronic ischemia and/or hypoxia. Although the post-

ischemic fetal heart seems to recover faster than the adult

heart [7, 8], the tolerance of the embryonic heart to hypoxia

and its capacity to recover during reoxygenation remain

under debate. Moreover, the functional and developmental

consequences of oxygen lack may vary from one cardiac

region to another since the tissue properties and the fate of

each part of the heart are different. Atria differentiate at

older stages into pacemaker tissue, ventricle into working

myocardium and outflow tract into aorta and pulmonary

artery. In previous works, we have precisely characterized

the electrical and contractile disturbances induced by
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anoxia and reoxygenation in the heart isolated from 4-day-

old chick embryos [9, 10]. Arrhythmias and myocardial

stunning observed at reoxygenation are associated with a

burst of reactive oxygen species (ROS) [9], and recovery of

excitation–contraction coupling in the ventricle is

improved by pharmacological activation of the mitochon-

drial KATP (mitoKATP) channels, via PKC, NO-, and ROS-

dependent mechanisms. However, the signaling pathways

underlying the response to anoxia-reoxygenation remain

unclear in the embryonic heart.

Mitogen-activated protein kinases (MAPKs), which

belong to a highly conserved family of serine/threonine

kinases, are present in all eukaryotic cells and are signaling

proteins that play a key role in response to a wide range of

stress [11]. The three best-characterized MAPKs, extracel-

lular signal-regulated protein kinase (ERK), c-jun NH2-ter-

minal kinase (JNK), and p38 MAPK have been involved in a

vast array of physiopathological mechanisms in cardiac cells

[12–15], and are notably implicated in ischemia–reperfusion

injury and in pre- and post-conditioning mechanisms

[16–19]. Previous studies, mainly focused on newborn or

adult models [12], have reported conflicting data, and the

involvement of MAPKs pathways in the response of the fetal

heart to limiting oxygen levels has been poorly investigated.

We have recently shown in the ventricle of the embryonic

chick heart that JNK pathway is involved in the response to

anoxia-reoxygenation and that reoxygenation-induced peak

of JNK activity was ROS-independent and tightly related to

the open-state of the mitoKATP channel [20]. Regarding the

response to oxygen deprivation and reoxygenation, some

differential sensitivity is expected within the embryonic

heart since anoxic tolerance [9], energy metabolism [21],

Ca2? handling [22, 23], myofilaments [24], oxidative stress

[25], sensitivity to NO [26], and electrical [27] and con-

tractile [10] properties vary from one cardiac region to

another. These important developmental, structural, and

functional differences combined with the fact that activation

of MAPKs depends on the nature of the stimuli and the cell-

type [28] lead us to hypothesize that ERK, p38, and JNK

pathways display distinct spatio-temporal patterns of acti-

vation in response to a transient anoxic stress. The main goal

of the present work was to investigate the expression and the

profile of activation of ERK, p38, and JNK in atria, ventricle

and outflow tract of the embryonic heart submitted to anoxia,

reoxygenation, and oxidant stress.

Methods

Reagents

All standard chemicals, as well as dimethylsulfoxide

(DMSO), hydrogen peroxide (H2O2), and mitoKATP

channel opener diazoxide were analytical grade and pur-

chased from Sigma-Aldrich. [c-33P] ATP was from Amer-

sham Biosciences and inhibitors of proteases from Roche

Biosciences. Rabbit antibodies against phosphorylated-

ERK1/2, phosphorylated-p38, phosphorylated-JNK1/2,

total-ERK1/2, total-p38, total-JNK1/2 were purchased from

Cell Signaling Technology. The antibody against a-actin

was from Sigma-Aldrich and the secondary antibody (goat

anti-rabbit HRP conjugated) was from GE Healthcare. The

enhanced chemiluminescence (ECL) western blot reagent

kit was from Pierce and the films from GE Healthcare.

Preparation and in vitro mounting of the heart

Because of the minute size of the heart (circa 60 lg pro-

teins) and its parts at the stage investigated, a total of about

1000 chick embryos were utilized in this study. All

experiments were performed in accordance with the

guidelines of the local veterinary authority. Fertilized eggs

from Lohman Brown hens were incubated during 96 h at

38�C and 95% relative humidity to obtain stage 24 HH

embryo (according to Hamburger and Hamilton [29]). The

spontaneously beating hearts were carefully excised from

explanted embryos by section at the level of the truncus

arteriosus as well as between the sinus venosus and the

atria. The hearts were then placed in the culture compart-

ment of an airtight chamber.

The stainless steel chamber was equipped with two win-

dows for observation and maintained under controlled con-

ditions on the thermostabilized stage (37.5�C) of an inverted

microscope (IMT2 Olympus, Tokyo, Japan) as previously

detailed [10]. Briefly, the culture compartment (300 ll) was

separated from the gas compartment by a 15 lm transparent

and gas-permeable silicone membrane (RTV 141, Rhône-

Poulenc, Lyon, France). Thus, pO2 at the tissue level could

be strictly controlled and rapidly modified (within less than

5 s) by flushing high-grade gas of selected composition

through the gas compartment. At this developmental stage,

the heart lacks vascularization and the myocardial oxygen

requirement is met exclusively by diffusion.

The culture medium was standard HCO3/CO2 buffered

Tyrode medium, equilibrated in the chamber with 2.31%

CO2 in air (normoxia and reoxygenation) or in N2 (anoxia)

yielding a pH of 7.4. Diazoxide was diluted in this medium

containing 0.5% DMSO (vehicle) and present throughout

the experimental protocol.

Anoxia-reoxygenation protocol

After a 30 min preincubation at room temperature in

vehicle or in diazoxide (50 lM), hearts were mounted

in vitro and stabilized 45 min under normoxia at 37�C, and

then submitted to strict anoxia during 30 min, followed by
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60 min of reoxygenation. The hearts were harvested after

the period of normoxic stabilization, after 30 min of anoxia

and after 10, 30, and 60 min of reoxygenation. Atria,

ventricle, and outflow tract of each heart were carefully

dissected on ice and stored at -80�C for subsequent

determinations.

Hydrogen peroxide (H2O2) exposure

The hearts were placed in a Petri dish in the standard

medium, stabilized 45 min under normoxia and then

exposed 1 h to 50, 100, 200, 500 or 1000 lM of H2O2 at

37�C. Cardiac rhythmicity and contractility were not dif-

ferent in hearts cultured in Petri dishes or in hearts mounted

in culture chamber. The critical H2O2 concentration that

impaired cardiac function was obtained by determining the

proportion of hearts still beating at the end of each

experiment. Atria, ventricle, and outflow tract were then

carefully dissected on ice and stored at -80�C for sub-

sequent determinations.

