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Scientific summary

With 50 million cases and 11 million deaths per year, sepsis is one of the leading causes of death
worldwide. Sepsis is caused by a dysregulated host response to an infection, which consists of
concurrent inflammatory and immunosuppressive reactions. Myeloid-derived suppressor cells
(MDSCs) are immature myeloid cells characterized by their immunosuppressive properties, rising in
inflammatory diseases. MDSCs are subdivided into polymorphonuclear MDSCs (PMN-MDSCs) and
monocytic MDSCs (M-MDSCs) based on their relationship with mature PMNs and monocytes. It is
unknown how their level varies over time in human sepsis. We hypothesized that MDSCs have
diagnostic and prognostic potential in sepsis patients. In this thesis, we aimed to illustrate the dynamic
profile of MDSCs in critically ill patients in relation to sepsis severity, secondary infections, and

mortality.

Four study cohorts were used: 1) healthy subjects infused with endotoxin, 2) non-infectious, critically
ill patients without antibiotic therapy (PIPOVAP study), 3) hospitalized coronavirus 2019 (COVID-19)
patients and, 4) sepsis patients with multi-organ dysfunction syndrome (MODS) (INCLASS study).
Serial samples of peripheral blood were used to quantify MDSCs by flow cytometry and FlowSOM to
avoid gating biases. M-MDSCs were defined as HLA-DRl**¥ monocytes, and PMN-MDSCs as CD16lw
granulocytes. Furthermore, we quantified up to 49 cytokines by multiplex bead assay, and analysed the
functionality of monocytes and dendritic cells (DCs) in ex vivo stimulated whole blood by intracellular

cytokine staining and flow cytometry.

Endotoxin infusion in healthy subjects induced a quick, massive, and transient accumulation of MDSCs
in peripheral blood. PMN-MDSCs increased 40-fold to reach up to 43% of all granulocytes 6-8 hours
after infusion. M-MDSCs increased 10-fold 8 hours after endotoxin infusion comprising more than half
of total monocytes. After 24 hours, PMN-MDSCs and M-MDSCs returned to baseline levels. In patients
enrolled in the PIPOVAP, COVID-19, and INCLASS studies, the blood concentration of PMN-MDSCs
and M-MDSCs were high at study inclusion and correlated to disease severity. In the PIPOVAP study,
high levels of M-MDSCs also correlated to the development of secondary gram-negative infections. High
MDSCs were associated with mortality in non-infectious critically ill patients (PIPOVAP), but with
survival in sepsis patients with MODS (INCLASS). MDSCs correlated with the concentrations of blood
cytokines, chemokines, and growth factors in the PIPOVAP and COVID-19 studies. Finally, 3 months
after the COVID-19 diagnosis, irrespective of initial disease severity, MDSCs were back to normal levels

whilst the production of cytokines by blood cells was still largely affected.

Altogether, we report that MDSCs quickly rise during endotoxemia and are associated with sepsis
severity. Thus, MDSCs might represent valuable tools to screen vulnerable patients in the intensive care.
Additionally, we show for the first time that a high level of MDSCs is associated with improved outcomes
in a subset of extremely ill sepsis patients with MODS. Overall, MDSCs may represent sepsis biomarkers
and targets of therapy. To pursue clinical development, the quantification method of MDSCs in patients
need to be standardized, and the function and plasticity of MDSCs during sepsis should be further

explored.
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Résumé scientific

Avec 50 millions de cas et 11 millions de décés par an, le sepsis est I'une des principales causes de déces
dans le monde. Le sepsis est causé par une réponse dérégulée de I'h6te en réponse a une infection, qui
consiste en des réactions inflammatoires et immunosuppressives concomitantes. Les cellules
suppressives d'origine myéloide (MDSCs) sont des cellules myéloides immatures caractérisées par leurs
propriétés immunosuppressives. Les MDSCs sont subdivisées en MDSCs polymorphonucléaires (PMN-
MDSCs) et MDSCs monocytaires (M-MDSCs) en fonction de leur relation avec les PMNs et monocytes
matures. L’évolution des MDSCs au cours d’'un sepsis humain est trés peu documentée. Pour combler
cette lacune, dans cette thése nous avons analysé 'expression des MDSCs dans le sang en regard de la

sévérité du sepsis et de parametres immunologiques.

Quatre études de cohortes ont été utilisées: 1) des sujets sains perfusés avec de 1'endotoxine, un
composant de bactéries gram-négatives qui permet de mimer une infection bactérienne (étude
endotoxin), 2) des patients non infectieux, hospitalisés aux soins intensifs (SI) (étude PIPOVAP),
3) des patients coronavirus 2019 hospitalisés (étude COVID-19) et 4) des patients sepsis présentant
un syndrome de défaillance multiviscérale associé a une mortalité d’environ ~70% (étude INCLASS).
Des échantillons sériels de sang périphérique ont été collectés pour quantifier les MDSCs. En outre,
nous avons mesuré une cinquantaine de cytokines, chimiokines et facteurs de croissances et analysé la

fonctionnalité des globules blancs du sang complet.

La perfusion d'endotoxine chez des sujets sains induisait une accumulation rapide, massive (pouvant
aller jusqu’a 30-40% de tous les globules blancs) et transitoire de MDSCs. Apres 24 heures, les MDSCs
étaient revenus a un taux normal. Les MDSCs étaient élevées chez les patients inclus dans les études
PIPOVAP, COVID-19 et INCLASS. Cette augmentation corrélait avec la gravité de la maladie et, dans
I'étude PIPOVAP, avec le développement d'infections nosocomiales. Des taux élevés de MDSCs étaient
associés a la mortalité chez les patients non-infectieux hospitalisés aux SI. Par contre, une accumulation
de MDSCs était associée a un devenir favorable chez les patients sepsis ayant développé un syndrome
de défaillance multiviscérale. Finalement, chez les patients COVID-19 ré-analysés 3 mois apres leur
hospitalisation, les MDSCs étaient normales alors que certains dysfonctionnements immunitaires

étaient détectés. Ceux-ci qui pourraient étre associés au syndrome de « COVID long ».

En résumé, nous rapportons que les MDSCs augmentent rapidement et fortement dans le sang
d’individus exposés a un composant de bactérie, et qu’elles sont associées a la sévérité du sepsis. Ainsi,
les MDSCs ont un potentiel diagnostique et pronostique chez les patients atteints de sepsis. Par ailleurs,
les MDSCs pourraient représenter des cibles d'immunothérapie, d’autant plus que des traitements

ciblant les MDSCs sont actuellement testées dans le cadre de cancers.






Summary for the general public

The immune system protects the human body against infections caused by microorganisms, like viruses
and bacteria. White blood cells are one important part of the immune system. White blood cells kill
invading organisms as well as warn and activate other white blood cells to increase host defences.
However, sometimes the immune system does not respond appropriately to an infection, or it cannot
control it. When that happens, white blood cells injure tissues through collateral damage while trying
to contain the infection. This can lead to organ failure, which is associated with a high mortality rate.
When this happens, it is called sepsis. With 50 million cases and 11 million deaths per year, sepsis is a
global health priority. During sepsis, white blood cells can respond too strongly, stop functioning, or
even repress the function of other cells. This is called immunosuppression. Immunosuppression can
cause long-term effects in recovered sepsis patients, such as the development of new infections and

heart diseases.

In this thesis, we were interested in a particular type of white blood cells called myeloid-derived
suppressor cells (MDSCs). MDSCs restrict the function of other white blood cells. In short, they are
immunosuppressive. Healthy people have very few MDSCs, but patients with inflammatory diseases
such as cancer, have high levels of MDSCs. How fast MDSCs respond after an infection, and what type
of impact these cells have during sepsis are largely unknown. We aimed to give an in-depth view of the

dynamics of MDSCs in conditions of inflammation and infection.

We set up four studies to address our aim. Blood was collected from individuals at different time
intervals to measure MDSCs and other immune parameters. The first study was with healthy volunteers
who were injected with bacterial compounds, which trigger white blood cells mimicking bacterial sepsis.
We observed that MDSC levels rise strongly 2 hours after infusion and remained high until 8 hours after
the injection. MDSCs returned to normal levels after 24 hours. This tells us that MDSCs are very fast
responders when the host is triggered by a bacterial compound. In the second study, we tested critically
ill patients in the Intensive Care Unit (ICU) without an infection. We noticed that patients with high
levels of MDSCs were more likely to become infected and to die. We assume that MDSCs suppressed
the function of anti-microbial white blood cells, increasing the risks of infection. In the third study, we
looked at COVID-19 patients. COVID-19 patients can develop sepsis, which is one of the reasons why
some must be hospitalized. Patients admitted to the ICU had more MDSCs than patients who did not
require admission to the ICU. In the fourth study, we analysed severe sepsis patients with multiple
organ dysfunctions. Patients with high levels of MDSCs were more likely to survive. Most likely, MDSCs
were beneficial in these severe patients because MDSCs were counterbalancing the otherwhite blood

cells that were overreacting and damaging.
To conclude, this thesis shows 1) how MDSCs are modulated during sepsis, and 2) that MDSCs can be
helpful or hurtful depending on the degree of sepsis severity. We propose to use MDSCs as signals of

sepsis severity, and possibly as targets of therapy as currently tested in cancer patients.
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Résume destiné a un large public

Le systéme immunitaire protege notre organisme contre les infections par les bactéries et les virus. Les
globules blancs présents dans le sang sont des éléments vitaux du systeme immunitaire car ils peuvent
tuer les bactéries et les virus. Par ailleurs ils activent d'autres globules blancs, augmentent les défenses
de I'héte, et conferent la mémoire immunitaire protégeant de réinfections. Il arrive que le systeme
immunitaire ne réponde pas de fagcon appropriée ou ne peut pas controler 'infection. Dans ce cas, les
globules blancs peuvent causer des dommages collatéraux aux tissus. Cela peut entrainer une

défaillance d’organe, associée a un taux de mortalité élevé. C'est ce qu'on appelle un sepsis.

Avec 50 millions de cas et 11 millions de déces par an, le sepsis est une priorité sanitaire mondiale. Lors
d’un sepsis, les globules blancs peuvent cesser de fonctionner ou empécher le fonctionnement d'autres
cellules. C'est ce qu'on appelle I'immunosuppression. Elle peut avoir des effets a long terme chez les

patients ayant guéris d’un sepsis, comme le développement d’infections et ou de maladies cardiaques.

Dans cette thése, nous nous sommes intéressés aux globules blancs appelés cellules myéloides
suppressives (MDSCs). Les MDSCs restreignent la fonction des autres globules blancs, elles sont donc
immunosuppressives. Les personnes en bonne santé, contrairement a celles atteintes de maladies
inflammatoires y compris le cancer, ont trés peu de MDSCs dans leur sang. Trés peu étant connu quant
a I'implication des MDSCs dans le sepsis, notre objectif était de fournir une analyse approfondie de la

dynamique des MDSCs dans des conditions d'infection.

Nous avons mis en place quatre études pour répondre a notre objectif. Le sang a été prélevé a intervalles
réguliers pour mesurer les MDSCs et d'autres parametres immunologiques. La premiére étude
portait sur des volontaires sains recevant une injection d’'un morceau de bactérie simulant un sepsis a
bactérie. Les MDSCs augmentaient rapidement, fortement, et transitoirement revenant a un niveau
normal 24 heures apres I'injection. Dans la deuxiéme étude, nous avons testé des patients sans
infection, admis aux soins intensifs (SI). Nous avons remarqué que les patients avec beaucoup de
MDSCs développaient plus d’infections nosocomiales, dont des infections mortelles. Nous pensons que
les MDSCs supprimaient la fonction des globules blancs antimicrobiens, augmentant les risques
d'infection. Dans la troisiéme étude, nous avons examiné des patients atteints de COVID-19. Les
patients COVID-19 admis aux ST avaient plus de MDSCs que ceux n’ayant pas besoin d'étre admis aux
SI. Dans la quatriéme étude, nous avons analysé des patients atteints de sepsis grave présentant une
défaillance de plusieurs organes. Ceux avec beaucoup de MDSCs avaient un pronostique plus favorable.
Nous pensons que, dans ce contexte particuliérement sévere (environ 70% des patients décédaient), les
MDSCs contrebalancaient la réponse excessive de globules blancs et les dommages collatéraux
subséquents.

Pour conclure, cette thése décrit comment les MDSCs sont modulées pendant un sepsis, et que les
MDSCs peuvent étre utiles ou néfastes selon le degré de sévérité des patients infectés. Les MDSCs
pourraient étre utilisées comme indicateur de gravité du sepsis, et éventuellement comme cibles de

traitements tels que ceux ciblant les MDSCs testés actuellement chez les patients cancéreux.
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Lekensamenvatting

Het lichaam wordt door zijn eigen immuunsysteem beschermd tegen indringers zoals virussen en
bacterién. Witte bloedcellen spelen daarbij een belangrijke rol. Ze doden indringers en waarschuwen en
activeren andere witte bloedcellen om de afweer te versterken. Soms reageren de witte bloedcellen te
sterk of krijgen ze de infectie niet onder controle. In een poging de infectie te bestrijden beschadigen
witte bloedcellen dan de weefsels. Deze weefselschade kan leiden tot uitval van organen. De kans op
overlijden is hierbij groot. Dit ernstige ziektebeeld wordt sepsis genoemd. Jaarlijks ontwikkelen
wereldwijd ongeveer 50 miljoen mensen sepsis waarvan er 11 miljoen overlijden. Na een doorgemaakte
sepsis is er kans op langdurige gezondheidsproblemen, zoals bijvoorbeeld nieuwe infecties en
hartaandoeningen. Dit komt doordat tijdens sepsis, witte bloedcellen niet alleen te sterk reageren, maar
ook stoppen met functioneren en de functie van andere cellen onderdrukken. Dit laatste wordt

immunosuppressie genoemd en kan lang aanhouden nadat patiénten van sepsis hersteld zijn.

In dit proefschrift onderzochten we een bepaald type witte bloedcel, namelijk “myeloid-derived
suppressor cells” (MDSC's). MDSC's onderdrukken de functie van andere witte bloedcellen en werken
dus immunosuppressief. In tegenstelling tot gezonde mensen hebben patiénten met ontstekingsziekten
zoals kanker of auto-immuunziekten veel MDSC’s. Het is echter nog onbekend hoe snel MDSC’s

reageren op een infectie en welke rol zij spelen tijdens sepsis.

We hebben vier onderzoeken uitgevoerd om hierin meer inzicht te krijgen. De eerste studie betrof
gezonde vrijwilligers die stukjes van bacterién toegediend kregen. Dit activeert witte bloedcellen en is
daarom vergelijkbaar met bacteri€le sepsis. We constateerden dat de MDSC-waarden in het bloed 2 uur
na toediening sterk stegen en vervolgens verhoogd bleven tot 8 uur na toediening. Na 24 uur keerden
MDSC-waarden terug naar normaal. Hieruit kunnen we concluderen dat MDSC's zeer snel reageren
wanneer het lichaam wordt geinfecteerd door een bacterie. De tweede studie betrof ernstig zieke
patiénten die initieel geen infectie hadden op de intensive care (IC). In deze groep zagen we dat
patiénten met hoge MDSC-waarden een grotere kans hadden om een infectie te ontwikkelen en hierdoor
te overlijden. Waarschijnlijk onderdrukten MDSC's de functie van andere infectie-bestrijdende witte
bloedcellen, waardoor het infectierisico toenam. De derde studie betrof COVID-19-patiénten.
Sommige COVID-19-patiénten ontwikkelen sepsis en moeten worden opgenomen in het ziekenhuis. Wij
constateerden dat COVID-19-patiénten die op de IC waren opgenomen, meer MDSC's hadden dan
patiénten die op de verpleegafdeling konden blijven. Ten slotte, onderzochten we in vierde studie
patiénten met ernstige sepsis bij wie meerdere organen waren uitgevallen. Hier constateerden we dat
patiénten met hoge MDSC-waarden een grotere overlevingskans hadden. Hoogstwaarschijnlijk waren
MDSC's beschermend bij deze ernstig zieke patiénten omdat MDSC’s de te hevig reagerende witte

bloedcellen onder controle brachten.

Concluderend toont dit proefschrift hoe MDSC’s zich gedragen tijdens sepsis, en dat MDSC’s
therapeutisch of ziekmakend kunnen werken, afhankelijk van de mate van ontsteking in het lichaam.
MDSC-waarden kunnen in de toekomst mogelijk gebruikt worden als maat voor ernst van sepsis, en als

aangrijpingspunt voor medicatie.

Xi






Abbreviations

ARDS
ATRA
AUROC
CCL

CCR
CDSs
cGAS
ChiP-seq
CLP
CLRs
CMV
COVID-19
COxX
CpG ODN
CRP

CSF
CyTOF
DAMPs
DCs

DC

EEG
e-MDSCs
eo-MDSCs
EWAS
FoxP3
GF
GM-CSF
gp130
Gri1
GSDMD
GWAS
HAI
HAP
HATSs
HCAP
HDACs
HLA-DR
HSP

ICU

acute respiratory distress syndrome

all-trans-retinoic acid

area under the receiver operating characteristic curve

C-C motif chemokine ligand
C-C chemokine receptor
cytosolic DNA sensors
cyclic GMP-AMP synthase

chromatin immonopreciptation sequencing

cecal ligation and puncture

C-type lectin receptors
cytomegalovirus

coronavirus disease 2019
cyclooxygenase

CpG Oligodeoxynucleotides
C-reactive protein

colony stimulating factor
cytometry by time of flight
danger-associated molecular patterns
dendritic cells

discovery cohort
electroencephalogram

early stage MDSCs

eosinophilic MDSCs
epigenomic-wide association study
forkhead box P3

growth factor
granulocyte-macrophage-CSF
glycoprotein 130

granulocyte receptor-1

gasdermin D

genomic-wide association study
hospital-acquired infection
hospital-acquired pneumonia
histone acetyltransferases
health-care-associated pneumonia
histone deacetylases

human leukocyte antigen — DR isotype
heat shock protein

intensive care unit



IFNy interferron-gamma

IGs immature granulocytes

IKKs IkB kinases

IL interleukin

LDGs low-density granulocytes

IncRNAs long non-coding RNAs

LBP lipopolysaccharide binding protein

LPG2 laboratory of genetics and physiology 2
LPS lipopolysaccharide

MALDI-TOF matrix-assisted laser desorption/ionization time-of-flight
MAS macrophage activation syndrome

MBL mannose binding lectin

M-CSF macrophage-CSF

MDP muramyl dipeptide

MDSCs myeloid-derived suppressor cells

Mincle macrophage inducible C-type lectin
miRNA microRNA

MRI magnetic resonance imaging

mRNA messenger RNA

MDA5 melanoma differentiation associated gene 5
M-MDSCs monocytic MDSCs

MODS multi-organ dysfunction syndrome

MR mannose receptor

MS mass spectometry

MTP muramyl tripeptide

MyDS88 myeloid differentiation primary response 88
n/a not available

NF-kB nuclear factor-xB

NK natural killer

NLR neutrophil to lymphocyte ratio

NLRs nucleotide-binding oligomerization domain-like receptors
NO nitric oxide

Nrf2 nuclear factor erythroid-derived 2-like 2
PAMPs pathogen associated molecular patterns
PCT procalcitonin

PD-1 programmed cell death 1

PDC pyruvate dehydrogenase complex

PDL-1 programmed cell death ligand 1

PDE5 phosphodiesterase type 5

PMNs polymorphonuclear cells

PMN-MDSCs polymorphonuclear MDSCs



PPRs

PRMs

RCT
REMAP-CAP

RIG-1
RNA-seq
RNS

ROS
RTC
SEB
SARS-CoV-2
SIRS
SNP
SOFA
SRS
STAT
TCA
TGF
TLRs
TNF
TRAIL-R
Tregs
Uuo
VAP
VC
VEGF
WES
WGS

pattern recognition receptors

pattern recognition molecules

randomized control trials

randomised, embedded, multi-factorial, adaptive platform trial for community-
acquired pneumonia

retinoic acid inducible gene I

RNA sequencing

reactive nitrogen species

retinoic acid-inducible gene-I-like receptors
reactive oxygen species

randomized control trial

staphylococcal enterotoxin B

severe acute respiratory syndrome coronavirus 2
systemic inflammatory response syndrome
single nucleotide polymorphisms

sequential organ failure assessment

sepsis response signature

signal transducer and activator of transcription
tricarboxylic acid cycle

transforming growth factor

Toll-like receptors

tumor necrosis factor

TNF-related apoptosis-inducing ligand receptor
T regulatory cells

urine output

ventilator-associated pneumonia

validation cohort

vascular endothelial-GF

whole-exome sequencing

whole-genome sequencing

p: 4%
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1. Introduction

1. Introduction

1.1 Sepsis

1.1.1 History and definition

Early records show ancient civilizations' awareness of sepsis. As early as 4000 years ago, the Egyptians

stated that the intestine contained a dangerous substrate that could settle anywhere in the body. The

Ancient Romans worshipped the goddess Febris — goddess of fever and malaria — and believed that tiny

invisible animals in the blood caused “difficult diseases”. Hippocrates noted that fever with poor

circulation was dangerous for the patient [1-3]. Currently, the mechanisms behind sepsis are still largely

unknown and thus the definition remains up for debate (see Figure 1 for historical definitions of

sepsis).

