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We studied the performance of several meta-analysis methods in rare event settings, when the treatment 

effect is assumed to be homogeneous and baseline prevalences are either homogeneous or 

heterogeneous. We conducted extensive simulations that included the three most common effect sizes 

with count data: the odds ratio, the relative risk and the risk difference. We investigated several 

important scenarios by varying the level of rareness, the value of the trials’ arms unbalance and the size 

of the treatment effect. We found that the Mantel-Haenszel method and the Binomial regression model 

provided the best results across all the scenarios investigated. The Peto method performed satisfactorily 

only when the true effect size was not too large and the degree of unbalance moderate. Inverse variance 

was the least reliable method. The use of a continuity correction factor slightly improved the 

performance of the inverse variance method but deteriorated that of the Peto and Mante-Haenszel 

methods. A method based on median unbiased estimators of the probabilities provided similar results to 

those obtained when using the inverse variance method with a continuity correction. Therefore, when the 

treatment effect can be assumed to be homogeneous and for either homogeneous or heterogeneous 

baseline prevalences, we highly recommend using the Mantel-Haenszel method without continuity 

correction (for all the effect sizes) or the Binomial regression model (for the odds ratio only) to meta-

analyze the data. 
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1 Introduction  

The objective of a meta-analysis is to combine evidence from related but independent studies in order 

to improve the knowledge about a specific research question and to generalize the results (Normand, 

1999). When the outcome is continuous, the investigator either uses a fixed-effect (FE) or a random-

effects (RE) model according to his knowledge and the expected effect of the intervention. However, 

with count data, the investigator further has to distinguish between the setting of homogeneous and 

heterogeneous baseline prevalences, yielding a total of four different frameworks (Table 1).  

- Insert Table 1 here - 

While a clear distinction is made between the FE and RE models in the meta-analysis’ literature, the 

question of homogeneous or heterogeneous baseline prevalences is seldomly discussed. Notably, in the 

three main published simulation studies assessing the performance of various meta-analysis methods in 

the context of rare events, the authors assumed a homogeneous baseline prevalence in all the simulated 

scenarios (Sweeting et al., 2004; Bradburn et al., 2007; Kuss 2015). The goal of this paper was thus to 

reassess the performance of FE meta-analysis methods in rare event settings, considering either 

homogeneous or heterogeneous baseline prevalences.  

In practice, a typical setting under which the assumption of a homogeneous treatment effect is likely to 

hold is that of a multicenter randomized control trial, where each center has followed exactly the same 

research protocol. When patients between centers are comparable in terms of baseline characteristics, 

then the meta-analyst will likely assume a homogeneous baseline prevalence. On the contrary, when 
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the primary studies have been conducted in different centers located in different countries or places in 

the world, the assumption of heterogeneous baseline prevalences might be more appropriate.  

The classical method to conduct a meta-analysis in the framework of a homogeneous treatment effect is 

that of the inverse variance (IV) (Borenstein et al., 2009). This method is based on the generalized least 

squares technique and provides an estimator corresponding to a weighted average of the primary-

studies’ effect sizes (ESs). This estimator has good asymptotic properties (i.e. convergence, asymptotic 

normality). In finite samples however, and especially with rare events, asymptotic theory breaks down 

and the IV method yields biased estimates and invalid confidence intervals (CI) (Lane, 2013). Specific 

to binary data, two other methods are commonly used in FE meta-analyses: Mantel-Haenszel (MH) 

(Mantel and Haenszel, 1959) and Peto (Yusuf et al., 1985), the latter being applied for the estimation of 

the odds ratio (OR) only. While both methods were found to be more robust to rare events than the IV 

method, estimates provided by the Peto method were less reliable in settings with unbalanced trials’ 

arms and/or large ES (Bradburn et al., 2007).  

With very rare events, when some primary studies report zero event in one (single-zero studies; SZ 

studies) or both (double-zero studies; DZ studies) arms, the IV method may provide indefinite 

estimates. Under these circumstances, a straightforward way to compute the IV estimate is to exclude 

the problematic studies from the analysis. As for the MH and Peto methods, DZ studies are 

automatically excluded from the computation of the OR and the relative risk (RR; for MH), as can be 

checked by inspecting their mathematical formulae. However, excluding zero-event studies is 

suboptimal since they are likely to contain useful pieces of information, even DZ studies (e.g. no event 

in a sample of 50 patients is not the same as no event in a sample of 200 patients).  

As discussed by Kuss et al. (2009), meta-analyses with zero-event studies are commonly encountered 

in practice. In a random sample of 500 Cochrane reviews, the authors found that 34% of these reviews 

contained at least one meta-analysis with a DZ study. To tackle this issue, the classical solution is to 

use a continuity correction factor (cc) (Sweeting et al., 2004). The problem with this solution is that the 

resulting estimates depend on the choice of the cc (Rücker et al., 2009). However, there is another way 

to include both SZ and DZ studies, without using a cc, which is based on the median unbiased 

estimator (MUE) method (Hirji et al., 1989; Parzen et al., 2002). This method provides estimates of the 

OR, RR and risk difference (RD) that always exist (i.e. even when no event is observed in both arms). 

Finally, the last alternative we have investigated to estimate the OR, which uses the information 

contained in DZ studies, is the Binomial  regression model.  

Through extensive simulations, we assessed the performance of these different methods (i.e. IV, MH, 

Peto, with or without cc, MUE and Binomial  regression). Except for the Peto and Binomial regression 

methods that are specific to the OR, all the other methods were used to estimate the OR, the RR and the 

RD. Our simulations covered many important scenarios with different values of trials’ arms unbalance 

(from strong unbalance in favor of either trials’ arm to no unbalance), ES (from large reduction – or 

increase – in event prevalence to no effect), and baseline prevalences (from extremely rare to common 

events). In addition, all these scenarios were considered with either homogeneous or heterogeneous 

baseline prevalences. 