Protein extract preparation

Atria, ventricles, and outflow tracts were homogenized by

sonication 3 9 2 s in the ice-cold lysis buffer. For each

sample six atria, three ventricles, and six outflow tracts

were pooled. Insoluble material was removed by 5 min

centrifugation at 10,0009g and protein content was mea-

sured by the method of Bradford (Coomassie protein assay

kit, Pierce) with bovine serum albumin as standard.

Immunoblotting

Proteins from whole cellular extracts (20 lg) were boiled

with 33 vol.% of SDS sample buffer, separated on 10% SDS-

polyacrylamide gels, and transferred to nitrocellulose

membranes, which were probed with primary antibodies

against MAPKs (1:1000) or against a-actine (1:5000) diluted

in 5% bovine serum albumin in TBS-T (overnight, 4�C). The

blots were then incubated (1 h, room temperature) with

secondary antibody (1:10000) in 1% non-fat milk powder in

TBS-T. Immunoreactive bands were detected with enhanced

chemiluminescent procedure using SuperSignal West Dura

Extended Duration Substrate (Pierce, Rockford, IL, USA).

The signal was semi-quantitatively analyzed using scanning

densitometry (Quantity-One software, Biorad).

Protein bands were normalized to total-MAPKs or

a-actin content in the same sample. In turn, the resulting

densitometric ratio obtained during anoxia and reoxygen-

ation was normalized to an internal control (the respective

preanoxic ratio), and reported as fold increase. Thus, all the

values [1 indicate a level of phosphorylation higher than

the preanoxic level.

Kinase assay

JNK activity was determined according to a published

method [30] with minor modifications [20]. Soluble protein

extracts (30 lg) were incubated for 3 h at 4�C in the

presence of 1 lg GST-c-Jun(1–219) bound to glutathione-

agarose beads as both JNK-specific ligand and substrate.

The beads were washed three times in washing buffer, and

twice in kinase buffer. Kinase reaction was carried out for

30 min at 30�C in 20 ll of kinase buffer containing 5 lCi

[c-33P]ATP. Reaction products were resolved by 12%

SDS-polyacrylamide gel electrophoresis, gels were dried,

and phosphorylation signals were visualized by autoradi-

ography and quantitated by PhosphoImager (Quantity-One

1.4.0, Biorad) and normalized to the respective preanoxic

control level.

Statistical analysis

Results are given as mean ± standard error of the mean

(SEM). Statistical analysis was performed using Statistica

8.0 Software. Differences between time-points were

determined by Kruskal-Wallis test followed by multiple

comparisons post-hoc test. The significance of any differ-

ence between two conditions was assessed by Mann–

Whitney test. The statistical significance was defined by a

value of P B 0.05.

Results

Inhomogeneous MAPKs distribution under basal

conditions

Under basal conditions (i.e., just dissected heart) the con-

tent of total form of ERK (p42) and JNK (p54) was similar

in the three regions of the heart (Fig. 1a, b). However, in

the outflow tract, the content of total form of p38 was lower

than in atria and ventricle, and expression of p46 isoform

of JNK was not detectable. In the three regions of

embryonic heart p44 isoform of ERK was not expressed.

The phosphorylated to total form ratio of ERK, p38, and

JNK was not significantly different in atria, ventricle, and

outflow tract (Fig. 1b). Ventricle contained more a-actin

than atria and outflow tract for the same quantity of protein

(Fig. 1c).

Exogenous H2O2 phosphorylated MAPKs differently

in atria, ventricle, and outflow tract

In order to determine to what extent myocardial MAPKs

can be stimulated by H2O2, hearts were exposed to a

concentration ranging from 50 lM to 1 mM. Cardiac
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function was clearly impaired by H2O2 at a rather high

concentration (1 mM) which was subsequently used to

assess its effects on the level of MAPK phosphorylation

(Fig. 2a). Compared to controls, H2O2 promoted ERK

phosphorylation in the whole heart, and significantly

increased p38 phosphorylation only in atria and outflow

tract. Surprisingly, the level of JNK phosphorylation was

not altered by 1 mM H2O2, whatever the investigated

region (Fig. 2b).

Anoxia-reoxygenation activated MAPKs differently

in atria, ventricle, and outflow tract

The Fig. 3 shows the spatio-temporal modulation of the

MAPKs in the embryonic heart subjected to anoxia and

reoxygenation.

ERK phosphorylation

ERK phosphorylation increased during reoxygenation in

atria and ventricle with a maximum reached at 60 min. In

the outflow tract, reoxygenation did not alter significantly

ERK phosphorylation.

p38 MAP kinase phosphorylation

After 30 min of anoxia, the level of p38 phosphorylation

was about four-fold higher in the outflow tract than in atria

and ventricle. During reoxygenation, the most important

variations of p38 phosphorylation were observed in ven-

tricle with a significant decrease at 60 min. A similar

phenomenon was observed in the outflow tract but without

statistical significance, most probably due to the large

variability of the data. It should be noticed, however, that

p38 remained activated in the outflow tract throughout

reoxygenation, i.e., above its preanoxic level.

JNK activity versus phosphorylation

As determined by kinase assay, JNK activity increased in

atria, ventricle, and outflow tract after 30 min of reoxy-

genation, but not significantly in atria and outflow tract

(values reported for the ventricle are taken from our pre-

vious work [20]). Surprisingly, in contrast to activity, the

level of JNK phosphorylation in the ventricle was not

increased by reoxygenation (Fig. 4). Additionally, opening

of the mitoKATP channels by diazoxide markedly reduced

ventricular JNK activity during reoxygenation [20] but did

not alter the level of phosphorylation (Fig. 4). These data

show clearly that JNK activity did not parallel the level of

JNK phosphorylation in the embryonic heart.

Discussion

To the best of our knowledge, this is the first time that

distribution and activation of ERK, JNK, and p38 MAPK

are explored in the three regions of an embryonic heart

model submitted to a transient anoxic stress. Our main

findings show that activation of MAPKs can be differen-

tially modulated by anoxia-reoxygenation and by exoge-

nous H2O2 in a region-specific manner.
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Fig. 1 Basal distribution of MAPKs and actin in atria (A), ventricle

(V), and outflow tract (OT) of the embryonic chick heart at stage

24HH. a Representative immunoblots for phosphorylated and total

ERK, p38, and JNK. b Densitometric analysis (arbitrary units) of total

form and the phosphorylated to total form ratio. c Actin content. Only

p38 (a, b) and JNKp46 (a) were inhomogeneously expressed. The

phospho/total ratio was the lowest for p38 in the three regions. The

content of a-actin was the highest in ventricle. The same quantity of

protein was loaded in each lane of all the immunoblots (20 lg).