460 - 370 BC

116 - 27 BC

1469 - 1527

1849 - 1919

1914

1991/2001

2016

Hippocrates: “when continuing fever is present, it is dangerous if the outer parts

are cold, but the inner parts are burning hot.” [1]

Varro: “... minute creatures [animalia minuta], which cannot be seen by the eye,
which float in the air and enter the body through the mouth and nose and there

cause serious diseases.” [2]

Machiavelli: “As the physicians say of hectic fever, that in the beginning of the
malady it is difficult to detect but easy to treat, but in the course of time, having
been neither detected nor treated in the beginning, it becomes easy to detect but
difficult to treat.” [4]

Osler: “Except on few occasions, the patient seems to die from the body’s

response to infection rather than from it.” [5, 6]

Schottmueller: “Sepsis is a state caused by microbial invasion from a local
infectious source into the bloodstream which leads to signs of systemic iliness in

remote organs.” [7]

Sepsis-1/Sepsis-2: “the term sepsis represents the systemic inflammatory
response to the presence of infection”, "'severe sepsis’ is defined as sepsis

"

associated with organ dysfunction, hypoperfusion or hypotension” and "septic
shock is defined as sepsis with arterial hypotension despite fluid resuscitation”.
(8. 9]

Sepsis-3: “Sepsis is defined as life-threatening organ dysfunction caused by a
dysregulated host response to infection.” “Septic shock is a subset of sepsis in
which underlying circulatory and cellular/metabolic abnormalities are profound

enough to substantially increase mortality”. [10]

Figure 1. Historical definitions of sepsis.
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In 2016, a taskforce of nineteen specialists defined sepsis as “a life-threatening organ dysfunction
caused by a dysregulated host response to infection” and defined septic shock as “a subset of sepsis in
which particularly profound circulatory, cellular, and metabolic abnormalities are associated with a
greater risk of mortality than with sepsis alone”. Clinically, sepsis was defined as an increase by two or
more points of the Sequential Organ Failure Assessment (SOFA) score (Table 1) and septic shock is
defined as sepsis plus hyperlactatemia (> 2 mmol/L) and a need for vasopressors [10]. There have been
many attempts at defining sepsis and the latest “Sepsis-3” will not be the final definition. The main
difference between the Sepsis-3 and the antecedent Sepsis-1 (1991) and Sepsis-2 (2001) is the focus on
organ failure versus the systemic inflammatory immune syndrome (SIRS). The SIRS criteria include
tachycardia, tachypnea, hyperthermia or hypothermia, and abnormalities in peripheral white blood cell
count. Sepsis-3 also dropped the term “severe sepsis” (SIRS with the addition of organ dysfunction).
Using the SOFA score, used in Sepsis-3, compared with the SIRS criteria, used in Sepsis-1/2, makes the

definition more specific but less sensitive for mortality [11].

Table 1. Sequential Organ Failure Assessment (SOFA) score

Score
Organ system 0 1 2 3 4
Respiration 2400 300-399  200-299 100-199* <100*
(PaO2/FiO02)
Coagulation > 150 <150 <100 <50 <20
(platelets, x103/uL)
Liver (Bilirubin, mg/dL) | <1.2 1.2-1.9 2.0-5.9 6.0-11.9 >12.0
Cardiovascular MAP =270 MAP <70 Dopamine <5or Dopamine 5.1-15, Dopamine > 15,
mm Hg mm Hg dobutamine (nor) epinephrine (nor) epinephrine
<0.1 >0.1
Central nervous 15 13-14 10-12 6-9 <6
system (Glasgow
Coma scale)**
Renal (creatinine <1.2 1.2-1.9 2.0-34 3.5-4.9 >5.0
mg/dL, urine output or UO <500 or UO < 200
(UO), mL/day)

Adapted from Singer et al. [10] *with respiratory support, **Glasgow coma scale scores range from 3-15;
higher score indicates better neurological function, FiO2: fraction of inspired oxygen; PaO2: partial pressure of
oxygen; MAP: mean arterial pressure.

1.1.2 Epidemiology

It is challenging to quantify the incidence and mortality rates of sepsis. An extensive global study
performed in 2017 estimates that 48.9 million people develop sepsis every year with a mortality rate
between 7-40%, which makes sepsis a leading cause of death globally [10, 12, 13]. The incidence of sepsis
is increasing partly because of: 1) increasing antibiotic resistance, 2) a reporting bias due to a higher
awareness of sepsis, and 3) an increase of obesity and aging (both risk factors for sepsis) in Western

populations [14-16].

Pneumonia is the primary cause of sepsis (40% of sepsis patients), followed by abdominal,
genitourinary, primary bacteremia, and skin or soft tissue infections [17, 18]. Risk factors for sepsis are
similar to general infection development: immunosuppression (because of medication or disease),
cancer, invasive catheters and tubes, and age. There is a slightly higher risk for men to develop sepsis,

but gender does not influence outcome [19]. Obesity is often considered a risk factor for sepsis, however,
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antibiotics are often underdosed in this patient-category, which might bias this recurrent finding [20].
Specific risk factors include host genetics. Adopted children showed higher risk to die from infections
when a biological parent had died from infections. Twins and siblings studies confirm the heritability
of sepsis susceptibility [21-25]. Furthermore, certain polymorphisms in essential genes, including Toll-
like receptors, cytokines, and coagulation factors are associated with a higher risk of developing sepsis.
However, genetic research in the sepsis field presents a high risk of bias and therefore, results should

be interpreted carefully.

Survivors of sepsis often suffer from long-term psychological and physical problems [26]. More than
half of patients suffer from anxiety and depression, memory loss and confusion [27, 28]. Furthermore,
the ongoing dysregulation of the immune system can persist years after the initial sepsis episode. This
results in an increased risk of recurrent infections, cardiovascular adverse events, hospital re-

admissions, and death [29, 30].

Most research, including this thesis, focusses on sepsis and its treatment available in high-income
countries but 85% of sepsis cases arise in low and middle-income countries, with a peak in sub-Saharan
Africa (Figure 2) [26]. Thus, it should be emphasized that the cheapest and quickest way to save lives
from sepsis is through infection prevention in low and middle-income countries by vaccinating, treating

HIV/AIDS, and improving hygiene and safety of birth conditions [31].

.a-a‘@'!yf' 2
- R : :
il ' B T

Sepsis incidence per 100000
0 120t0 <200 M 540 to <640
O 200t0 <270 M 640to <1600
0 270t0<340 M 1600 to <2500
0 340t0 <440 MW 2500 to <3400
@ 44010 <540 M 3400 to 4300

Figure 2. Global Sepsis incidence. Incidence estimated in 2017 and standardized by age. Figure from [26].

1.1.3 Pathophysiology

1.1.3.1 Immune cell activation

When a pathogen invades the human body, an array of immune cells respond. Microorganisms express
conserved structures called pathogen associated molecular patterns (PAMPs), which include
components of the microbial cell wall (bacterial lipopolysaccharides (LPS or endotoxin) and
peptidoglycans, fungal mannose), flagellin and nucleic acids (single and double stranded RNA, DNA).
PAMPs are sensed by pathogen recognition receptors (PRRs) expressed by immune cells. Furthermore,

host molecules released after cellular damage or stress, such as DNA or ATP, are also sensed by PPRs.
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These molecules are called danger associated molecular patterns (DAMPs) [32]. When PRRs bind to
either PAMPS or DAMPs, they trigger intracellular signalling pathways that shape host response.

Richard Pfeiffer (1858-1945) noted that guinea pigs would die after infusion with heat killed V. cholera,
S. Typhi and H. influenzae. He hypothesised that their death was caused by a toxic bacterial component,
which he named endotoxin. Later, endotoxin was found to be an essential component the gram-negative
bacterial cell wall consisting of LPS and nowadays the terms LPS and endotoxin are used in synonym.
Both myeloid cells and lymphoid cells respond to LPS with a powerful immune response but for long, it
was unclear which receptor —or receptors— were responsible for this recognition. The discovery of Toll
in Drosophila by Anderson and Nusslein-Volhard —an effort later rewarded with the Nobel prize—
resulted in the discovery that Toll-like receptors (TLR) 4 can recognise LPS. It is now known that the
sensing of LPS involves other receptors including the LPS binding protein (LBP) and CD14, which work
together to transfer LPS to TLR4, which, together with MD-2, triggers protein-tyrosine kinase signalling
activating the host response (Figure 3) [33].

Currently, ten TLRs have been described in humans (Table 2). TLRs are present on the cell surface,
except for TLR 3, 7, 8 and 9, which are present in the endosome where they recognise single and double
strained RNA and DNA [34-36]. Furthermore, TLR4 can shuttle from the cell membrane to the
endosome. Upon activation, TLRs recruit adapter molecules, either MyD88 (myeloid differentiation
primary response 88) or TRIF (Toll/IL-1R (TIR)-domain-containing adaptor protein inducing IFN).
MyD88 interacts with all TLRs except TLR3, while TRIF interacts with TLR3 and endosomal TLR4.
MyD88 and TRIF activation set off a signalling pathway that activates NF-xB, interferon regulatory
factors (IRFs), and mitogen activation protein kinases (MAPKs) (Table 2, Figure 3). This activation
results in the production of inflammatory cytokines, chemokines and type I interferons (IFNs). The
ligands and functions of TLR10 are still under debate, but, in contrast to the other TLRs, TLR10 seems

to act immunosuppressive after activation [37].

Overall 5 main families of PRRs have been described including: TLRs, C-type lectin receptors (CLRs),
nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible gene-
I (RIG)-like receptors (RLRs) and cytosolic DNA sensors (CDSs) (Table 2, Figure 3) [34-36]. PRRs
are strategically expressed to sense microbial invasion in the extracellular milieu (TLRs, CLRs) or inside
cells (NLRs, RLRs, CDSs).

The family of CLRs comprises more than 1000 different receptors, which can be either soluble or cell
membrane bound. Soluble CLRs, e.g., mannose binding lectin (MBL), can opsonize pathogens to
stimulate phagocytosis. Membrane-bound CLRs are mainly found on myeloid cells and dendritic cells
(DCs) where they recognize carbohydrate structures, including fungal proteins (Table 2). Membrane-
bound CLRs include mannose receptor (MR), dectin-1, dectin-2, and macrophage inducible C-type
lectin (mincle) that after activation trigger SYK kinase resulting in a downstream signalling cascade that

results in the production of cytokines and other mediators (Figure 3).

NLRs are present in the cytoplasm and oligomerize after recognizing components of intracellular

bacteria, viruses and DAMPs. Some oligomerized NLRs, e.g., NOD1 and NOD2, can activate NF-kB and
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MAPKs through recruiting RIPK2, which results in the production of inflammatory cytokines,
chemokines and IFNs. Other oligomerized NLRs, e.g., NLRP1, NLRP3 and NLRC4, form cytosolic
cellular structures called inflammasomes, which are responsible for the activation of the inflammatory
caspase-1 (Figure 3). Caspase-1 cleaves pro-IL-1 and pro-IL-18 into IL-1p and IL-18, and gasdermin
D (GSDMD) in N-and C-terminus fragments. GSDMD-Nter oligomerize in the cell membrane, which
results in formation of pores that facilitate the release of IL-13 and IL-18 and cellular content. This
phenomenon is called pyroptosis. Of note, cytosolic LPS from gram-negative bacteria is sensed through
caspase-4/5 in human and caspase-11 in mice, called noncanonical inflammasome, to trigger a pathway

similar to that activated by caspase-1 and the release of IL-1p and IL-18.

RLRs are present in the cytoplasm and recognize viral RNA. The RLR family comprises three main
members: retinoic acid inducible gene I (RIG-I), melanoma differentiation associated gene 5 (MDAS5),
and laboratory of genetics and physiology 2 (LGP2). Activated RIG-I and MDA5 undergo a
conformational change that allows binding to their adaptor protein MAVS (mitochondrial antiviral-
signaling protein) that leads to downstream activation of NF-kB, MAPKs and IRFs signalling pathways.
LGP2 functions as a regulatory molecule of RIG-I and MDAs5 [38, 39].

CDSs, the youngest family of PRRs, are present in the cytoplasm where they recognise DNA. The two
most researched CDSs are cyclic GMP-AMP synthase (cGAS) and AIM2. Both c¢cGAS and AIM2
recognise retroviral DNA and DAMPS, e.g., mitochondrial DNA [40, 41]. Activated cGAS triggers the
adapter protein STING (stimulator of interferon genes) to stimulate IFN production [42]. AIM2

activation leads to inflammasome formation and the consequential IL-1p and IL-18 secretion [43].

Generally, immune cells prevent or resolve the pathogenic intrusion. However, it can happen that the
inflammatory cascade spirals out of control resulting in high level of cytokines (also called the cytokine

storm), general inflammation, and sepsis (Figure 4).
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Table 2. Examples of pattern recognition receptors (focussed on human leukocytes)

PPR Ligands Cell types Location
(high expression)
TLR TLR 1 Triacyl lipopeptides, DAMPS
TLR 2 Peptidoglycans, mannans, DPI,
DAMPS Macrophages,
TLR4 LPS, fungal mannans, neutrophils, Cell membrane
envelope proteins, DAMPs lymphocytes, DCs
TLR5 Flagellin
TLR6 Lipopetides, zymosan
TLR3 Viral dsRNA DCs, T cells, B cells Endosome
TLR7-8 SSRNA viruses . Myelloid cells (TLR8)’ membrane
TLR9 CpG ODN, ds DNA viruses
TLR10 Potentially: LPS, flagellin and B cells, DCs, Cell/lendosome
dsRNA granulocytes membrane
CLR ST Mannans
receptor
Dectin-1 B-glucans Myeloid cells, DCs Cell membrane
Dectin-2 a-mannans
Mincle a-mannans, DAMPs
NLR NOD1 MTP
NOD2 MDP Generally expressed
NLRP1 Anth_rax toxin . _ Cytosol
NLRP3 Peptldoglycans, bacterial Basophils, monocytes,
toxins, DAMPS among others DCs
NLRC4 Flagellin B cells
RLR RIG | Viral short dsRNA
MDAS5 Viral long dsRNA Generally expressed Cytosol
LGP2 dsRNA
CDS cGAS DNA, DAMPS Generally expressed Cvtosol
AIM2 DNA, DAMPS B cells 4

Abbreviations: CDS: cytosolic DNA sensor; CLR: C-type lectin receptor; CpG ODN: CpG oligodeoxynucleotides;
DCs: dendritic cells; IFN: type | interferons IL: Interleukin; IRF: interferon regulator factor; MDP: muramyl
dipeptide; Mincle: macrophage inducible C-type lectin; MTP: muramyl tripeptide; NLR: nucleotide-binding
oligomerization domain-like receptor; RLR: retinoic acid-inducible gene-I-like receptor; ROS: reactive oxygen
species; TLR: Toll-like receptor [35-37, 41, 44, 45].
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Figure 3. A simplified overview of pattern recognition pathways. Abbreviations: AP-1: activator protein 1; CDS:
cytosolic DNA sensor; CLR: C-type lectin receptor; GSDMD: gasdermin D; IFN: interferon; IKKs: IkB kinases; IL:
interleukin; IRF: interferon regulator factor; MAPKs: mitogen-activated protein kinases; Mincle: macrophage
inducible C-type lectin; NLR: nucleotide-binding oligomerization domain-like receptor; RLR: retinoic acid-inducible
gene-l-like receptor; TLR: Toll-like receptor. Adapted from [46] and a presentation slide of Thierry Roger.
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1.1.3.2 The complement system

The complement system, a pivotal part of the innate immune defence system, is an inflammatory
pathway consisting of 35 functionally linked proteins that responds to PAMPs and DAMPs. When the
complement system is activated, it ignites a complement protein cascade that eventually leads to an
increase of inflammatory molecules and the formation of the membrane attack complex, which disrupts

pathogen membranes. Three different pathways activate the complement system [47-50]:

1) The classical pathway, which is activated through the binding of immune complexes consisting
of antigen-antibody substrates, pentraxins (e.g., C-reactive protein (CRP)), and various DAMPs
and PAMPs.

2) The lectin pathway, which is activated through the binding of MBL to various PAMPs and
DAMPs, which includes mannose and LPS.

3) The alternative pathway, which is a delicate balance of continuous activation and inhibiting
molecules. The alternative pathway can amplify the classical or lectin pathway or it can be
activated by the presence of DAMPs (e.g., LPS), which downregulate the inhibiting molecules.

The activation of the complement pathways leads to cleavage of complement factors C3 and C5. C3 and
Cs, sequentially, are cleaved into an “a” and “b” fragment. The “a” fragment (also called anaphylatoxin)
functions as an inflammatory, cell-activating, mediator, while the “b” fragment opsonizes pathogens
and forms, together with C6, C7, C8 and C9, the membrane attack complex [51-53]. C3a and, especially,
Csa are highly inflammatory molecules (Csa is 10-100 times as inflammatory as C3a) that bind to
specific complement receptors present on myeloid cells. This binding triggers the production of
chemokines and cytokines, and the degranulation of neutrophils, basophils, eosinophils and mast cells
(Figure 4, Table 3) [49, 50, 54, 55]. Inhibiting complement factors or complement receptors might
prevent unfavourable outcomes in sepsis. For example, anti-C5a antibodies and inhibitors of C5

cleavage were shown to lower mortality in septic shock animal models [48, 56].

