
 

  

 

 
 

 

Serveur Académique Lausannois SERVAL serval.unil.ch

Author Manuscript
Faculty of Biology and Medicine Publication

This paper has been peer-reviewed but does not include the final publisher
proof-corrections or journal pagination.

Published in final edited form as:

Title: Non-genetic evolution drives lung adenocarcinoma spatial

heterogeneity and progression.

Authors: Tavernari D, Battistello E, Dheilly E, Petruzzella AS, Mina M,

Sordet-Dessimoz J, Peters S, Krueger T, Gfeller D, Riggi N, Oricchio E,

Letovanec I, Ciriello G

Journal: Cancer discovery

Year: 2021 Feb 9

DOI: 10.1158/2159-8290.CD-20-1274

In the absence of a copyright statement, users should assume that standard copyright protection applies, unless the article contains
an explicit statement to the contrary. In case of doubt, contact the journal publisher to verify the copyright status of an article.

http://dx.doi.org/10.1158/2159-8290.CD-20-1274


 1 

Non-genetic evolution drives lung adenocarcinoma spatial heterogeneity and progression 1 

Daniele Tavernari1,2,3, Elena Battistello1,2,3,4,#, Elie Dheilly1,4,+, Aaron S. Petruzzella1,4, Marco 2 

Mina1,2,3,$, Jessica Sordet-Dessimoz4, Solange Peters1,5, Thorsten Krueger6, David Gfeller1,7, Nicolo 3 

Riggi1,8, Elisa Oricchio1,4, Igor Letovanec1,8,9,*, Giovanni Ciriello1,2,3,* 4 

 5 

1 Swiss Cancer Center Leman, Lausanne, Switzerland 6 

2 Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland 7 

3 Swiss Institute of Bioinformatics, Lausanne, Switzerland 8 

4 Swiss Institute for Experimental Cancer Research (ISREC), EPFL, Lausanne, Switzerland 9 

5 Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland 10 

6 Division of Thoracic Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland 11 

7 Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne (UNIL), Lausanne, 12 

Switzerland 13 

8 Institute of Pathology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland 14 

9 Department of Pathology, Central Institute, Hôpital du Valais, Sion, Switzerland 15 

* Co-corresponding authors: Igor.Letovanec@hopitalvs.ch , giovanni.ciriello@unil.ch  16 

# Present address: Department of Pathology, New York University (NYU), USA 17 

+ Present address: Ichnos Sciences SA, La Chaux-de-Fonds, Switzerland 18 

$ Present address: SOPHiA GENETICS, Saint-Sulpice, Switzerland 19 

 20 

Research. 
on March 1, 2021. © 2021 American Association for Cancercancerdiscovery.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on February 9, 2021; DOI: 10.1158/2159-8290.CD-20-1274 

mailto:Igor.Letovanec@hopitalvs.ch
mailto:giovanni.ciriello@unil.ch
http://cancerdiscovery.aacrjournals.org/


 2 

Running title: 21 

Non-genetic evolution of lung adenocarcinoma heterogeneity 22 

 23 

Keywords: 24 

Lung adenocarcinoma, tumor heterogeneity, non-genetic evolution, histologic patterns, tumor 25 

microenvironment. 26 

 27 

Corresponding authors contact details: 28 

Giovanni Ciriello, Génopode, 1015 Lausanne, Switzerland, +41216925450, 29 

Giovanni.Ciriello@unil.ch  30 

Igor Letovanec, Avenue Grand-Champsec 80, 1951 Sion, Switzerland, +41276034774, 31 

Igor.Letovanec@hopitalvs.ch  32 

 33 

Conflict of Interest: The authors declare no potential conflicts of interests. 34 

35 

Research. 
on March 1, 2021. © 2021 American Association for Cancercancerdiscovery.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on February 9, 2021; DOI: 10.1158/2159-8290.CD-20-1274 

mailto:Giovanni.Ciriello@unil.ch
mailto:Igor.Letovanec@hopitalvs.ch
http://cancerdiscovery.aacrjournals.org/


 3 

Abstract 36 

Cancer evolution determines molecular and morphological intra-tumor heterogeneity and 37 

challenges the design of effective treatments. In lung adenocarcinoma, disease progression and 38 

prognosis are associated with the appearance of morphologically diverse tumor regions, termed 39 

histologic patterns. However, the link between molecular and histological features remains elusive. 40 

Here, we generated multi-omics and spatially resolved molecular profiles of histologic patterns 41 

from primary lung adenocarcinoma, which we integrated with molecular data from >2,000 patients. 42 

The transition from indolent to aggressive patterns was not driven by genetic alterations but by 43 

epigenetic and transcriptional reprogramming reshaping cancer cell identity. A signature 44 

quantifying this transition was an independent predictor of patient prognosis in multiple human 45 

cohorts. Within individual tumors, highly multiplexed protein spatial profiling revealed co-existence 46 

of immune desert, inflamed, and excluded regions, which matched histologic pattern composition. 47 

Our results provide a detailed molecular map of lung adenocarcinoma intra-tumor spatial 48 

heterogeneity, tracing non-genetic routes of cancer evolution. 49 

 50 

Statement of significance 51 

Lung adenocarcinomas are classified based on histologic pattern prevalence. However, individual 52 

tumors exhibit multiple patterns with unknown molecular features. We characterized non-genetic 53 

mechanisms underlying intra-tumor patterns and molecular markers predicting patient prognosis. 54 

Intra-tumor patterns determined diverse immune microenvironments warranting their study in the 55 

context of current immunotherapies. 56 
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Introduction 58 

Cancer cells evolve by acquiring novel alterations and adapting to changing conditions. Genetic, 59 

epigenetic, and transcriptional changes determine extensive heterogeneity among patients and 60 

within individual tumors, influencing disease prognosis and therapeutic options. Lung 61 

adenocarcinoma (LUAD) is the most common subtype of lung cancer and it encompasses 62 

molecularly and phenotypically diverse diseases (1,2), either associated or unrelated to tobacco 63 

exposure (3,4). LUAD genetic diversity has been documented both across patients (1,5), where it 64 

can determine treatment choices (6–10), and within individual tumors (11,12), where it sustains 65 

disease evolution and treatment resistance (13,14). LUAD inter- and intra-patient molecular 66 

diversity is however not exclusively genetic. Transcriptional and epigenetic heterogeneity has been 67 

reported both among and within patients (15–19). Moreover, molecular diversity can translate in 68 

diverse tumor microenvironments, for example in association with variable tumor mutational 69 

burden (20–23) or presence of specific oncogenic alterations (24).  70 

In the clinic, histopathological analyses have revealed heterogeneous tumor tissue morphologies 71 

referred to as histologic patterns. The most frequent patterns are classified as lepidic, papillary, 72 

acinar, and solid (Fig. 1a) and 80% of LUAD tumors concurrently exhibit at least 2 of these patterns. 73 

According to the latest WHO Classification (2), histopathological LUAD classification is based on 74 

pattern prevalence, which is a major prognostic indicator (25,26). Indeed, tumors with a prevalent 75 

lepidic pattern are typically considered less aggressive and associated with the early phases of the 76 

disease, whereas solid-prevalent tumors are indicative of poor prognosis. These prognostic 77 

associations define a potential progression of patterns from lepidic to papillary, acinar, and at last 78 

solid (Fig. 1a). Whether this progression can also be observed at the molecular level is however 79 

unknown. Indeed, reconciling molecular and histological heterogeneity is hampered by the 80 
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difficulty of assaying these features in the same tumor material. Recent digital pathology and 81 

spatial genomics technologies coupled with advanced computational approaches provided new 82 

strategies to address this challenge. For example, the combination of multi-region molecular 83 

profiles and histological data was recently used to draw a link between LUAD mutational 84 

heterogeneity and microenvironment composition, with relevant implications for the adoption of 85 

current immunotherapies in this disease (21,22). However, in spite of their prognostic relevance, 86 

comprehensive molecular profiles of morphologically diverse regions in the same patient are 87 

missing. Indeed, the molecular features of LUAD histologic patterns and the molding of their tumor 88 

microenvironment are largely unknown.  89 

Here, we performed histopathology-guided multi-region sampling from primary human LUAD to 90 

dissect tumor regions corresponding to unique histologic patterns. Multi-omics and spatially 91 

resolved molecular profiles of these regions allowed us to define tumor intrinsic and extrinsic 92 

processes that determined LUAD pattern progression. We validated and evaluated the prognostic 93 

significance of our results in more than 2,000 LUAD samples from independent patient cohorts. 94 

Importantly, none of these processes could be traced back to specific genetic variants, but rather to 95 

epigenetic and transcriptional reprogramming. Overall, we identified oncogenic processes and 96 

spatial features that support non-genetic evolution as a driver of LUAD heterogeneity and 97 

progression. 98 

 99 

Results 100 

Molecular inter-patient heterogeneity of histologic patterns 101 
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We first examined molecular features of 206 LUAD samples from The Cancer Genome Atlas (TCGA) 102 

cohort (5), which had been annotated based on their most prevalent pattern: lepidic (n=8), 103 

papillary (n=47), acinar (n=86), and solid (n=65) (Supplementary Table 1). Samples with the same 104 

most prevalent pattern had a similar representation of tumor stages (Supplementary Fig. S1a) but 105 

solid-prevalent tumors exhibited significantly higher tumor mutation burden (TMB - Fig. 1b), 106 

consistent with recent observations in an independent cohort (27), and number of copy number 107 

alterations at coding genes (Supplementary Fig. S1b). A notable exception to this trend was a 108 

lepidic-annotated tumor sample (TCGA-44-7670). However, after reviewing the virtual slides 109 

provided for this dataset, we found highly different histologic pattern in the tumor region 110 

submitted for molecular profiling (01A-TS1) and the one submitted for pathology review (01Z-DX), 111 

suggesting that intra-tumor heterogeneity could explain this inconsistency (Fig. 1c). Predicted neo-112 

antigens increased proportionally with the TMB (Supplementary Fig. S1c), potentially predicting 113 

diverse immunogenicity among the histologic patterns. No recurrent genetic lesion (mutation, copy 114 

number alteration, or gene fusion) was found enriched in a specific pattern, except for a few 115 

PIK3CA mutations mostly occurring in lepidic samples (3 out 8 patients, adj. p-value = 0.0004) and a 116 

trend for a higher fraction of TP53 mutations in solid samples (adj. p-value = 0.096) (Supplementary 117 

Fig. S1d and Supplementary Table 2). The association between solid-prevalent tumors and high 118 

TMB and TP53 mutations was confirmed in an independent dataset of LUAD patients of East Asian 119 

ancestry (28)  (EAS - Supplementary Fig. S1e,f) and in a recently analyzed clinical cohort (27). 120 