n = 4–10 determinations; * P \ 0.05 vs. A or V
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ERK and JNK were homogeneously distributed within

the embryonic heart, whereas basal p38 expression was

appreciably lower in the outflow tract relative to atria and

ventricle (Fig. 1). It should be noticed that only the p42

isoform of ERK was detectable in the embryonic heart

(Fig. 1a), alike in the adult chicken heart and different from

neonatal and adult murine heart where both p42 and p44

isoforms were identifiable (not shown). Regarding p38

MAP kinase activation, the outflow tract appears also to be

a unique part of the embryonic heart since it displayed both

the lowest protein expression of p38 and the highest p38

responsiveness to anoxia and reoxygenation (Fig. 3). It

should be mentioned that, at the stage investigated (24HH),

the outflow tract undergoes important morphogenetic pro-

cesses (remodeling) preparing the aorticopulmonary sep-

tation [31] which require an important physiological

apoptotic activity [32, 33]. Indeed, in our preparation, there

was 8.4 ± 1.3, 9.5 ± 0.3, and 14.5 ± 0.8% (n = 3 deter-

minations) of apoptotic cells in atria, ventricle, and outflow

tract, respectively (Pedretti and Yang, personal communi-

cation). Such a high level of apoptotic activity could partly

explain that expression of p38 MAPK, which otherwise has

been shown to display anti-apoptotic properties [12, 28],

was the lowest in outflow tract. As expected, the highest

relative amount of a-actin was found in the ventricle and

was certainly due to the large number of proliferating and
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differentiating contractile myocytes in the developing

compact and trabecular myocardial layers.

It is generally accepted that MAPKs are activated by

ROS, especially by hydrogen peroxide (H2O2) [34, 35],

although the degree and the time course of activation can

differ according to the species, tissue, and cell-type [28, 36].

We sought to determine in atria, ventricle, and outflow tract

to what extent exposure to a concentration of H2O2 suffi-

cient to impair cardiac function, could also activate MAP-

Ks. Under our experimental conditions the cardiac function

was not altered by concentration of H2O2 \ 1 mM whereas

in fetal, newborn, and adult [37–39] cardiomyocytes con-

tractions are already altered at 0.05 or 0.1 mM H2O2. Our

data and these observations clearly indicate that the

embryonic myocardium is less sensitive to this radical than

the post-natal myocardium. This is corroborated by the fact

that the functional recovery of the embryonic heart is rap-

idly completed after the reoxygenation-induced burst of

ROS [9].

The most important effect of 1 mM H2O2 on ERK and

p38 phosphorylation was observed in atria and outflow

tract, which is consistent with the fact that 50% of atria

stopped to beat at this concentration of H2O2 (Fig. 2a) and

with the high sensitivity of the outflow tract to oxidative

stress [40]. In the ventricle, the reoxygenation-induced

peak of JNK activity is ROS-independent [20], and the

present data show that JNK phosphorylation was not aug-

mented by H2O2, whatever the region investigated (Fig. 2),

demonstrating that JNK phosphorylation is not modulated

even by the high oxidant stress induced by H2O2 exposure.

These observations are in line with data obtained in adult

myocardium showing that JNK is not activated by H2O2 at

concentration as high as 500 lM [41] or by exposure to a

pro-oxidant hyperoxia [42].

Relative to the other investigated MAPKs, ERK was

modestly activated during anoxia and reoxygenation, sug-

gesting that ERK is not a key element of the embryonic

heart response to such a stress. ERK being not a stress

kinase but mostly associated with cell proliferation and

differentiation, it is not surprising that this pathway dis-

played such minor alteration under our experimental con-

ditions. The low responsiveness of ERK to reoxygenation
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suggests that the endogenous burst of ROS induced by

reoxygenation is too short and/or too weak to strongly

activate the kinase, in contrast to the severe exogenous

oxidant stress generated by H2O2 which markedly

increased ERK phosphorylation. It should also be noticed

that ERK activity measured in the ventricle did not vary

during anoxia-reoxygenation (Sarre and Maurer, personal

communication).

Since the publication of Bogoyevith et al. [43] in 1996,

several studies confirmed that p38 is strongly activated in

heart by ischemia and involved in response to hypoxia and

anoxia, but whether it displays a beneficial or a detrimental

role remains under debate [44, 45]. In the present study,

although the basal level of p38 expression was not homo-

geneous within the heart (Fig. 1b), anoxia increased

phosphorylation in the three cardiac regions relative to

preanoxic levels, especially in the outflow tract, (Fig. 3).

Studies performed in adult [46, 47] and embryonic [9]

cardiomyocytes showing that ROS production is totally

abolished under strict anoxia, indicate that the observed

anoxic increase of phospho-p38 was ROS-independent.

The phosphorylation levels and kinase activities deter-

mined in this work displayed important interindividual

variations which might be due to slight differences in

developmental stage and/or to the relative sensitivity of the

used techniques, including immunoblotting and kinase

assay. Nevertheless, the greatest coefficient of variability

of the level of p38 phosphorylation was consistently

observed in ventricle and outflow tract after 10 min of

reoxygenation. This suggests that during such a brief per-

iod of time, when ROS production is maximal, crucial

cellular alterations may occur in these regions.

Although reoxygenation induces a calcium-dependent

peak of JNK activity in the ventricle [20], we did not found

the same pattern for JNK phosphorylation. Such a disso-

ciation between JNK activity and phosphorylation could be

partly related to the regulatory role played by scaffold

proteins associated to JNK, e.g., JIP1, Sab, and Gst

[48–50]. This important facet of JNK modulation is beyond

the scope of our study. Likewise, an upward trend in

JNK activity was observed in atria and outflow tract

after 30–40 min reoxygenation, but without statistical

significance.

We have previously shown that pharmacological opening

of mitoKATP channels not only reduces the reoxygenation-

induced peak of JNK activity [20] but also improves ven-

tricular recovery through a ROS-dependent mechanism [9].

However, in the present study, we found that diazoxide did

not reduce JNK phosphorylation in ventricle, indicating that

the modulation of JNK activity by the open-state of the

mitoKATP channels is not related to phosphorylation of the

kinase, but rather to the level of intracellular calcium [20]

and/or to alteration of JNK-interacting proteins (see above).

In conclusion, this study demonstrates for the first time

that ERK, p38, and JNK show a characteristic distribution

in the embryonic heart and are differentially modulated by

anoxia-reoxygenation, exogenous oxyradicals, and mito-

chondrial KATP channels in a region-specific manner. Even

if the functional role of these MAP kinases remains to be

clarified in such a model, our findings provide a first step in

understanding the modulation of the signal transduction

cascades in the developing heart subjected to oxygen lack

and reoxygenation.
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a b s t r a c t

The hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed in pacemaker
cells very early during cardiogenesis. This work aimed at determining to what extent these channels are
implicated in the electromechanical disturbances induced by a transient oxygen lack which may occur
in utero.