2  Combining trials under the fixed-effect framework 

Let 𝜋𝑡 and 𝜋𝑐 be the probability of the event in the treated and control populations respectively. In this 

paper, we focused on the three following effect sizes: 

𝑂𝑅 = (𝜋𝑡 ∗ (1 − 𝜋𝑐))/(𝜋𝑐 ∗ (1 − 𝜋𝑡)) (1) 

𝑅𝑅 = 𝜋𝑡/𝜋𝑐 (2) 

𝑅𝐷 = 𝜋𝑡 − 𝜋𝑐 (3) 

Under the FE model, the ES is assumed homogeneous across the primary studies and the goal of the 

meta-analysis is to estimate a single population parameter. Inversely, under the RE model, one assumes 



that each primary study seeks to estimate a different population parameter and the focus is on 

describing these parameters’ distribution. Ideally, the selection of either framework should be grounded 

on contextual knowledge and not on statistical arguments. This selection will then determine the set of 

methods available to the meta-analyst. In the subsections below, we described six methods that can be 

used under the FE framework. 

As already mentioned in the Introduction, when meta-analyzing count data in the FE framework, one 

should further distinguish between the settings of homogeneous and heterogeneous baseline 

prevalences (see Table 1). This subdivision has a direct implication regarding the notion of treatment 

effect homogeneity. With homogeneous baseline prevalences, the homogeneity of the ES holds 

whatever the metric adopted (OR, RR or RD). On the contrary, with heterogeneous baseline 

prevalences, homogeneity of the ES depends on the scale of measurement. Indeed, assume for instance 

that the baseline probability 𝜋𝑐 is heterogeneous and that the RD is homogeneous. Then, if one were to 

use instead the RR, the ES estimate would turn out be heterogeneous (Table 2). Therefore, under the 

FE framework with baseline heterogeneity, the investigator has to specify on which scale the treatment 

effect is assumed homogeneous.  

- Insert Table 2 here - 

As this small example illustrates, the selection of the appropriate scale to measure the effect of the 

treatment is an important question. Actually, there is a broad debate in the literature on the advantages 

of absolute measures, such as the RD, versus relative measures, such as the RR and OR (Sinclair and 

Bracken, 1994; Papageorgiou et al., 2015). 

In what follows, each primary study consists of one control group of size 𝑛𝑐 and one treated group of 

size 𝑛𝑡. The number of events occurring in these two groups are denoted 𝑋𝑐 and 𝑋𝑡, respectively. 

2.1 The inverse variance method 

For 𝑘 = 1, … , 𝐾, the IV method is based on the following model:  

�̂�𝑘 = 𝜃 + 𝜖𝑘, 𝜖𝑘~𝑁(0, 𝜎𝑘
2) (4) 

where �̂�𝑘 is the estimator of the parameter of interest 𝜃 (i.e. RD, RR or OR) obtained from study k and 

𝜎𝑘
2 its variance. The RR and OR’s estimators are usually analyzed on the log scale, as their sampling 

distribution is more symmetrical on this scale. 

The three ES estimators are computed as follows: 

𝑂�̂�𝑘 =
�̂�𝑘𝑡 ∗ (1 − �̂�𝑘𝑐)

�̂�𝑘𝑐 ∗ (1 − �̂�𝑘𝑡)
 (5) 

𝑅�̂�𝑘 =
�̂�𝑘𝑡

�̂�𝑘𝑐

 (6) 

𝑅�̂�𝑘 = �̂�𝑘𝑡 − �̂�𝑘𝑐 (7) 

where �̂�𝑘𝑡 = 𝑋𝑘𝑡/𝑛𝑘𝑡 and �̂�𝑘𝑐 = 𝑋𝑘𝑐/𝑛𝑘𝑐 are the maximum likelihood estimators. 

Variances of these estimators, computed using the delta method for the OR and the RR, are estimated 

by 

�̂�𝑙𝑜𝑔𝑂�̂�𝑘

2 =
1

𝑛𝑘𝑡�̂�𝑘𝑡(1 − �̂�𝑘𝑡)
+

1

𝑛𝑘𝑐�̂�𝑘𝑐(1 − �̂�𝑘𝑐)
 (8) 



�̂�𝑙𝑜𝑔𝑅�̂�𝑘

2 =
1 − �̂�𝑘𝑡

𝑛𝑘𝑡�̂�𝑘𝑡

+
1 − �̂�𝑘𝑐

𝑛𝑘𝑐�̂�𝑘𝑐

 (9) 

�̂�𝑅�̂�𝑘

2 =
�̂�𝑘𝑡(1 − �̂�𝑘𝑡)

𝑛𝑘𝑡

+
�̂�𝑘𝑐(1 − �̂�𝑘𝑐)

𝑛𝑘𝑐

 (10) 

The IV estimator is obtained by applying the generalized least squares method, assuming independence 

between the K primary studies and the within-study variances 𝜎𝑘
2 known: 

�̂�𝐼𝑉 =
∑ 𝑊𝑘�̂�𝑘

𝐾
𝑘=1

∑ 𝑊𝑘
𝐾
𝑘=1

  (11) 

where 𝑊𝑘 = 1/𝜎𝑘
2. This estimator is equivalent to the maximum likelihood estimator whenever the 

assumption of normality (4) holds. The variance of �̂�𝐼𝑉 is given by 

𝑉𝑎𝑟(�̂�𝐼𝑉) =
1

∑ 𝑊𝑘
𝐾
𝑘=1

 (12) 

In practice, 𝜎𝑘
2 is not observed and �̂�𝑘 = 1/�̂�𝑘

2 is used instead.  

As discussed in the Introduction section, the good performances of the IV method hold asymptotically. 

However, in finite samples, estimates obtained with this method systematically deviate from the true 

parameter value and observed coverage probabilities of the CI depart from the nominal value. These 

undesirable properties, which are exacerbated with rare events, can be explained by several reasons. 

First, primary-study estimators of the RR and OR are biased (Firth, 1993; Nemes et al. 2009). 

Therefore, even when 𝜎𝑘
2 is known, on has for RR and OR: 

𝐸(�̂�𝐼𝑉|𝜎𝑘
2) =

∑ 𝑊𝑘𝐸(�̂�𝑘)𝐾
𝑘=1

∑ 𝑊𝑘
𝐾
𝑘=1

= 𝐸(�̂�𝑘) ≠ 𝜃 (13) 

Second, the primary-study estimate �̂�𝑘 is correlated with its estimated variance and this correlation is 

not taken into account by the IV method (Berkey et al., 1995). Third, the sampling distribution of the 

IV estimator is not well approximated by a normal distribution. 