Conversely, no association was found in these cohorts for PIK3CA mutations. Additional analyses to 121 

test candidate weak drivers (29) or alterations converging on the same pathway (30) did not return 122 

significant hits that could be confirmed across datasets (Supplementary Table 3). Overall, our 123 

results suggest limited associations between histologic patterns and LUAD genetic features. 124 

Research. 
on March 1, 2021. © 2021 American Association for Cancercancerdiscovery.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on February 9, 2021; DOI: 10.1158/2159-8290.CD-20-1274 

http://cancerdiscovery.aacrjournals.org/


 7 

In contrast, TCGA samples with different prevalent patterns exhibited highly diverse transcriptional 125 

and epigenetic profiles (Supplementary Table 3), with at least two-fold more differentially 126 

expressed genes or methylated probes than expected by chance (Fig. 1d,e). Interestingly, the most 127 

differentially expressed genes (n = 1,337, adj. p-value < 0.001) and methylated DNA loci (n = 1,753, 128 

adj. p-value < 0.001) among the 4 histologic subtypes did not highlight features unique of each 129 

group but rather progressive changes from lepidic- to solid-prevalent samples. To quantify this 130 

trend, we computed gene expression and DNA methylation fold-changes between each pair of 131 

histologic subtypes, always comparing a more aggressive to a less aggressive subtype 132 

(Supplementary Fig. S1g). In this way, progressive changes from lepidic to papillary, acinar and 133 

solid cases would result in all fold-changes having the same sign: all positive for increasing 134 

expression/methylation or all negative for decreasing expression/methylation with pattern 135 

progression (e.g., see the top differentially expressed genes RAP1GAP and ANLN, Fig 1f). Indeed, 136 

concordant positive or negative gene expression (Fig 1g - top) or DNA methylation (Fig. 1g - 137 

bottom) fold-changes were observed in the majority of the cases, suggesting that histologic 138 

patterns do not represent four independent molecular phenotypes, but rather a transition from 139 

lepidic to solid, driven by epigenetic and transcriptional reprogramming. 140 

Differentially expressed genes and methylated gene promoters were enriched for similar functional 141 

categories (Supplementary Table 4). Indeed, genes over-expressed in lepidic compared to solid 142 

samples were enriched for cell differentiation, development, and morphogenesis terms, whereas 143 

genes over-expressed in solid compared to lepidic cases were highly enriched for cell proliferation 144 

and markers of immune infiltration (Fig. 1h). Transcriptional differences were confirmed in the EAS 145 

dataset (Supplementary Fig. S1h) and in an additional LUAD cohort (31) (Supplementary Fig. S1i). 146 

Similarly, promoter probes that increased DNA methylation with pattern progression were enriched 147 

for genes involved in cell differentiation and morphogenesis, whereas probes that lost methylation 148 
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with pattern progression were enriched for immune cell markers (Fig. 1i), further suggesting that 149 

aggressive patterns are associated with changes in the tumor microenvironment. To corroborate 150 

this finding, we estimated the presence of distinct non-tumor cell populations from transcriptional 151 

data (32). Lepidic samples were enriched for lung alveolar and epithelial markers, supporting a 152 

similar cell identity between lepidic cancer cells and normal lung tissue, whereas both lymphoid 153 

and myeloid immune cell types were invariably enriched in acinar- and solid-prevalent samples, in 154 

both the TCGA (Fig. 1j) and EAS (Supplementary Fig. S1j) cohorts. Overall, these results indicated 155 

that LUAD pattern progression is associated with a progressive reprogramming of both tumor cells 156 

and their microenvironment. However, molecular profiles analyzed so far were generated from 157 

single tumor samples annotated by predominant pattern; hence, it remained unclear whether 158 

similar features and plasticity could be observed within individual tumors. 159 

 160 

Molecular intra-tumor heterogeneity of histologic patterns 161 

To determine the molecular features of histologic pattern progression within individual tumors, we 162 

selected a cohort of 10 early stage LUAD primary patient samples that exhibited each at least two 163 

distinct patterns (CHUV cohort, Supplementary Table 5) and performed histopathology-guided 164 

multi-region sampling. For each patient, we reviewed and dissected tumor regions from formalin-165 

fixed paraffin-embedded (FFPE) tissue slides such that each region was composed by a unique 166 

pattern (Fig. 2a). In total, we collected 29 tumor regions and 10 normal tissue samples. These 167 

samples were processed by whole-exome sequencing, RNA-sequencing, and DNA methylation EPIC 168 

array (see Methods). LUAD driver mutations were predominantly clonal, i.e. observed in all regions, 169 

and not associated with a specific pattern (Fig. 2b). In most cases, we confirmed a trend for higher 170 

TMB in more advanced patterns (Supplementary Fig. S2a). After accounting for patient-specific 171 
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features, differentially expressed genes and methylated probes clustered together samples 172 

annotated for the same pattern (Fig. 2c and Supplementary Fig. S2b, Supplementary Table 6). 173 

Transcriptional differences among patterns in our cohort were consistent with those observed in 174 

the TCGA and EAS cohorts (Supplementary Fig. S2c,d and Supplementary Table 7). Indeed, genes 175 

over-expressed in lepidic samples were enriched for tissue development and morphogenesis (Fig 2c 176 

– blue cluster), while solid but especially acinar samples exhibited over-expression of immune 177 

infiltration markers, in particular of B-cells (Fig 2c – orange cluster). Genes over-expressed in solid 178 

samples were more specifically enriched for markers of cell proliferation and over-expression of 179 

matrix metallopeptidase (MMP) genes (Fig 2c – red cluster). Both lepidic- and solid-associated 180 

genes were enriched for extra-cellular matrix (ECM) components and regulators (Fig. 2c), albeit 181 

exerting opposite functions (33). Indeed, ECM genes up-regulated in solid samples were mostly 182 

enriched for ECM degradation (e.g. MMP genes) and collagen proteins (e.g. COL1A1 and COL1A2), 183 

whose activation is known to alter cell adhesion and promote invasion (34). Vice versa, ECM genes 184 

over-expressed in lepidic samples included several proteins mediating cell adhesion (35), (e.g. 185 

TNXB, FBLN5, and MFAP4), and putative tumor suppressors (e.g. DLC1 (36) and FOXF1 (37)). 186 

Importantly, expression of these genes was associated with pattern progression within individual 187 

tumors (Fig. 2d). Similarly, immune infiltration predicted from gene expression (32) increased from 188 

lepidic to solid pattern (Fig. 2e) within 8 out of 10 patients, and intra-tumor patterns showed a 189 

different enrichment for markers of normal lung tissue (enriched in lepidic) and immune cell 190 

markers (enriched in acinar and solid) (Supplementary Fig. S2e). Altogether, transcriptional and 191 

epigenetic differences observed among patients classified by predominant pattern paralleled 192 

expression and methylation changes observed within individual tumors. Importantly, these 193 

differences pointed at both tumor intrinsic (differentiation, migration, proliferation) and extrinsic 194 

(immune infiltration) processes as key determinants of LUAD histologic patterns. 195 
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 196 

Cancer cell plasticity underlies pattern progression 197 

To explore tumor intrinsic features of pattern progression, independent of the extent of immune 198 

infiltration, we analyzed single cell RNA-seq data for three LUAD samples (38). Differential 199 

expression analysis between tumor and non-tumor cells allowed us to extract 2,410 genes that 200 

were highly expressed only in tumor cells (cancer-specific genes, Fig. 3a, see Methods). First, we 201 

selected cancer-specific genes that were significantly differentially expressed between lepidic and 202 

solid tumor regions in our cohort (adj p-value < 0.1 and absolute fold-change > 2) to determine 203 

lepidic (n = 36) and solid (n = 21) cancer cell markers (Fig. 3b). These genes confirmed the 204 

enrichment for cell proliferation (solid) and differentiation (lepidic) terms (Fig. 3c and 205 

Supplementary Table 8). Next, using these genes as cancer cell markers of lepidic and solid 206 

patterns, we derived a transcriptional score for each single cancer cell to quantify their lepidic-like 207 

or solid-like transcriptional state (see Methods). Single cell transcriptional scores from these 208 

patient samples showed a transition of states consistent with plastic reprogramming (Fig. 3d): cells 209 

from sample S1 exhibited predominantly lepidic features, sample S2 instead harbored tumor cells 210 

that lost lepidic markers and exhibited variable expression of solid markers, lastly sample S3 211 

comprised cells spanning the whole transition from lepidic to solid (Fig. 3d). To explore the origin of 212 

these transcriptional changes, we algorithmically predicted which master transcriptional regulators 213 

(TRs) were most likely to modulate differentially expressed genes between lepidic and solid 214 

samples (39). Results in the TCGA and our cohorts were extremely concordant (Fig. 3e) and 215 

identified, among solid master TRs, cell cycle regulators such as E2F transcription factors, 216 

minichromosome maintenance (MCM) complex components, which regulate DNA replication and 217 

elongation, and the Forkhead Box M1 (FOXM1) transcription factor, which is a key regulator of cell 218 
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proliferation and over-expressed in several cancer types (40). Among lepidic master TRs, we found 219 

genes associated with tumor suppressive functions, such as the circadian repressor CRY2, which 220 

degrades the MYC oncogene (41), and the zinc-finger transcription factor ZBTB4 (42), as well as 221 

transcription factors involved in cell differentiation and development, such as CASZ1 (43,44), and 222 

the YAP repressor WWC1 (45,46). In both the TCGA and our cohorts, lepidic master TRs and lepidic 223 

cancer cell markers exhibited on average higher promoter DNA methylation in solid samples 224 

(Supplementary Fig. 3a), suggesting that downregulation of lepidic TRs and markers is at least in 225 

part driven by epigenetic silencing. Interestingly, data from a high-throughput CRISPR knock-out 226 

screening (47) revealed that, in lung adenocarcinoma cell lines, loss of TRs enriched in the solid 227 

pattern was largely deleterious and many, though not all, were classified as essential genes, due to 228 

their role on cell proliferation (Fig. 3f). Conversely, in the same cells, knock-out of TRs enriched in 229 

the lepidic pattern led to moderate effects on cell viability and sometimes even improved cell 230 

fitness (Fig. 3f), consistent with a putative tumor suppressive function.  231 

Next, we combined cancer-specific lepidic and solid markers to generate a unique mRNA signature 232 

and quantify lepidic-to-solid transition (L2S signature). L2S signature scores in TCGA and CHUV 233 

samples were consistent with patient and intra-tumor classifications and pattern progression 234 

(Supplementary Fig. 3b,c) and, indeed, normal lung tissues had the lowest scores, followed by 235 

lepidic, papillary, acinar, and finally solid samples, which on average had the highest scores. 236 