Spontaneously beating hearts or isolated ventricles and outflow tracts dissected from 4-day-old chick
embryos were exposed to a selective inhibitor of HCN channels (ivabradine 0.1–10 �M) to establish
a dose–response relationship. The effects of ivabradine on electrocardiogram, excitation–contraction
coupling and contractility of hearts submitted to anoxia (30 min) and reoxygenation (60 min) were
also determined. The distribution of the predominant channel isoform, HCN4, was established in atria,
ventricle and outflow tract by immunoblotting.

Intrinsic beating rate of atria, ventricle and outflow tract was 164 ± 22 (n = 10), 78 ± 24 (n = 8) and
40 ± 12 bpm (n = 23, mean ± SD), respectively. In the whole heart, ivabradine (0.3 �M) slowed the firing
rate of atria by 16% and stabilized PR interval. These effects persisted throughout anoxia-reoxygenation,
whereas the variations of QT duration, excitation–contraction coupling and contractility, as well as the
types and duration of arrhythmias were not altered. Ivabradine (10 �M) reduced the intrinsic rate of atria
and isolated ventricle by 27% and 52%, respectively, whereas it abolished activity of the isolated outflow
tract. Protein expression of HCN4 channels was higher in atria and ventricle than in the outflow tract.

Thus, HCN channels are specifically distributed and control finely atrial, ventricular and outflow tract
pacemakers as well as conduction in the embryonic heart under normoxia and throughout anoxia-
reoxygenation.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Hyperpolarization-activated cyclic nucleotide-gated (HCN)
channels are expressed in nodal, atrial and ventricular tissues, carry
the pacemaker funny current (If) and control the rate of diastolic
depolarization of the sinoatrial node in the adult heart [1,2]. Selec-
tive inhibition of these channels slows the cardiac rate [3] without
any effect on contractility [4] and can protect against ischemia-
induced myocardial injury [5–7]. HCN channels, including the pre-
dominant HCN4 isoform, are expressed very early during cardio-
genesis and are required for pacemaker activity [8–10]. Pacemaker
locus differentiates in the posterior segment of the primitive tubu-
lar heart [11,12] and strong If current can be generated by hyperpo-
larization in ventricular cardiomyocytes from the chick (3-day-old)
and the mouse (9.5-day-old) embryo [13–15], in contrast to adult

∗ Corresponding author. Tel.: +41 21 692 5526; fax: +41 21 692 5505.
E-mail address: eric.raddatz@unil.ch (E. Raddatz).

ventricular myocytes. Furthermore, hierarchy of intrinsic rhyth-
micity within the embryonic heart is illustrated by the fact that
dissected atria, ventricle and outflow tract beat spontaneously and
regularly at their respective firing rate, i.e. atria > ventricle > outflow
tract [16]. This observation suggests that membrane density and/or
properties of the HCN channels, besides non-HCN pacing mecha-
nisms, might vary from one cardiac region to another.

Throughout the embryonic and fetal life, occasional transient or
prolonged reduction in oxygen availability can lead to reversible
or irreversible cardiac arrhythmias, threatening fetal growth. The
mechanisms underlying hypoxia-induced rhythm abnormalities
in the developing heart remain poorly understood and deserve
to be investigated. We have previously shown that anoxia and
reoxygenation induce rapid and severe electrical and mechani-
cal disturbances in the 4–5-day-old embryonic chick heart model
[16,17]. Arrhythmic activity of isolated atria persists through-
out anoxia and upon reoxygenation, whereas activity of isolated
ventricles rapidly ceases under anoxia and resumes late after reoxy-
genation. Whether HCN channels are involved in such disturbances

1043-6618/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.phrs.2009.09.007
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and whether their inhibition has beneficial consequences, as in the
adult heart, remains to be explored.

This study mainly aimed at examining the contribution of the
HCN channels to pacemaker activity and conduction in the embry-
onic heart as well as investigating their role in cardiac dysfunction
induced by anoxia and reoxygenation.

2. Material and methods

2.1. Reagents

Standard chemicals were purchased from Sigma (Sigma Aldrich,
Buchs, Switzerland). The specific inhibitor of HCN channels ivabra-
dine was kindly provided by Servier (France).

2.2. Preparation and in vitro mounting of the heart

Fertilized eggs from Lohman Brown hens were incubated dur-
ing 96 h at 38 ◦C and 95% relative humidity to obtain stage 24HH
embryos (according to Hamburger and Hamilton [18]). Hearts were
carefully excised from embryos and dissected in order to iso-
late ventricles and outflow tracts. Spontaneously beating hearts
or the isolated parts were placed in the culture compartment of
a stainless steel airtight chamber. Such device was equipped with
two windows for observation as well as measurements and main-
tained under controlled conditions on the thermostabilized stage
(37.5 ◦C) of an inverted microscope (IMT2 Olympus, Tokyo, Japan)
as previously described in detail [17]. Briefly, the culture com-
partment (300 �l) was separated from the gas compartment by
a 15 �m transparent and gas-permeable silicone membrane (RTV
141, Rhône-Poulenc, Lyon, France). Hearts, ventricles and outflow
tracts were slightly flattened by the silicone membrane and the
resulting thickness of the myocardial tissue facing the gas com-
partment was approximately 300 �m. Thus, pO2 at the tissue level
could be strictly controlled and rapidly modified (within less than
5 s) by flushing high-grade gas of selected composition through the
gas compartment. At this developmental stage, the heart lacks coro-
nary vascularization and the myocardial oxygen requirement is met
exclusively by diffusion.

The HCO3/CO2 buffered medium was composed of (in mM):
99.25 NaCl; 0.3 NaH2PO4; 10 NaHCO3; 4 KCl; 0.79 MgCl2; 0.75
CaCl2; 8 d(+)glucose. This culture medium was equilibrated in the
chamber with 2.31% CO2 in air (normoxia and reoxygenation) or in
N2 (anoxia) yielding a pH of 7.4. Ivabradine was dissolved in the
culture medium just before experiments.

2.3. Recording of electrical and contractile activity

Electrical and contractile activities were recorded simulta-
neously and continuously throughout in vitro experiments as
previously described [16].

2.3.1. Electrical activity
ECG recordings of the spontaneously contracting intact hearts

were performed using two Ag/AgCl electrodes 1.2 mm apart (diam-
eter 0.625 mm) inserted into the window facing the culture
compartment. The atrial and ventricular regions of the heart were
placed in the immediate vicinity of these electrodes, which were
connected to a differential preamplifier (gain of 2000), result-
ing in an output signal of 1–5 V peak to peak. This signal was
digitized and processed using a powerful data acquisition (IOX,
sampling rate: 2 kHz) and analysis system (ECG-Auto) developed
by EMKA Technologies (France). ECG displayed characteristic P,
QRS and T components, which allowed to assess the beating rate
from RR interval (beats/min, bpm), PR interval (ms) and QT dura-

tion (ms). Corrected QT (QTc) was calculated using Bazett’s formula
(QT/RR1/2).