In very rare event settings, when some primary studies report zero event, the IV method can lead to 

indefinite estimates. For the RR and the OR, this happens whenever 𝑋𝑘𝑐 = 0 or 𝑋𝑘𝑡 = 0  (or both) for 

any k. For the RD, �̂�𝑘
2 = 0 and, thus, �̂�𝑘 = ∞ when 𝑋𝑘𝑐 = 𝑋𝑘𝑡 = 0. As a result, to obtain defined IV 

estimates, one has to exclude DZ studies from the computation of all ES and SZ studies from the 

computation of OR and RR. 

2.2  The Mantel-Haenszel method 

The MH method was first proposed in 1959 to estimate the risk of an exposure by means of an Odds 

Ratio while adjusting for confounding factors (Mantel and Haenszel, 1959). This method has, then, 

been extended to other ES (Rothman et al., 2008) and can be applied to conduct meta-analyses of OR, 

RR and RD using the following formulae: 

𝑂�̂�𝑀𝐻 =
∑ 𝑋𝑘𝑡(𝑛𝑘𝑐 − 𝑋𝑘𝑐)/𝑛𝑘

𝐾
𝑘=1

∑ 𝑋𝑘𝑐(𝑛𝑘𝑡 − 𝑋𝑘𝑡)/𝑛𝑘
𝐾
𝑘=1

 (14) 

𝑉𝑎𝑟(log(𝑂�̂�𝑀𝐻)) =
1

2
(

∑ 𝑅𝑘𝑃𝑘
𝐾
𝑘=1

𝑅2
+

∑ (𝑃𝑘𝑆𝑘 + 𝑄𝑘𝑅𝑘)𝐾
𝑘=1

𝑅𝑆
+

∑ 𝑆𝑘𝑄𝑘
𝐾
𝑘=1

𝑆2
) (15) 



𝑅�̂�𝑀𝐻 =
∑ 𝑋𝑘𝑡𝑛𝑘𝑐/𝑛𝑘

𝐾
𝑘=1

∑ 𝑋𝑘𝑐𝑛𝑘𝑡/𝑛𝑘
𝐾
𝑘=1

 (16) 

𝑉𝑎𝑟(log(𝑅�̂�𝑀𝐻)) =

∑ [
(𝑋𝑘𝑡 + 𝑋𝑘𝑐)𝑛𝑘𝑡𝑛𝑘𝑐

𝑛𝑘
2 −

𝑋𝑘𝑡𝑋𝑘𝑐

𝑛𝑘
]𝐾

𝑘=1

(∑
𝑋𝑘𝑡𝑛𝑘𝑐

𝑛𝑘

𝐾
𝑘=1 ) (∑

𝑋𝑘𝑐𝑛𝑘𝑐

𝑛𝑘

𝐾
𝑘=1 )

 (17) 

𝑅�̂�𝑀𝐻 =
∑ (𝑋𝑘𝑡𝑛𝑘𝑐 − 𝑋𝑘𝑐𝑛𝑘𝑡)/𝑛𝑘

𝐾
𝑘=1

∑ 𝑛𝑘𝑡𝑛𝑘𝑐/𝑛𝑘
𝐾
𝑘=1

 (18) 

𝑉𝑎𝑟(𝑅�̂�𝑀𝐻) =

∑ (
𝑛𝑘𝑡𝑛𝑘𝑐

𝑛𝑘
)

2

[
𝑋𝑘𝑡(𝑛𝑘𝑡 − 𝑋𝑘𝑡)

𝑛𝑘𝑡
2 (𝑛𝑘𝑡 − 1)

−
𝑋𝑘𝑐(𝑛𝑘𝑐 − 𝑋𝑘𝑐)

𝑛𝑘𝑐
2 (𝑛𝑘𝑐 − 1)

]𝐾
𝑘=1

(∑
𝑛𝑘𝑡𝑛𝑘𝑐

𝑛𝑘

𝐾
𝑘=1 )

2  (19) 

where 𝑛𝑘 = 𝑛𝑘𝑡 + 𝑛𝑘𝑐, 𝑃𝑘 = (𝑋𝑘𝑡 + (𝑛𝑘𝑐 − 𝑋𝑘𝑐))/𝑛𝑘, 𝑄𝑘 = (𝑋𝑘𝑐 + (𝑛𝑘𝑡 − 𝑋𝑘𝑡))/𝑛𝑘, 𝑅𝑘 

= 𝑋𝑘𝑡(𝑛𝑘𝑐 − 𝑋𝑘𝑐)/𝑛𝑘, 𝑆𝑘 = 𝑋𝑘𝑐(𝑛𝑘𝑡 − 𝑋𝑘𝑡)/𝑛𝑘, 𝑅 = ∑ 𝑅𝑘
𝐾
𝑘=1 , 𝑆 = ∑ 𝑆𝑘

𝐾
𝑘=1 . 

The MH formulae do not rely on the primary-study ES estimates (only on the counts). As a result, MH 

estimators are more robust to zero-event issues than IV’s. For RR and OR it provides indefinite 

estimate only when all control groups report zero event (i.e. 𝑋𝑘𝑐 = 0 ∀ 𝑘). The variance estimates of 

the log(OR) and log(RR) are indefinite when either 𝑋𝑘𝑡 = 0 or 𝑋𝑘𝑐 = 0 ∀ 𝑘 (or both). Although quite 

rare, such extreme scenarios are sometimes encountered in practice. For instance, a systematic review 

on the occurrence of lactic acidosis with metformin use in type 2 diabetes mellitus gathered 148 studies 

that were all DZ studies (Salpeter et al., 2010). From the above formulae, one can see that SZ studies 

contribute to the computation of all ESs (i.e. to either the numerator of the denominator for the OR and 

RR and to both for the RD). Contrariwise, DZ studies do not contribute to the computation of the OR 

and RR estimates, whereas these studies do contribute to the RD estimate (i.e. to the denominator). 