Interestingly, L2S scores correctly predicted the pattern of the misannotated TCGA sample (TCGA-237 

44-7670 – Fig 1c) and, unlike the classification based on predominant pattern, it stratified TCGA 238 

samples in classes with significantly different prognosis (Fig. 3g and Supplementary Fig. S3d). This 239 

signature gave us the possibility of estimating pattern progression and assess its prognostic value in 240 

a much larger ensemble of LUAD tumors, where transcriptional profiles were available, but 241 

histopathology annotations were not. In total, we analyzed and scored >2,000 LUAD human 242 
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samples, from 10 patient cohorts (5,23,28,31,48–51). Multi-variate Cox regression confirmed that 243 

tumor stage and L2S scores were orthogonal and independent prognostic factors in all except one 244 

of the tested cohorts (i.e. cohorts comprising more than 100 patients) (Fig. 3h, Supplementary Fig. 245 

S3e, and Supplementary Table 1). Furthermore, across all cohorts, L2S scores were strongly 246 

associated with the predicted activity of lepidic and solid TRs (Supplementary Fig. S3f) and 247 

microenvironment composition (Fig. 3i). Intriguingly, the highest correlation between L2S scores 248 

and immune cell markers was with markers of T-cell exhaustion, suggesting that mechanisms of 249 

immune evasion occur in tumor samples with solid pattern features.  250 

 251 

The tumor microenvironment of LUAD histologic patterns 252 

The reproducible association between our L2S signature and immune infiltration across 253 

independent LUAD patient cohorts (Fig. 3i) prompted us to investigate the spatial composition of 254 

the tumor immune microenvironment in correspondence of different patterns. First, we analyzed 255 

FFPE tumor tissue slides from our patient cohort and from 3 additional patients with solid patterns 256 

by multi-color immunofluorescence to detect proliferating cells (Ki-67+), B-cells (CD20+), CD4+ and 257 

CD8+ T-cells, and macrophages (CD68+). We distinguished LUAD patterns and tumor cells by 258 

Hematoxylin and Eosin (H&E) staining (Fig. 4a) and TTF1 staining (Fig. 4b), respectively, and 259 

quantified fluorescent signal intensities (Fig. 4c) by designing a spatial grid quantification approach 260 

(GridQuant) that averaged fluorescence signals within pixels of variable size (Fig. 4d, see Methods). 261 

These analyses revealed striking differences in the extent and geographical organization of immune 262 

cell infiltration across LUAD patterns. Solid regions exhibited significantly stronger Ki-67 intensity 263 

than the other patterns, whereas immune cell markers increased intensity with pattern progression 264 

but were highest in acinar regions (Fig. 4e). Interestingly, in several tumors we observed the 265 
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formation of tertiary lymphoid structures (TLS) (Fig. 4f), sometimes characterized by a Ki-67 266 

positive core of proliferating B-cells (Fig. 4f - right) resembling germinal centers. TLS formation has 267 

been associated with improved prognosis and response to immunotherapies (52,53), hence we 268 

assessed their distribution across patterns in our samples. We automatically identified all TLS in our 269 

slides and found that these were absent in normal lung tissue and lepidic cancer regions but 270 

prevalently observed within acinar regions and, less frequently, in papillary and solid regions (Fig. 271 

4g). Altogether, these results suggested that immune infiltration increased with pattern 272 

progression but was maximal in acinar and not in solid patterns.  273 

Next, we investigated the spatial organization of the tumor microenvironment in different patterns, 274 

by assessing co-localization of tumor and non-tumor cells. TTF1+ and TTF1- signals were positively 275 

correlated in normal lung and lepidic regions, likely due to the presence of cell-depleted lung 276 

alveolar structures, lacked correlation in papillary and acinar, but were highly anti-correlated in 277 

solid regions (Fig. 4h), consistent with low intermixing of cancer and non-cancer cells. Similarly, co-278 

localization of immune cell markers and Ki-67, which here could be used to mark tumor cells 279 

(Supplementary Fig. S4a), was lowest at solid regions independently of the pixel size 280 

(Supplementary Fig. S4b). Consistent with these trends, we noticed that lymphoid cells and 281 

macrophages localize at the boundary of solid regions within individual tumor slides (Fig. 4i). To 282 

quantify these observations, we used GridQuant to extract average signal intensities at different 283 

distances from the periphery of each solid tumor region towards its core (Fig. 4j). In all cases, the 284 

density of immune cells was higher at the periphery than at the core of the tumor region (Fig. 4k,l) 285 

indicating that the spatial distribution of immune cells in solid patterns was consistent with an 286 

immune excluded phenotype. 287 
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To corroborate this evidence and explore in more detail the molecular profiles and immune 288 

microenvironment of the core and periphery of lung adenocarcinoma, we performed digital spatial 289 

profiling (DSP - Nanostring GeoMX) in 5 tissue slides from 5 patients. Briefly, in each slide, we 290 

selected and analyzed with a panel of 58 antibodies 12 regions of interest (n = 60 ROIs in total), 291 

located either at the core or periphery of different histologic patterns (Supplementary Table 9 and 292 

Supplementary Fig. S5a). ROI localization was not associated with immune infiltration, measured 293 

by either ratio of CD45 positive cells or protein expression, except for solid ROIs (Fig. 5a). Indeed, 294 

out of six solid ROIs from Patient 8 (Fig. 5b), two were localized at the core of the tumor (R9 and 295 

R8) and had lowest levels of immune infiltration, and four where selected at the tumor periphery 296 

(R6, R7, R10, R12) and all exhibited high immune infiltration (Fig. 5a). Solid core ROIs expressed 297 

high levels of cancer cell specific markers (PanCK and EpCAM), Ki-67, and the interleukin 7 receptor 298 

(IL7R or CD127) (Fig. 5c). Although IL7R can be expressed by both tumor and immune cells, the low 299 

content of immune cells in these ROIs suggested that IL7R was here expressed by cancer cells. 300 

Importantly, cancer cell expression of IL7R has been associated with poor prognosis in non-small 301 

cell lung cancer (54). Conversely, periphery ROIs exhibited high expression of immune cell markers, 302 

including the immunosuppressive regulatory T-cell (T-regs) marker Tim3 and the immune 303 

checkpoint VISTA (Fig. 5c). The highly different extent of immune infiltration at the core and 304 

periphery of the solid tumor region challenged the possibility of comparing features specific of 305 

either cancer cells or immune cells. To overcome this challenge, we profiled 36 additional ROIs 306 

from 3 solid tumor regions, and, in each ROI, we separately analyzed immune cells (CD45+) and 307 

cancer cells (PanCK+) (Fig 5d, Supplementary Fig. S5b). By selectively retaining the signal coming 308 

from either one or the other cell population (see an example of the masking strategy on Fig 5d), we 309 

first compared cancer cells at the core and periphery of solid tumor regions. Here, we found that 310 

cancer cells at the periphery actually exhibited significantly higher levels of the proliferation marker 311 
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Ki-67 than cancer cells at the core of the tumor, consistent with an invasive margin, as well as Pan-312 

AKT and p53 (Fig 5e and Supplementary Table 9). Next, although immune infiltration was low at 313 

the core of solid ROIs, specific comparison of CD45+ cells at the core and periphery showed that 314 

immune cells infiltrated at the core of solid regions were significantly enriched for markers of 315 

immunosuppressive effector T-regs, such as FOXP3, CD25 and Tim3, and immune checkpoints, such 316 

as CTLA4, VISTA, and ICOS (Fig 5f, Supplementary Fig. S5c). Overall, whereas all solid tumors 317 

exhibited features of immune exclusion, the residual immune infiltration was consistent with an 318 

immunosuppressive microenvironment associated in particular with the presence of effector T-319 

regs. 320 

 321 

Discussion 322 

Cancer heterogeneity across and within patients is apparent at both the molecular and histological 323 

levels. However, how and whether genomic features determine cell morphology and spatial 324 

organization is largely unexplored. Here, we reconciled molecular and histological heterogeneity in 325 

lung adenocarcinoma by introducing an approach based on histopathology-guided multi-region 326 

sampling. Our results showed evidence of non-genetic mechanisms of tumor evolution as 327 

determinants of histological heterogeneity and disease progression. Indeed, progression from 328 

lepidic to solid histology was associated with plastic reprogramming of differentiation cell markers, 329 

increased cell proliferation, and a transition from an immune desert (lepidic), to an inflamed 330 

(papillary and especially acinar) and eventually excluded and suppressive (solid) microenvironment 331 

(Fig. 6). Importantly, the transition of both cancer cell intrinsic features and microenvironment 332 

composition was evident within individual tumors and matched intra-tumor pattern heterogeneity. 333 
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The concomitant evidence of plastic reprogramming of cancer cells and changing 334 

microenvironment prompts questions on the origin of such changes. Does tumor cell de-335 

differentiation activate specific immune shaping and responses? Or, are dynamic changes of the 336 

tumor immune microenvironment triggering cancer cell plasticity? To address these questions, 337 

models of lung adenocarcinoma that mimic transcriptional, epigenetic, and morphological features 338 

of the human disease are required. Mouse models of non-small cell lung cancer recapitulate some 339 

of the histologic patterns observed in the human disease (55,56), but the molecular features of 340 

these patterns remain to be investigated. Interestingly, recent evidence has shown that LUAD 341 

progression in a genetically engineered mouse model (GEMM) is accompanied by plastic 342 

reprogramming driving cell dedifferentiation (57,58). A detailed comparison of the cell state 343 

transitions that we observed in our human cohort with those in the LUAD GEMM will be important 344 

to investigate the possibility of genetically and therapeutically manipulate specific transcriptional 345 

regulator driving LUAD progression. Moreover, cross talks between the tumor microenvironment 346 

and changes in cancer cell epigenetic features have been observed in the context of neoantigen 347 

presentation, cytokine production, and epigenetic regulation of PD-L1 expression (59,60). However, 348 

it is challenging to establish the relative timing and causative interactions between cancer cell 349 

reprogramming and immune surveillance. Towards this goal, detailed single-cell spatial 350 

characterization of tumor molecular profiles from primary patient samples or longitudinal analysis 351 

of tumor spatial features could inform and complement functional assays in experimental models. 352 

Intriguingly, even by selecting intra-tumor regions characterized by a unique pattern, we did not 353 

find evidence of markers discriminating the four patterns into separate and independent classes. 354 