Table 3. Anaphylatoxin-activation of immune cells

Anaphylatoxins Cellular targets Effect

Antigen presenting cells Regulation of T cell responses

Mast cells, eosinophils (mainly  Degranulation, chemotaxis and release
C3a and C5a

C3a) and basophils of vasoactive amines - contraction of
smooth muscle and increased vascular
permeability

C3a Neutrophils Attenuating mobilisation

Neutrophils, monocytes Chemotaxis, activation of complement
receptors; increase of FcyR; assembly of
ROS; cytokine production; increased
survival of neutrophils

Csa Resident macrophages Increased FcyR expression

Endothelium Increased selectins, IL-8 and IL-6
synthesis

Hepatocytes Acute phase protein synthesis

Abbreviations: IL: interleukin; ROS: reactive oxygen species. [49, 54, 55]
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Figure 4. Pathophysiology of sepsis. DAMPS and PAMPS activate innate immune cells and the complement
cascade. Immune cells produce cytokines and the complement cascade cleaves C3 and C5 into inflammatory C3a
and Cba fragments. Both the cytokines and C3a/Cb5a activate leukocytes producing a cascade of cytokines,
chemokines and metabolites, which lead to immune and endothelial dysfunction. Eventually the lack of oxygen and
dysfunctionality of tissue cells can lead to organ failure as seen in sepsis. Note that the complement cascade also
has a direct effect on coagulation through the production of thrombin and fibrin-like products. Abbreviations: DAMPSs:
danger-associated molecular patterns; H3: histone 3; HMGB1: high mobility group box 1; HSP: heat shock protein;
PAMPS: pathogen-associated molecular patterns; MDP: muramyl dipeptide; MTP: muramyl tripeptide; PRR: pattern
recognizing receptor; NLR: nucleotide-binding oligomerization domain-like receptor; TLR: Toll-like receptor; IL:
interleukin; TNF: tumor necrosis factor; Tregs: T-regulatory cells; MDSCs: myeloid-derived suppressor cells.
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1.1.3.3 Endothelial dysfunction

The endothelium is the anticoagulant layer of the blood vesicles that separates blood from the
surrounding tissues. Glycocalyx is a layer consisting of glycoprotein that covers the endothelium and
regulates inflammatory and coagulation homeostasis. Reactive oxygen species (ROS), TNF, cytokines,
and bacterial endotoxins can shed the glycocalyx resulting in: 1) a disruption of the barrier function, 2)
exposition of the selectin, integrins and fibrin clothing areas of the endothelium, and 3) an increase in
sheer stress on the endothelial cells [57, 58]. With the glycocalyx shedding, the activated neutrophils
and monocytes can bind to the exposed selectins and disrupt the tight junctions that connects the
endothelial cells. Without the protective glycocalyx layer and intact tight junctions, plasma and

intravascular proteins leak into the tissue contributing to oedema and poor tissue perfusion [57, 58].

The coagulation homeostasis is a delicate balance of thrombogenic and antithrombogenic factors [59].
During sepsis, the coagulation cascade commences through platelet and neutrophil activation, and
fibrin clotting area exposition after glycocalyx shedding. In addition, the lectin pathway of the
complement cascade activates coagulation by generating thrombin and fibrin-like products. This
prothrombotic state leads to disseminated microvascular thrombosis preceding organ ischemia and,

secondly, to uncontrolled bleeding due to excessive consumption of clotting factors and platelets [60].

Vasodilation and decreased intravascular volume are two mechanisms that lead to low blood pressure
as seen in septic shock. Endothelium cells under sheer stress release nitric oxide (NO) and endothelin,
which relaxes the smooth muscles covering the vascular system and consequently increases
vasodilation. Mast cells, eosinophils and basophils also produce vasoactive amines further increasing
vasodilation [58, 61, 62]. The combination of extravasation of the plasma due to membrane disruption
and vasodilation causes septic shock (Figure 4). Therefore, to treat this low blood pressure, it is often

necessary to administer both vasoconstrictive agents and fluids [32, 58].

1.1.3.4 Immunosuppression in sepsis

The dysregulated host response of sepsis is concurrently hyperinflammatory and immunosuppressive.
During the early phase of sepsis, more cells tend to be hyperinflammatory resulting in overwhelming
inflammation, organ failure and shock [29, 32, 63]. Generally, the hyperinflammative response subsides
within days while the immunosuppressive response can persist for weeks to months.
Immunosuppression in sepsis is characterized by: 1) an increased apoptosis and/or anergy of cells, 2) a
decrease of human leukocyte antigen-DR isotype (HLA-DR) expression on antigen presenting cells
(APCs), 3) an influx of myeloid-derived suppressor cells (MDSCs) and T-regulatory cells (Tregs), and 4)
a mitochondrial dysfunction [64, 65].

Increased apoptosis

Apoptosis is a physiological response of cells to go into cell death. In contrast to necrosis, it does not
produce inflammation and injury to other cells. It regulates cell populations and aids downregulation
of the inflammatory response. However, an overshoot in the depletion of effector cells can result in an
immunosuppressive state. Monocytes, macrophages, B cells, T cells, dendritic cells (DCs) and

gastrointestinal epithelial cells experience apoptosis during sepsis. Furthermore, apoptosis itself can
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induce immunosuppression by pushing M1 macrophages and T helper (Th) 1 cells (which are
inflammatory), towards M2 macrophages and Th2 cells (which are immunosuppressive). DCs that
internalise apoptotic cells decrease their secretion of pro-inflammatory cytokines, while increasing
immunosuppressive cytokine production [66-72]. The degree of lymphocytic apoptosis corresponds

with the severity of sepsis, secondary infections and mortality [73, 74].

The mechanisms behind excessive apoptosis of immune cells in sepsis are not completely understood,
but mainly attributed to two factors: 1) the high cytokine levels present in sepsis, and 2) the upregulation
of programmed cell death protein 1 (PD1) on T cells and natural killer (NK) cells, and its ligand PD-L1
on endothelial cells, DCs, and macrophages [74, 75]. PD-1 is an inhibitory receptor, which protects
tissues from over activation and aids return to homeostasis [76]. When PD-1 binds to PD-L4, it activates
a downstream signalling pathway that inhibits cell differentiation, cytokine production, and induces
apoptosis. One year after sepsis onset, PD-1 is still upregulated in sepsis survivors [77]. Blocking the

PD-1/PD-L1 receptor prevents T cell apoptosis and restores T cell cytokine production (see 4.1.6) [78].

Anergy and exhaustion

Anergy is the absence of an immune cell response induced by either a lack of co-stimulation or high co-
inhibitory molecule stimulation. Exhaustion takes place when cells have been chronically activated
decreasing cytokine expression and acquiring inhibitory surface molecules. Anergy and exhaustion take
place within 24 hours after sepsis onset [79, 80]. In sepsis, anergy and exhaustion are mainly described

in T cells but also occur in B cells, neutrophils, monocytes, DCs and NK cells [79, 81-83].

Low HLA-DR-expression on monocytes and DCs is indicative for anergy of these cell-types [84-86].
Monocytes in a septic environment decrease histone acetyltransferases (HATs) and increase histone
deacetylases levels, which modify chromatin state and results in reduced HLA-DR expression and
production of pro-inflammatory cytokines, and impaired antigen presentation. A decreased monocytic
HLA-DR expression correlates to the development of secondary infections and mortality in septic shock
patients [87-90]. DCs with low HLA-DR expression produce higher levels of immunosuppressive IL-10,

have less antigen presenting abilities and are more likely to go into apoptosis [84, 91].

During sepsis, T and B cells suffer a progressive loss of function; they produce less cytokines, show
impaired cytotoxicity, and proliferate less [92-94]. Furthermore, they shift toward a more
immunosuppressive status by expressing inhibitory receptors and producing IL-10 [83, 92, 95]. T cells
in a septic environment show low levels of transcription factors T-bet and GATAS, resulting in low levels
of CD62L and CD127, which are markers associated with effector T cells. Like monocytes and DCs, B

cells show decreased levels of HLA-DR, which is probably indicative of a lower antigen presenting

capacity [94].

Induction of Tregs and MDSCs

The increased chemokine production in sepsis leads to emergency granulopoiesis/myelopoiesis, a rapid
influx of immature myeloid and granulocytic cells in the blood stream and tissue. However, the
inflammatory environment blocks the maturation of these cells promoting the egress of immature

immunosuppressive cells: the myeloid-derived suppressive cells (MDSCs), into the blood. Patients with
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sepsis have high levels of MDSCs, which contribute to persistent immunosuppression by producing
immunosuppressive cytokines, arginase, ROS, reactive nitrogen species (RNS), and chemokines, which

recruit Tregs (for more details see chapter 4.2) [96-98].

Tregs are immunosuppressive T cells that express CD25 and nuclear transcription factor Forkhead box
P3 (FoxP3). In humans, they comprise 5-10% of CD4+ T cells in the circulation, which doubles during
sepsis [99-101]. Tregs produce inhibitory cytokines, like transforming growth factor (TGF) 3 and IL-10,
and induce apoptosis of effector cells, e.g., by the expression of TNF-related apoptosis-inducing ligand
(TRAIL). Tregs suppress DC and NK cell maturation, and inhibit cytokine production of DCs, B cells
and NK cells [102]. Tregs have a high content of mitochondria and benefit from FoxP3 reprogramming,
which help them survive in septic conditions maintaining the immunosuppressive response [103]. High

levels of Tregs are associated with immunoparalysis and mortality in sepsis [99, 100, 103]

Metabolic dysfunction

Endothelial dysfunction and disturbed coagulation are two drivers of cellular hypoxia and organ failure.
Another cause of cellular failure is mitochondrial dysfunction. Normally, the mitochondria generates
ATP through oxidative phosphorylation employing the tricarboxylic acid (TCA) cycle. However, in case
of sepsis, independent of the presence of oxygen, the mitochondria shift from oxidative phosphorylation
to aerobic glycolysis (also known as the Warburg effect). This shift can lead to apoptosis and organ

failure. Mechanisms that are responsible for mitochondrial dysfunction are [104-109]:

1) An instability of the pyruvate dehydrogenase complex (PDC). PDC is the main enzyme to
stimulate pyruvate to enter the TCA cycle. During sepsis, due to low levels of active PDC,
pyruvate fails to enter the TCA cycle transforming to lactate, which results in an ATP loss.

2) High doses of ROS and RNS present in the cytoplasm, which damage the mitochondrial
membrane. A damaged mitochondrial membrane leaks protons, which diminishes the proton
gradient needed for ATP production through oxidative phosphorylation.

3) An accumulation of succinate. Succinate is an intermediate of the TCA cycle. If succinate
accumulates in the mitochondrion during sepsis, it drives ROS production and anaerobic
glycolysis.

4) Inhibition of TCA enzymes and mitochondrial enzyme complexes by NO.

Hyperlactatemia in sepsis patients indicates shock and is strongly correlated to mortality.
Hyperlactatemia is often attributed to poor perfusion and microcirculatory disturbances caused by
endothelial dysfunction. However, lactate also indicates the metabolic shift to glycolysis independent of
circulation, which also increases mortality [104, 106, 107, 110, 111]. Targeting mitochondrial
dysfunction by decreasing succinate levels, limiting ROS production and activating PDC can facilitate
the return to homeostasis and increase the chance of survival. For example, inhibiting succinate with
dimethyl malonate or blocking glycolysis with 2-DG decreases mortality in mouse models of sepsis [112,
113].
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1.1.3.5 Organ dysfunction
Organ dysfunction is a hallmark of sepsis and is a consequence of a changed hemodynamic and cellular

response [83, 104, 114-116]. The mechanisms that lead to reduced organ functionality are:

1) Theleakage of plasma and intravascular proteins into tissues contributing to oedema, low blood
pressure and poor tissue perfusion. The reduced blood flow decreases oxygen availability.

2) The prothrombotic state with disseminated microvascular thrombosis leading to organ
ischemia.

3) Anincreased metabolic demand of oxygen by the inflamed cells.

4) Mitochondrial dysfunction.

The endothelial dysfunction in combination with unstable coagulation results in reduced
microcirculation, which reduces oxygen levels within the organs. The inflamed immune status increases
the oxygen demand resulting in hypoxia. The mitochondrial dysfunction reduces the energy potential
resulting in organ cell failure. Organ failure in sepsis can target every organ system. However, the SOFA
score accounts for six organ systems: the cardiovascular, hepatic, renal, neurological, respiratory, and
haematological system (Figure 5). Other organ systems, e.g., the gut, are just as much afflicted, but

biomarkers/symptoms to assess them are not available or not used in clinical practice [114].

Neurological system
* Altered mentation
* Confusion

* Disorientation

Cardiovascular system

* Hypotension

* Mottled skin and altered microcirculation
« T Lactate levels (in septic shock)

¢ Altered echocardiography variables Respiratory system

* Hypoxaemia
ol PaO,:FiO, ratio

Hepatic system
« T Bilirubin levels
o T Liver enzymes

Renal system

* Oliguria

* T Serum creatinine

« T Blood urea nitrogen
« T Biomarkers

Haematological system

* Low platelet count

¢ Disseminated intravascular
coagulation

* Petechiae (in some severe cases)

Figure 5. Signs and diagnostic criteria of major organ systems that are clinically monitored in sepsis.

(Reprinted by permission from: Springer, “Nature Reviews Nephrology” [114]).

The apoptosis of the epithelial gastrointestinal tract destroys its barrier function allowing bacteria and
endotoxin to enter the systemic circulation feeding inflammation [87]. The microbial diversity in the
gut, also called the microbiota, is of utmost importance for a stable inflammatory situation [117]. Sepsis,
and especially antibiotic treatment, disturbs the microbiota increasing inflammatory bacterial species
in the gut, which predisposes patients to immunosuppression and an increased risk of organ failure
[118]. Promoting microbial diversity in the gut using probiotics and faecal transplantation might

increase sepsis survival [119].

25.06.2021 13



Diagnostic profiling of MDSCs in sepsis

Since all the processes leading towards organ failure take place on a generalized level, dysfunction of a
single organ is rare. Distant organs communicate mechanistically and by excreting signalling factors to
maintain homeostasis, the so-called inter-organ crosstalk. However, when one organ fails, inter-organ
crosstalk further amplifies organ failure of other organ systems. For example, the kidney-lung crosstalk
occurs when the kidneys fail to expel fluid resulting in increased fluid pressure. This generates lung
oedema and alveolar cell apoptosis, which then results in hypoxemia and hypercapnia. The reduced
lung function worsens the kidney failure resulting in a self-propagating loop [114, 120-122]. This self-
propagating organ failure loop due to organ crosstalk is described between many organ systems e.g.,
gut-liver, lung-kidney/liver, and the kidney/liver-brain-cardiovascular system [114, 122-125].
Unsurprisingly, the number of organs affected corresponds strongly to mortality [126, 127]. Organ
failure present in sepsis can be reversible but patients experience the consequences of organ failure long

after the initial sepsis episode has passed [128].

1.1.3.6 Sepsis morbidity, mortality and long-term health consequences

Patients that die early after sepsis diagnosis often suffer from the hyper-inflammatory response,
resulting in multiple organ failure, cardiovascular shock and death (Figure 6). Patients that die later
are more often immunosuppressed resulting in secondary infection development, of which many are
not virulent and only seen in immunosuppressed patients [83, 129]. Twenty percent of initial sepsis
survivors develop secondary infections within 30 days [130]. Latent infections, like cytomegalovirus
(CMV), Epstein-Barr and herpes simplex, often flare-up in sepsis patients. The viral load of these viruses
corresponds to the immunosuppressive state and to mortality [131, 132]. It is estimated that more than

half of the sepsis deaths are a consequence of immunosuppression [29, 133].

Sepsis patients have a higher mortality rate compared with non-septic critical ill patients or those
undergoing cardiovascular surgery even ten years after being hospitalised [134]. A matched case-control
study showed that 35% of septic survivors would develop sepsis again compared with 4% in the control
group in the 8 years after the initial episode [135]. The immunosuppressive response leads to less
immune surveillance and low-grade inflammation, which causes late infections, cardiovascular

diseases, weakness, and cognitive impairment [29, 30, 136].

Sepsis affects the cardiovascular system for years after initial presentation. In the early sub-acute phase,
the hyper-inflammation, mitochondrial dysfunction, endothelial dysfunction, altered production of
oxygen species and altered calcium homeostasis accompanying sepsis causes cardio myocyte depression
and hypotension (and possibly septic shock). Furthermore, fatty acids and glucose, the main ATP
sources of the cardiac muscle, are both strongly decreased in sepsis. A decreased cardiac output in sepsis
correlates to mortality [137, 138]. In people with pre-conditioned — whether or not diagnosed —
cardiovascular comorbidities e.g., atherosclerosis and cardiomyopathy, sepsis can lead to complete
heart failure, pre-existing plaque rupture resulting in acute myocardial infarction, and death [139]. The
persistent chronic inflammation and dysregulated coagulation increase plaque formation, arterial
stiffness, and reduced myocardial contractility in recovered sepsis patients. In the year after discharge,
18% of patients suffer from new-onset stroke, 7% of myocardial infarction and 8.6% of heart failure

[140, 141].
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Multi organ failure = Early mortality
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Figure 6. Sepsis over time. The dysregulation of the immune homeostasis over time. The inflammatory and
immunosuppressive response are concurrently represented. However, the early deaths are mainly attributed to
organ failure due to overwhelming inflammation. Late deaths are strongly associated to immunosuppression

causing increased susceptibility to (nosocomial) infections, viral reactivation and cardiovascular diseases.

Unsurprisingly, the endothelial dysfunction extends to the blood brain barrier. This in combination with
the oxidative stress and overwhelming inflammation induces cognitive impairment [142]. Ten percent
of severe sepsis (sepsis-2) survivors develop cognitive impairment, which can persist for eight years
after the initial sepsis episode [143]. In addition, even patients who are not obviously impaired show a
subtle cognitive reduction of intellect, including verbal learning and memory. Sepsis induces brain
atrophy and lesions seen on magnetic resonance imaging (MRI), and more low-frequency
electroencephalogram (EEG)-activity indicating brain impairment, which are still present 3.5 years
after the initial episode. In addition, patients that survive sepsis have more depression, anxiety, and
post-traumatic stress disorder and receive more new psychoactive prescriptions the first three months

after hospitalisation [30, 144-146].

In summary, sepsis is a highly complex syndrome of a dysregulated host response triggered by an
infection. It can trigger organ failure in all systems causing high short-term mortality and morbidity.
The dysregulated host response can hold on for years after the initial episode causing a reduced quality

of life in sepsis survivors and an increased long-term risk of mortality.
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1.1.4 Biomarkers and phenotypes in sepsis

Our understanding of sepsis and the tools available to diagnose sepsis are limited. The common
denominators of sepsis patients are an infection and organ dysfunction but demographics, underlying
conditions, pathogens, the location of primary infection and inflammatory status can be vastly different
[147]. Yet, all patients are treated following the same clinical guidelines. In a 2004 nature commentary,
prof. Nathan elegantly encapsulates this principle: “It makes no sense to use twenty-first century
technology to develop drugs targeted at specific infections whose diagnosis is delayed by nineteenth-
century methods” [148]. Sepsis researchers need to focus on identifying (semi-) homogeneous
subgroups, so-called phenotypes, to facilitate targeting treatment [149]. Biomarkers (“biological

markers”) can aid clustering patients into phenotypes and consequently guide therapy [150-152]

The World Health Organisation defined biomarkers as “any substance, structure, or process that can be
measured in the body or its products and influence or predict the incidence of outcome or disease” [153].

(Sepsis-) Biomarkers can be subdivided into types based on their nature (next paragraph) and on their

usage (Figure 7) [154]:

1) Diagnostic biomarkers, which can identify patients with and without sepsis or type of infection.
A good diagnostic biomarker for sepsis could limit and target therapies (like antibiotics).