Silcocks (2005) showed that the MH estimator for the OR corresponded to the maximum likelihood 

estimator (based on the Binomial distribution for the number of events), whenever the probability of 

event in the control group is homogeneous and the ratio of sample sizes is constant across the primary 

studies. Similarly, one can show that the MH estimators of the RR and RD correspond to their 

likelihood counterpart, whenever the ratio of sample sizes is constant (whatever the prevalences). For 

the RD, the MH estimator is given by (18). With homogeneous ratios of sample sizes (i.e. 𝑛𝑘𝑐/𝑛𝑘𝑡 =
𝑅 ∀ 𝑘), we have 𝑛𝑘𝑐 = 𝑛𝑘𝑡 ∗ 𝑅 and 𝑛𝑘 = 𝑛𝑘𝑡 ∗ (1 + 𝑅). Substituting these results into the above 

formula yields: 

𝑅�̂�𝑀𝐻 =
∑ (𝑋𝑘𝑡𝑛𝑘𝑡𝑅 − 𝑋𝑘𝑐𝑛𝑘𝑡)/(𝑛𝑘𝑡 ∗ (1 + 𝑅))𝐾

𝑘=1

∑ 𝑛𝑘𝑡
2 𝑅/(𝑛𝑘𝑡 ∗ (1 + 𝑅))𝐾

𝑘=1

 

=
∑ 𝑋𝑘𝑡𝑅/(1 + 𝑅)𝐾

𝑘=1 − ∑ 𝑋𝑘𝑐/(1 + 𝑅)𝐾
𝑘=1

∑ 𝑛𝑘𝑡𝑅/(1 + 𝑅)𝐾
𝑘=1

 

=
∑ 𝑋𝑘𝑡

𝐾
𝑘=1

∑ 𝑛𝑘𝑡
𝐾
𝑘=1

−
∑ 𝑋𝑘𝑐

𝐾
𝑘=1

∑ 𝑛𝑘𝑡𝑅𝐾
𝑘=1

 

(20) 

Since 𝑛𝑘𝑐 = 𝑛𝑘𝑡 ∗ 𝑅, the equivalence with the maximum likelihood estimator follows. Using similar 

arguments, one can show that 𝑅�̂�𝑀𝐻 = 𝑅�̂�𝑀𝐿 when 𝑛𝑘𝑐/𝑛𝑘𝑡 = 𝑅. 

2.3  The Peto method 

The Peto method was introduced as a user-friendly solution to estimate the OR in the setting of rare 

events (Yusuf et al., 1985). Peto proposed the following estimator for the log(OR): 



log(𝑂𝑅)̂
𝑃𝑒𝑡𝑜 =

∑ (𝑂𝑘 − 𝐸𝑘)𝐾
𝑘=1

∑ 𝑉𝑘
𝐾
𝑘=1

 (21) 

where 𝑂𝑘 = 𝑋𝑘𝑡 is the observed number of events in the treatment group of study 𝑘, 𝐸𝑘 = 𝑋𝑘 ∗
𝑛𝑘𝑡

𝑛𝑘
 is 

the expected number of events in the treatment group under the null hypothesis of no treatment effect, 

𝑋𝑘 = 𝑋𝑘𝑐 + 𝑋𝑘𝑡 is the total number of event, and 𝑉𝑘 = 𝐸𝑘𝑛𝑘𝑐(𝑛𝑘 − 𝑋𝑘)/(𝑛𝑘(𝑛𝑘 − 1)) is the 

hypergeometric variance of 𝑂𝑖  under the null. The variance of this estimator is given by: 

𝑉𝑎𝑟(log(𝑂𝑅)̂
𝑃𝑒𝑡𝑜) =

1

∑ 𝑉𝑘
𝐾
𝑘=1

 (22) 

Peto estimator is obtained using exact likelihood theory (Cox, 1977) and corresponds to the estimate of 

the common log(OR) obtained in the first step of a Newton-Raphson procedure to maximize the 

conditional log-likelihood when the starting value for the log(OR) is zero (McCullagh and Nelder, 

1981). Hence its other name: the "one-step estimator". 

DZ studies do not contribute to the Peto log(OR) estimate (i.e. the quantities 𝑂𝑘, 𝐸𝑘 and 𝑉𝑘 are all null), 

whereas SZ studies do contribute. The only setting under which the Peto estimator and its variance are 

undefined is when all included studies are DZ studies.  

2.4  The continuity correction factor method 

As already mentioned in the three previous subsections, the three classical FE methods have difficulties 

to deal with zero-event studies. The IV method yields indefinite estimates in the presence of either SZ 

or DZ studies when pooling ORs or RRs, and in the presence of DZ studies when pooling RDs. As for 

MH and Peto, although these two methods are robust to zero-event studies, they are based on formulae 

that discard DZ studies when pooling ORs or RRs (for MH). 

A simple remedy to the issue of SZ and DZ studies, which dates back to 1934 and has been adopted by 

many researchers is to use a cc. It consists in adding a constant c to each cell of each contingency table 

containing one or more 0 frequency (Yates, 1934). Plackett (1964) provided a detailed account of this 

method. In this paper, we used a cc of 0.5, which can be justified by theoretical arguments (Bhaumik et 

al., 2012).  

In this paper, the motivation of using a cc was to allow all studies to contribute to the combined ES 

estimate. Therefore, we additionally evaluated IV, MH and Peto methods with a cc. The table below 

summarizes the various strategies applied with these three methods to tackle the issue of zero-event 

studies: 

- Insert Table 3 here - 

2.5  The median unbiased estimator method 

The MUE method works in two steps. First, one computes in each primary study 𝑘 the MUE of 𝜋𝑘𝑗 , 

𝑗 ∈ {𝑐, 𝑡} (Parzen et al., 2002): 

�̂�𝑘𝑗 = {

(1 − 0.51/𝑛𝑘𝑗)/2

(𝑝𝑘𝑗
𝐿 + 𝑝𝑘𝑗

𝑈 )/2

(0.51/𝑛𝑘𝑗 + 1)/2

𝑖𝑓 𝑋𝑘𝑗 = 0

         𝑖𝑓 0 < 𝑋𝑘𝑗 < 𝑛𝑘𝑗

𝑖𝑓 𝑋𝑘𝑗 = 𝑛𝑘𝑗

 (23) 

with 𝑝𝑘𝑗
𝐿 = 𝐹−1(0.5|𝛼 = 𝑋𝑘𝑗 , 𝛽 = 𝑛𝑘𝑗 − 𝑋𝑘𝑗 + 1) and 𝑝𝑘𝑗

𝑈 = 𝐹−1(0.5|𝛼 = 𝑋𝑘𝑗 + 1, 𝛽 = 𝑛𝑘𝑗 − 𝑋𝑘𝑗), 

where 𝐹−1(𝑄|𝛼, 𝛽) is the 𝑄th quantile of the beta-distribution with parameters 𝛼 and 𝛽. Note that the 

expression we used for 𝑝𝑘𝑗
𝑈  differed from that provided in the paper of Parzen and colleagues, which, 

we believe, contains an error. Mathematical justifications can be found in the Appendix. 