Instead, our results suggested a transition between two extreme states, lepidic and solid, with 355 

papillary and acinar as possible intermediate states. To quantify this transition, we proposed a 356 

transcriptional signature (called L2S signature) derived from the comparison of pure lepidic and 357 
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pure solid tumor regions. Importantly, L2S scores were independent predictors of patient’s overall 358 

survival and immune infiltration in multiple independent LUAD cohorts and highlighted sample 359 

misannotations due to intra-tumor heterogeneity. With the expanding use of molecular profiling 360 

technologies for diagnostic purposes, signatures like the one we identified could provide a 361 

complement to histopathology. In particular, intra-tumor pattern heterogeneity is prevalent in 362 

early stage LUAD. With the recent success and possible increased adoption of screenings to detect 363 

the disease (61,62), cases diagnosed at an early stage are expected to augment. It will be critical to 364 

discriminate those more likely to progress or relapse after treatment, surgery and/or radiotherapy, 365 

and better select those needing adjuvant treatment and type of therapy.  366 

In advanced/metastatic stage adenocarcinoma, immunotherapy as a single agent or in combination 367 

with other drugs is now the treatment of choice in an important portion of cases (63). Furthermore, 368 

immune checkpoint inhibitors (ICI) in the neo-adjuvant setting are currently of great interest in 369 

non-small cell lung cancer, as shown by recent results with the PD-1 inhibitor nivolumab, which led 370 

to major pathological response in 45% of the patient (64). Additional clinical trials on early-stage 371 

tumors are ongoing and results are expected in 2021 (65,66). As new data will become available, it 372 

will be interesting to test the association between lung adenocarcinoma histologic pattern 373 

composition or signature and response to ICI in both adjuvant and neo-adjuvant setting. 374 

 375 

The emergence of histological heterogeneity with disease progression is not a feature exclusively 376 

observed in lung adenocarcinoma. Evidence of morphological changes have been reported in 377 

several tumor types such as breast cancer (67) and hepatocellular carcinoma (68). In these tumor 378 

types, integrating histopathology-guided multi-region sampling with molecular profiling could 379 

prove to be an effective strategy to study the evolution of the disease. In particular, recently 380 
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developed spatial genomics technologies need to be coupled with computational approaches able 381 

to exploit spatial information to provide novel insight on interactions between tumor and non-382 

tumor cells and on how such interactions shape cancer cell identity. Overall, reconciling molecular 383 

and phenotypic heterogeneity is a critical first step to understand and integrate genetic and non-384 

genetic mechanisms of cancer evolution. 385 

 386 

 387 

 388 

Methods 389 

Statistical analyses 390 

Details of all statistical analyses and tests performed and referred to in the main text and methods 391 

sections are outlined in Supplementary Table 2. Standard statistical tests (Chi-Square, Fisher, 392 

Kruskal-Wallis, t, Wilcoxon Rank-Sum, correlation coefficients) were performed using the 393 

appropriate functions from R ‘stats’ package. Dunn and Tukey post-hoc tests were performed with 394 

R packages ‘FSA’  (v 0.8.22) (https://github.com/droglenc/FSA) and ‘multcomp’ (v1.4-13) (69) 395 

respectively. Multiple hypotheses corrections were made using Benjamini-Hochberg procedure. All 396 

analyses were performed implementing custom scripts in bash and R (v3.4 and 3.5) languages. 397 

TCGA dataset 398 

Molecular and clinical data for The Cancer Genome Atlas lung adenocarcinoma cohort (TCGA-LUAD) 399 

were downloaded from the Genomic Data Commons (GDC) (70) and GDAC FireHose 400 

(https://gdac.broadinstitute.org/) repositories. The dataset included somatic point mutations 401 

(whole exome sequencing, MAF file version: mc3 v0.2.8 (71)), copy number changes (Illumina SNP6 402 
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array, segmentation files and gene-level copy number generated with GISTIC (72)), gene expression 403 

profiled by RNA sequencing (Illumina HiSeq, HTSeq raw counts and FPKM-normalized values), DNA 404 

methylation data (Illumina Infinium HM450k array, beta values), H&E stained images and clinical 405 

data. Neoantigen counts were retrieved from https://gdc.cancer.gov/about-406 

data/publications/panimmune (73) (metric: ‘numberOfBindingExpressedPMHC’). Only primary and 407 

normal samples were considered; in case multiple samples for the same patient were available, the 408 

sample with the latest plate number was retained as recommended by the GDAC guidelines. All 409 

data was generated and processed by The Cancer Genome Atlas research network (74). Consistent 410 

predominant histologic pattern annotation for a subset of tumors (N=206) was obtained by merging 411 

clinical tables from GDC, GDAC and Supplementary Table 1 from TCGA-LUAD 2014 manuscript (74). 412 

Patients ambiguously annotated to different patterns in different clinical tables were excluded from 413 

this pattern-annotated subset. 414 

CHUV dataset 415 

We retrieved from the database of the Pathology Institute of the Lausanne University Hospital 416 

resected stage I and II lung adenocarcinoma. 13 adenocarcinomas were selected (Supplementary 417 

Table 5) fulfilling following criteria: (1) presence of at least 2 of the main histological patterns of 418 

lung adenocarcinoma (lepidic, acinar, papillary and solid); (2) sufficient material available with 419 

appropriate surface and delineation of each pattern allowing microscopic dissection and material 420 

harvesting for molecular and imaging analyses. For every patient, a FFPE block of normal lung tissue 421 

distant from the tumor was selected. 2 to 5 tumor regions/FFPE blocks were also selected for every 422 

patient each with a specific dissectible pattern. For 3 patients (1, 3 and 8) 2 non-adjacent regions of 423 

the same pattern were also selected for intra-tumor comparisons. 5 to 20 micrometer thick 424 

unstained slides were obtained from every selected block. Slides were dried and deparaffinized 425 
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using Xylol and Ethanol (100% and 70%) and stained with Toluidine Blue 0.024% isopropanol 30%. 426 

Macroscopic and microscopic dissection were performed and unwanted tissue (non-pattern specific 427 

and non-tumor tissue) was removed from the slides. 4 micrometer thick slides were also taken 428 

before, after as well as in between the dissected slides and stained with Hematoxylin Eosin to 429 

improve morphological control. Slides taken at the same time were subsequently used for 430 

molecular and imaging analyses. Local Ethical Committee approval was obtained to perform all 431 

mentioned analyses, under authorization N. 2017-00334. 432 

 433 

 434 

Other datasets 435 

All additional datasets were generated and processed as described in the corresponding 436 

publications and are summarized in Supplementary Table 1. Chen/EAS (28) dataset including 437 

somatic point mutations, copy number changes, gene expression profiled by RNA sequencing, H&E 438 

stained images and clinical data was downloaded from OncoSG (75,76). Ding (31) gene expression 439 

dataset was downloaded from the UCSC Xena browser (77). TRACERx (12) raw RNA sequencing 440 

data for each tumor region was downloaded from the European Genome-Phenome Archive (ID: 441 

EGAS00001003458) and processed as described in the paragraph ‘RNA sequencing and data 442 

processing’; lymph node metastases were excluded; access was provided by the authors upon 443 

request. Micke (48), Yokota (49), Beg (50), Shedden (51) and Pintilie (78) gene expression datasets 444 

were downloaded from Gene Expression Omnibus (accession numbers, respectively: GSE37745, 445 

GSE31210, GSE72094, GSE68465, GSE50081). 446 

Whole exome sequencing and data processing  447 
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Whole exome sequencing was performed on 27 tumor regions and 9 adjacent normal lung 448 

specimens by Genewiz with a protocol optimized for FFPE samples. Briefly, genomic DNA samples 449 

were fragmented into 200-500 base pairs fragments; libraries were prepared using the Agilent 450 

SureSelect Exome library preparation kit and sequenced on Illumina HiSeq in High Output mode 451 

with a 2x150 bases paired end sequencing configuration. On average, total number of reads per 452 

sample was around 98 million, with a mean quality score of 38.42 and 92% of bases with quality 453 

>=30. Sequencing reads were checked for quality using FastQC  v0.11.7, trimmed with TrimGalore 454 

v0.4.5 to remove Illumina universal adapter contamination (parameters: -q 15 –phred33 --illumina -455 

-length 20 --paired --retain_unpaired -r1 24 -r2 24) and aligned to human genome (hg38 build, 456 

downloaded from GATK (79) resource bundle) using bwa-mem (80) v0.7.17. Duplicates were 457 

removed with Picard tool MarkDuplicates (v2.18.4). Reads were processed with GATK v4.0.3.0 Best 458 

Practices workflow (81) using the tools AddOrReplaceReadGroups, BaseRecalibrator, ApplyBQSR 459 

and AnalyzeCovariates (see https://gatk.broadinstitute.org/hc/en-us/articles/360035535912 for 460 

details) and tagging known variant sites with the VCF files dbsnp_146.hg38.vcf, 461 

Mills_and_1000G_gold_standard.indels.hg38.vcf, af-only-gnomad.hg38.vcf, 462 

Homo_sapiens_assembly38.known_indels.vcf (downloaded from GATK resource bundle). The BAM 463 

files thus processed were indexed with samtools v1.6 and used for somatic variant calling. 464 

Variant calling and filtering 465 

Somatic point mutations and short insertions-deletions for each tumor region were called with 466 

GATK v4.0.3.0 tool Mutect2 using the matched normal lung sample from the same patient (the only 467 

exceptions were tumor regions of patient 8, for which variants were called in tumor-only mode) 468 

and a panel of normal samples. Additional parameters used were ‘--af-of-alleles-not-in-resource 469 

"0.0000025"’ and ‘--disable-read-filter MateOnSameContigOrNoMappedMateReadFilter’. Variants 470 
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were filtered using FilterMutectCalls, CollectSequencingArtifactMetrics and FilterByOrientationBias 471 

(--artifact-modes "G/T" and “C/T”); the latter was designed specifically to filter out transitions likely 472 

resulting from FFPE-related deamination of cytosines. Resulting VCF files were converted into MAF 473 

files using vcf2maf (https://github.com/mskcc/vcf2maf) v1.6.16 with default parameters. Variants 474 

were then tagged with OncoKB (82) for oncogenicity and retained only if they satisfied all of the 475 

following conditions: (1) GnomAD population frequency < 0.01, (2) not being tagged by Mutect2 476 

filters panel_of_normals, artifact_in_normal, germline_risk, str_contraction, multiallelic and 477 

clustered_events, (3) variant allele frequency in the tumor sample is at least twice greater than the 478 

one in the normal sample, (4) tumor depth is greater than 6 and Mutect2 filter value is ‘PASS’ or, 479 

alternatively, the same variant is shared by more than one tumor region of the same patient. The 480 

rationale behind these choices consists in not filtering out variants whose evidence is supported by 481 

independent regions (point 4), provided that they are not germline (points 2 and 3). Known 482 

oncogenic variants were manually verified and recovered using IGV genome browser (83) and 483 

inspecting aligned RNA reads. 484 

RNA sequencing and data processing 485 

RNA sequencing was performed on 29 tumor regions by Genewiz with a protocol optimized for 486 