2.3.2. Contractile activity
Adjustable phototransistors were positioned over the projected

image of the investigated regions allowing detection of edge motion
of the myocardial wall, i.e. at the level of atrial pacemaker and
ventricular apex of the intact heart. Simultaneously with ECG,
myocardial shortening was sampled at a rate of 1 kHz using the
same acquisition/analysis system as described above. The actual
ventricular shortening at the apex (�m) was determined using
video recordings performed just before anoxia and at the end of
reoxygenation.

2.3.3. Excitation–contraction coupling
The electromechanical delay (EMD, ms), reflecting the efficiency

of excitation–contraction (E–C) coupling, was determined at the
level of the right atrium and at the apex of the ventricle by mea-
suring the delay between the very initial phase of the P and QRS
components and the initiation of contraction in atrium and ventri-
cle, respectively, as previously described [16].

2.4. Experimental protocols

2.4.1. Dose–response curve
Whole hearts, isolated ventricles and outflow tracts were

pretreated with ivabradine at room temperature during 30 min,
mounted in the culture chamber and exposed to normoxia dur-
ing 1 h in the absence (control) or the presence of ivabradine. The
tested concentrations of ivabradine ranged from 0.1 to 10 �M. The
spontaneous beating rate was determined at the end of the proto-
col.

2.4.2. Anoxia-reoxygenation protocol
Whole hearts (pretreated or not with 0.3 �M ivabradine) were

placed in the chamber, stabilized during 45 min under normoxia
and submitted to anoxia (30 min) followed by reoxygenation
(60 min). Ivabradine (0.3 �M) was present throughout anoxia-
reoxygenation and electrical (ECG) as well as contractile activities
were continuously recorded.

2.5. Western Blotting of HCN4 channels

A total of 84 hearts have been used and carefully dissected
into atria, ventricle and outflow tract. Six atria, 3 ventricles and
6 outflow tracts were pooled for each sample preparation. Pro-
tein extracts were generated from the dissected regions using a
lysis buffer (in mM: 20 Tris-acetate (pH 7), 270 sucrose, 1 EGTA,
1 EDTA, 50 NaF, 10 �-glycerophosphate, 10 dithiothreitol (DTT),
10 4-nitrophenyl phosphate disodium salt hexahydrate (PNPP), 1%
Triton X-100 and inhibitors of proteases). Insoluble material was
removed by a 5 min centrifugation at 10,000 g. Protein concen-
tration was determined by the Bradford method. Samples were
denatured in sample buffer (6 min, 95 ◦C), 20 �g of protein were
loaded per lane, separated on 10% SDS-polyacrylamide gels, and
transferred to nitrocellulose membranes. Membranes were blocked
(overnight at 4 ◦C) with 5% non-fat milk in PBS and probed (2 h
at room temperature) with rabbit polyclonal antibody against
HCN4 1:200 (Alomone Labs, Jerusalem, Israel) or GAPDH 1:1000
(Abcam, Cambridge, UK). A control fusion protein was used as
control antigen. Anti-HCN4 antibody was preincubated with the
antigen (for negative control) into PBS–5% non-fat dry milk for 1 h.
After 4 washes in 0.1% Tween 20 PBS the membranes were incu-
bated in 1:10,000 dilution of horseradish peroxidase-conjugated
anti-rabbit IgG (Amersham Biosciences) in PBS containing 5%
non-fat milk (1 h, room temperature) and then washed 4 times.
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Immunoreactive bands were detected with enhanced chemilumi-
nescent procedure using ECL Western Blotting Analysis System
(Amersham Biosciences). Autoradiograms were scanned and den-
sitometric analysis performed with Quantity One software (Biorad).
Protein bands were normalized using GAPDH in the same sample
as reference.

2.6. Statistical analysis

All values are reported as mean ± standard error of the mean
(SEM) unless otherwise indicated. The significance of any differ-
ence between two groups was assessed with Student t-test or
repeated measures ANOVA (to compare rates of recovery), while
differences in the dose–response of ivabradine were determined
using one-way ANOVA completed by Tukey’s post hoc test using
SPSS software. Mann–Whitney test was used to compare slopes of
the PR–RR relationship. The statistical significance was defined by
a value of p < 0.05.

3. Results

3.1. HCN4 channels are differentially expressed within the
embryonic chick heart

Immunoblotting shows that expression of the predominant iso-
form HCN4 was higher in atria and ventricle than in the outflow
tract of the embryonic chick heart (Fig. 1). The specificity of the

Fig. 1. Representative immunoblot of the HCN4 channel and GAPDH (upper panel)
and quantitative densitometry of HCN4 corrected for GAPDH (lower panel) showing
that HCN4 was inhomogeneously distributed in the embryonic chick heart at stage
24HH. Bars represent the mean ± SEM from 14, 12 and 11 independent determina-
tions for atria, ventricle and outflow tract, respectively.

anti-HCN4 antibody was controlled by immunoblotting with the
anti-HCN4 antibody preincubated with the corresponding anti-
gen. The band normally found at about 160 kDa, corresponding to
HCN4, disappeared completely in the presence of the antigen (not
shown).

3.2. Dose–response curve for ivabradine was different in atria,
ventricle and outflow tract

In vitro, all atria (in whole hearts) and dissected ventricles beat
at their intrinsic rate, whereas only about 25% of the dissected
outflow tracts beat spontaneously and regularly. Under normoxia,
the intrinsic beating rate of the untreated atria, isolated ventri-
cles and outflow tract was 164 ± 22 (n = 10), 78 ± 24 (n = 8) and
40 ± 12 bpm (n = 23, mean ± SD), respectively, and remained sta-
ble in vitro. The dose–response curves (Fig. 2) show that inhibition
of HCN channels by 1 �M ivabradine significantly (p < 0.01) slowed
the firing rate of atria (dropping to 134 ± 17 bpm, n = 6) and ven-
tricle (dropping to 39 ± 19 bpm, n = 7) respectively. The highest
concentration of ivabradine (10 �M) further decreased moderately
atrial rate, had no additional effect on ventricular rhythm but com-
pletely stopped spontaneous activity of the outflow tract (Fig. 2).
Thus, the maximal inhibitory effect of ivabradine is achieved at
0.3–1 and 10 �M in ventricle and outflow tract, respectively. Since
the ventricular rate was already altered at a low concentration of
ivabradine (0.3 �M), we investigated the functional consequences
of HCN inhibition during anoxia-reoxygenation at this concentra-
tion only.