Second, from these two estimated probabilities, one can compute the primary-study ESs using 

equations (5)-(7) as well as their corresponding variance using equations (8)-(10), and combined them 

using a weighted average as in (11). Variance of the MUE combined estimate is then given by (12). 

Clearly, the MUE method provides estimators that are always well defined, whatever the degree of 

sparseness of the events. Moreover, this method includes the information from DZ studies. 

2.6 The Binomial regression model 

Another option to deal with zero-event studies is to use a Binomial logistic regression model: 

𝑋𝑘𝑐~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑘𝑐 , 𝜋𝑘𝑐) (24) 

𝑋𝑘𝑡~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑘𝑡 , 𝜋𝑘𝑡) (25) 

𝑙𝑜𝑔𝑖𝑡(𝜋𝑘𝑐) = 𝛼𝑘 (26) 

𝑙𝑜𝑔𝑖𝑡(𝜋𝑘𝑡) = 𝛼𝑘 + 𝛿 (27) 

where 𝛼𝑘 represents the logit of the control group probability and 𝛿 the log(OR).  

Under the assumption of homogeneous baseline prevalences, 𝛼𝑘 = 𝛼, ∀𝑘, parameters are estimated by 

maximizing the following likelihood function: 

𝐿(𝛼, 𝛿) = ∏ (
𝑛𝑘𝑐

𝑋𝑘𝑐
) 𝜋𝑐

𝑋𝑘𝑐(1 − 𝜋𝑐)𝑛𝑘𝑐−𝑋𝑘𝑐 (
𝑛𝑘𝑡

𝑋𝑘𝑡
) 𝜋𝑡

𝑋𝑘𝑡(1 − 𝜋𝑡)𝑛𝑘𝑡−𝑋𝑘𝑡

 𝐾

𝑘=1

 (28) 

Under the assumption of baseline heterogeneity, 𝛼𝑘 is treated as a nuisance parameter. One can deal 

with this nuisance parameter by adopting either a fixed effects or a random effects approach. The main 

advantage of a fixed effects approach is that no distributional assumption have to be made, whereas the 

random effects approach implies the choice of a distribution for 𝛼𝑘. However, particularly with rare 

events, it is advantageous to treat 𝛼𝑘 as a random variable to limit as much as possible the number of 

parameters to be estimated and allow DZ studies to contribute to the estimation.  

We assumed 𝛼𝑘~𝑁(𝛼, 𝜎𝛼
2) and estimated the parameters by maximizing the following marginal 

likelihood function: 

𝐿(𝛼, 𝛿) = ∏ ∫ (
𝑛𝑘𝑐

𝑋𝑘𝑐
) 𝜋𝑘𝑐

𝑋𝑘𝑐(1 − 𝜋𝑘𝑐)𝑛𝑘𝑐−𝑋𝑘𝑐 (
𝑛𝑘𝑡

𝑋𝑘𝑡
) 𝜋𝑘𝑡

𝑋𝑘𝑡(1 − 𝜋𝑘𝑡)𝑛𝑘𝑡−𝑋𝑘𝑡𝑓(𝛼𝑘|𝛼, 𝜎𝛼
2)𝑑𝛼𝑘

+∞

−∞

 𝐾

𝑘=1

 (29) 

where 𝑓(∙) is the Normal density. 

3  Illustrative example 

3.1 Perinatal death in post-term pregnancy 

To motivate and illustrate the use of the six methods described in the previous section, we considered 

the systematic review conducted by Crowley (2000). In this review, the author compared the number of 

deaths induced by routine and selective induction of pregnancies that go beyond term. Data of the 19 

randomized control trials included in Crowley’s review are shown in Table 4.  

- Insert Table 4 here - 



All trials reported at least one arm with zero event and 11 trials were DZ studies. Most of the trials’ 

arms included between 50 and 150 women. Except for one study where an imbalance of 2:1 in favor of 

the treatment group was observed, studies’ arms were mostly balanced. 

3.2 Results from the methods when fitted to the illustrative dataset 

Results obtained by the different methods applied to the illustrative dataset are displayed in Table 5. 

All methods found a decrease of the number of perinatal deaths in the treated women (i.e. those in the 

group of routine induction). However, the methods differed markedly in terms of the magnitude of the 

effect and confidence interval obtained, especially for the OR and RR. Since this review included only 

zero-event studies, the IV method without cc was unable to provide finite estimates for the OR and RR. 

As expected in such a rare event setting, estimates obtained for these two ES were quite similar. 

- Insert Table 5 here - 

4  Simulation study 

4.1 Model 

We considered various scenarios, which varied according to (i) the level of rareness (extremely rare, 

very rare, moderately rare, common), (ii) the assumption regarding baseline prevalences (homogeneous 

or heterogeneous), (iii) the level of unbalance between the trials’ arms (strong unbalance in favor of 

either arms, moderate unbalance in favor of either arms, no unbalance), (iv) the size of the treatment 

effect (large reduction, moderate reduction, no effect, moderate increase, large increase). Extremely 

rare events had a median baseline probability of 𝑀𝜋𝑐
= 0.005. The three other rareness levels 

corresponded to 𝑀𝜋𝑐
= 0.01, 0.05, 0.1, respectively. With homogeneous baseline prevalences we set 

πkc = 𝑀𝜋𝑐
 ∀𝑘. With heterogeneous baseline prevalences, we used 

𝜋𝑘𝑐~𝐿𝑜𝑔𝑖𝑡-𝑛𝑜𝑟𝑚𝑎𝑙(𝑙𝑜𝑔𝑖𝑡(𝑀𝜋𝑐
), 𝜎𝑙𝑜𝑔𝑖𝑡

2 ), with 𝜎𝑙𝑜𝑔𝑖𝑡
2 = 0.5. As regards unbalance, the five scenarios 

considered were obtained with mean levels 𝑟 = 0.25, 0.5, 1, 2, 4 (𝑟 = 0.25 corresponding to setting 

with control groups four times smaller than treatment groups, in average). For the OR, and the RR, the 

sizes of treatment effect – measured on the log(OR) and log(RR) scales, respectively – were 

−1.5, −0.5, 0, 0.5, 1.5.  For the RD, we did not consider reduction in event prevalence to avoid cases 

with negative treatment probability. We used the three following values: 0, 0.05, 0.1. 