2) Prognostic biomarkers aid clinicians by risk-stratifying patients based on their outcome.
Prognostic biomarkers can help guide family and clinicians to emit needless therapy and start
palliative care.

3) Theragnostic biomarkers stratify patients in groups that would benefit from or harmed by a
certain therapy. Current sepsis research focusses on theragnostic biomarkers that segregates

patients on type of immune response.

Diagnostic biomarker Prognostic biomarker Theragnostic biomarker
Which patients have sepsis? Which patients will die? Which patients need which drug?
Suspect for sepsis Sepsis patients Sepsis survivors

RGP
IR IR 1 ] A
ALLISMULIRRIL T

Non |nfect|ous Sepsis non-survivors
No/less antibiotics Palliative care

Figure 7. The utility of different biomarker types in sepsis. There are three types of biomarkers. Diagnostic
biomarkers can divide the patients suspected for sepsis in a high and low risk of sepsis limiting antibiotic usage in
the latter. Prognostic biomarkers can risk-stratify on mortality informing clinicians and family members steering
towards palliative care. Lastly, in patients with high risk of surviving a theragnostic marker can guide targeted

therapies based on inflammation status [155]
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The second way to divide biomarkers is by their nature: clinical, molecular, cellular, genomic,
transcriptomic, epigenomic, proteomic and metabolomic biomarkers. The biomarkers that are easiest
and least invasive to measure are clinical biomarkers, like temperature and blood pressure [156].
Hypothermia at admission or a low blood pressure (mean arterial pressure < 65 mmHg) correlate to a

lower survival rate [157, 158].

Lactate was the first molecular sepsis biomarker discovered in 1843. Lactate, still used today, has high
specificity and low sensitivity for sepsis, and correlates strongly to mortality. Other molecular
biomarkers that are used in the ICU are procalcitonin (PCT) and CRP [159, 160]. PCT is a prohormone
for calcitonin and is synthesised by many cell-types. PCT rises drastically with bacterial infection and
sepsis but also rises in other inflammatory diseases like trauma, cancer, and viral infections [161-163].
PCT has been vividly debated for its use to shorten antibiotic therapy. Two different meta-analyses,
published in 2018 and 2019, show a reduction in mortality and antibiotic use, but the studies present a
high risk of bias [164, 165]. CRP is an acute phase protein synthesized by the liver that has been well
established as a biomarker for sepsis since the 1980s [6]. It is very sensitive as an indicator for
inflammation, but lacks the specificity of PCT [166]. Because it is a sensitive marker, which is easy to
measure, it is often used to screen for early onset sepsis/infection. Other markers that have a similar or
higher sensitivity/specificity to PCT and/or CRP, but are not used in daily management, are suPAR, IL-
6, sCD25 and decoy receptor 3 [167].

Techniques to analyse cellular biomarkers include cell counters (manual or automatic), microscopy,
flow cytometry and cytometry in time of flight (CyTOF). The first cellular sepsis biomarker —discovered
in 1927— was leucocyte count [168]. Leukocyte count is still used today even though sensitivity and
specificity are low compared with CRP and PCT [6, 169]. A better, but less used cellular biomarker is
the neutrophil to lymphocyte ratio (NLR), which rises quickly during acute physiologic stress and has a
high sensitivity but low specificity for sepsis [169]. Not just cell count, but also the expression of specific
cellular surface markers can aid sepsis diagnosis. Shankar-Hari et al. studied the discriminating ability
of 47 leukocyte surface biomarkers in patients with and without acute infection, and sepsis. They
showed higher expression of CD24 and CD279 on neutrophils and lower HLA-DR expression on
monocytes, however, the predictive validity of these, or a combination of these, biomarkers was low.
Another much-researched surface marker is CD64. Two meta-analysis performed in 2010 and 2015
showed a pooled sensitivity of 79% / 76% and specificity of 91% / 85% for the diagnosis of bacterial
infection or sepsis, which would outperform CRP and PCT. However, both meta-analysis mention a

high variability between the studies and a low/medium methodological quality [170].

A combination between clinical, molecular, cellular biomarkers and demographic data can aid
phenotyping of sepsis patients. Garlund et al. used latent class analysis, a methodological modelling
technique to identify subgroups, to define six sepsis phenotypes using 46 demographic, clinical and
laboratory variables in 1696 sepsis patients. The phenotypes are, ordered from least severe to most
severe based on ICU stay and mortality: “Uncomplicated Septic Shock”, “Pneumonia with acute
respiratory distress syndrome (ARDS)”, “Postoperative Abdominal”, “Severe Septic Shock”,
“Pneumonia with ARDS and multiple organ dysfunction syndrome (MODS)”, and “Late Septic Shock”.
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Seymour et al. performed a similar study but distilled four sepsis phenotypes: phenotype a-8, each with
their own inflammatory profile and mortality rate. The “a” patients were less ill and had less mortality
and inflaimmation compared with the other groups, which had, respectively, kidney injury,

inflammation and lung injury, and liver injury and shock [150].

While molecular biomarkers are still at the forefront in sepsis biomarker research, the development of
machine learning and the ability to analyse grand datasets facilitates “omics” biomarker research. This
“omics” research measures an entire class of biochemical species in a systematic way. The five most
described “omics” areas are: 1) genomics, which analyses DNA sequence variations like single
nucleotide polymorphisms (SNP), 2) epigenomics, which analyses DNA methylation, histone
modifications, and non-coding RNA, 3) transcriptomics, which analyses transcript expression in the
form of messenger RNA (mRNA), 4) proteomics, which analyses protein levels and their chemical
modifications, and 5) metabolomics, which analyses endogenous and exogenous chemicals (Table 4).
Omics technologies present new opportunities to aid phenotyping sepsis patients based on shared
pathophysiology [171]. In the following paragraphs, I will cover some influential “omics” research in

sepsis displaying its use for phenotyping sepsis, predicting mortality and discovering new biomarkers.

Over a 1000 genetic association studies have looked at genomic biomarkers and more than 100 variants
have been described in sepsis [172]. However, most of these studies in sepsis show low methodological
quality, are not-reproducible, and are likely to present false positive results [173]. A more unbiased
approach to discover new genomic variants in sepsis are genomic-wide association studies (GWAS),
whole-exome sequencing (WES) and whole-genome sequencing (WGS). Using GWAS, Rautanen et al.
discovered that common variants of the FER gene were strongly associated with survival. Twenty-eight
day mortality was 9.5% in patients with the CC genotype (4% of patients) versus 25.3% in patients with
the TT genotype (70% of patients) [174]. However, this was not confirmed by another study [175]. In
2017, Scicluna et al. used GWAS in whole blood to classify four sepsis phenotypes “MARS 1-4”. The 30%
of patients that were phenotyped into “Mars 1” (identified by high BPGM and TAP2 expression) had
significantly higher mortality compared with the other phenotypes (hazard ratio of 1.86) [176].

Wong et al. carried out the one of the first sepsis-phenotyping transcriptomics study in children with
septic shock using genome-wide microarrays in whole blood. They identified 100 genes that defined
three sepsis subclasses, of which subclass A (compared with B and C) had higher illness severity, organ
failure and mortality [177]. More recently, Sweeney et al. used unsupervised clustering analysis of
transcriptomic data of 700 patients to identify three sepsis subtypes: the adaptive (44% of patients),
inflammopathic (35% of patients) and coagulopathic subtype (21% of patients). The adaptive subtype
had lower mortality rates compared with the other two (18.5 vs 20% / 31%) [178]. Davenport et al.
identified two sepsis response signatures (SRS) based on the expression of seven genes. SRS1 patients,
compared with SRS2 patients, showed more immunosuppression, LPS tolerance, T cell exhaustion and
metabolic dysfunction, which resulted in twice the mortality risk [179]. Lastly, McHugh et al. developed
a 4-gene model (CEACAM4, LAMP1, PLA2G7, PLACS) that could discriminate between sepsis patients
and non-infectious critical ill patients. This gene model is now being developed into a rapid test

(“Septicyte®”) but is not used in clinical practice [180].
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In sepsis, more than 50 epigenetic biomarkers have been described, including changes in DNA
methylation, histone modification, and non-coding RNAs (thoroughly reviewed by Beltran-Garcia et al.
[181]). Binnie et al. showed the potential of using epigenomic-wide association studies (EWAS) in whole
blood to identify sepsis biomarkers. In a nested-case control study comparing septic and non-infectious
critical ill patients, they showed differences in methylated region-associated gene expression
corresponding to antigen processing and presentation, methyltransferase activity, and cell adhesion

and cell junctions, which correlated to severity of illness and length of ICU stay.

Wang et al. showed the potential of metabolomics in sepsis by combining 21 cohorts with in total 1287
sepsis patients and 2509 metabolite comparisons. The metabolites corresponding to several death-
related metabolic pathways showed the strongest correlation to mortality, and a prospective
metabolomic analysis (in the same paper) showed a prediction for mortality with an area under the
receiver operating characteristic curve (AUROC) of 0.88 [182]. Using mass spectrometry (MS), DeCoux
et al. showed distinct proteomic patterns between survivors and non-survivors of which many related
to complement and coagulation cascades. The authors suggest that anti-thrombin-III and complement
factor VIII could be possible target for therapy [183]. Thavarajah et al. aimed to find proteins in whole
blood that distinguish sepsis patients from non-infectious critical ill patients using MS. They found a
difference of more than 50 proteins of which SAA1 protein had the most potential as a novel biomarker
in sepsis. Lastly, Langley et al. combined both metabolomics and proteomics in 152 patients with
suspected community-acquired sepsis. Both the metabolome and the proteome showed a difference
between non-infectious critical ill patients, septic survivors and septic non-survivors. The differences
between septic survivors and non-survivors became more striking when closer to death. They created a
prediction-model using four carnitine esters, age, haematocrit and lactate, which outperformed the

APACHE score to predict mortality [184].

The aforementioned studies show that “omics” research can help us to identify sepsis phenotypes or
novel sepsis biomarkers. However, most techniques are time consuming and high variable models are
inconvenient to use in clinical practice or study inclusion. However, therapy efficacy can dependent of
sepsis phenotype. For example, corticosteroids show a worse outcome in patients with the SRS2
phenotype compared with the SRS1 phenotype [185]. Of date, no successful therapy-phenotype

combinations are used in the clinic, but the future holds promise [159].
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Table 4. “Omic” studies in sepsis

Type of “omics”  Techniques Examples in sepsis Ref
Genomics: Genomic-wide GWAS, whole blood: A variant in the FER gene is Rautanen,
DNA sequence association studies  protective in sepsis. 2015 [174]
variations like (GWAS) GWAS, whole blood: Four sepsis phenotypes Scicluna.
single nucleotide Whole-exome based on 2 genes each how different clinical 2017 [17’6]
polymorphisms sequencing (WES) characteristics and mortality rates.
(SNP). Whole-genome GWAS, whole blood: A 5-gene model (C140rf159, Zhang,
sequencing (WGS)  AKNA, PILRA, STOM and USP4) sorted patients 2020[186]
in two patient classes of which one had double the
mortality rate compared with the other.
Epigenomics: Epigenomic-wide EWAS, whole blood: Methylation patterns of Binnie, 2020
DNA methylation, association studies antigen processing and presentation, [187]
histone (EWAS) methyltransferase activity, cell adhesion, and cell
modifications, and  Chromatin junctions are associated with severity of illness,
non-coding RNA.  Immonopreciptation ~ vasopressor need and length of stay.
sequencing (ChiP-
seq)
Transcriptomics:  Gene expression Microarrays, whole blood: A 100-gene model Wong, 2009
Transcript microarrays clusters children with septic shock in three [177]
expression RNA sequencing different subclasses of which one has three times
(mMRNA). (RNA-seq) higher mortality rate.
Microarrays, whole blood: A 4-gene model
(CEACAM4, LAMP1, PLA2G7, PLACS) could McHugh,
cluster sepsis from non-infectious critical ill 2015 [180]
patients with an AUC of 0.9.
Microarrays, blood leukocytes using leukoLock
(Thermo Fisher Scientific): A 7-gene model Davenport,
(DYRK2, CCNB1IP1, TDRDY, ZAP70, ARL14EP, 2016 [179]
MDC1, ADGRE3) show two sepsis responds
signatures (SRS1/SRS2) with different mortality
rate and inflammatory profile.
Microarrays and RNA-seq of 14 dataset: A 33- Sweeney,
gene model clusters sepsis patients in an 2018 [178]
inflammopathic, adaptive and coagulopathic
phenotype. The adaptive phenotype was less
severe and had a lower mortality rate.
Proteomics: Gel based or liquid Liquid based MS, plasma: The 234 proteins DeCoux,
protein levels and ~ based MS analysed in sepsis patients showed distinct 2015 [183]
their chemical Cross linking MS patterns differentiating between survivors and
modifications. (XL-MS) NoNSurvIvors.
MALDI-TOF Liquid based MS, plasma: Sepsis patients had Thavarajah,
different proteomic signatures compared with 2020 [188]
other critical ill patients, with most strikingly a
difference in SAA1 processing.
Metabolomics: Nuclear magnetic Liquid and gas based MS, plasma: The proteins Langley,
endogenous and resonance and metabolites of non-infectious critical ill 2013 [184]
exogenous spectoscopy (NMR)  patients, sepsis survivors and non-survivor differ.
chemicals. An algorithm of four carnitine esters, age,
- haematocrit and lactate outperformed the
Gasiliquid based APACHE score to predict mortality. Wang, 2020
mass spectometry [182]

(Ms)

Meta-analyses: Death-related metabolic pathways
were the best predictor of death in sepsis with a
pooled AUROC of 0.81.

Abbreviation: MALDI-TOF: matrix-assisted laser desorption/ionization time-of-flight.
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1.1.5 Immunomodulation and biomarker-guided therapy

Patient survival rates have improved by faster recognition and more developed supportive therapy
[189]. However, therapeutics targeting the dysregulated host response have not been successful. Novel
host-directed therapies successfully tested in animal models were not effective or even harmful in sepsis
patients [190, 191]. Since 1976, over 100 phase II and phase III therapy trials failed, which includes the
treatment with corticosteroids, ibuprofen, therapies targeting host inflammatory factors like TNF and
IL-1 and PRRs (using eritoran and TAK-242 to block TLR4 signalling), and the administration of
anticoagulant molecules (such as recombinant activated protein C) [191-193]. The fail of these host
directed therapy trials is mainly attributed to two factors: 1) the focus on suppressing
hyperinflammation instead of reversing immunosuppression, and, as mentioned before, and 2) the

heterogeneity of sepsis and the lack of targeting certain sepsis phenotypes [29, 194-196].

A number of animal and phase I/II clinical studies try to reverse immunosuppression in sepsis.
Granulocyte-macrophage-CSF (GM-CSF), an immune modulatory cytokine, promotes cell survival,
proliferation and maturation of myeloid cells, DCs and T cells, and increases phagocytosis and bacterial
killing of neutrophils and monocytes. Twelve RCTs with sepsis patients treated with GM-CSF showed
increased monocytic HLA-DR expression, less nosocomial infections, shorter hospital stays and less
antibiotic use [197-199]. However, two meta-analyses, performed in 2011 and 2019, did not show a
difference in mortality and length of hospital stay in GM-CSF treated adults and neonates with sepsis

compared with placebo [200, 201].

Another potential immunostimulatory therapy is IFNy. In healthy volunteers infused with LPS, IFNy
partially reverses immunoparalysis, normalizing IL-10 and TNF production, and increasing monocytic
HLA-DR expression [202]. IFNy therapy in sepsis patients and patients with invasive fungal infections
showed restored monocytic HLA-DR expression and monocyte function [203-205]. Furthermore,
therapies targeting IL-7, PD-1 or PD-L1, showed a restoration of T cell function in in vivo studies and
positive safety profiles in phase I/1I, phase 1b and phase II clinical trials [78, 206-209]. Three meta-
analyses show that therapy with thymosin alpha 1, a thymus-derived immunomodulatory peptide, in
combination with ulinastatin, a protease inhibitor used for acute pancreatitis, reduces 28-day and 9o-
day mortality in sepsis patients and improves IL-6 and TNF levels [210-212]. Furthermore, cell therapy
with intravascular administration of mesenchymal stromal cells shows a positive safety profile and
lowers mortality in animal studies. In septic shock patients, it showed faster hemodynamic stabilization
and faster neutropenic recovery compared with patients without treatment [213-215]. Lastly, phase I/1I
studies showed that extracorporeal cell therapy with donor granulocytes yielded lower bacterial
endotoxin concentration, a reduced need for noradrenaline, lower CRP and PCT, and higher monocytic
HLA-DR values [216, 217]. However, all aforementioned studies need randomized control trials to

confirm their results.
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Host directed therapy research in sepsis is shifting from doing big (unsuccessful) RCTs towards
biomarker/phenotype-guided targeted therapy, also known as theragnostics or precision medicine
(Table 5). As mentioned before, current sepsis phenotyping require slow “omics” techniques and/or
many variables complicating trial enrolment [218]. Therefore, many current trials try to enrich patient
groups based on one or two biomarkers by either pre-enriching (by including only biomarker positive

patients) or pre-specifying subgroup analyses.

Some first considered negative trials showed a positive treatment effect in subgroup analysis, such as
anakinra (recombinant IL-1 receptor antagonist, IL-1RA), which targets IL-1 signaling, in patients with
macrophage activation syndrome (MAS) [219], or afelimomab, which targets TNF, in patients with high
IL-6 levels [220]. Combinations of biomarker and therapy now in phase I/II development include
(Table 5): recombinant IL-7 (CYT107) and nivolumab (anti-programmed death-1 (PD-1) monoclonal
antibody) in patients with low leukocyte count, anakinra in patients with high ferritin and low
monocytic HLA-DR (clinical features of MAsargramostim (human recombinant GM-CSF) in patients
with low monocytic HLA-DR, and CytoSorb (an extracorporeal cytokine adsorber, also called polymyxin
B hemoperfusion) in patients with high IL-6 [198, 208, 209, 221, 222]. However, the published studies
were mainly done to testify for treatment safety and did not show any definitive benefit regarding
mortality or ICU stay. Larger-scale ongoing trails should show if the aforementioned biomarker-

targeted therapies are beneficial for sepsis patients.

Table 5. Examples of biomarker guided therapy

Targeting excessive inflammation

Target/drug Biomarker Summary of results References
enrichment
Anti-TNF High IL-6 Reduce of 28-day mortality, and less severity of organ  Panacek,
dysfunction 2004 [220]
IL-1R antagonist, Low monocytic  In patients with MAS (defined as high ferritin and low Shakoory,
anakinra HLA-DR and monocytic HLA-DR): lower mortality and less septic 2016 [219]
high ferritin shock. — post hoc analyses
Targeting immunosuppression
Target/drug Biomarker Summary of results References
enrichment
PD-1 inhibitors Low leukocyte Phase IB trial showed increase in monocytic HLA-DR Hotchkiss,
PD-L-1 inhibitors count expression but no difference in pro-inflammatory 2019 [207]
cytokines.
Phase 1/2 trials showed increase in monocytic HLA- Watanabe,
DR expression and absolute lymphocyte counts. 2020 [223]
Both studies showed a positive safety profile.
GM-CSF Low monocytic ~ RCT with 38 patients showed increase in monocytic Meisel, 2009
HLA-DR HLA-DR expression and shorter mechanical ventilation [198]
times and improved APACHE score.
IL-7 Low leukocyte Patients that received CYT107 therapy had 3- to 4-fold  Francois,
count increase in absolute lymphocyte counts and T cells, 2018 [209]

which lasted 2-4 weeks after study inclusion.