Fig. 2. Dose–response curves of whole hearts (black diamonds), dissected ventri-
cles (open circles) and outflow tracts (open squares) treated with ivabradine under
normoxia. The spontaneous beating rate of atria, isolated ventricles and outflow
tracts was expressed as raw data (A) or as percent of the respective control value
representing ivabradine efficiency (B). Control: untreated preparation; broken lines
indicate the control level; bpm: beats per min.; mean ± SEM; n = 4–11 for atria and
ventricle; n = 9–23 for outflow tract; *: p < 0.01 dissected ventricle or outflow tract
versus atria in whole heart; $: p < 0.01 outflow tract versus ventricle; #: p < 0.01
versus respective control.
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Fig. 3. Representative ECGs illustrating the P, QRS and T components of the embry-
onic chick heart spontaneously beating in vitro under normoxia and showing how
RR, PR and QT intervals have been analysed in control and ivabradine (0.3 �M)
treated hearts.

3.3. Inhibition of HCN channels had a bradycardic effect
associated with a stabilization of conduction without affecting the
pattern of arrhythmias throughout anoxia-reoxygenation

Under preanoxic conditions, ivabradine (0.3 �M) reduced atrial
rate and PR interval by 20%, but did not alter QT duration, ven-
tricular EMD and ventricular shortening (Figs. 3 and 4). It should
be noticed that the preanoxic atrial rate of untreated hearts
(186 ± 9 bpm, n = 5, Fig. 4) was slightly higher than heart rate
of the controls of the dose–response experiments (164 ± 7 bpm,
n = 10, Fig. 2) although it did not reach statistical significance.
Such a difference between the two series of experiments, com-
bined with a higher coefficient of variability of atrial rate at 0.3 �M
ivabradine in Fig. 2 (18%; n = 5) than that in Fig. 4 (12%; n = 5),
could explain that the bradycardic effect of 0.3 �M ivabradine
on atria was significant during preanoxia (p = 0.03) but not under
the conditions of the dose–response determination (p = 0.09). As
we recently described [16], anoxia induced bradycardia, atrial
ectopy, 1st, 2nd and 3rd degree A-V blocks as well as transient
arrests followed by bursting activity. Reoxygenation triggered also
Wenckebach phenomenon and ventricular escape beats. All hearts
fully recovered after 30–50 min of reoxygenation. Relative to con-
trol after 10 min anoxia, ivabradine augmented the mean atrial
rate measured during bursts of activity with no effect on other
functional parameters (Fig. 4). During reoxygenation, ivabradine
shortened PR interval with respect to untreated hearts. Neverthe-
less, the types, incidence and duration of arrhythmias were not
significantly affected by ivabradine (Table 1). Relative to control,
ivabradine did not alter QTc neither under normoxia (0.25 ± 0.02
and 0.28 ± 0.03 s, in control and treated group, respectively, n = 5)
nor throughout reoxygenation (peaking after 9 min of reoxygena-
tion at 0.35 ± 0.07 and 0.30 ± 0.02 s in control and ivabradine,
respectively). However, the mean of all the QTcs which were
possible to determine, i.e. in the absence of AV blocks, at 11,
13, 20, 25 and 30 min of anoxia (see Fig. 4), was longer in the
ivabradine group (0.28 ± 0.06 s, n = 17) than in the control group
(0.23 ± 0.04 s, n = 16; ± SD) (p = 0.006). Furthermore, as previously
described [19], atrial EMD was longer than ventricular EMD under
baseline condition (i.e. 19.9 ± 0.9 ms vs 12.1 ± 1.8 ms) and was
not significantly affected by reoxygenation and ivabradine (not
shown). Ta
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Fig. 4. In the whole heart, ivabradine decreased atrial rate and shortened PR interval
under normoxia (preanoxia) and throughout reoxygenation. By contrast, QT dura-
tion, ventricular electromechanical delay (EMDv) and ventricular shortening were
not affected. Mean ± SEM; n = 5 for each condition; *: p < 0.05 versus control.

3.4. Correlation between heart rate and atrio-ventricular
conduction

Fig. 5 clearly shows that atrio-ventricular conduction under nor-
moxia depended on beating rate since the longer the RR interval,
the shorter the PR interval, regardless if ivabradine was applied or
not. Furthermore, a beat-to-beat analysis performed in individual
hearts revealed that specific inhibition of HCN channels by ivabra-
dine stabilized conduction, specially when RR varied between 370
and 475 ms, i.e. between 160 and 130 bpm. Indeed, the individual
slope PR/RR (250 data points per heart) was significantly higher in
the control group (0.53 ± 0.27, n = 5) than in the ivabradine treated
group (0.10 ± 0.04, n = 5) (p = 0.032). However, during anoxia and
reoxygenation no significant correlation could be properly estab-

Fig. 5. Beat-to-beat analysis performed in individual hearts showing that the rela-
tionship between PR interval and RR interval under normoxic conditions is different
in control and ivabradine treated hearts, the PR interval being stabilized by ivabra-
dine. The general linear relationship between PR interval and RR interval is shown
in the inset regardless if ivabradine was applied or not (r2 = 0.62). Each beat-to-
beat analysis was performed on 250 successive preanoxic cardiac cycles; Ivabradine,
0.3 �M; r2: coefficient of determination of the linear regression; n = 5 hearts in each
group.

lished between PR and RR intervals, most likely due to major
electromechanical disturbances, including numerous AV blocks
(see Table 1).

4. Discussion

4.1. Dose–response curve for ivabradine

The inhibition of the If current by ivabradine is known to be
specific, selective and use-dependent at concentrations lower than
10 �M. However, at higher concentrations unspecific currents,
such as calcium currents (L and T type) that play an important
functional role in the embryonic heart, are also inhibited [3]. For
this reason, dose–response curves have been determined within
the range of 0.1–10 �M of ivabradine. Interestingly, ivabradine
lowered embryonic atrial rate in the very same range of concen-
trations (1–3 �M) and to the same extent (∼20%) than in adult
sinoatrial node cells [4,20], corresponding to half-block concen-
trations for HCN1 and HCN4 subtypes [20,21]. These observations
indicate that the pharmacological modulation of HCN channels
could be similar in embryonic and adult pacemaker cells, which
deserves to be further investigated. Although ivabradine (1 �M)
decreased the beating rate by about 40 bpm both in atria and ven-
tricle (equal effect), it was more efficient in ventricle than in atria,
i.e. a drop of frequency of 50% versus 20%. Furthermore, compared
with other regions, ivabradine had a stronger inhibitory effect on
spontaneous activity of the outflow tract, even at the lowest con-
centration.

Concentrations of ivabradine higher than 0.3 �M decreased
further atrial rate but had no additional effect on ventricular
rhythm, suggesting that non-HCN pacing mechanisms, such as
sodium–calcium exchanger [22] and intracellular calcium release
[23,24], can also contribute to pacemaker current more markedly in
the ventricle than in atria of the embryonic heart. Our experiments
showing that spontaneous contractions of the isolated outflow tract
were totally abolished by ivabradine, in contrast to atria and ven-
tricle, support the hypothesis that pacemaking activity in this part
of the heart rely on HCN channels exclusively, and including at least
HCN4.