Combinations of these four characteristics resulted in 200 simulation scenarios for the OR and RR, and 

120 for the RD. For each scenario, 10,000 meta-analyses were generated, each of them consisting of K 

= 20 primary studies with treatment arms’ sample sizes ranging from 50 to 150 (i.e. 

𝑛𝑘𝑡~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(50; 150)). Sample sizes for the control arms were then obtained as 𝑛𝑘𝑐 = 𝑛𝑘𝑡 ∗ 𝑅, 

where 𝑅~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑟 − 0.1; 𝑟 + 0.1) and 𝑟 controls the degree of arms unbalance. Treatment 

probabilities πkt were derived from the control probabilities and the ES considered (e.g. for RD: πkt =
πkc + 𝑅𝐷). Finally, the number of events in both arms were generated by two binomial draws with 

respective sample sizes and event probabilities.  

As pointed out by a reviewer, meta-analyses of K = 20 studies might seem an optimistic scenario, as 

many published meta-analyses include a smaller number of studies. Nevertheless, for our goal to study 

the impact of rare events, it was better to have a large enough K to avoid fluctuation issues related to 

scarcity of primary-studies. Therefore, we set the number of studies at a somewhat ideal level, but still 

realistic. For instance, Moher et al. (2007) found a median number of 23 studies out of 88 systematic 

reviews analyzed. 

For each of the generated meta-analyses, we estimated the ES of interest, its standard error and the 95% 

Wald CI. Performances of the different methods were assessed in terms of bias, and coverage rate. We 

additionally computed CIs’ width and reported them, along with the coverage rate, in the file 

containing the detailed simulations results (see Supplementary Material). We decided to compute 

median instead of mean values for the bias and CIs’ width to avoid the influence of exceedingly large 

or small values obtained in some simulations. Both OR and RR were analyzed on the log scale.  



4.2 Results 

In this section, we presented abridged results focusing on the most interesting findings for each ES in 

the setting of heterogeneous baseline prevalences, since results and conclusions obtained with 

homogeneous and heterogeneous baseline prevalences were quite similar. Furthermore, we only 

discussed results for r = 1, 2, 4 and log(ES) = 0, -0.5, -1.5 (ES = RR or OR), which illustrate well the 

issues of unbalanced sample sizes and large treatment effects. Detailed results for all the ES, simulated 

scenarios and outcomes can be found in the Supplementary Material.  

4.2.1 Odds ratio 

In terms of bias (Figure 1), the MH and Binomial regression methods provided the best estimates 

whereas the IV method was the least robust across almost all settings considered. The use of a cc 

reduced the bias of the IV estimator but increased that of MH and Peto. The MUE method can be seen 

as an improved version of the IV method with performances comparable to those obtained when using 

the IV method with cc. The Peto method obtained similar results to those of the MH and Binomial 

regression methods for moderate and no treatment effects, particularly under balanced settings. 

However, it was clearly not reliable with large treatment effects and even failed to converge for 

increasing baseline probabilities (whatever the degree of unbalance). Under the scenario of no 

treatment effect and balanced trials, all the methods provided unbiased estimates, except the MH + cc 

method. 

- Insert Figure 1 here - 

In terms of coverage rates (Figure 2), ranking of the different meta-analysis methods was similar to 

what was obtained in terms of bias. The following additional observations can be made: (i) MH and 

Binomial regression were slightly conservative in extremely rare event settings, (ii) coverage rates 

obtained by the IV (with or without cc) and MUE methods were below 90% in many scenarios 

considered, and (iii) ranking between these three methods varied depending on the setting.  

- Insert Figure 2 here - 

4.2.2 Relative risk 

In terms of bias (Figure 3), comparisons between the different methods yielded to the same conclusions 

as those drawn for the OR: (i) MH estimator was the least biased, (ii) the use of a cc increased the bias 

for MH estimator and reduced it for the IV estimator, and (iii) performances of the MUE method were 

comparable to those of the IV method with cc.  

- Insert Figure 3 here - 

In terms of coverage rates (Figure 4), results obtained by the six methods investigated to estimate the 

RR were comparable to those obtained for the OR.  

- Insert Figure 4 here - 

4.2.3 Risk difference 

In terms of bias (Figure 5), the MH estimator of the RD was the least biased across the different 

settings. Ranking of IV, IV + cc and MUE depended on the setting and none of the methods strictly 

dominated – or was strictly dominated by – the others. For all the methods, bias values for the RD were 

much smaller than those obtained for the RR and OR. 

- Insert Figure 5 here - 

In terms of coverage rates (Figure 6), the MH method again obtained the best results. Contrarily to CIs 

for the OR and RR, those obtained for the RD tended to have slightly below 95% coverage rates in 



extremely rare event settings. Coverage rates provided by IV, IV + cc and MUE methods did not 

systematically converge towards 95% as the event prevalence increased. 

- Insert Figure 6 here - 

5  Discussion 

Traditionally, in meta-analysis, a clear distinction is made between the FE and the RE models. In the 

FE model, one assumes that the treatment effect is homogeneous across the primary studies and the 

goal of the meta-analysis is to estimate a single population parameter. In the RE model, one assumes 

that the treatment effect is heterogeneous across the primary studies (there is a population of 

parameters) and focus is on characterizing the distribution of these parameters. The selection of either 

model must be based on contextual knowledge, as this choice has implications in terms of target of 

inference and appropriate statistical methods to conduct the analysis.  

When considering count data, one must further distinguish between settings where baseline prevalences 

are expected to be homogeneous or heterogeneous. Indeed, we have shown that this distinction has a 

direct implication regarding the notion of treatment effect homogeneity. Again, the choice between 

these two settings should be grounded on contextual knowledge. In the literature, the distinction 

between homogeneous and heterogeneous baseline prevalences is seldomly discussed. Actually, we 

found only one paper where simulations were carried out under the FE framework with heterogeneous 

baseline prevalences (Böhning and Sarol, 2000). However, the authors focused on the RD only and did 

not consider the issue of rare events. In the three most comprehensive simulation studies that tackled 

the issue of rare event meta-analysis (Sweeting et al., 2004; Bradburn et al., 2007; Kuss 2015), the 

authors did not consider heterogeneous baseline prevalences. Therefore, the objective of this paper was 

to investigate the impact of homogeneous versus heterogeneous baseline prevalences on the 

performance of FE meta-analysis methods in the context of rare events and homogeneous treatment 

effect. Through extensive simulations, we assessed the ability of the IV, MH, Peto, with or without cc, 

MUE and Binomial regression methods to estimate the three most commonly used effect sizes with 

count data (RD, RR and OR) under various settings.  