FFPE samples, which involved ribosomal RNA depletion and 2x150 bases paired end sequencing 487 

with Illumina HiSeq. On average, total number of reads per sample was around 65 million, with a 488 

mean quality score of 38 and 91% of bases with quality >=30. Sequencing reads were checked for 489 

quality using FastQC v0.11.7, trimmed with TrimGalore v0.4.5 to remove Illumina universal adapter 490 

contamination (parameters: -q 15 –phred33 --illumina --length 20 --paired --retain_unpaired -r1 24 491 

-r2 24) and processed with RSEM (84) v1.3.0, performing the following steps: (1) alignment with 492 

STAR (85) v2.5.4b to human genome (hg38) using GTF annotation file 493 
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‘gencode.v27.primary_assembly.annotation.gtf’ (downloaded from GATK resource bundle) and 494 

default RSEM parameters; (2) removal of reads mapping to tRNA and rRNA regions (retrieved using 495 

UCSC table browser); (3) estimation of isoform-level and gene-level expression as Transcripts Per 496 

Million (TPM) and RSEM expected counts using rsem-calculate-expression. A batch effect detected 497 

with Principal Component Analysis was corrected in the TPM expression matrix using the ComBat 498 

function implemented in the R package sva (86) v3.30.1.  Conversions between Ensembl IDs and 499 

gene symbols were performed using BioMart (87).  500 

DNA methylation array and data processing 501 

Pattern-specific tumor samples were extracted as described in the section ‘CHUV dataset’ and 502 

collected in deparafinization solution from the GeneRead™ DNA FFPE kit (cat# 180134, Quiagen); 503 

DNA was extracted according to the manufacturer’s instructions. DNA concentration was assessed 504 

using the Qubit High Sensitivity Assay, and DNA quality was monitored using the Infinium HD FFPE 505 

QC Assay (cat# WG-321-1001, Illumina), according to the manufacturer’s instructions. Samples for 506 

which at least 1g was available and with good overall quality (Delta Cq from the Infinium HD FFPE 507 

QC Assay lower than 5) were selected for bisulfite conversion. Bisulfite conversion was performed 508 

on 1 g of DNA using the EZ DNA Methylation™ Kit (cat# D5001, Zymo Research), using the 509 

alternative protocol for CT conversion (optimized for the Illumina Infinium Methylation Assay). FFPE 510 

restoration was then performed using Infinium HD FFPE DNA restore kit (cat# WG-321-1002, 511 

Illumina) and samples were processed using the Infinium MethylationEPIC 850k Kit (iGE3, University 512 

of Geneva). Raw signal intensities were processed, quantile-normalized and converted into beta 513 

values using the R package minfi (88) v1.28.4. Probes were annotated using the hg38 EPIC manifest 514 

file generated by (89) (version of September 2018) and filtered according to the corresponding 515 

masking column. Probes mapping to sex chromosomes and having a detection p-value above 0.01 516 
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were also removed, thus obtaining a final set of 730257 probes. A batch effect detected with 517 

Principal Component Analysis was corrected using the ComBat function implemented in the R 518 

package sva (86) v3.30.1. Probes were annotated to FANTOM5 (90) gene promoters, and promoter 519 

methylation for each gene was computed as the average beta value of all probes mapping to the 520 

gene main promoter (p1 or p). 521 

Copy number alterations and fusions calling 522 

Gene-level copy number alterations were called from DNA methylation data using the R package 523 

conumee v1.16.0 and GISTIC (72) v83 with default parameters. Gene fusions were called from 524 

adapter-trimmed RNA-seq FASTQ files using STAR-Fusion (91) v2.6.1d with default parameters. 525 

 526 

 527 

Genetic alteration differences among patterns 528 

Fraction of genome altered for each sample was computed as the fraction of genes having a gene-529 

level GISTIC value equal to 2 or -2. Differences among patterns in terms of tumor mutational 530 

burden and fraction of genome altered were tested with Kruskal-Wallis test followed by post-hoc 531 

Dunn test. The potential confounding role of purity in the association between mutational burden 532 

and patterns was assessed by performing a main-effects ANCOVA with log-scaled number of 533 

mutations as dependent variable, purity (CPE values from (92)) as continuous covariate and 534 

histologic pattern as categorical independent variable. In TCGA pattern-annotated dataset, two lists 535 

of driver genetic alterations were inspected for differences among patterns: 1) a published binary 536 

genomic alteration matrix (93) which included point mutations, copy number changes and gene 537 

fusions (results shown in figures); 2) a list of drivers, which included ‘weak drivers’ (as described in 538 
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(29)) obtained by running FunSeq2 (94) algorithm as web service and retaining coding and non-539 

coding variants with score >= 1.5. Driver alterations occurring in at least 3 samples were then 540 

tested for differences among the 4 patterns with a Chi-Square test. Residuals were inspected in 541 

order to determine which pattern was enriched for a given genetic event. P-values were adjusted 542 

for multiple hypotheses with Benjamini-Hochberg procedure. FunSeq2 was applied also to EAS 543 

dataset and the same downstream analysis was performed. For pathway-level analysis, driver 544 

alterations called by FunSeq2 were used and the following steps were performed: 1) relevant 545 

pathways in cancer and their gene components annotated as ‘oncogenes’, ‘tumor suppressor 546 

genes’ or ‘unknown’ were retrieved from (30); 2) a pathway was called ‘altered’ in TCGA pattern-547 

annotated dataset if at least one gene was altered in FunSeq2 calls or the gene harbored GISTIC-548 

based deep deletion (in case of ‘tumor suppressor genes’ or ‘unknown’) or amplification (in case of 549 

‘oncogenes’ or ‘unknown’); 3) Pathway alterations were then tested for differences among the 4 550 

patterns with a Chi-Square test, residuals were inspected in order to determine which pattern was 551 

enriched for a given altered pathway and p-values were adjusted for multiple hypotheses with 552 

Benjamini-Hochberg procedure. 553 

Differential expression analyses 554 

Differential expression analyses among patterns were performed on RNA-seq read counts (HTSeq 555 

counts for TCGA and RSEM expected counts for Chen and CHUV datasets) using R packages limma 556 

v3.38.3 (95) and edgeR (96) v3.24.3 with a standard published pipeline (97). Only genes expressed 557 

(counts per million > 1) in at least 3 (CHUV) or 50% (TCGA and Chen) of samples of any pattern were 558 

tested. P-values were adjusted using Benjamini-Hochberg FDR-controlling procedure. Pairwise 559 

pattern comparisons were performed with limma function decideTests. In the CHUV dataset, the 560 

patient corresponding to each tumor region was inserted as covariate in the limma model. For 561 
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purely graphical purposes, in the heatmaps the patient-specific batch effect was removed with 562 

limma function ‘removeBatchEffect’. For TCGA, a null model was constructed by randomly 563 

permuting the assignment of patterns to samples and re-performing differential expression analysis 564 

on 100 random permutations. Differential expression analysis on Ding dataset was performed on 565 

microarray gene expression profiles between samples with >= 50% (solid-like) and <50% (lepidic-566 

like) of solid pattern prevalence. 567 

Differential methylation analyses 568 

Differential methylation analyses were performed on M-values, which were derived from beta 569 

values, on all probes and with the same pipeline as for expression data. Pairwise pattern 570 

comparisons were performed with limma function decideTests. In the CHUV dataset the patient 571 

corresponding to each tumor region was inserted as covariate in the limma model. For purely 572 

graphical purposes, in the heatmaps the patient-specific batch effect was removed with limma 573 

function ‘removeBatchEffect’. For TCGA, a null model was constructed by randomly permuting the 574 

assignment of patterns to samples and re-performing differential methylation analysis on 100 575 

random permutations.  576 

Gene ontology analyses 577 

Gene ontology analyses were performed on differentially expressed genes and genes targeted by 578 

differentially methylated promoters using MSigDB (98) and Gene Ontology gene sets (99) 579 

(Biological Process and Molecular Function categories), using an FDR cutoff of 0.01 and retrieving a 580 

maximum of 100 categories. 581 

Extraction of lung adenocarcinoma tumor and non-tumor markers 582 
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Genes expressed preferentially in lung adenocarcinoma tumor cells were extracted from a 583 

previously published lung cancer single cell RNA-seq dataset (38), which included 3 lung 584 

adenocarcinoma patients (2 from the ‘discovery cohort’ and 1 from the ‘validation cohort’), in the 585 

following way: (1) For the two ‘discovery cohort’ patients, genes x cells expression matrix and cell 586 

IDs for each cell type including cancer cells were downloaded from ArrayExpress (ID: E-MTAB-6149) 587 

and SCope repositories, and the expression matrix was filtered such that only single cells coming 588 

from tumor regions belonging to the two lung adenocarcinoma patients were retained; (2) For the 589 

tumor regions of the lung adenocarcinoma patient in the ‘validation cohort’ only raw FASTQ files 590 

were available (ArrayExpress ID: E-MTAB-6653), and thus they were aligned filtered and processed 591 

as described in the Lambrecht et al. study (38) using CellRanger v3.0.2 and Seurat v3.0.0; clusters 592 

were detected with Seurat function ‘FindClusters’ (resolution = 0.5) and 12 out of 16 of them could 593 

be assigned to the main immune/stromal cell types using the expression of the markers reported in 594 

Figure S1 of (38); of the remaining 4 clusters, 2 showed increased expression of several keratin 595 

genes and they were thus assigned to cancer cells (3) for each of the three patients separately, 596 

markers for cells classified as ‘cancer’ were extracted using the function ‘FindMarkers’ (with 597 

min.pct = 0) of Seurat (100); (4) markers were further filtered to have adjusted p-value < 0.05 and 598 

average log2(fold-change) > 0.25; (5) in order to better accommodate for inter-patient 599 

heterogeneity in tumor cell expression, the union of the three lists of patient-specific cancer 600 

markers was extracted as final list. This procedure yielded a list of 2410 cancer-specific genes. 601 

Markers of lung alveolar and epithelial cells were extracted with FindMarkers applied to the lung 602 

adenocarcinoma samples of the ‘discovery cohort’ dataset using more stringent thresholds 603 

(adjusted p-value < 0.0001 and average log2(fold-change) > 10) in order to increase specificity.  604 

Quantification of immune cell infiltration 605 
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Methylation-based immune cell infiltration fractions for TCGA LUAD samples were downloaded 606 

from a previous study (92). Bulk RNA-seq deconvolution was performed with consensusTME (32) 607 

implemented in the corresponding R package (v 0.0.1.9000, parameters: cancer = ‘LUAD’, 608 

statMethod = ‘ssgsea’). Three cell types were added to the available ones (T cells exhausted, lung 609 

epithelial cells and lung alveolar cells) and their score in each sample was quantified in the same 610 

way as done by consensusTME, namely by computing single sample gene set enrichment analysis 611 