Under normoxia, ivabradine had a negative chronotropic effect
without any inotropic effect, alike in adult sinoatrial myocytes
[4]. Thus, the fact that inhibition of HCN channels slowed the
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spontaneous beating rate differently in the three cardiac regions
and that the HCN4 isoform was inhomogenously distributed,
suggest a subtle gradient of density and/or properties of HCN
channels along the developing heart.

4.2. Anoxia-reoxygenation

The embryonic heart at the investigated stage is not innervated
by the autonomic nervous system and no neurohumoral influence
exists under our in vitro conditions. Thus, the observed changes
of pacemaker rate during anoxia-reoxygenation were exclusively
regulated at the cardiomyocytes level.

In addition to its negative chronotropic effect, inhibition of HCN
channels appears to stabilize atrio-ventricular conduction, espe-
cially when heart rate is below 160 bpm, under normoxia (Fig. 5)
as well as during anoxia and reoxygenation (Fig. 4). To our knowl-
edge, such a dromotropic effect of HCN channel inhibition has not
been reported in adult heart [5,25]. It should be noticed that this PR
interval stabilizing effect can be clearly observed with ivabradine,
but it may not be exclusively due to HCN inhibition.

It has been shown [26] that if HCN channels are blocked, cells
tend to hyperpolarize more which in turn relieves inactivation of
more Ca2+ and/or Na+ channels involved in action potential prop-
agation and consequently improves conduction. This hypothesis is
strongly supported by the evident correlation observed between
PR interval and RR interval. A complementary interpretation is
that Ca2+ reuptake into sarcoplasmic reticulum and transsarcolem-
mal Ca2+ extrusion, taking place during a significantly prolonged
diastole (+25%), could somewhat lower basal diastolic intracellular
calcium relative to untreated hearts. This is consistent with a slight
enhancement of gap junction permeability by a lower intracellular
Ca2+. Indeed, although there is no specialized conduction system at
the stage investigated, various connexins (e.g. Cx43) forming gap
junctions are expressed and functional during early cardiogene-
sis [27,28]. Furthermore, alike in adult heart, decreasing heart rate
reduces myocardial oxygen consumption in the embryonic chick
heart at stage 24HH [29], which is known to protect heart func-
tion especially during an ischemic/hypoxic episode. Remarkably,
during anoxia and reoxygenation, inhibition of HCN channels did
not affect ventricular depolarization–repolarization (QT duration),
excitation–contraction coupling (EMD) and contractility (shorten-
ing) and had no additional proarrhythmic effects as those observed
in the adult mouse heart model at highly unspecific ivabradine
concentrations [30]. During the last 20 min of anoxia QTc was
23% longer in ivabradine treated hearts than in control hearts but
no additional arrhythmias were observed. Although a longer QTc
puts an adult heart at increased risk for arrhythmias, it does not
seem to be the case in the minute embryonic heart at stage 24HH
in which the compact myocardium of the ventricle is very thin
(200–300 �m) and action potential duration quite uniform in space.

Although a tendency toward a shorter time to resumption in
atria and ventricle of treated hearts relative to control hearts can
be observed in Table 1, there was no significant difference between
the experimental groups. It should be noticed that the relatively
important interindividual variability of the investigated parame-
ters is probably due to slight differences in developmental stage,
level of differentiation, cardiac dimensions and degree of flattening
of the hearts in the culture compartment as previously discussed
[17]. Moreover, the unavoidable arrhythmic activity induced by
anoxia and reoxygenation was also responsible for a great variabil-
ity. For example, in Fig. 4, the fact that atrial rate during anoxia was
the average rate determined during bursts of activity contributed
to increase interindividual variability. Nevertheless, the preanoxic
PR and QT values were within the range found in our previous work
[16].

4.3. Distribution of the HCN4 channel

The antibody against HCN4 identified a band at about 160 kDa,
corresponding to molecular weight of HCN4 which predominates
over the other HCN isoforms in the adult sinoatrial node [31].
Our data provide the first direct evidence that the HCN4 channel,
considered as the predominant isoform during early cardiogen-
esis [8–10], is inhomogeneously distributed within the heart of
the chick embryo, i.e. atria = ventricle > outflow tract. Ivabradine at
10 �M reduced the beating rate in both atria and ventricle by about
40 bpm but abolished spontaneous activity of the outflow tract.
These findings support the concept that the low intrinsic beating
rate of the outflow tract can be attributed to the low density of HCN4
channels. As the fate of the outflow tract is to differentiate at older
stages into aorta and pulmonary artery rather than spontaneously
contracting myocardium, it is not surprising that this otherwise
slowly conducting region exhibited the lowest HCN4 expression.

The possibility that other subtypes of HCN channels (i.e. HCN1,
2) blocked by ivabradine and known to be present in the adult heart
[2], are expressed in the embryonic heart and play a role in atrial
and ventricular pacemaking cannot be ruled out. Furthermore, the
spatial distribution of HCN4 drastically changes throughout cardiac
development [8,32] and HCN4 can heteromerize with HCN2 to form
functional pacemaker channels in the embryonic heart [33].

5. Conclusion

The gradient of intrinsic beating rate within the embryonic heart
model, the differential efficiency of ivabradine in the sinoatrial
region, ventricle and outflow tract and the characteristic distribu-
tion of the predominant HCN4 isoform along the heart, indicate that
HCN channels play an important role in the fine control of the rate
of diastolic depolarization in all cardiac regions. Moreover, our find-
ings show that HCN channels can be involved in the chrono- and
dromotropic responses to transient oxygen deprivation without
affecting E–C coupling or contractility.

Acknowledgements

We thank Anne-Catherine Thomas for her skillful technical
assistance. Supported by the Swiss Heart Foundation and the Swiss
National Science Foundation no. 3100A0-105901. Servier (France)
kindly provided ivabradine.

References

[1] Bucchi A, Barbuti A, Baruscotti M, Difrancesco D. Heart rate reduction via selec-
tive ‘funny’ channel blockers. Curr Opin Pharmacol 2007;7:208–13.

[2] Siu CW, Lieu DK, Li RA. HCN-encoded pacemaker channels: from physiology
and biophysics to bioengineering. J Membr Biol 2006;214:115–22.

[3] DiFrancesco D, Camm JA. Heart rate lowering by specific and selective I(f)
current inhibition with ivabradine: a new therapeutic perspective in cardio-
vascular disease. Drugs 2004;64:1757–65.