We found that whatever the baseline prevalences (i.e. either homogeneous or heterogeneous), under all 

the scenarios considered, and for all the ESs, the most reliable methods were the MH method without 

cc and the Binomial regression model (for estimating the OR only). Interestingly, the fact that the MH 

method discards DZ studies did not seem to introduce a bias. On the contrary, using a cc to include the 

information contained in DZ studies deteriorated dramatically this method’s performances. 

Under the setting of homogeneity in baseline prevalences, MH estimates for the OR, RR and RD 

correspond to those of the simple pooling method. In other words, when assuming a FE model with 

homogeneous baseline prevalences, one does not need to apply meta-analysis techniques to compute a 

combined estimate. This is because, under this particular framework, the three ES are collapsible 

(Greenland et al., 1999; Guo and Geng, 2005; Hernan et al., 2011). However, when introducing 

heterogeneity in baseline prevalences, the OR is no more collapsible and simple pooling leads to biased 

estimates (this was confirmed by additional simulations; results not shown). As for the RR and RD, 

they remain collapsible and, thus, one can obtain unbiased estimates by simply pooling the studies, 

even in the presence of heterogeneous baseline prevalences. Nonetheless, our simulations have shown 

that simple pooling yielded CIs with coverage rates below nominal. The reason was linked to a failure 

of the simple pooling method to account for a larger sampling distribution of the ES. 

Consistently with the statistical literature, our simulations ranked IV as the worst method in almost all 

rare events settings. Moreover, we found that this method failed to provide valid CIs and unbiased 

estimates in scenarios with common events (i.e. baseline prevalences around 10%).  When estimating 

the RR and OR, the use of a cc improved the performance of the IV method in terms of bias. However, 

this was not the case for the RD and coverage rates obtained for the three ESs were not nominal. As a 

solution to improve the coverage rates, we additionally considered the modified Hartung-Knapp-Sidik-

Jonkman (HKSJ) method (Röver et al., 2015), which involves the use of the Student-t distribution and 

a multiplicative correction term for the variance (additional simulations; results not shown). By 

increasing the size of the CI, this method improved the coverage rates in scenarios where IV’s CIs were 



below nominal. Most of the time, however, coverage rate of HKSJ’s CIs remained below 95%.  In 

addition, when coverage rates were nominal, this method provided wider CIs than those obtained using 

the MH method. Likewise, HKSJ’s CIs were too conservative in scenarios where IV’s CIs were valid. 

The Peto method, which is often recommended in cases of rare events (Higgins and Green, 2011), 

yielded contrasted results. Whereas the amount of bias and coverage rates were similar to those 

obtained by the MH  and Binomial regression method in scenarios with no effect or medium treatment 

effect, results provided by this method under settings with large treatment effect critically deteriorated, 

especially with large unbalance between the trial’s arms. These findings seem to corroborate the 

conclusions made by some authors stating that the Peto method should only be applied with great 

caution (Brockhaus et al., 2016). Moreover, we found that Peto’s estimates did not converge towards 

the true OR when the baseline probability increased, which gives additional credits to the argument that 

Peto’s OR should be viewed as a different ES, and not as an OR’s estimator (Brockhaus et al., 2014). 

Finally, the use of a cc deteriorated the performance of the Peto method. 

The MUE method is an interesting – since less subjective – alternative to the use of a cc. It tackles the 

issue of zero-event studies elegantly and does not involve complex computations (i.e. it only requires 

the computation of Beta quantiles). While meta-analyses techniques based on MUE of probability have 

already been discussed by Li and Wang (2017), we innovated here by combining these estimates using 

a weighted average. The amount of bias found for the OR and RR were similar to that obtained with the 

IV + cc method. On the other hand, results obtained for the RD were more contrasted and the MUE 

method sometimes provided the most biased estimates. 

6  Conclusion 

Based on our findings, we make the following recommendations to applied researchers conducting 

meta-analyses of count data, under the framework of a homogeneous treatment effect. First, it is 

important to clarify the question of heterogeneous vs homogeneous baseline prevalences. When 

prevalences are expected to be heterogeneous, the researcher has to decide on which scale the treatment 

effect is assumed homogeneous (i.e. OR, RR or RD). Second, we highly recommend using the MH 

method without cc in all circumstances (i.e. whatever the ES of interest, the assumption regarding the 

heterogeneity in baseline prevalences, and the scenario considered). To estimate the OR, the Binomial 

regression method is a sound alternative, which allows one to adjust for covariates. Third, the use of a 

cc should be definitively abandoned. 

The main limitation to these recommendations is that they only apply to the framework of a 

homogeneous treatment effect. The reader must keep in mind that the MH method is not valid when the 

treatment effect is heterogeneous, which is often the case in practice (Kontopantelis et al., 2013). 

Moreover, we did not investigate Bayesian methods. However, this choice was deliberate and 

motivated by the fact that these methods require the use of subjective priors, which can have – even 

non-informative ones – substantial effects on the estimates, especially with rare events (Lambert et al., 

2005; Senn, 2007). Future researches should focus on extending the present work to the setting of 

heterogeneous treatment effects, with or without baseline heterogeneity. 
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Appendix: derivation of 𝒑𝒌𝒋
𝑼  for the median unbiased estimator method 

Parzen et al. (2002) showed that 𝑝𝑘𝑗
𝑈  could be obtained by solving 

0.5 = ∑(𝑝𝑘𝑗
𝑈 )

𝑖

𝑋𝑘𝑗

𝑖=0

(1 − 𝑝𝑘𝑗
𝑈 )

𝑛𝑘𝑗−𝑖
 (A1) 

Then, one can use the following relationship between the cumulative Beta distribution function and the 

cumulative Binomial distribution function (Johnson and Kotz 1969; Daly, 1992): 

𝐹(𝑝|𝛼, 𝛽) = ∑ (
𝑛
𝑖

)

𝑛

𝑖=𝛼

𝑝𝑗(1 − 𝑝)𝑗 (A2) 

where 𝐹(∙ |𝛼, 𝛽) is the cumulative Beta distribution with integer parameters 𝛼 and 𝛽 = 𝑛 − 𝛼 + 1. 