(ssgsea, implemented in GSVA (101) R package v1.30.0 with ssgsea.norm = T) using markers of each 612 

of these cell types. Markers for T cells exhaustion used were PD-1, PD-L1, LAG3, TIGIT, PD-L2, B7-H3 613 

(CD276), HAVCR2 (TIM-3), CD244, CTLA4, CD160 (102) and (https://www.rndsystems.com/product-614 

highlights/adoptive-cell-transfer-monitor-t-cell-exhaustion); markers of lung epithelial and alveolar 615 

cells were extracted as described in the paragraph ‘Extraction of lung adenocarcinoma tumor and 616 

non-tumor markers’. 617 

Construction and scoring of Lepidic-to-Solid signature 618 

A differential expression analysis restricted to the 2410 LUAD cancer-specific genes was performed 619 

between lepidic and solid samples of the CHUV dataset. Differentially expressed genes were 620 

extracted by filtering for adjusted p-value < 0.1 and absolute log2(fold-change) > 1, thus obtaining 621 

36 cancer-specific lepidic markers and 21 cancer-specific solid markers. For bulk RNA-seq datasets, 622 

sample-wise enrichment scores for these markers were computed using the singscore (103) R 623 

package (v1.0.0). Singscore outputs a unified score for the complete signature (‘TotalScore’) as well 624 

as scores for the upregulated (lepidic) and downregulated (solid) genes separately. The sign of 625 

scores relative to the lepidic markers set were changed for graphical reasons (such that lepidic-like 626 

samples would harbor higher lepidic markers signature scores). For the single cell RNA-seq dataset, 627 

a different strategy was adopted in order to account for the high dropout rate of single cell profiles: 628 
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1) cancer cells from the 3 lung adenocarcinoma patients extracted as reported in paragraph 629 

‘Extraction of lung adenocarcinoma tumor and non-tumor markers’ were further filtered to retain 630 

only cells with more than 2000 genes expressed; 2) a differential expression analysis was 631 

performed between the 10 most lepidic-like TCGA patients (i.e. harboring the lowest ‘TotalScore’ 632 

computed as described above) and the 10 most solid-like TCGA patients (with highest ‘TotalScore’), 633 

restricting the set of genes tested to the list of 2410 cancer-related genes; 3) Differentially 634 

expressed genes were again extracted by filtering for adjusted p-value < 0.1 and absolute log2(fold-635 

change) > 1, in this case obtaining 279 cancer-specific lepidic markers and 215 cancer-specific solid 636 

markers, due to the higher statistical power achieved with increased sample size (most of the 637 

lepidic and solid markers obtained from the CHUV dataset as reported above were among these 638 

augmented lepidic and solid marker lists, and none was found in the wrong list); 4) this augmented 639 

signature was used to score single cells obtained at point (1) for lepidic-like or solid-like features 640 

using AUCell (104) (with default parameters), a tool specifically designed for scRNA-seq datasets. 641 

 642 

 643 

Purity correction of DNA methylation profiles 644 

Tumor purity was estimated from DNA methylation profiles in the CHUV dataset using the Lump 645 

algorithm (92). Briefly, we retrieved DNA methylation of purified leukocytes profiled with Illumina 646 

850k EPIC array (105) and probes with a beta value below 0.1 in all leukocyte samples were 647 

intersected with probes having a beta value above 0.85 in the top 7 TCGA purest samples as 648 

estimated by Lump, which yielded a set of 24 probes methylated in tumor cells and unmethylated 649 

in immune cells. Finally, purity in heterogeneous samples was computed as mean beta value of 650 

these 24 probes. Purity estimates were very correlated with ConsensusTME’s immune scores 651 
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(Spearman’s r = 0.87) and different thresholds yielded consistent results. Next, in order to estimate 652 

tumor cells specific methylation, beta values observed for a mixture of tumor and immune cells 653 

were modeled as a linear combination of tumor and immune cells beta values, i.e. for probe i: 654 

observed[i] = ptumor[i] + (1-p) immune[i], where p is the purity computed as described. tumor was 655 

estimated in the following way: 1) Variance of beta values across all leukocyte samples was 656 

computed for each probe, and probes showing a variance greater than 0.01 were discarded; 2) 657 

immune for the remaining probes was computed as the mean beta value in leukocyte samples; 3) 658 

tumor was thus computed with the equation above and probes whose purity-corrected values were 659 

not within [0,1] were discarded. The rationale behind step 1 was to select probes for which a 660 

reliable estimate of leukocyte methylation could be obtained. The conservative choices at steps 1 661 

and 3 resulted in a decrease of the number of probes for which tumor cells-specific methylation 662 

could be computed (571349 for the CHUV and 91228 for the TCGA datasets), with the advantage, 663 

however, of a higher reliability for the purity correction. Differential methylation analyses (as 664 

described before) were performed on purity-corrected methylation profiles to assess methylation 665 

differences shown in Fig. S3a. 666 

 667 

Master transcriptional regulator activity analysis 668 

Virtual Inference of Protein-activity by Enriched Regulon analysis (39) (implemented in the ‘viper’ R 669 

package, v1.16.0) was used to estimate transcriptional regulator (TR) activity, following guidelines 670 

contained in the user manual. Briefly, ‘msviper’ function takes as input (1) a co-expression 671 

regulatory network estimated with ARACNe methodology (106), for which a lung adenocarcinoma-672 

specific regulatory network was downloaded as a Bioconductor package (DOI: 673 

10.18129/B9.bioc.aracne.networks), (2) a gene expression signature generated with viper function 674 
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‘rowTtest’ between two biological conditions and (3) a null model obtained with viper function 675 

‘ttestNull’ and 1000 random permutations. The output is a list of TRs driving the biological 676 

conditions of interest and their corresponding enrichment p-value, FDR, and normalized 677 

enrichment score. VIPER analyses were thus performed on lepidic and solid samples of CHUV and 678 

TCGA datasets separately, restricting the gene expression matrix in input to contain only cancer-679 

specific genes (see ‘Extraction of lung adenocarcinoma tumor and non-tumor markers’ section). 680 

Lastly, TR activity was estimated in each single sample of all datasets using the ‘viper’ function 681 

again restricted to cancer-specific genes. 682 

Survival analyses 683 

Survival analyses were performed using the R package survival v 2.44-1.1. Cox regression models 684 

included sex, age and stage (numeric) as covariates. Signature scores were recalibrated such that 685 

hazard ratios represented the effect of a 10% increase of the signature value from its theoretical 686 

minimum (-1) to its theoretical maximum (+1).  687 

 688 

 689 

Analyses of genetic dependency screenings 690 

CRISPR-based gene dependency scores and gene expression of cell lines were downloaded from the 691 

DepMap portal (https://depmap.org/portal/download/ , CRISPR/Avana: ‘Achilles_gene_effect.csv’, 692 

expression: ‘CCLE_expression.csv’) along with cell line annotations. Only cell lines with 693 

lineage_sub_subtype = NSCLC_adenocarcinoma were investigated. Essential genes were also 694 

retrieved from the DepMap portal (union of ‘common_essentials.csv’ and 695 
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‘Achilles_common_essentials.csv’). Transcriptional regulators (TRs) that were differentially active in 696 

lepidic vs solid in CHUV and TCGA cohorts were tested for dependency. 697 

H&E, TTF1 and multicolor immunofluorescence staining 698 

Hematoxylin and Eosin (H&E) staining was performed with standard protocol to retrieve the 699 

histologic patterns on all samples that were used for molecular or imaging assays. TTF1 staining was 700 

performed using mouse anti-TTF1 antibody, clone 8G7G3/1 (Invitrogen 18-0221) on Roche-Ventana 701 

Benchmark Ultra using the following protocol: (1) retrieval in Ventana Cell Conditioning 1 solution 702 

at 95°C for 64 min; (2) incubation for 32 min at 37°C, with the 8G7G3/1 being diluted 1/15; (3) 703 

application of Ventana ultraView Universal DAB Detection Kit followed by Ventana Hematoxylin as 704 

a nuclear counterstain. The multicolor immunofluorescence assay was performed using the 705 

Ventana Discovery ULTRA automate (Roche Diagnostics, Rotkreuz, Switzerland). All steps were 706 

performed automatically with Ventana solutions except if mentioned. Dewaxed and rehydrated 707 

paraffin sections were pretreated with heat using the CC1 solution for 40 minutes at 95°C. Primary 708 

antibodies were applied and revealed sequentially either with a rabbit Immpress HRP (Ready to 709 

use, Vector laboratories Laboratories) or a mouse Immpress HRP (Ready to use, Vector laboratories 710 

Laboratories) followed by incubation with a fluorescent tyramide. A heat denaturation step was 711 

performed after every revelation. The primary antibodies sequence was: rabbit anti CD8 (clone: 712 

Sp57, fluorophore: R6G), rabbit anti CD4 (clone: Sp35, fluorophore: DCC), mouse anti CD68 (clone: 713 

KP-1, fluorophore: R610), rabbit anti Ki67 (clone: 30-9, fluorophore: Cy5) and mouse anti CD20 714 

(clone: L26, fluorophore: FAM). All sections (H&E, TTF1 and multicolor immunofluorescence) were 715 

mounted with FluoromountG (Bioconcept) and scanned at 20x magnification using an Olympus 716 

VS120 whole slide scanner equipped with specific filters. 717 

Spatially resolved cell quantification framework (GridQuant) 718 
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H&E, TTF1 and multicolor immunofluorescence stained images were visualized using QuPath (107) 719 

v0.2.0 software. Histologic patterns were assessed and drawn with QuPath on H&E images and 720 

annotations were then transferred with minor adjustments to the nearby adjacent TTF1-stained 721 

and immunofluorescence-stained images. Regions that were too small were discarded. Next, 722 

quantifications and downstream statistical analyses were performed by developing a gridding 723 

framework named GridQuant, which involved the following steps for each image: (1) automated 724 

cell detections on QuPath with available algorithms; (2) acquisition of the coordinates of histologic 725 

pattern boundaries drawn on the image; (3) setup of a pixel grid spanning the entire image, with 726 

tunable grid spacing (pixel size); (4) for each cell type, summarization of cell detections at the pixel 727 

level as counts of the number of cells whose centroid fell within each pixel of the grid, thus 728 

obtaining one matrix for each cell type and for each pixel size considered; (5) various downstream 729 

spatially-resolved statistical analyses across cell types and histologic patterns (described in the 730 

following paragraphs). For TTF1-stained images, cell detection algorithm used on QuPath was 731 