[4] Bois P, Bescond J, Renaudon B., Lenfant J. Mode of action of bradycardic agent,
S 16257, on ionic currents of rabbit sinoatrial node cells. Br J Pharmacol
1996;118:1051–7.

[5] Berdeaux A. Preclinical results with I(f) current inhibition by ivabradine. Drugs
2007;67(Suppl. 2):25–33.

[6] Ferrari R, Cargnoni A, Ceconi C. Anti-ischaemic effect of ivabradine. Pharmacol
Res 2006;53:435–9.

[7] Vilaine JP. The discovery of the selective I(f) current inhibitor ivabradine
A new therapeutic approach to ischemic heart disease. Pharmacol Res
2006;53:424–34.

[8] Mommersteeg MT, Hoogaars WM, Prall OW, de Gier-de Vries C, Wiese C, Clout
DE, et al. Molecular pathway for the localized formation of the sinoatrial node.
Circ Res 2007;100:354–62.

[9] Stieber J, Herrmann S, Feil S, Loster J, Feil R, Biel M, et al. The hyperpolarization-
activated channel HCN4 is required for the generation of pacemaker action
potentials in the embryonic heart. Proc Natl Acad Sci USA 2003;100:15235–40.

[10] Harzheim D, Pfeiffer KH, Fabritz L, Kremmer E, Buch T, Waisman A, et al. Car-
diac pacemaker function of HCN4 channels in mice is confined to embryonic
development and requires cyclic AMP. EMBO J 2008;27:692–703.



Author's personal copy

A. Sarre et al. / Pharmacological Research 61 (2010) 85–91 91

[11] Kamino K, Hirota A, Fujii S. Localization of pacemaking activity in early embry-
onic heart monitored using voltage-sensitive dye. Nature 1981;290:595–7.

[12] Van Mierop LH. Location of pacemaker in chick embryo heart at the time of
initiation of heartbeat. Am J Physiol 1967;212:407–15.

[13] Satoh H, Sperelakis N. Identification of the hyperpolarization-activated
inward current in young embryonic chick heart myocytes. J Dev Physiol
1991;15:247–52.

[14] Satoh H, Sperelakis N. Hyperpolarization-activated inward current in embry-
onic chick cardiac myocytes: developmental changes and modulation by
isoproterenol and carbachol. Eur J Pharmacol 1993;240:283–90.

[15] Yasui K, Liu W, Opthof T, Kada K, Lee JK, Kamiya K, et al. I(f) current and
spontaneous activity in mouse embryonic ventricular myocytes. Circ Res
2001;88:536–42.

[16] Sarre A, Maury P, Kucera P, Kappenberger L, Raddatz E. Arrhythmogenesis in the
developing heart during anoxia-reoxygenation and hypothermia-rewarming:
an in vitro model. J Cardiovasc Electrophysiol 2006;17:1350–9.

[17] Rosa A, Maury JP, Terrand J, Lyon X, Kucera P, Kappenberger L, et al. Ectopic
pacing at physiological rate improves postanoxic recovery of the developing
heart. Am J Physiol Heart Circ Physiol 2003;284:H2384–92.

[18] Hamburger V, Hamilton H. A series of normal stages in the development of the
chick embryo. J Morphol 1951;88:49–92.

[19] Sarre A, Lange N, Kucera P, Raddatz E. mitoKATP channel activation in the
postanoxic developing heart protects E-C coupling via NO-, ROS-, and PKC-
dependent pathways. Am J Physiol Heart Circ Physiol 2005;288:H1611–9.

[20] Bucchi A, Tognati A, Milanesi R, Baruscotti M, Difrancesco D. Proper-
ties of ivabradine-induced block of HCN1 and HCN4 channels. J Physiol
2006;572:335–46.

[21] El Chemaly A, Magaud C, Patri S, Jayle C, Guinamard R, Bois P. The heart rate-
lowering agent ivabradine inhibits the pacemaker current I in human atrial
myocytes. J Cardiovasc Electrophysiol 2007;18:1190–6.

[22] Shepherd N, Graham V, Trevedi B, Creazzo TL. Changes in regulation of
sodium/calcium exchanger of avian ventricular heart cells during embryonic
development. Am J Physiol Cell Physiol 2007;292:C1942–50.

[23] Mery A, Aimond F, Menard C, Mikoshiba K, Michalak M, Puceat M. Initiation
of embryonic cardiac pacemaker activity by inositol 1,4,5-trisphosphate-
dependent calcium signaling. Mol Biol Cell 2005;16:2414–23.

[24] Yang HT, Tweedie D, Wang S, Guia A, Vinogradova T, Bogdanov K, et
al. The ryanodine receptor modulates the spontaneous beating rate of
cardiomyocytes during development. Proc Natl Acad Sci USA 2002;99:
9225–30.

[25] Thollon C, Bidouard JP, Cambarrat C, Lesage L, Reure H, Delescluse I, et al. Stere-
ospecific in vitro and in vivo effects of the new sinus node inhibitor (+)-S 16257.
Eur J Pharmacol 1997;339:43–51.

[26] Park K, Lee S, Kang SJ, Choi S, Shin KS. Hyperpolarization-activated currents con-
trol the excitability of principal neurons in the basolateral amygdala. Biochem
Biophys Res Commun 2007;361:718–24.

[27] Veenstra RD. Developmental changes in regulation of embryonic chick heart
gap junctions. J Membr Biol 1991;119:253–65.

[28] Wiens D, Jensen L, Jasper J, Becker J. Developmental expression of connex-
ins in the chick embryo myocardium and other tissues. Anat Rec 1995;241:
541–53.

[29] Romano R, Rochat AC, Kucera P, De Ribaupierre Y, Raddatz E. Oxidative
and glycogenolytic Capacities within the developing chick heart. Pediatr Res
2001;49:363–72.

[30] Stieber J, Wieland K, Stockl G, Ludwig A, Hofmann F. Bradycardic and
proarrhythmic properties of sinus node inhibitors. Mol Pharmacol 2006;69:
1328–37.

[31] Brioschi C, Micheloni S, Tellez JO, Pisoni G, Longhi R, Moroni P, et al. Distribution
of the pacemaker HCN4 channel mRNA and protein in the rabbit sinoatrial node.
J Mol Cell Cardiol 2009;47:221–7.

[32] Garcia-Frigola C, Shi Y, Evans SM. Expression of the hyperpolarization-activated
cyclic nucleotide-gated cation channel HCN4 during mouse heart development.
Gene Expr Patterns 2003;3:777–83.

[33] Whitaker GM, Angoli D, Nazzari H, Shigemoto R, Accili EA. HCN2 and HCN4 iso-
forms self-assemble and co-assemble with equal preference to form functional
pacemaker channels. J Biol Chem 2007;282:22900–9.


	these_copyright
	thèse finale
	I. Preparation and in vitro mounting of the heart.
	VIII. Statistical analysis.