Abbreviations: APACHE: acute physiology and chronic health evaluation; CRP: C-reactive protein; IL:
interleukin; PCT: procalcitonin; MAS: macrophage activation syndrome.
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Ongoing clinical trials enriching for one or two biomarkers might be inefficient to target subsets of
sepsis patients. Sorting patients into specific phenotypes might be more efficient, but as mentioned
before, this is difficult to incorporate into clinical trials. Biomarker adaptive enrichment trials (first used
in the cancer field) use a real-time updating strategy to sort patients during the study into the
statistically more promising treatment-subgroup combinations [224]. If a treatment-subgroup
combination reached superiority/inferiority or harm, that arm would be promoted/dropped (Figure
8) [224-226]. This ensured that efficiency is preserved while trials are flexible and can test multiple
drugs in multiple subgroups [226]. Note that the design and operation of these trials are complex and
simulation-intensive. It is easy to concede to investor-driven bias when not designing precise trial
conditions beforehand [227]. One of the first adaptive trials in sepsis shock patients was looking at the
effect of selepressin, a selective vasopressor. However, it has subsequently been terminated due to
futility [228, 229]. Another adaptive trial, now ongoing, is the “randomised, embedded, multi-factorial,
adaptive platform trial for community-acquired pneumonia” (REMAP-CAP), which is enrolling ICU
patients with community-acquired pneumonia and is to be finished by the end of 2023. The first result
of this trial show slight superiority for the treatment of hydrocortisone versus placebo in sepsis patients

infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [230, 231].

Enrol patients
stratified with certain
biomarkers

Randomize to control
or one of the
treatment-arms

Update randomization
probabilities and enroll Record outcomes
new patients

Add new Calculate predictive
experimental arms probabilities

Drop arm /

Graduate arm terminate trail

Figure 8. Adaptive trial design. Adaptive trial design is similar to conventional trial design regarding enrolling
patients, setting outcomes and recording trial data. However, in adaptive trial design this information is used
real-time to adjust the randomization towards the more beneficial outcomes and to drop non-beneficial arms,

which can differ per subgroup [225, 226].
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1.2 Myeloid-derived suppressor cells in sepsis

Part of this chapter has been published in Schrijver et al. Front. Immunol 2019 Feb 27;10:327. Reuse
of text is in accordance to the current thesis guidelines of the University of Lausanne, the journal
guidelines, and we have permission from all co-authors.

MDSCs are immature myeloid cells defined by their immunosuppressive function that expand during
chronic and acute inflammatory conditions. Ideally, MDSCs are defined using phenotypic markers
(mainly analysed using by flow cytometry) in combination with functional analyses of
immunoregulatory activity (the golden standard is inhibition of T cells). However, a definite, consensual
phenotyping scheme is lacking [232]. Generally, MDSCs are divided into two subtypes: monocytic
MDSCs (M-MDSCs) and polymononuclear MDSCs (PMN-MDSCs), named after their morphological
and phenotypical homologies with monocytes and PMNs [232-234].

In mice, MSDCs are defined as Gri+* CD11b* cells (Gr1: granulocyte receptor-1 antigen, consisting of Ly-
6G and Ly-6C antigens). PMN-MDSCs are CD11b+ Ly6G+ Ly6Clow cells and M-MDSCs CD11b+ Ly6G-
Ly6Chigh cells. In humans, the M-MDSCs are, phenotypically, HLA-DR low/neg monocytes. PMN-
MDSCs are described as either low density granulocytes (as assessed by ficol paque) or as CD11b+,
CD33+, CD15+ / CD66b+ cells. Furthermore, PMN-MDSCs present lower CD16 levels compared
withPMNs [235, 236]. Other MDSC subsets have been described, including early MDSCs (e-MDSCs)
and eosinophilic MDSCs (eo-MDSCs) [232, 237, 238]. Single cell RNA sequencing in late sepsis
confirmed the presence of e-MDSCs, PMN-MDSCs and M-MDSCs but did not show gene expression
described in MDSCs present in cancer, like arginase 1 (ARG1), CD274, COX2, PGE2 and NOS2 [238].

1.1.6 MDSCs activation and expansion

Hematopoietic stem cells differentiate into common myeloid progenitors, giving rise to immature
myeloid cells. An inflammatory environment, as observed in sepsis, stimulates the egress of immature
myeloid cells from the bone marrow into the blood stream and the gain of immunosuppressive functions
(Figure 9) [97, 234]. The identification of mediators and molecular mechanisms underlying the
expansion and the immunosuppressive functions of MDSCs may pinpoint to original therapeutic targets
for various diseases. Most of our knowledge comes from disease conditions other than sepsis. In sepsis,
the most relevant studies analyse the impact of gene specific knockout or the infusion of MDSCs in mice

exposed to polymicrobial sepsis induced by cecal ligation and puncture (CLP).
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Figure 9. MDSCs in sepsis. A) Factors generated during sepsis induce the expansion and egress of MDSCs from
the bone marrow into the peripheral blood. B) Main signalling pathways involved in the expansion and the
immunosuppressive functions of MDSCs during sepsis. C) Biological functions of MDSCs during sepsis. From
Schrijver et al., Front. Immunol 2019 Feb 27;10:327 [97].

The rise of MDSCs appears to be a complex and progressive process that involves expansion and
activation of immature myeloid cells. Many factors supply signals for the expansion and the activation
of MDSCs. The expansion and maturation of immature myeloid cells is primarily mediated by the action
of growth factors (GF), colony stimulating factors (CSF), such as vascular endothelial-GF (VEGF), GM-
CSF, macrophage-CSF (M-CSF), stem cell factor (SCF), DAMPs (S100 calcium-binding protein A8/A9,
S100A8/9), and possibly chemokines (CXCL1, CXCL2). MAMPs, DAMPs, cytokines, and acute phase
proteins (a2-macroglobulin, serum amyloid A) activate pathogenic MDSCs [234, 239-241].

MyD88, glycoprotein 130 (gp130), and nuclear factor I A (NFIA, a transcription factor) control the
expansion and the immunosuppressive functions of MDSCs. MyD88 is an adaptor molecule that
initiates intracellular signalling pathways through the IL-1 receptor and all TLRs except TLR3. gp130 is

a signal transducer co-receptor for IL-6 family cytokines that cooperates with signal transducer and
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activator of transcription (STAT3) and C/EBP, to upregulate MDSCs [82, 241]. MDSCs do not expand
in MyD88-/- germline mice and in hepatocyte-specific gp1307/- and myeloid-specific Nfia/- mice
subjected to CLP [82, 239]. Additionally, Gri+ CDiib* MDSCs lacking NFI-A lose their
immunosuppressive functions and stop differentiating into mature myeloid cells. Nuclear factor
(erythroid-derived 2)-like 2 (Nrf2) activated mice regulate metabolic reprogramming of MDSCs

resulting in an increase of splenic MDSCs, similar to LPS-infused mice [242].

During CLP, the triggering of a NF-xB/C/EBP/ STAT3-axis upregulates the expression of S100Ag (also
known as calgranulin B). S100A9 translocates into the nucleus to upregulate the transcription of
microRNAs miR-21 and miR-181b, which fine-tune the expansion and the functions of MDSCs. Mice
lacking S100A9 have less splenic and bone marrow MDSCs especially during late sepsis and are
protected from death [243]. In vivo blockade of miR-21 and miR-181 decreases bone marrow MDSCs
and improves sepsis survival [244]. The opposite is true for miR-150, miR-150 decreases during human
and murine sepsis and replenishing miR-150 results in less MDSC expansion and a reduction of MDSC-
induced immunosuppression [245]. The adoptive transfer of Gr-1* CD11b* MDSCs or PMN-MDSCs
protects mice from acute endotoxemia, rapidly lethal CLP and pseudomonas airway infection [241, 246,
247]. However, the transfer of early Gr-1+* CD11b* MDSCs (collected three days post-infection) increases
early mortality from CLP, while the transfer of late MDSCs (collected 10-12 days post-infection)
decreases or has no change on mortality [246, 248]. This might be caused by the instability of the
functionality of MDSCs, as MDSCs seem to become more immunosuppressive after the initial sepsis

episode in both mice and humans [246, 248, 249].

1.1.7 Immunosuppressive functions of MDSCs

MDSCs suppress the activity of immune cells through various mechanisms involving the
downregulation of L-arginine, the production of ROS and RNS, the secretion of anti-
inflammatory/immunosuppressive cytokines IL-10 and TGF-f as well as the activation of Tregs

(Figure 9).

L-arginine becomes a semi-essential amino acid during sepsis because of increased usage due to
inflammation and reduced production. L-arginine shortage is sustained by the production of arginase
by MDSCs, which metabolizes L-arginine into L-ornithine and urea. L-arginine depletion limits the
function of T cells and the activity of NK cells. ROS, RNS, IL-10 and TGF-f3 skew the polarization of
monocytes/macrophages and T cells towards anti-inflammatory/pro-resolving M2, Th2 and regulatory
phenotypes. Furthermore, they impair TCR and IL-2 receptor signalling, NK cell activity and DC
maturation and antigen presentation [82, 246, 250]. MDSCs suppress Th1 responses though direct cell-
to-cell contact, partly though the upregulation of PD-L1 [82, 93, 250]. Together with C-C motif
chemokine ligand (CCL) 5 (RANTES) and CCL4 (MIP-1B), RNS, IL-10 and TGF- promote the
recruitment and the immunosuppressive activity of Tregs, at least in cancer and in neonates [82, 250].
The interaction between MDSCs and Tregs in sepsis is unknown. Of note, MDSCs can also help fight
infections. Indeed, MDSCs efficiently phagocytose E. coli and group B streptococci [251] and clear
bacteria during late sepsis through a robust production of ROS [246]. More work is required to
understand to what extent these biological variations reflect the accumulation or the differentiation of

different MDSCs subpopulations during sepsis.
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1.1.8 Epigenetic changes of MDCSs in sepsis
MDSCs are highly plastic cells that shift in function and phenotype. Epigenetic changes, such as DNA
methylation, histones modifications, and non-coding RNAs like micro RNAs (miRNAs) and long non-

coding RNAs (IncRNAs), mediate the development and transition of MDSCs [252].

Histone deacetylase (HDACs) 11, a regulator of C/EBP-f, inhibits expansion and function of MDSCs
[253-256]. In mice and human, we see many changes in miRNA in MDSCs of sepsis patients. The two
most described upregulated miRNAs in human and mouse MDSCs are miR-21 and miR-181 [244, 249,
257]. These miRNAs, through a synergistic mechanism, regulate MDSCs differentiation and
maturation, and enhance MDSC accumulation [240, 244]. The IncRNA Hotairm1 supports MDSC
expansion in septic mice by increasing S100A9 [258]. Therapeutics targeting epigenetics in MDSCs

limiting their function are developed in the oncology field and they might be useful in sepsis as well

[252, 259].

1.1.9 Diagnostic and prognostic value of MDSCs for sepsis

MDSCs make up an important proportion of immature myeloid cells. Multiple retrospective and
prospective observational studies showed that immature granulocytes (IGs) levels discriminate between
infected and uninfected patients and is associated with disease severity, clinical deterioration, and
mortality [260, 261]. Few reports demonstrate the immunosuppressive functions of immature myeloid
cells in relation with sepsis and/or monitor MDSCs subpopulations using advanced flow cytometry.
Since cell preparation (whole blood, with and without ficoll purification) and flow cytometry strategies
are not standardized, the phenotype of MDSCs, PMN-MDSCs and M-MDSCs differs between studies
(Table 6).

The frequency of PMN-MDSCs (SSChigh CD16+ CD15+* CD33*+ CD66bhish CD114+ CD11b+*/low LDG) and M-
MDSCs (SSClow CD14* CD11b* CD16- CD15*) does not differ between non-infectious critical ill patients
and sepsis patients [262]. However, high levels of PMN-MDSCs link to nosocomial infections and sepsis
development. In a first study, PMN-MDSCs (CD14- CD15* low-density granulocytes, LDG) representing
more than 36% of white blood cells (WBC) in blood sampled from ICU patients within three days of
study inclusion predicts the subsequent occurrence of nosocomial infections [263]. Patients that
develop nosocomial infections have 2.5 times more PMN-MDSCs than patients that do not. Lastly, in
patients with resected esophageal cancer, the level of PMN-MDSCs corresponds to the development of
sepsis [264]. ICU surgical patients (at days 1, 4, 7, 14, 21 and 28 or until discharge of ICU) with
continuously high proportions of CD33+ CD11b* HLA-DR~/ew MDSCs have a longer stay in the ICU,
more nosocomial infections, and poor functional status at discharge [265]. The percentage of total
MDSCs in patients with severe sepsis/septic shock raises comprising 45% of WBCs, and a high
proportion of MDSCs at diagnosis is associated with early mortality [263, 265, 266]. Results are
conflicting about the association of M-MDSCs with mortality [264, 267]. M-MDSC levels correlate to
gram-negative infections in sepsis patients [263, 266]. Of note, MDSCs from sepsis patients dose
dependently suppress IFNy, IL-4 and IL-10 production by T cells more efficiently than MDSCs from
healthy subjects, while healthy and disease-associated MDSCs suppress T cell proliferation alike [265].
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In summary, MDSCs seem to play a role during sepsis, and some clinical studies associate high
proportions of blood MDSCs with clinical worsening, occurrence of nosocomial infections and mortality
of sepsis patients. However, which MDSC subtypes causally relate to unfavourable outcomes is not
clear. One limitation of current clinical studies, not limited to the sepsis field, resides in the uneven

phenotypic classification of MDSCs.

Table 6. MDSCs as a biomarker in sepsis

Subjects Cells/phenotypes Observations Reference
56 sepsis patients M-MDSCs: CD14* CD64* High % of M-MDSCs in all sepsis, but Janols,
and 18 healthy HLA-DR- particularly in gram-negative sepsis 2014 [266]
controls. PMN-MDSCs: LDG patigpts. Prominent PMN-MDSCs in gram-
CD33* CD14ned/low positive sepsis. PMN-MDSCs suppress T
CD64'ow CD15*Iow cell proliferation in vitro.
67 surgical patients MDSCs: CD33* CD11b* High % of MDSCs at admission correlates Mathias,
with severe HLA-DR- with early mortality. Decreasing levels of 2017 [265]
sepsis/septic shock, M-MDSCs: CD14* MDSCs correlate with short ICU stay.
18 healthy controls. PMN-MDSCs: CD14- Sustained levels of MDSCs (>30% of
) S WBC) predict nosocomial infections.
CD15*
14 sepsis and 8 M-MDSCs: SSC'ow M-MDSCs but not PMN-MDSCs increase Patera,
uninfected critically il  CD14* CD11b* CD16 at day 13-21 post-sepsis. Similar % of M- 2016 [262]
patients, 15 healthy CD15* MDSCs and PMN-MDSCs in sepsis and
controls. PMN-MDSCs: non-septic critical ill patients.
SSchishCD16*
CD15*CD33*CD66b"iah
CD114*CD11b*low
94 sepsis patients, 11  M-MDSCs: Lin-CD14* High % of PMN-MDSCs in sepsis patients.  Uhel, 2017
severity-matched ICU ~ HLA-DR'ow M-MDSCs are higher in gram-negative [263]
patients, 67 health PMN-MDSCs: LDG than gram-positive sepsis. PMN-MDSCs >
donors. CD14 CD15" (Excluding 3§% WBC at entry are .as'.sociat.ed with
eosinophils) higher risk of nosocomial infections. PMN-
and M-MDSCs suppress T cell proliferation
in vitro.
301 septic shock M-MDSCs: CD14*, HLA-  First time point do not correlate to Waeckel,
patients and 18 DR outcomes (mortality and HAI). Levels of M- 2020 [267]
healthy controls MDSCs on day 6-8 are associated with HAI
and mortality.
68 esophageal MDSCs: CD33* CD11b* Higher PMN-MDSC levels correlated to Xu 2020
cancer resection HLA-DR- developing sepsis after surgery. Patients [264]

patients

M-MDSCs: CD14*
PMN-MDSCs: CD15*

that developed sepsis with > 82.5% of
PMN-MDSC had more mortality. M-MDSCs
did not predict mortality.

Abbreviations: HAI: hospital acquired infection; ICU: intensive care unit; MDSCs: Myeloid-derived suppressor
cells; PMN-MDSCs: Polymorphonuclear MDSCs; M-MDSCs: monocytic MDSCs. Table adapted from [97]
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1.1.10 MDSCs as atherapeutic target

Since MDSCs have such a versatile arsenal in immunosuppressing their environment, targeting them is
an attractive and high impact option to combat the immunosuppressive phase of sepsis. Most studies
targeting MDSCs occur in the oncology field, which ranges from animal studies to phase II clinical trials

[268-271]. There are four different ways to inhibit MDSCs (Figure 10) [269, 270, 272-276]:

1) Blocking MDSC recruitment. The easiest way to block the recruitment of MDSCs is through
chemokine inhibitors. CCL2, CCL5, CXCR2 and CSF-1R antagonists showed promise reducing
MDSC populations in tumor and bloodstream, inducing T cell activity and enhancing
therapeutic efficacy of other cancer therapies.

2) Inducing MDSC apoptosis. Depleting MDSCs from the circulation can be achieved with low
dose chemotherapy, tyrosine kinase inhibitors (like Sunitinib) or DS-8273a (TRAIL receptor 2
antibody that mediates apoptosis of MDSCs), which showed success in oncological mice and
patients.

3) Differentiating MDSCs in more mature, less immunosuppressive, cells. Low doses of
chemotherapy and vitamins like vitamin D3 and all-trans-retinoic acid (ATRA) induce MDSC
differentiation.

4) Inhibiting MDSC activity. Inhibiting the function of MDSCs can be reached by disrupting
signalling of COX-2, STAT3/5, though epigenetic reprogramming by HDAC inhibitors or
through directly targeting ARG1 expression and ROS production.

All mentioned therapies showed an increased T cell reactivity and improved clinical outcome in
oncology patients. Furthermore, a combination of therapies might be ideal due to its synergistic effect.

However, in the sepsis field, it is not yet clear which patients can benefit from MDSC-targeted therapy.

The pathophysiology between cancer and sepsis regarding the immune system overlap significantly.
Both originate by activation of the immune system through persistent exposure of PAMPs and DAMPs,
have recruitment of immune cells and have a severe immunosuppressive response through the presence
of MDSCs, heightened apoptosis and T cell exhaustion [277]. Therefore, it is likely that successful

therapies targeting MDSCs in oncological patients can make the translation to sepsis patients.
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Figure 10. Strategies to target myeloid-derived suppressor cells (MDSCs). MDSCs inhibition can be achieved
by: 1) targeting MDSC recruitment by inhibiting chemokines, 2) depleting MDSCs by inducing their apoptosis, 3)
inhibiting MDSC activity by blocking signalling and cytokine, arginase and ROS production and 4) by inducing
MDSC differentiation towards mature phenotypes. Abbreviations: ATRA: all-trans-retinoic acid; CCR: C-C
chemokine receptor; COX: cyclooxygenase; CSF-R: colony stimulating factor receptor; HDAC: histone
deacetylase; PDES: phosphodiesterase type 5; PMNs: polymorphonuclear cells; STAT3: signal transducer and
activator of transcription 3; TRAIL-R2: TNF-related apoptosis-inducing ligand receptor 2 [269, 270, 275].