Plugging (A2) into (A1) yields 

0.5 = 1 − 𝐹(𝑝𝑘𝑗
𝑈 |𝛼 = 𝑋𝑘𝑗 + 1, 𝛽 = 𝑛𝑘𝑗 − 𝛼 + 1) (A3) 

where 𝛽 = 𝑛𝑘𝑗 − (𝑋𝑘𝑗 + 1) + 1 = 𝑛𝑘𝑗 − 𝑋𝑘𝑗, and not  𝑛𝑘𝑗 − 𝑋𝑘𝑗 + 2 as Parzen and colleagues wrote 

in their paper on page 425.  

Finally, an expression for 𝑝𝑘𝑗
𝑈  is given by 

𝑝𝑘𝑗
𝑈 = 𝐹−1(0.5|𝛼 = 𝑋𝑘𝑗 + 1, 𝛽 = 𝑛𝑘𝑗 − 𝑋𝑘𝑗) (A4) 

which corresponds to the expression we used in this paper. 
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Figures and tables 

 
Figure 1 Biases obtained by the IV, IV+cc, MH, MH+cc, Peto, Peto+cc, MUE and Binomial 

regression methods when estimating the log(OR). Values were right-truncated at 1.5 to allow a better 

visual inspection. 

  



Figure 2 Coverage rates (in %) obtained by the IV, IV+cc, MH, MH+cc, Peto, Peto+cc, MUE and 

Binomial regression methods for the log(OR). Values were left-truncated at 80 to allow a better visual 

inspection. 

  



 
Figure 3 Biases obtained by the IV, IV+cc, MH, MH+cc and MUE methods when estimating the 

log(RR). Values were right-truncated at 1.5 to allow a better visual inspection. 

  



 
Figure 4 Coverage rates (in %) obtained by the IV, IV+cc, MH, MH+cc and MUE methods for the 

log(RR). Values were left-truncated at 80 to allow a better visual inspection. 

  



 
Figure 5 Biases (in %) obtained by the IV, IV+cc, MH and MUE methods when estimating the 

RD. 

  



 
Figure 6 Coverage rates (in %) obtained by the IV, IV+cc, MH and MUE methods for the RD. 

Values were left-truncated at 80 to allow a better visual inspection. 

  



Table 1 Frameworks for the meta-analysis of count data 

 Homogeneous treatment effect Heterogeneous treatment effects 

Homogeneous baseline 

prevalence 

Fixed effect (FE) with baseline 

heterogeneity 

Random effects (RE) with 

baseline homogeneity 

Heterogeneous baseline 

prevalences 
FE with baseline heterogeneity RE with baseline heterogeneity 

 

Table 2 Consequence of baseline heterogeneity under the FE framework 

𝜋𝑐 𝜋𝑡 RD RR 

0.16 0.26 0.1 1.63 

0.33 0.43 0..1 1.30 

0.03 0.13 0.1 4.45 

0.17 0..27 0..1 1.59 

0.07 0.17 0.1 2.39 

 

Table 3 Strategy applied to deal with zero-event studies 

 IV method MH method Peto method 

 without cc with cc without cc with cc without cc with cc 

OR 

Discard  

DZ and SZ 

studies 

Add 0.5 to  

DZ and SZ 

studies 

No action 

requireda 

Add 0.5 to 

DZ studies 

No action 

requireda 

Add 0.5 to 

DZ studies 

RR 

Discard 

DZ and SZ 

studies 

Add 0.5 to  

DZ and SZ 

studies 

No action 

requireda 

Add 0.5 to  

DZ studies 
-  

RD 
Discard 

DZ studies 

Add 0.5 to  

DZ studies 

No action 

requireda 

No cc 

requiredb -  

Note: aMH and Peto methods provide estimates that are well defined even in the presence of SZ or DZ 

studies. bThe MH method provides RD estimates that include the information contained in both SZ and 

DZ studies. 

  



Table 4. Illustrative dataset (perinatal death in post-term pregnancy) 

 Routine induction Selective induction 

Trial 𝑛𝑐 𝑋𝑐 (Deaths) 𝑛𝑡 𝑋𝑡 (Deaths) 

Henry (1969) 57 2 55 0 

Cole (1975) 119 0 118 0 

Martin (1978) 134 1 131 0 

Tylleskar (1979) 55 0 57 0 

Breart (1982) 235 0 481 0 

Katz (1983) 78 0 78 1 

Suikkari (1983) 53 0 66 0 

Sande (1983) 90 0 76 0 

Cardozo (1986) 207 1 195 0 

Augensen (1987) 195 0 214 0 

Dyson (1987) 150 1 152 0 

Witter (1987) 97 0 103 0 

Bergsjo (1989) 94 1 94 0 

Egarter (1989) 168 1 188 0 

Martin (1989) 10 0 12 0 

Heden (1991) 129 0 109 0 

Hannah (1992) 1706 2 1701 0 

Herabuyta (1992) 51 0 57 0 

NICH (1994) 175 0 235 0 

 

  



Table 5. Results of meta-analysis of the illustrative dataset 

 Effect size estimate 95% Wald CI 

Odds ratio 
  

IV . . 

IV+cc 0.56 (0.25; 1.27) 

MH 0.11 (0.01; 0.88) 

MH+cc 0.35 (0.14; 0.88) 

Peto 0.20 (0.06; 0.70) 

Peto+cc 0.44 (0.18; 1.03) 

MUE 0.52 (0.20; 1.38) 

BinReg (with fixed intercept) 0.10 (0.01; 0.81) 

BinReg (with random intercetpt) 0.10 (0.01; 0.81) 

Relative risk 
  

IV . . 

IV+cc 0.57 (0.25; 1.27) 

MH 0.11 (0.01; 0.88) 

MH+cc 0.35 (0.14; 0.89) 

MUE 0.52 (0.20; 1.38) 

Risk difference (values provided in %) 
  

IV -0.15 (-0.31; 0.00) 

IV+cc -0.14 (-0.28; 0.00) 

MH -0.20 (-0.36; -0.05) 

MUE -0.11 (-0.27; 0.04) 

 

 