‘positive cell detection’ and cell types investigated were TTF1-positive and TTF1-negative. For 732 

multicolor immunofluorescence-stained images, ‘Watershed cell detection’ algorithm was used to 733 

detect macrophages (CD63-positive cells), CD4 T cells (CD4-positive cells), CD8 T cells (CD8-positive 734 

cells), B cells (CD20-positive cells) and proliferating cells (Ki67-positive cells). In order to 735 

accommodate for potential variability in signal intensities among cell types and slides, the 736 

parameters of these cell detection algorithms were tuned with visual inspection in each slide and 737 

for each cell type. Steps 1 and 2 of GridQuant were implemented in Groovy programming language, 738 

steps 3, 4 and 5 were implemented in R v3.5. 739 

GridQuant - cell density across patterns 740 
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Cell densities for each pixel were computed as the pixel counts divided by the pixel area. 741 

Distributions of densities across patterns were derived aggregating all pixels annotated to each 742 

pattern across all slides. 743 

GridQuant - cell types colocalizations across patterns 744 

For each pattern-annotated region, the colocalization between cell types X and Y was computed as 745 

the Spearman’s correlation coefficient between X and Y densities across all pixels falling within the 746 

region boundary. Pixels having total cell densities (summing densities of all available cell types) 747 

below the 5th percentile or below 200 N/mm2 were discarded as likely representing empty regions 748 

corresponding to alveoli.  749 

GridQuant - solid pattern boundary analysis 750 

Regions annotated to the solid pattern were partitioned into three internal sub-regions according 751 

to their distance from the boundary delimitating the solid-annotated region and other patterns, 752 

including the normal lung (boundaries between the solid-annotated region and uncertain 753 

transitioning patterns or the external cut delimiting the end of the slide were removed). The first 754 

sub-region was constituted by the pixels displaced at a distance between 0 and 0.5 mm, the second 755 

at a distance between 0.5 and 1 mm and the third was composed of all the remaining internal 756 

pixels (core). Moreover, an external region with pixels at a distance between 0 and 0.5 mm outside 757 

the boundary was also considered (Fig. 4j). The mean and distribution of densities of each cell type 758 

was then computed across all pixels falling within each of these 4 regions. 759 

In-situ detection and quantification of Tertiary Lymphoid Structures (TLS-finder) 760 

Tertiary Lymphoid Structures (TLSs) were modeled as clusters of B cells detected with 761 

immunofluorescence staining. An automatic detection pipeline (named TLS-finder) was developed 762 
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to quantify their presence across histologic patterns. TLS-finder involved the following steps: (1) 763 

GridQuant framework was used to generate high resolution (pixel size = 20 𝜇𝑚) matrices of B cell 764 

counts; (2) each matrix was imported in Fiji (108) image analysis software as text image; (3) B cell 765 

count matrices were binarized using Fiji ‘Convert to mask’ function; (4) TLSs were modeled as 766 

connected components of the binarized B cell matrices, which were detected and labelled using Fiji 767 

plugin ‘Find connected regions’, with a minimum number of pixels to call a connected component 768 

set to 25 (corresponding to a minimum TLS size of 10000 𝜇𝑚2); (5) Labelled TLSs were then 769 

processed with R scripts for downstream statistical analyses. The density of TLSs across patterns 770 

was computed as the number of distinct TLSs divided by the area of each pattern-annotated region 771 

(Fig. 4g). 772 

Digital Spatial Profiling 773 

Two runs of highly-multiplexed and spatially-resolved proteomic profiling of tumor and immune 774 

cells were performed with the GeoMx Digital Spatial Profiler (NanoString) as previously described 775 

(52) on 5 (batch1) and 3 (batch2) FFPE tissue sections. In batch1, immunofluorescence assays were 776 

performed using antibodies against CD3, CD20, CD45 and DAPI, and the multicolor images were 777 

used to guide the selection of 12 regions of interest (ROIs) for each slide; for each ROI, digital 778 

counts from barcodes corresponding to protein probes (52 immune and tumor-related proteins, 779 

Supplementary Table 9) were obtained using nCounter (NanoString). In each ROI, automated cell 780 

detection was performed on the immunofluorescence images to count nucleated cells (DAPI-781 

positive) and, among them, CD45-positive cells; Immune ratio was computed as the ratio between 782 

the number of CD45-positive cells and DAPI-positive cells. In batch2, Pan-cytokeratin (PanCK), 783 

CD45, CD3 and DAPI antibodies were used; from each ROI, two areas of interest (AOIs) were 784 

extracted with image segmentation, one containing pixels positive for PanCK (tumor compartment) 785 

Research. 
on March 1, 2021. © 2021 American Association for Cancercancerdiscovery.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on February 9, 2021; DOI: 10.1158/2159-8290.CD-20-1274 

http://cancerdiscovery.aacrjournals.org/


 36 

and one for CD45 (immune compartment); digital counts were then obtained for each AOI 786 

separately (73 immune and tumor-related proteins, Supplementary Table 9); in PanCK-positive and 787 

CD45-positive AOIs only tumor-related and immune-related proteins, respectively, were tested in 788 

downstream analyses. Levels of 3 housekeeping proteins (GAPDH, histone H3, S6) and 3 negative 789 

controls (Ms IgG1, Ms IgG2a, Rb IgG) were also measured. Digital counts for each protein were 790 

normalized with internal spike-in controls (ERCC) and signal-to-noise ratio (SNR), i.e. the ratio 791 

between the ERCC-normalized counts of the protein and the geometric mean of the negative 792 

controls assayed in the ROI/AOI considered. In all downstream analyses, only proteins having 793 

SNR>2 in at least 3 ROIs/AOIs were tested. ROIs/AOIs were annotated according to their histologic 794 

pattern and location with respect to the pattern boundary (center/core or periphery) using 795 

adjacent H&E-stained tissue sections. Some ROIs were taken also from Tertiary Lymphoid 796 

Structures (TLS) but were not used for the analyses presented in this study. Differences between 797 

locations in solid pattern regions were tested with T-test (batch1, one solid pattern region and 6 798 

ROIs) and with two-way ANOVA controlling for sample and testing separately AOIs from immune 799 

and tumor compartments (batch2, three samples with one solid pattern region in each of them, 26 800 

total AOIs for each tissue compartment).  801 

Data and code availability  802 

All datasets analyzed and the corresponding accession numbers are reported in Supplementary 803 

Table 1. Data generated in this study has been deposited in two Zenodo repositories, one 804 

containing raw images for H&E, TTF1 and immunofluorescence staining and Digital Spatial Profiling 805 

data (DOI: 10.5281/zenodo.3941450) and one containing processed molecular data (somatic 806 

mutations, gene expression tables and DNA methylation beta values, DOI: 807 

10.5281/zenodo.4443496). Source code for GridQuant and TLS-finder pipelines is available in two 808 
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public GitHub repositories (https://github.com/CSOgroup/GridQuant and 809 

https://github.com/CSOgroup/TLS-finder). 810 

  811 
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Figure Legends 1106 

Figure 1: Inter-patient heterogeneity among LUAD histologic patterns 1107 

a) H&E staining of lung adenocarcinoma histologic patterns (from left to right): lepidic, papillary, 1108 

acinar, and solid. 1109 

b) Total number of somatic coding mutations (Y-axis) in TCGA samples (colored points) stratified by 1110 

histologic pattern classification (X-axis). The outlier lepidic-annotated TCGA sample is highlighted by 1111 

its patient ID. P-values are computed by Wilcoxon two-tailed test. 1112 

c) Representative H&E images of two tumor tissue slides for the TCGA-44-7670 sample: an image 1113 

taken from slide corresponding to the tumor sample used for histopathology review (left) and an 1114 

image corresponding to the tumor sample used for molecular analyses (right). Complete images 1115 

can be accessed at: https://cancer.digitalslidearchive.org/ . 1116 

d-e) Number of (d) significantly differentially expressed genes and (e) significantly differentially 1117 

methylated probes identified based on different FDR thresholds (X-axis) by comparing patients 1118 

grouped by the real prevalent histologic pattern (black) or after randomizing the histologic pattern 1119 

labels (gray). Error bars correspond to one standard deviation upon 100 label permutations.  1120 

f) mRNA expression of two top differentially expressed genes (Y-axis) in TCGA samples stratified by 1121 

prevalent pattern (X-axis). Colored dots on the right indicate the median expression value of each 1122 

group and arrows represent the direction of the fold-change (FC): upward (downward) arrows 1123 

indicate that the more aggressive pattern have lower (higher) median expression than the less 1124 

aggressive pattern. Pairwise FCs always compare the more aggressive to the less aggressive 1125 

pattern, hence upward arrows correspond to negative FCs and downward arrows to positive FCs.  1126 
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g) Pie chart distributions of the sign of pairwise FCs computed for all differentially expressed genes 1127 

(top) and differentially methylated probes (bottom). 1128 

h) Significantly enriched gene sets among genes over-expressed in lepidic-prevalent samples (blue 1129 

bars) and in solid-prevalent samples (red and yellow bars). 1130 

i) Significantly enriched gene sets among promoter probes with lower DNA methylation in lepidic-1131 

prevalent samples than solid-prevalent samples (blue bars) or with lower DNA methylation in solid-1132 

prevalent samples than in lepidic-prevalent samples (yellow bars). 1133 

j) Mean mRNA expression scores for multiple cell types (rows) within each pattern subtype 1134 