Sepsis research directly targeting MDSCs has not yet reached the clinical trial stage. However, several
mouse studies targeted MDSCs in sepsis (Table 7) [264, 278-282]. Immunosuppression was induced
in two ways: 1) by CLP creating polymicrobial sepsis, and 2) by administering multiple, increasing LPS
doses over a longer time period. ATRA is the most popular treatment to combat immunosuppression
induced by MDSCs. Two studies by Martire-Greco et al. looked at the effect of ATRA in LPS infused
mice. They observed improved functional immune responses and lower numbers of MDSCs in both
spleen and blood stream [279, 280]. Xu et al. showed that ATRA improved survival by 50% in mice first

implanted with Lewis lung cancer cells and afterwards infected by CLP [264].

Hu et al. showed that LDK378, an anaplastic lymphoma kinase inhibitor, inhibited the migration of
MDSCs to the spleen by blocking the upregulation of CCR2 and the G-protein-coupled receptor kinase-
2. This resulted in more CD4+ and CD8+ T cells and reduced Tregs and overall improved survival from
40% to 80% in CLP inflicted mice [282]. Lui et al. looked at YCP, an a-glucan that interacts with TRL2
and TRL4 [281, 283]. In CLP septic mice, the YCP treatment group had decreased MDSCs in lung and

liver, and improved survival from 39% to 72% [281]. Lastly, Xu et al. showed that ferumoxytol, an
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intravenous iron preparation, is internalized by MDSCs resulting in increased MDSC maturation,
reduced numbers of MDSCs in the spleen and a reduced production of ROS in MDSCs in LPS challenged

mice [278].

Overall, MDSCs seem to be a promising target of therapy in sepsis patients. However, more research is

needed to establish which subtypes of MDSCs are mainly involved in the induction and maintenance of

the immunosuppressive phase of sepsis, which patient populations would benefit from MDSC targeting

therapies, and, importantly, if it would be safe to use MDSC targeted therapies in sepsis since these

patients are at risk for agranulocytosis.

Table 7. Therapies inhibiting MDSC in sepsis

Drug Target Type of model Outcome Reference
Mechanism
ATRA Induction of Immunosuppressed Decreased amount of functional Martire-Greco
differentiation BALB/c mice by LPS MDSCs and restored T cell 2014 [280]
and depletion of  infusion proliferation
MDSCs .
Immunosuppressed Decreased number of CD34+ Martire-greco
BALB/c mice by LPS precursor cells. Less MDSCs in 2017 [279]
infusion spleen and restoration of T
lymphocyte proliferation
Cancer-sepsis model: Improved survival by 50% in Xu 2020
Lewis lung cancer cell, mice treated with ATRA. [264]
and 3 weeks later
CLP. Male C57BL/6
mice.
LDK378 Inhibition of the CLP induced septic Improved survival of septic Hu 2019 [282]
recruitment of mice mice, more CD4+ and CD8+ T
MDSCs cells Less MDSCs in the spleen
a-glucan: Inhibition of the CLP induced septic Improved survival rate from Liu 2017, [281]
YCP expansion of C57BL/6J male mice 39% to 72%. Decreased MDSC
MDSCs in long, liver and bone marrow.
However, function is increased.
Ferumoxytol Induction of the Ex-vivo and in LPS Downregulated Arginase-1, Xu 2019,
differentiation of ~ challenged mice S100A8, S100A9 and ROS [278]

MDSCs and
inhibition of their
function

production. Lower percentages
of PMN-MDSCs in blood and
spleen.

Abbreviations: ATRA: all-trans-retinoic acid; CLP: cecal ligation and puncture; LPS: lipopolysaccharide;
MDSCs: myeloid-derived suppressor cells; ROS: reactive oxygen species.
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2. Aim

2. Alm

Sepsis is one of the leading causes of mortality and morbitiy worldwide, yet there is no targeted
treatment available. Sepsis patients simultaneously show overwhelming inflammation and long-lasting
immunosuppression. We hypothesized that MDSCs play a dual role in sepsis, where on the one hand
they limit overwhelming inflammation, organ failure and short term mortality, and on the other, they
sustain the immunosuppressive responses that result in secondary infections and long term mortality.
Furthermore, since MDSCs are virtually absent in healthy subject, and present a diverse arsenal of

immunosuppressive functions, they could present interesting targets of therapy.

The aim of this thesis was to investigate the behavior of MDSC subpopulations and general immune
cell populations during the course of sepsis, and to assess their diagnostic, prognostic and theragnostic

potential.

To achieve our aims, we set up four studies (Table 8), where we analyzed MDSCs in relation to illness
severity, secondary infections, and mortality. We standardized the identification of MDSCs by flow

cytometry and automatic clustering using FlowSOM to avoid gating bias [284].

Table 8. Clinical studies used in this thesis

Endotoxin

PIPOVAP

LUH-COVID-19

INCLASS

Type of study

Experimental

Prospective cohort

Prospective cohort

Interventional

Type and number

8 healthy male

32 non-infectious

56 hospitalized

48 pneumonia-

of patients volunteers critical-ill patients PCR confirmed based sepsis
without antibiotics COVID19 patients patients with MODS
Intervention 2 endotoxin n/a n/a Clarithromycin

infusions, 7 days
apart

Time points,
blood drawing

15 time points

ICU admission and
ICU discharge

During hospital stay
and 3 months later

1, 5 and 10 days
after inclusion

MDSC Customized Pipetted Pipetted Customized
identification duraclone tubes* duraclone tubes*
Location Radboud UMC, Lausanne Lausanne Attikon university
Nijmegen University Hospital University Hospital hospital, Athens
Study duration June 2018 — July 2018 — May April 2020 — December 2017 —
August 2018 2019 January 2021 September 2019

*In collaboration with Beckman Courter (IN, USA). Abbreviations: PIPOVAP: Profile, Interaction, and PrOgnosis
in Ventilator Associated Pneumonia; LUH: Lausanne University Hospital; COVID-19: Coronavirus Disease 2019;
INCLASS: Benefit of Clarithromycin in Patients With Severe Infections Through Modulation of the Immune
System; MODS: Multi-organ dysfunction syndrome.
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3. Results

3. Results

3.1 “Myeloid-derived suppressor cells in sepsis.”
- Page 37.

3.2 “Myeloid-derived suppressor cells are elevated in healthy subjects infused with endotoxin and
predict outcome in non-infected critical care patients.”

- Page 51.

3.3 “Rapid increase of myeloid-derived suppressor cells, and prolonged innate immune

dysfunctions in patients with COVID-19.”
-Page 77.

34 “High levels of monocytic myeloid-derived suppressor cells correlate with improved outcome
in sepsis patients with multi-organ dysfunction syndrome.”

-Page 111.
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3. Results

3.1. Myeloid-derived suppressor cells in sepsis

Irene T. Schrijver, Charlotte Théroude and Thierry Roger

Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Epalinges,

Switzerland

Frontiers in Immunology, 27 February 2019 | https://doi.org/10.3389/fimmu.2019.00327

Summary:

Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells characterized by their
immunosuppressive functions. MDSCs expand during chronic and acute inflammatory conditions, the
best-described being cancer. Recent studies uncovered an important role of MDSCs in the pathogenesis
of infectious diseases along with sepsis. Here we discuss the mechanisms underlying the expansion and
immunosuppressive functions of MDSCs, and the results of preclinical and clinical studies linking
MDSCs to sepsis pathogenesis. Strikingly, all clinical studies to date suggest that high proportions of
blood MDSCs are associated with clinical worsening, the incidence of nosocomial infections, and/or
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Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells characterized
by their immunosuppressive functions. MDSCs expand during chronic and acute
inflammatory conditions, the best described being cancer. Recent studies uncovered an
important role of MDSCs in the pathogenesis of infectious diseases along with sepsis.
Here we discuss the mechanisms underlying the expansion and immunosuppressive
functions of MDSCs, and the results of preclinical and clinical studies linking MDSCs to
sepsis pathogenesis. Strikingly, all clinical studies to date suggest that high proportions
of blood MDSCs are associated with clinical worsening, the incidence of nosocomial
infections and/or mortality. Hence, MDSCs are attractive biomarkers and therapeutic
targets for sepsis, especially because these cells are barely detectable in healthy
subjects. Blocking MDSC-mediated immunosuppression and trafficking or depleting
MDSCs might all improve sepsis outcome. While some key aspects of MDSCs biology
need in depth investigations, exploring these avenues may participate to pave the way
toward the implementation of personalized medicine and precision immunotherapy for
patients suffering from sepsis.

Keywords: sepsis, infectious disease, innate immunity, myeloid-derived suppressor cells, biomarker,
immunosuppression, inflammation, personalized medicine

INTRODUCTION

Sepsis is one of the leading causes of preventable death. Sepsis is defined as a “life-threatening organ
dysfunction caused by a dysregulated host response to infection” (1). The mortality rate of sepsis
accounts for five-to-six million deaths of ~30 million cases per year worldwide. Sepsis incidence
is rising due to the aging of the population, the burden of chronic diseases, the increasing number
of immunocompromised patients, and the resistance of microorganisms to antimicrobials (2). In
2017, the World Health Assembly and the World Health Organization made sepsis a global health
priority by adopting a resolution to improve the prevention, diagnosis, and management of sepsis.

Innate immune cells, such as monocytes/macrophages, dendritic cells (DCs), and neutrophils,
sense microbial and danger-associated molecular patterns (MAMPs produced by microorganisms,
and DAMPs released by injured or stressed cells) through pattern recognition receptors (PRRs).
PRRs are grouped into five main families: toll-like receptors (TLRs), NOD-like receptors, C-type
lectins, scavenger receptors, RIG-I-like receptors, and intra-cytosolic DNA sensors (3). The
interaction between PRRs and MAMPs or DAMPs triggers intracellular signaling pathways that
coordinate gene expression, the development of the inflammatory response, the establishment
of antimicrobial cellular and humoral responses, and the restoration of homeostasis once
pathogens have been contained or eradicated. Sepsis is characterized by an early exacerbation of
antimicrobial defense mechanisms, the so-called hyper-inflammatory “cytokine storm,” mediating
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tissue injury, organ dysfunctions and early mortality,
and a concomitant shift toward inflammation resolution
and tissue repair. Sepsis-induced immunoparalysis (or
immunosuppression) favors the development of secondary
infections and long-term immune disabilities accounting for late
mortality (4-8).

During the last decades, early goal-directed therapy decreased
early mortality from sepsis, which contributed to shift the
sepsis ICU population toward a population suffering from
chronic critical illness (CCI). Indeed, a subset of ICU
patients surviving sepsis develop CCI characterized by long-
lasting immunosuppression associated with a persistent, low-
grade, inflammation maintained by the continuing release
of DAMPs. The underlying inflammation is associated with
catabolism and malnutrition. The term persistent inflammation-
immunosuppression and catabolism syndrome (PICS) has been
proposed to characterize this degraded state. PICS is associated
with long-term morbidity, late multiple organ failures and late
mortality (9-11).

Clinical ftrials testing adjunctive therapy to dampen
inflammation-related dysfunctions in sepsis have not been
conclusive (12). Several reasons may account for these failures,
among them the large heterogeneity of the sepsis syndrome.
Nowadays, the prevalent view is that restoration of immune
capacities using immuno-stimulants might be more efficient
than anti-inflammatory therapies. In any case, personalized
medicine should be used to define at an individual level whether
inflammatory cytokines, immunoparalysis, or metabolism has to
be targeted (4, 7, 13-17). In that perspective, significant efforts
are devoted to the identification of genetic, molecular, and
cellular biomarkers to stratify patients for clinical studies and
treatment based on clinical condition and disease stage.

We poorly understand what is responsible for a dysregulated
host response and the delay returning to homeostasis in sepsis
patients (4-8, 18). Growing interest focuses on a subpopulation
of leukocytes called myeloid-derived suppressor cells (MDSCs).
MDSCs are involved in the regulation of the immune response
in many pathological situations, the best-studied being cancer.
A number of comprehensive reviews discusses MDSCs in the
context of cancer, autoimmunity and infectious diseases [see for
example (19-26)]. Interestingly, recent data suggest that MDSCs
are involved in immune dysfunctions observed in sepsis. In this
review, we summarize and discuss our current knowledge about
the role played by MDSCs during sepsis and the potential of using
MDSCs as biomarkers and therapeutic targets of sepsis.

MYELOID-DERIVED SUPPRESSOR CELLS
(MDSCs)

MDSCs are immature myeloid cells that expand during
chronic and acute inflammatory conditions. The premises of
MDSC discovery date back more than a century when tumor
progression was associated with extra-medullary haematopoiesis
and neutrophilia. In the mid-1960s, Lappat and Cawein reported
that subcutaneously transplanted A-280 tumor cells generate
factors involved in a leucocytosis response that sustains tumor
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growth (27). Subsequently, leucocytosis was involved in the
expansion of cells of myeloid origin with immunosuppressive
activity (24). These cells express reduced levels of conventional
markers for mature myeloid and lymphoid cells and were named
natural suppressor cells, null cells, immature myeloid cells, or
myeloid suppressor cells. In 2007, “myeloid-derived suppressor
cells” was adopted as a unifying term to minimize the confusion
prevailing in the literature (28).

MDSCs are defined primarily by their immunosuppressive
functions. Within sepsis, one may predict that MDSCs play a
dual role depending on disease progression. On the one hand,
MDSCs may be beneficial by limiting hyper-inflammation during
the early stages of sepsis, hence protecting from early organ
dysfunction. On the other hand, MDSCs may be detrimental by
amplifying long-term immunosuppression and contributing to
CCI and/or PICS (8, 10). As discussed later, these two facets have
been highlighted in experimental models, while clinical studies
all pointed to a deleterious role of MDSCs.

Minimal phenotypic characteristics of MDSCs have been
proposed, but a definite, consensual phenotyping scheme is
lacking (29, 30). Two main subpopulations of MDSCs are
usually considered: polymorphonuclear MDSCs (PMN-MDSCs,
previously called granulocytic-MDSCs) and monocytic MDSCs
(M-MDSCs), so-called because of their morphological and
phenotypical homologies with PMNs and monocytes (26, 29—
32). In mice, MSDCs are defined as Gr1™ CDI11b™ cells (Grl:
granulocyte receptor-1 antigen, consisting of Ly-6G and Ly-6C
antigens). PMN-MDSCs are CD11b" Ly6G" Ly6Cl" cells and
M-MDSCs CD11b* Ly6G~ Ly6CMe" cells. In humans, PMN-
MDSCs are CD11b™ CD14~ CD33% (CD15% or CD661) cells
and M-MDSCs CDI11bt CD141t HLA-DR®™/~ CD15~ cells.
PMN-MDSCs overlap phenotypically with mature neutrophils
but contrary to PMNs, MDSCs sediment within the PBMC
fraction in ficoll gradients after density separation of whole
blood. Whether low density gradient (LDGs) PMNs and PMN-
MDSCs are the same entity is unclear, albeit the terms is used
interchangeably in the literature. The identification of PMN-
MDSCs by density gradient is further limited by the rise of not
only low-density neutrophils, but also high-density CD62Ldim
neutrophils that suppress T cells in the blood of healthy humans
infused with endotoxin (33). Additional markers are proposed
to differentiate MDSCs from monocytes or granulocytes, for
example high expression of lectin-type oxidized LDL receptor-
1 (LOX-1) by PMN-MDSCs when compared to granulocytes in
whole blood (33, 34).

Complicating the picture, other MDSC subsets have been
described, among others early-stage MDSCs (e-MDSCs) and
eosinophilic MDSCs (eo-MDSCs) (29, 35). In addition, tumor-
associated macrophages (TAMs), which unlike their name
suggests are present in inflammatory conditions bedsides cancer,
can be considered as one of the members making up the MDSC
spectrum (36, 37). Finally, MDSCs are highly plastic. They
can differentiate into osteoclasts and non-suppressive mature
myeloid cells, and M-MDSCs can differentiate into TAMs and
PMN-MDSCs (38-41). Overall, to this day, identifying MDSCs
based on cell surface phenotyping usually ends up with a mixed
population, eventually containing other myeloid cell types, that
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does not take into account the hallmark immunosuppressive
function of MDSCs.

Adding to the above caveats, improper cell separation through
density gradient and freezing whole blood or PBMC samples
before flow cytometry analyses affects the detection of MDSCs,
especially PMN-MDSCs. Hence, an objective of future studies is
to optimize and harmonize sample handling and flow cytometry
strategies (labeling, gating, and analyses) to quantify MDSCs
in whole blood. This will facilitate the comparison of results
from different studies to determine whether MDSCs are reliable
disease biomarkers (32, 42). Strategies to identify cell surface
markers discriminating MDSCs from other leukocytes using
unbiased high discriminating techniques like RNA sequencing
and mass cytometry analyses are starting to be used and
have not yet improved the immuno-phenotyping of MDSCs
(43). To summarize, the analysis of MDSCs and comparing
results from different studies is complicated mainly because
of: (1) the functional definition of MDSCs, (2) the lack of
a defined phenotype(s) of MDSCs, and (3) the plasticity
of MDSCs.

MDSCs EXPANSION AND ACTIVATION

Hematopoietic stem cells differentiate into common
myeloid progenitors giving rise to immature myeloid cells.
An inflammatory environment, as observed in sepsis,
stimulates the egress of immature myeloid cells from
the bone marrow into the blood stream and the gain

immunosuppressive functions (26, 44) (Figure1). The
identification of mediators and molecular mechanisms
underlying the expansion and the immunosuppressive

functions of MDSCs may pinpoint to original therapeutic
targets for various diseases. Most of our knowledge comes
from disease conditions other than sepsis. In sepsis,
most relevant studies analyse the impact of gene specific
knockout or the infusion of MDSCs in mice exposed
to polymicrobial sepsis induced by cecal ligation and
puncture (CLP).

In mice subjected to CLP, MDSCs accumulate in secondary
lymphoid organs, in which they represent as much as 10-20%
of all leukocytes (45). In the spleen, MDSCs expand within 3-
5 days, culminate after 10-14 days and stay high for at least
12 weeks. The rise of MDSCs appears to be a complex and
progressive process that involves expansion and activation of
immature myeloid cells through many factors. These factors are
not specific to sepsis and can be redundant. The expansion of
immature myeloid cells is primarily mediated by the action of
growth factors (GF) and colony stimulating factors (CSF) [such
as vascular endothelial-GF (VEGE), granulocyte-macrophage-
CSF, macrophage-CSF (M-CSF) and stem cell factor (SCF)],
DAMPs (8100 calcium-binding protein A8/A9, S100A8/9),
and possibly chemokines (CXCL1, CXCL2). Activation of
pathogenic MDSCs is induced by MAMPs (LPS, staphylococcal
enterotoxins), DAMPs (HMGB1), cytokines (IFNvy, IL-18, IL-
4, IL-6, IL-7, IL-10, IL-13, TNE, CXCL3), and acute phase
proteins (o2-macroglobulin, serum amyloid A) (26, 42, 46-56).
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These same factors may induce the maturation of MDSCs, with
possible different outcomes. For example, M-MDSCs exposed
to R848 (a TLR7/8 agonist), TNF and IFNy differentiate
into inflammatory macrophages that produce TNF and IL-12,
while M-MDSCs exposed to Pam3CSKy (a TLR1/2 agonist)
differentiate into immunosuppressive macrophages producing
IL-10 (47, 57).

Myeloid differentiation primary response 88 (MyD88),
glycoprotein 130 (gpl130) and nuclear factor I A (NFIA,
a transcription factor) control the expansion and the
immunosuppressive functions of MDSCs (Figure 1). MyD88
is an adaptor molecule that initiates quick nuclear factor-kB
(NF-kB) signaling through the IL-1 receptor and all TLRs
except TLR3. gp130 is a signal transducer co-receptor for IL-6
family cytokines that cooperates with signal transducer and
activator of transcription (STAT3) and C/EBPB to upregulate
MDSCs (45, 54). MDSCs do not expand in MyDSS*/* germline
mice and in hepatocyte-specific gp130~/~ and myeloid-
specific Nfia™/~ mice subjected to CLP (25, 45, 49, 58, 59).
Additionally, Gr1* CD11b* MDSCs lacking NFI-A lose their
immunosuppressive functions and stop differentiating into
mature myeloid cells. The expansion of MDSCs is normal in
myeloid-specific Cebpb™/~ septic mice, but Cebpb™/~ MDSCs
produce reduced levels of IL-10 (52, 60). During CLP, triggering
of a NF-kB/C/EBPB/STAT3 axis upregulates the expression of
S100A9 (also known as calgranulin B). SI00A9 translocates
into the nucleus to upregulate the transcription of microRNAs
miR-21 and miR-181b that fine tune the expansion and the
functions of MDSCs. Mice lacking SI00A9 have less splenic
and bone marrow MDSCs especially during late sepsis and are
protected from death (61, 62). In vivo blockade of miR-21 and
miR-181 decreases bone marrow MDSCs and improves sepsis
survival (63). Recent work suggest that Nfe2l2 (nuclear factor,
erythroid derived 2, Like 2; also known as NRF2) contributes
to increase the metabolic activity and the expansion of Gr1™
CD11b* MDSCs during endotoxemia (64).

The molecules mentioned above are not specific to MDSCs,
and their genetic ablation can influence other arms of the
defenses systems. To bypass this limitation, MDSCs isolated
from sepsis mice are infused into wild-type recipient mice
subjected to microbial insults. The adoptive transfer of Gr-
17 CD11b™ MDSCs or PMN-MDSCs harvested from septic
donor-mice into recipient mice protects the later from acute
endotoxemia, rapidly lethal CLP and Pseudomonas airway
infection (54, 60, 65-68). Two studies compare the benefits
provided by the infusion of Gr-1T7 CDI11b" MDSCs taken
either quickly or late after the onset of infection (ie., 3 vs.
10-12 days post-infection). Interestingly, the transfer of early
MDSCs increases while the transfer of late MDSCs decreases
or does not change mortality (65, 69). Supported by additional
in vivo and in vitro data (65, 69), this can be explained by
the fact that, during the course of sepsis, MDSCs evolve to a
more immature and anti-inflammatory state. More work will
be required to appraise how much the maturation stage of
MDSCs, the timing of expansion and/or infusion of MDSCs and
the severity of the infectious models tip the balance toward a
beneficial or a detrimental impact of MDSCs on sepsis outcome.
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FIGURE 1 | MDSCs in sepsis. (A) Factors generated during sepsis induce the expansion and egress of MDSCs from the bone marrow into the peripheral blood.

(B) Main signaling pathways involved in the expansion and the immunosuppressive functions of MDSCs during sepsis. (C) Biological functions of MDSCs during
sepsis. See body text for detailed explanations. DAMPs, danger-associated molecular patterns; MAMPs, microbial-associated molecular patterns; IL-6R’, interleukin
(IL)-6 receptor family of cytokines (commonly referred to as gp130 cytokines); gp130, glycoprotein 130; TLRs, toll-like receptors; IL-1R, interleukin-1 receptor; MyD88,
Myeloid differentiation primary response 88; NF-kB, nuclear factor-kB; NFI-A, nuclear factor | A; STAT, signal transducer and activator of transcription; miR, microRNA;
Me¢, macrophage; DC, dendritic cell; Th, T helper; NK, natural killer; Treg, T regulatory; IFNy, interferon y; ROS, reactive oxygen species; RNS, reactive nitrogen

As we will see in the last paragraph, the picture is clearer in
clinical settings where high proportions of MDSCs indicate a
poor prognosis.

The main epigenetic mechanisms, i.e, DNA methylation,
histones methylation and acetylation, miRNAs and long
non-coding RNAs (LncRNAs), have been implicated in the
development of MDSCs with different outcomes (70). For
example, inhibition of the DNA methyltransferases (DNMTs)
3a and 3b promotes the suppressive functions of MDSCs
while inhibition of the histone methyltransferase SETD1B limits
their suppressive function (71, 72). Pan-inhibitors of histone
deacetylases (HDACs) 1-11 elicit robust expansion of M-MDSCs
(73), in agreement with the observation that HDACI11 itself acts
as a negative regulator of expansion and function of MDSCs
(74). Interestingly, HDAC2 drives the phenotypic differentiation
of M-MDSCs into PMN-MDSCs in tumor bearing mice (75),
suggesting that individual HDACs have discrete, specific impact

on MDSCs. Remarkably, combination therapies of inhibitors of
either DNMTs or HDACs and checkpoint inhibitors (anti-PD-1
or anti-CTLA-4 antibodies) allow the eradication of checkpoint
inhibitor resistant metastatic cancers by suppression of MDSCs
(76). Finally, miRNAs both positively and negatively regulate the
accumulation and functions of MDSCs (for instance miR-9, 17-
5p, 21, 34a, 155, 181b, 210, 494, 690 vs. miR-9, 146a, 147a, 185-5p,
223, 185, 424) (70, 77). These observations, obtained in cancer
models, are particularly interesting because cancer and sepsis
share certain epigenetic features. Therefore, it is no surprise
that oncolytic epigenetic drugs have a strong impact on innate
immune responses and sepsis development (78-81). Numerous
epigenetic drugs are tested in oncologic clinical trials while
some are already approved for clinical applications. Altogether,
these observations open a fascinating area to test epigenetic
drugs targeting the expansion and/or function of MDSCs
during sepsis.
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IMMUNOSUPPRESSIVE FUNCTIONS OF
MDSCs

MDSCs suppress the activity of immune cells through
various mechanisms involving the degradation of L-
arginine, the production of reactive oxygen and reactive
nitrogen species (ROS, RNS), the secretion of anti-
inflammatory/immunosuppressive cytokines like IL-10 and
transforming growth factor (TGF)-f and the activation of T
regulatory cells (Tregs) (Figure 1).

L-arginine becomes a semi-essential amino acid during sepsis
because of increased usage and reduced production. L-arginine
shortage is sustained by the production by MDSCs of arginase
that metabolizes L-arginine into L-ornithine and urea (82). L-
arginine depletion affects the function of T cells through a
decreased expression of the CD3 zeta-chain, which is essential for
T-cell receptor (TCR) signaling (50, 83). A lack of arginase also
limits the activity of natural killer (NK) cells (84). ROS, RNS, IL-
10, and TGF-p skew the polarization of monocytes/macrophages
and T cells toward anti-inflammatory/pro-resolving M2, Th2
and regulatory phenotypes (45, 65, 85) and impair TCR and IL-
2 receptor signaling, NK cell activity and DC maturation and
antigen presentation (86-89) (Figure 1). MDSCs suppress Thl
responses though direct cell-to-cell contact, but how precisely
this occurs remains to be determined (45, 85). Together with
CCL5/RANTES and CCL4/MIP-18, RNS, IL-10, and TGF-p
promote the recruitment and the immunosuppressive activity
of Tregs, at least in cancer and in neonates (45, 85, 90,
91). The interaction between MDSCs and Tregs in sepsis
is unknown.

Splenic MDSCs harvested from CLP mice early (3-5 days)
and late (10 days) after sepsis onset inhibit T cell proliferation.
Early MDSCs secrete less SI00A9 than late MDSCs (61) and,
in response to LPS and IL-6, less TNE IL-6, IL-10, ROS,
and arginase I (65). However, in response to GM-CSE early
MDSCs produce RNS and proinflammatory cytokines while
late MDSCs produce arginase, IL-10 and TGF-B (69). Of
note, MDSCs can also help fight infections. Indeed, MDSCs
efficiently phagocytose E. coli and group B streptococci (92) and
clear bacteria during late sepsis through a robust production
of ROS (65). Thus, MDSCs have diverse biological outputs
according to their surrounding milieu and sepsis progression
(54, 65). More work is required to fully understand to which
extend these biological variations reflect the accumulation
or the differentiation of different MDSCs subpopulations
during sepsis.

DIAGNOSTIC AND PROGNOSTIC VALUES
OF IMMATURE GRANULOCYTES AND
MDSCs IN HUMAN SEPSIS

MDSCs make up an important proportion of immature
myeloid cells. Thus, we will discuss reports analyzing immature
granulocytes (IG) in adult sepsis and then move forward
to studies that used more elaborated immuno-phenotyping
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strategies to identify MDSCs. Table 1 provides details about the
design and the main observations of these studies.

Accumulation of immature myeloid cells is one of the
criteria established more than 25 years ago to characterize
SIRS (systemic inflammatory response syndrome) and sepsis
(107). The assessment of immature cells remained laborious
up to the advent of automated cell counters. In an earliest
study using automated IG counting on a small number of
patients, the percentage of IG was higher in infected than in
uninfected patients and was proposed to be a predictor of
sepsis (93). Retrospective and prospective observational studies
confirmed that IG proportion discriminates between infected and
uninfected patients and is associated with disease severity (94—
99) (Table 1). Automated cell counters can determine a delta
neutrophil index (DNT), which reflects the number of immature
neutrophils in the blood. A meta-analysis of ten Korean and
one Egyptian studies including 1,822 sepsis patients suggests
that an elevated DNI (i.e., an increased proportion of immature
granulocytes) is associated with mortality (100).

Few reports demonstrate the immunosuppressive functions
of immature myeloid cells in relation with sepsis and/or
monitor MDSCs subpopulations using advanced flow cytometry.
Since cell preparation (whole blood, with and without ficoll
purification) and flow cytometry strategies are not standardized,
the phenotype of MDSCs, PMN-MDSCs and M-MDSCs differs
between studies (Table 1).

Gradient density interphase neutrophils arise during sepsis
and their proportion correlates with disease severity in ICU
patients. Cells isolated from septic shock patients deplete arginine
and impair T cell functions in vitro, suggesting that they represent
PMN-MDSCs (50). High levels of circulating CD104™ CD16%™
IG are predictive of clinical deterioration and mortality (101,
102). This population contains a subset of CD14~ CD24%
myeloid suppressor cells that kill activated T cells in vitro (101).

The frequency of PMN-MDSCs (SSCM&? CD16T CD15*
CD33" CD66bMeh CD114+ CD11b*™/°™ LDG) and M-MDSCs
(ssClw cD14t €D11bt CD16~ CD151) does not differ
between non-infectious critical ill patients and sepsis patients
(103). However, high levels of MDSCs are linked to nosocomial
infections (Table 1). In a first study, PMN-MDSCs (CD14~
CD15" low-density granulocytes, LDG) representing more than
36% of WBC in ICU patients sampled within 3 days of study
inclusion predicts the subsequent occurrence of nosocomial
infections (104). Patients that develop nosocomial infections have
2.5 times more PMN-MDSCs than patients that do not. In a
second study, a close follow-up of ICU surgical patients (at days 1,
4,7, 14, 21, and 28 or until discharge of ICU) reveals that patients
with continuously high proportions of CD33" CD11b™ HLA-
DR~/1°" MDSCs have a longer stay in the ICU, more nosocomial
infections and poor functional status at discharge (105). The
percentage of total MDSCs in patients with severe sepsis/septic
shock raises up to 45% of WBC, and a high proportion of MDSCs
at diagnosis is associated with early mortality. Comparing cell-
sorted enriched CD33% CD11b™ HLA-DR™/°" MDSCs from
the blood of healthy subjects and septic patients reveals that
pathogenic MDSCs dose dependently suppress IFNYy, IL-4, and
IL-10 production by T cells more efficiently than MDSCs from
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TABLE 1 | Studies investigating immature granulocytes and MDSCs in adults with sepsis.

Subjects Cells/phenotypes Observations References
142 ED patients, 29 uninfected |G (automate-based determination) Higher % in infected patients, predictor of sepsis. (93)
outpatients.
70 consecutive ICU patients (51 infected, |G (automate-based determination) Higher % in infected patients, unrelated to day-21 and (94)
19 uninfected). in-hospital mortality.
184 sepsis patients. |G (automate-based determination) Increase % associated with severity, but not predictive of (95)
mortality.
136 consecutive ICU patients. |G (morphology and staining) Higher % in sepsis than in uninfected patients. Unrelated to (96)
mortality.
35 sepsis and 22 non-septic consecutive IG (flow cytometry) Increase % post-burn, associated with reduced neutrophil ©7)
burn patients, 19 healthy controls. function. Remaining elevated levels (day 7-28) associated
with sepsis development
781 sepsis patients, 20 contral IG (flow cytometry) High % at admission related to organ failure and day-7 and (98)
outpatients. day-28 mortality.
47 uninfected and 17 infected cardiac 1G (flow cytometry) Increase % postoperative. Highest levels associated with (99)
surgery patients. secondary infection complications.
Meta-analysis (11 studies) of 1'822 sepsis Delta neutrophil index (DNI, Elevated DNI associated with mortality. (100)
patients. automate-based determination)
24 sepsis ICU patients, 12 hospital Interphase neutrophils (flow Present only in sepsis patients, proportional to sepsis severity. (50)
controls. cytometry) Suppress T-cell activity in vitro.
177 sepsis patients. IG (flow cytometry) Increase % at 48 h predictive of clinical deterioration. High % (101)
of CD104™ and CD16%™ |G correlates with mortality. Kill
activated T cells in vitro.
43 septic shock patients, 23 healthy IG (flow cytometry) Increased % of CD109M and CD169™M |G at days 3-4 and (102)
controls. 6-8. Patients with lower % have better survival.
14 sepsis and 8 uninfected critically ill M-MDSCs: SSC'o% CD14+ CD11b+ M-MDSCs but not PMN-MDSCs increase at day 13-21 (103)
patients, 15 healthy contrals. CD16~ CD15" ) post-sepsis. Similar % of M-MDSCs and PMN-MDSCs in
PMN-MDSCs: S8CNoh cp16+ sepsis and non-septic critical il patients.
CD15+ CD33* CDB6bMIN CD114+
CD11b+/low
94 sepsis, 11 severity-matched ICU M-MDSCs: Lin— CD14+ High % of PMN-MDSCs in sepsis patients. M-MDSCs are (104)
patients, 67 health donars. HLA-DR~/low higher in gram-negative than gram-positive sepsis.
PMN-MDSCs: LDG CD14~ CD15+ PMN-MDSCs = 36% WBC at entry are associated with
(Excluding eosinophils) higher risk of nosocomial infections. PMN- and M-MDSCs
suppress T-cell proliferation in vitro.
67 surgical patients with severe MDSCs: CD33% CD11bT HLA-DR™ High % of MDSCs at admission correlates with early mortality. (105)

sepsis/septic shock, 18 healthy controls.

56 sepsis patients and 18 healthy controls.

M-MDSCs: CD14+
PMN-MDSCs: CD14~ CD15%

M-MDSCs: CD14+ CD64*
HLA-DR™

PMN-MDSCs: LDG CD33+
GD14neg/I0w CDE4\0W CD15+/low

Decreasing levels of MDSCs correlate with short ICU stay.
Sustained levels of MDSCs (>30% of WBC) predict
nosocomial infections.

High % of M-MDSCs in all sepsis, but particularly in
gram-negative sepsis patients. Prominent PMN-MDSCs in
gram-positive sepsis. PMN-MDSCs suppress T-cell
proliferation in vitro.

ED, emergency department; ICU, intensive care unit; IG, immature granulocytes; LDG, low density granulocytes; Lin, lineage, WBC, white blood cells.

(106)

healthy subjects, while healthy and disease MDSCs suppress T
cell proliferation alike (105).

The proportion of PMN-MDSCs and M-MDSCs, defined
as CD14"8/1o% CD64™" CD15+/1° LDG and CD14* CDe4*
HLA-DR" leukocytes, may vary according to causative agent
leading to sepsis (Table 1). M-MDSCs increase in all sepsis
patients, predominantly in gram-negative cases, while PMN-
MDSCs increase prominently in gram-positive sepsis (106). A
subsequent study confirmed that M-MDSCs (Lin~ CD14P%
HLA-DR'®Y/"8) are enriched during gram-negative sepsis, but
PMN-MDSCs (CD14~ CD15" LDG) do not differ according
to the gram of the causative bacteria (104). Larger studies are
required to ascertain that the microbial origin of sepsis shapes the
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pattern of MDSCs (108). This is an important parameter since M-
MDSCs are more potent immunosuppressive than PMN-MDSCs
on a per cell basis (109).

CONCLUDING REMARKS

MDSCs play a dual role during infection and sepsis. MDSCs
expanding along emergency erythropoiesis provide a first
barrier against microbial invasion by producing high amounts
of bactericidal molecules like ROS and RNS and counteract
the hyperinflammatory response associated with early organ
dysfunctions. However, MDSCs are also detrimental by
supporting the establishment and/or the maintenance of a late

February 2019 | Volume 10 | Article 327

Irene T. Schrijver



3. Results

Schrijver et al.

MDSCs in Sepsis

protracted immunosuppressive environment. In line with a
deletary role of MDSCs, all clinical studies to date associate
high proportions of blood MDSCs with clinical worsening,
occurrence of nosocomial infections and mortality of sepsis
patients. Hence, MDSCs are attractive biomarkers, especially
since these cells are barely detectable in healthy subjects. One
limitation of clinical studies, not limited to the sepsis field,
resides in the uneven phenotypic classification of MDSCs. One
important future objective is to harmonize sample handling and
flow cytometry strategies. Besides being attractive biomarkers,
MDSCs are attractive therapeutic targets for sepsis. Inhibiting
MDSCs-mediated immunosuppression or MDSCs trafficking
or depleting MDSCs themselves (by normalizing myelopoiesis
or inducing the differentiation of MDSCs into mature myeloid
cells) would positively influence patient outcome. Interestingly,
more than 30 clinical trials are running targeting MDSCs directly
or indirectly in cancer patients (22). If ever envisaged for sepsis,
these therapies will need specific evaluation since targeting
MDSCs aggressively may put critically ill patients at risk of
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Summary:

In this study, we described the dynamics of MDSCs in well-defined inflammatory conditions using a
model of endotoxin infusion in eight healthy human subjects (endotoxin study). Then we investigated
MDSCs in 32 non-infected critical care patients who developed nosocomial infections (PIPOVAP study).
MDSCs were quantified in blood by flow cytometry followed by automatic clustering (FlowSOM). A
multiplex bead assay was used to quantify 49 mediators including cytokines, chemokines and growth
factors. PMN-MDSCs and M-MDSCs levels increased 10-40-fold 4 to 8 hours after endotoxin infusion
and returned to baseline levels after 24 hours. PMN-MDSCs and M-MDSCs levels were high at
admission in non-infected intubated ICU patients and they were normalized at time of ICU discharge.
M-MDSCs levels correlated with inflammatory mediators in the blood. High levels of CD15+* MDSCs at
admission correlated with the occurrence of gram-negative bacteria nosocomial infections and with
overall mortality. Overall, MDSCs strongly increased in blood during endotoxemia. High levels of M-
MDSCs at admission in ICU correlated with the development of gram-negative bacterial infection, while
high levels of PMN-MDSCs and CD15+* M-MDSCs were independently associated with mortality of ICU
patients. These results suggest that immunoprofiling at ICU admission time might be useful to initiate

targeted supportive care.
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Background: Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of immature
myeloid cells usually divided into polymorphonuclear and monocytic MDSCs (PMN-MDSCs and M-
MDSCs). MDSCs are rare in the blood of healthy subjects, but increase under inflammatory conditions.
Here, we first describe the dynamics of MDSCs in well-defined inflammatory conditions using a model
of endotoxin infusion in healthy subjects. We then investigate whether MDSCs are predictive in non-

infected critical care patients who develop nosocomial infections.