(columns). Values are normalized by rows (Z-scores) to show relative differences among patterns. 1135 
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Figure 2: Intra-tumor heterogeneity among LUAD histologic patterns 1138 

a) Schematic representation of histopathology-guided multi-region sampling: FFPE slides were 1139 

reviewed for pattern identification, tumor regions corresponding to a unique pattern were 1140 

dissected and molecularly profiled (left). We have collected 29 tumor regions (+10 adjacent normal 1141 

tissue) from 10 primary lung adenocarcinoma samples (right). 1142 

b) Occurrence of recurrent LUAD genetic mutations in molecularly profiled regions. Regions from 1143 

the same patient are grouped together; patients are numbered (top) and histologic patterns are 1144 

color coded (annotation bar). 1145 

c) Heatmap representation of differentially expressed genes among LUAD histologic patterns (rows, 1146 

adjusted p-value < 0.001). Samples (columns) are identified by patient number followed by a letter 1147 

corresponding to individual tumor regions. Histologic patterns are color coded. Cellular processes 1148 

associated to significantly enriched gene sets are annotated on the right. 1149 

d) mRNA expression differences among histologic patterns for a selected panel of extra-cellular 1150 

matrix components and/or regulators (over-expressed in solid regions at the top, over-expressed in 1151 

lepidic regions at the bottom). Expression values within each patient were normalized to the mean 1152 

of the corresponding lepidic regions. Samples corresponding to same patient are connected by a 1153 

dashed line and color coded based on concordance between intra-tumor differences and pattern 1154 

progression. 1155 

e) Immune score predicted within each tumor region for each patient. 1156 
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Figure 3: Tumor intrinsic features of LUAD histologic patterns 1158 

a) Schematic representation of single cell RNA-seq analysis of 3 tumor samples from 3 patients. For 1159 

each sample, differential expression analysis between tumor (red) and non-tumor (gray) cells led to 1160 

identify 2,410 genes preferentially expressed in cancer cells. 1161 

b) Volcano plot showing mRNA expression fold-changes of cancer-specific genes between lepidic 1162 

and solid tumor regions (log2 – Y-axis) and corresponding p-values (-log10 – X-axis). Significant 1163 

genes are color coded (red: over-expressed in solid regions; blue: over-expressed in lepidic regions) 1164 

c) Significantly enriched gene sets among genes over-expressed in lepidic regions (blue bars) and in 1165 

solid regions (red bars). 1166 

d) Scatterplot of single tumor cells from 3 patients scored by lepidic-like single cell signature (Y-axis) 1167 

and solid-like single cell signature (X-axis). Single cells are color coded by combined signature scores 1168 

(main scatterplot) and separately shown for each patient sample (top right insets). 1169 

e) Transcriptional regulator (TR) activity scores obtained with the VIPER algorithm upon comparing 1170 

lepidic and solid annotated regions in the CHUV (X-axis) and TCGA (Y-axis) cohorts. Significant TRs 1171 

are color coded (red: solid associated, blue: lepidic associated) and the top scoring are labeled. 1172 

f) Gene dependency scores obtained from the AVANA CRISPR screening dataset. Negative (positive) 1173 

values indicate fitness decrease (increase) upon gene knock-out. Values for lepidic (blue) and solid 1174 

(red) transcriptional regulators (TR) are the mean obtained upon gene KO in lung adenocarcinoma 1175 

cell lines. 1176 

g) Overall survival difference (Kaplan-Meier curve) between TCGA samples within the top (red) and 1177 

bottom (blue) quartiles of L2S scores. P-value was computed by log-rank test. 1178 
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h) Hazard ratios associated with increasing values of the L2S signature score (10% increase) in 7 1179 

independent LUAD datasets comprising >100 patients each (# column). P-values were computed by 1180 

multi-variate Cox regression. The size of the dots is proportional to the number of sample. 95% 1181 

confidence intervals are reported as horizontal lines. 1182 

i) Correlation values between gene-set mRNA expression scores for multiple cell types and L2S 1183 

scores in 10 independent datasets. 1184 

 1185 
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Figure 4: Spatial immune profiles of LUAD histologic patterns 1187 

a-b) H&E (a) and TTF1 (b) staining of LUAD tissue sample (Patient 1). Lepidic (blue) and acinar 1188 

(orange) patterns are contoured. 1189 

c) Multi-color immunofluorescence staining for a LUAD tissue sample (Patient 1). Images show 1190 

separately fluorescence staining for Ki-67 (top left), CD8 (top right), CD20 (bottom left), and CD4 1191 

(bottom right). 1192 

d) Schematic representation of GridQuant: each image is binned into a grid with bins/pixels of 1193 

variable sizes. In this study we tested pixel sizes varying from 10 to 500 mm (left). Fluorescence 1194 

intensity is then averaged for each bin. An example for CD8 fluorescence is shown (right). 1195 

e) Boxplot distribution of cell densities (number of cells per mm2, N/mm2) for cells that were 1196 

positive for each of the tested antibodies (X-axis). For each antibody, cell density values are 1197 

computed for each pixel and values obtained for pixel from regions with a different histologic 1198 

pattern are compared. Pixel size = 200 m. 1199 

f) Multicolor IF staining of tertiary lymphoid structures (TLS). 1200 

g) Quantification of TLS density across different regions corresponding to a unique histologic 1201 

pattern (colored points). 1202 

h) Correlation between the number of TTF1+ and TTF1- cells within each pixel of a given region 1203 

corresponding to a unique histologic pattern (colored points). Pixel size = 200 m. 1204 

i) H&E (left) and multicolor IF (center) staining of LUAD tissue sample (Patient 8) and zoom-in of the 1205 

IF staining of the solid pattern (right). Histologic patterns are contoured and color coded. 1206 

Research. 
on March 1, 2021. © 2021 American Association for Cancercancerdiscovery.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on February 9, 2021; DOI: 10.1158/2159-8290.CD-20-1274 

http://cancerdiscovery.aacrjournals.org/


 53 

j) Schematic representation of spatial quantification based on distance from the tumor boundary 1207 

(red line). Contoured regions define discrete subsets of pixels within a certain interval of distances 1208 

from the tumor boundary. 1209 

k) Spatial quantification based on distance from the tumor boundary for the solid region of Patient 1210 

8 (8B). Signal intensities were averaged among pixels within a certain interval of distances from the 1211 

tumor boundary (gray line) and at the tumor core, defined as >1mm inside the boundary. Pixel size 1212 

= 100 m. 1213 

l) Spatial quantification based on distance from the tumor boundary for all solid regions. Pixel size = 1214 

100 m. 1215 

 1216 
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Figure 5: Digital spatial profiling (DSP) of LUAD histologic patterns 1218 

a) Immuno-score of all tumor regions of interest (ROIs) for 5 patients defined as fraction of CD45 1219 

positive cells by immunofluorescence analysis (top barplot, bars are color coded based on the 1220 

pattern of the corresponding region). ROIs are annotated by tumor core or periphery localization 1221 

(black and white circles, respectively) and by DSP protein expression of the top correlated protein 1222 

with CD45+ immuno-score (bottom heatmap). DSP values are normalized by signal-to-noise ratio 1223 

(SNR) and by z-score for each patient. 1224 

b) Top: H&E staining of LUAD tissue sample (Patient 8). Bottom: Schematic diagram of Patient 8 1225 

normal tissue regions and tumor histologic patterns (color coded) and selected tumor regions of 1226 

interest analyzed by DSP. 1227 

c) Differentially expressed proteins between ROIs at the core of the solid region (R8, R9) and at the 1228 

periphery of the solid region (R6, R7, R10, R12). Values are normalized by SNR and by z-score for 1229 

each patient. 1230 

d) Schematic representation of DSP analysis with ROI masks: ROIs at the core or periphery of the 1231 

tumor (left) were first analyzed by IF for PanCK (green), CD3 (light blue), DNA (dark blue), and CD45 1232 

(red); next, CD45 and PanCK fluorescence was used to build two masks (white: selected, black: 1233 

unselected) to selectively analyze either PanCK+ cells or CD45+ cells. 1234 

e-f) Differentially expressed proteins between core (black circles) and periphery (white circle) ROIs 1235 

exclusively comprising (e) PanCK+ cells or (f) CD45+ cells from solid tumor region of 3 patients 1236 

(patient of origin is annotated on the left). Values are normalized by SNR and by z-score for each 1237 

patient. 1238 
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Figure 6 1240 

Schematic representation of cancer cell (top) and microenvironment (bottom) evolution in the 1241 

progression from lepidic to papillary, acinar, and at last solid patterns. 1242 

Research. 
on March 1, 2021. © 2021 American Association for Cancercancerdiscovery.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on February 9, 2021; DOI: 10.1158/2159-8290.CD-20-1274 

http://cancerdiscovery.aacrjournals.org/


Research. 
on March 1, 2021. © 2021 American Association for Cancercancerdiscovery.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on February 9, 2021; DOI: 10.1158/2159-8290.CD-20-1274 

http://cancerdiscovery.aacrjournals.org/


Research. 
on March 1, 2021. © 2021 American Association for Cancercancerdiscovery.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on February 9, 2021; DOI: 10.1158/2159-8290.CD-20-1274 

http://cancerdiscovery.aacrjournals.org/


Research. 
on March 1, 2021. © 2021 American Association for Cancercancerdiscovery.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on February 9, 2021; DOI: 10.1158/2159-8290.CD-20-1274 

http://cancerdiscovery.aacrjournals.org/


Research. 
on March 1, 2021. © 2021 American Association for Cancercancerdiscovery.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on February 9, 2021; DOI: 10.1158/2159-8290.CD-20-1274 

http://cancerdiscovery.aacrjournals.org/


Research. 
on March 1, 2021. © 2021 American Association for Cancercancerdiscovery.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on February 9, 2021; DOI: 10.1158/2159-8290.CD-20-1274 

http://cancerdiscovery.aacrjournals.org/


Research. 
on March 1, 2021. © 2021 American Association for Cancercancerdiscovery.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on February 9, 2021; DOI: 10.1158/2159-8290.CD-20-1274 

http://cancerdiscovery.aacrjournals.org/


 Published OnlineFirst February 9, 2021.Cancer Discov 
  
Daniele Tavernari, Elena Battistello, Elie Dheilly, et al. 
  
heterogeneity and progression
Non-genetic evolution drives lung adenocarcinoma spatial

  
Updated version

  
 10.1158/2159-8290.CD-20-1274doi:

Access the most recent version of this article at:

  
Material

Supplementary

  
 http://cancerdiscovery.aacrjournals.org/content/suppl/2021/01/27/2159-8290.CD-20-1274.DC1

Access the most recent supplemental material at:

  
Manuscript

Author
been edited. 
Author manuscripts have been peer reviewed and accepted for publication but have not yet

  
  

  
  

  
  

  
E-mail alerts  related to this article or journal.Sign up to receive free email-alerts

  
Subscriptions

Reprints and 

  
.pubs@aacr.orgDepartment at

To order reprints of this article or to subscribe to the journal, contact the AACR Publications

  
Permissions

  
Rightslink site. 
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC)

.http://cancerdiscovery.aacrjournals.org/content/early/2021/02/01/2159-8290.CD-20-1274
To request permission to re-use all or part of this article, use this link

Research. 
on March 1, 2021. © 2021 American Association for Cancercancerdiscovery.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on February 9, 2021; DOI: 10.1158/2159-8290.CD-20-1274 

http://cancerdiscovery.aacrjournals.org/lookup/doi/10.1158/2159-8290.CD-20-1274
http://cancerdiscovery.aacrjournals.org/content/suppl/2021/01/27/2159-8290.CD-20-1274.DC1
http://cancerdiscovery.aacrjournals.org/cgi/alerts
mailto:pubs@aacr.org
http://cancerdiscovery.aacrjournals.org/content/early/2021/02/01/2159-8290.CD-20-1274
http://cancerdiscovery.aacrjournals.org/