Methods: We sampled blood from eight healthy volunteers infused for 0-168 hours (nine time points)
with endotoxin, as well as from 32 non-infected intubated ICU patients at their admission to and
discharge from the ICU (n=17). Blood was analyzed by flow cytometry based on the detection of 11 cell
surface markers chosen to detect MDSCs. Data were processed by automatic clustering using FlowSOM.
A multiplex bead assay was used to quantify 49 mediators in the blood of patients at their admission in
the ICU.

Results: PMN-MDSCs and M-MDSCs levels increased 10-40 fold between 4 to 8 hours after endotoxin
infusion, and returned to baseline levels after 24 hours. PMN-MDSCs and M-MDSCs levels were high
at admission in non-infected intubated ICU patients, and were normalized at time of ICU discharge. M-
MDSCs levels correlated with inflammatory mediators in the blood. High levels of CD15+* MDSCs at
admission correlated with the occurrence of gram-negative bacterial nosocomial infections and with
overall mortality. ROC curve analyses performed after stratifying patients based on high- and low-
MDSC levels revealed acceptable, and excellent, predictive mortality performance by PMN-MDSCs
(AUC 0.70, 95% CI: 0.40-1), and CD15* M-MDSCs (AUC 0.86, 95% CI: 0.62-1), respectively.

Conclusions: MDSCs strongly increase in blood during endotoxemia. High levels of M-MDSCs at
admission in ICU correlate with the development of gram-negative bacterial infection, while highest
levels of PMN-MDSCs and CD15* M-MDSCs are independent predictors of mortality of ICU patients.
Immunoprofiling of critically ill patients at their ICU admission time might be useful to initiate targeted

supportive care.

Keywords: ICU, Infection, Endotoxemia, Myeloid derived suppressor cell, Flow cytometry
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Introduction

In-hospital mortality of intensive care unit (ICU) patients ranges from 7% to 40%, and frequently results
from nosocomial infections and sepsis [1-3]. Timely intervention is key to saving patients, but it remains
difficult to identify the most appropriate intervention. ICU scoring systems of morbidity and mortality
probability, like the SOFA, APACHE II and SAPS II scores, are calculated using multiple parameters,
which may delay decision-making [4-6]. Rapidly measurable prognostic biomarkers would be

invaluable to risk-stratify critically ill patients in ICUs to select and/or adapt therapy [7, 8].

Sepsis is a heterogeneous syndrome defined as a life-threatening organ dysfunction caused by a
dysregulated host response to infection [3]. Sepsis is accompanied by immune alterations affecting the
innate and adaptive arms of the immune system. While septic patients show concomitant signs of
exacerbated proinflammatory and anti-inflammatory mechanisms, proinflammatory responses
mediating tissue injury and organ dysfunctions are primarily involved in early mortality, while
sustained immune dysfunctions and immunoparalysis favor the development of secondary infections

involved in long-term mortality.

The name myeloid-derived suppressor cells (MDSCs) was recently adopted to unify a heterogeneous
group of immature myeloid cells that display immunosuppressive functions [9]. MDSCs are commonly
divided into two subtypes that are phenotypically and morphologically similar to neutrophils and
monocytes: polymorphonuclear MDSCs (PMN-MDSCs) and monocytic MDSCs (M-MDSCs). PMN-
MDSCs are defined as low-density granulocytes (following centrifugation over a ficoll gradient) or as
CD11b* CD14~ CD16low/intermediate CD33+ CD15*/CD66b* cells, while M-MDSCs are defined as CD11b+*
CD14* HLA-DRlow/negative cells [9, 10]. A third subpopulation of early-stage MDSCs (eMDSCs) that do
not express any lineage markers have been reported [10], but eMDSCs may largely overlap with

basophils [11].

MDSCs are barely detectable in the peripheral blood of healthy subjects. MDSCs increase substantially
in the blood under conditions stimulating myelopoiesis including inflammation. MDSCs are therefore
considered as attractive biomarkers and targets for a number of disease conditions [12], where the
greatest advances are in the field of cancer research. The role of MDSCs in sepsis is poorly understood.
The common view is that MDSCs, owing to their immunosuppressive functions, can be detrimental to
host defenses. Indeed, MDSCs may support the establishment and/or maintenance of a late protracted
immunosuppressive environment contributing to chronic critical illness, secondary infections, and
long-term morbidity and mortality on the ICU [13-16]. However, MDSCs are proficient phagocytic cells
that produce high amounts of bactericidal molecules, such as reactive oxygen species and reactive
nitrogen species [12, 13]. In this way, MDSCs may participate in host defense mechanisms against
microbial invasion. Additionally, through their regulatory functions, MDSCs may counterbalance

detrimental inflammatory responses as observed in sepsis patients.

The aim of this study was to analyze the expression of MDSCs during a well-controlled acute
inflammation, and to challenge the detrimental role of MDSCs in non-infectious critically ill patients.

MDSCs were monitored in peripheral blood by standardized flow cytometry, using samples collected in
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two clinical studies. The first study consisted of eight healthy subjects infused with endotoxin, which
mimics early events of host response to gram-negative bacteria. The second study consisted of 32 non-
infected intubated ICU patients. Overall, our data indicate that MDSCs represent a dynamic population
that increase strongly in peripheral blood during endotoxemia. Further, high levels of M-MDSCs at
admission in ICU were associated with the occurrence of gram-negative bacteria nosocomial infections

and with the overall mortality of critically ill patients.
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Materials and Methods

Ethics, subjects and study design

The endotoxin study was conducted at the Radboud university medical centre in Nijmegen, the
Netherlands. Eight healthy male volunteers (Table 1) were infused with a single dose of 2 ng per
kilogram of bodyweight of endotoxin from Escherichia coli O:113 (Lot #94332B1, National Institutes of
Health, Bethesda, MD) following a standard protocol as described elsewhere [17]. Blood was collected
in EDTA tubes just before endotoxin administration (baseline), as well as 1, 2, 3, 4, 6, 8, 24 hours, and
7 days after endotoxin administration. This study was approved by the local ethics review board (CMO
Arnhem-Nijmegen; reference no. 2017-3607) and was conducted in compliance with the declaration of
Helsinki [18], International Conference on Harmonization Good Clinical Practice guidelines, and the
rulings of the Dutch Medical Research Involving Human Subjects Act. Written informed consent was

obtained from all study participants.

The PIPOVAP (Profile, Interaction, and PrOgnosis in Ventilator Associated Pneumonia) study is a
prospective, observational study conducted at the Lausanne Hospital University, Switzerland. Ethical
approval was obtained from the Commission cantonale d'éthique de la recherche sur 1'étre humain,
Canton de Vaud, Switzerland (CER-VD, reference 2017-01820). Thirty-two non-infected intubated
patients admitted to the ICU with an anticipated length of mechanical ventilation over 48 hours were
included in the study (Table 1). Exclusion criteria were treatment with an immunosuppressive agent
and/or treatment with antibiotics. Blood was collected in EDTA tubes within 24 hours after admittance
to the ICU, and at discharge from the ICU. This study was conducted in compliance with the declaration
of Helsinki, the Essentials of Good Epidemiological Practice issued by Public Health Schweiz (EGEP),
the Swiss law and Swiss regulatory authority’s requirements as applicable. Written informed consent

was obtained from study participants or their legal representatives.

Flow cytometry analysis

For the endotoxin study, 100 uL blood were added to custom-made tubes of lyophilized antibodies for
flow cytometry (Duraclone, Beckman Coulter, Brea, CA). The tubes contained antibodies directed
against the following antigens (clone name and labelling in brackets): CD11b (Bear1, PE-Cy7), CD16
(3G8, ECD), CD14 (RMO52, APC-AF750), CD3 (UCHT1, APC-AF700), CD56 (NKH-1, APC-AF700),
CD19 (J3-119, APC-AF700), CD33 (D3HL60.251, APC), CD15 (80H5, Pacific Blue), CD124 (Go77F6,
PE), HLA-DR (Immu-357, FITC), and CD45 (J33, Krome Orange). For the PIPOVAP study, 100 uL
blood was added to an antibody mixture identical to the one described above, with the difference that
the anti-CD3/CD56/CD19 antibodies were labelled with AF700. After 20 minutes of incubation at room
temperature in the dark, 9oo pL of 1 x BD FACS™ lysing solution (BD) was added to the reactions.
Tubes were vortexed and frozen at -80°C until analysis. For the analysis, samples were thawed at 37°C
for one minute, washed once with PBS with 0.5% BSA and sodium azide 0.02%, and acquired on the
Attune NxT Flow Cytometer (Thermo Fisher scientific, Waltham, MA). For analyses, we excluded
debris, doublets and non-hematopoietic cells using manual gating (FlowJo™ Software version 10.6.2,
Ashland, OR: Becton, Dickinson and Company; 2019, Supplementary Figure 1), and performed

FlowSOM clustering using the biexponential transformed and normalized expression levels of CD45,
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CD11b, CD33, CD14, HLA-DR, CD16, CD124, CD15, and the lineage markers (CD3, CD19, CD56). The
metaclusters were set on 30 populations and manually merged into populations based on biological

knowledge as represented in the tSNE plots (Figures 1A and 2A).

Measurement of serum mediators by multiplex bead assay

Serum samples were obtained from patients at their admission in the ICU (PIPOVAP study). The
concentration of 49 mediators were determined by the clinical laboratory of the Division of Immunology
and Allergy of Lausanne University Hospital using the Luminex xMAP Technology (Luminex
Corporation, Austin, TX) and a BioPlex 200 array reader (Bio-Rad Laboratories, Hercules, CA). The
mediators measured were cytokines (IL-1a, IL-1RA, IL-1B, IL-2 , IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-
12p70, IL-13, IL-15, IL-17A, 1L-18, IL-21, IL-22, IL-23, IL-27, IL-31, IFN-q, IFN-f, TNF), chemokines
(CCL2, CCL3, CCL4, CCL5, CCL11, CXCL1, CXCL8, CXCL9,CXCL10, CXCL12, CXCL13) and growth
factors (TNF-B, NGF-p, BDNF, EGF, FGF-2, HGF, LIF, PDGF-BB, PIGF-1, SCF, VEGF-A, VEGF-D,
BAFF, GM-CSF, and G-CSF).

Statistical analysis

Baseline comparisons were performed using chi-square exact test, Mann-Whitney U test and Kruskal-
Wallis test, as appropriate. The relationship between population percentages and clinical data was
assessed using the Mann-Whitney U test. Expression levels of MDSCs >1.3% and <1.3% (cutoff value
based on tertile) were categorized as high and low levels, which were used to analyze mortality over
time. Statistical analyses of survival curves were performed using the log-rank test. Luminex data were
analyzed using Spearman’s rank correlation controlling for False Discovery Rate using the BH step-up
procedure. Mediators with a coefficient of correlation greater than 0.3 with at least one population of
MDSCs are reported. Statistical analyses and figure design were performed using R software v.3.6.0 (R

Foundation for Statistical Computing, Vienna, Austria). *, P < 0.05; **, P < 0.01; *** P < 0.001.
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Results

Baseline characteristics of subjects

Peripheral blood was obtained from subjects enrolled in the endotoxin and PIPOVAP studies (Table
1). The endotoxin cohort consisted of eight healthy male volunteers infused with E. coli O113:H10
endotoxin. Median age of subjects was 23.5 years (Interquartile range-IQR: 22-27). Baseline leukocyte
counts were 5.9 [IQR: 5.5-7.4] x 109 cells/mL. Blood was collected before (baseline), 1, 2, 3, 4, 6, 8, 24
and 168 hours after endotoxin infusion. Leukocyte counts dropped 1 hour after endotoxin infusion, then
the cell counts began to increase over the next 8 hours, before returning close to baseline values after

24 hours (Supplementary Figure 2).

Thirty-two non-infected intubated ICU patients were enrolled in the PIPOVAP study. Twenty-four
patients (75%) developed an infection during their ICU stay, of which 58% of ventilator associated
pneumonia (VAP). Four patients (12.4%) died. Survivors and non-survivors had a similar SOFA score,
but non-survivors had a lower APACHE II score (Table 1). Blood samples were collected at ICU

admission for all patients and at ICU discharge from 17 patients.

PMN-MDSCs are strongly induced by endotoxin infusion

A standardized flow cytometry panel, based on the detection of CD3, CD14, CD15, CD11b, CD16, CD19,
CD33, CD45, CD56, CD124 and HLA-DR, was designed to analyze MDSCs in whole blood (see Materials
and Methods). An automatic clustering based on the expression of the different cell surface markers, as
well as the side scatter-A (SSC-A) and forward scatter-A (FSC-A), allowed the identification of eight
leukocyte populations in samples from the endotoxin study (Figure 1A-B): basophils, eosinophils,
neutrophils, classical monocytes, intermediate/non-classical monocytes, lineage+* cells/DCs, and M-
MDSCs and PMN-MDSCs.

MDSCs were barely detectable in the blood of healthy subjects. PMN-MDSCs were at 0.02 [0.01-0.04]
x 10 cells/mL at baseline (Figure 1C). They increased 1-2 hours after endotoxin infusion, plateaued at
1.9 [1.5-2.9] x 10° cells/mL after 4-8 hours and returned to baseline levels after 24 hours (Figure 1D).
In proportion with total leukocyte counts, PMN-MDSCs increased from 0.6% [0.4-1.4] at baseline to
36% [28-43] 4 hours after infusion (Figure 1D). In parallel, Neutrophil counts declined 1 hour after
endotoxin infusion, increased at 2-8 hours, and returned to baseline levels after 168 hours. Neutrophils
constituted 55-65% of total leukocytes, except for at 1 hour after endotoxin infusion when they

represented 40% of total leukocytes (Figure 1D).

M-MDSCs were present at 0.02 [0.01-0.05] x 106 cells/mL at baseline (Figure 1E). M-MDSCs
decreased 1 hour after endotoxin infusion, increased to 0.13 [0.12-0.17] x 106 cells/mL after 8 hours,
and returned to baseline levels after 24 hours. Monocytes were strongly affected by endotoxin infusion.
They dropped from 0.24 [0.20-0.29] x 106 cells/mL at baseline to 2.88 cells [1.86-4.54] x 103 cells/mL
1 hour after endotoxin infusion, then steadily increased to reach baseline levels after 8-24 hours (0.31
[0.27-0.37] and 0.33 [0.20-0.50] x 10°¢ cells/mL, respectively). Consequently, M-MDSCs, which

represented 0.6% [0.4-1.6] of all monocytic cells at baseline, constituted around 50% of these cells 2-8
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hours after endotoxin infusion (Figure 1E, right panel). Overall, endotoxin infusion induced a quick,

massive and transient accumulation of PMN-MDSCs, while it impacted M-MDSCs more subtly.

MDSCs are increased in patients admitted in the ICU and are normalized at discharge
Automatic clustering of samples from the PIPOVAP study identified basophils, eosinophils, CD15high
neutrophils, CD15low neutrophils, classical monocytes, intermediate/non-classical monocytes, lineage*
cells/DCs, CD14hish CD15* and CD14low CD15- M-MDSCs (later called CD15* and CD15- M-MDSCs) and
PMN-MDSCs (Figure 2A-B).

The absolute counts and frequencies of PMNs and monocytes, but not of MDSCs, were stable in between
ICU admission and ICU discharge (Figure 2C and Supplementary Figure 3). PMN-MDSCs and M-
MDSCs were at 0.24 [0.05-1.6] and 0.13 [0.07-0.20] x 106 cells/mL at ICU admission, and at 0.08 [0.01-
0.13] and 0.04 [0.02-0.11] x 106 cells/mL at ICU discharge, respectively (admission versus discharge:
P=0.008 and P=0.007). CD15+* MDSCs were more abundant than CD15- M-MDSCs at ICU admission
(0.059 versus 0.036 x 10° cells/mL). The two populations similarly decreased at discharge (0.024
versus 0.018 x 10° cells/mL). To evaluate the consequences of MDSCs in ICU patients, we compared
PMN-MDSCs and M-MDSCs counts from the PIPOVAP study to those measured in the endotoxin study.
We selected the 0, 4 and 8 hour time-points for comparison, which were the peaks of MDSC levels
during endotoxemia (Figure 3). Compared with baseline levels in healthy subjects, PMN-MDSCs
strongly increased in non-infectious patients at ICU admission (P=0.0016), albeit less than during
endotoxemia. M-MDSCs also increased in the ICU patients compared with baseline levels in healthy
subjects (P=0.00016). At ICU discharge, PMN-MDSCs and M-MDSCs counts were similar to the counts
measured in healthy subjects (P=0.17 and P=0.67, respectively).

Inflammatory cytokines/chemokines and growth factors are known to stimulate the expansion of
immature myeloid cells and the generation of MDSCs (13). Therefore, we used multiplex bioassays to
quantify the levels of 23 cytokines, 11 chemokines, and 15 growth factors in serum collected from
patients at admission and discharge in the ICU, and performed correlation analyses between MDSCs,
as well as between MDSCs and mediator expression levels (Figure 4). PMN-MDSCs and CD15* M-
MDSCs expression levels were correlated with each other (p=0.43, P=0.03). PMN-MDSCs were
inversely correlated with platelet-derived growth factor-BB (PDGF-BB) (Figure 4). M-MDSCs were
positively correlated with IL-6, monocyte chemoattractant protein-1 (MCP-1/CCL2), macrophage
inflammatory protein (MIP-13/CCL4), eotaxin (CCL11), IL-8 (CXCLS8), stromal cell-derived factor 1
(SDF-1) and hepatocyte growth factor (HGF), and were inversely correlated with IL-13, IL-15 and IL-
31. The correlations were significant between CD15+* M-MDSCs and IL-6, as well as CD15- M-MDSCs
and, SDF and HGF.
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Levels of CD15" M-MDSCs at admission correlate with the development of gram-negative
infection

PMN-MDSCs and M-MDSCs at ICU admission (percentage of total leukocytes and absolute counts) did
not correlate with the development of hospital acquired infection (HAI) and VAP (Figure 5A). They
were also not correlated with time to develop infection, nor with the occurrence of sepsis or septic shock.
None of the other cell populations analyzed in this study (Figure 2A-B) correlated with infection rate.
Twelve ICU patients developed a gram-negative infection, and six developed a gram-positive infection.
The frequency (% of total leukocytes) and the absolute counts of PMN-MDSCs at admission were similar
between patients, independent of infection type (Figure 5B). By contrast, M-MDSCs levels at
admission were 4-fold higher in patients who developed gram-negative bacterial infections (2.8% [1.1-
3.8]) than in patients who developed gram-positive bacterial infections (0.7% [0.6-1.5]) (P=0.02). The
increase was largely driven by higher levels of CD15+ MDSCs levels (gram-negative bacterial infection:

1.0% [0.7-2.0], gram-positive bacterial infection: 0.4% [0.3-0.5], P=0.011) (Figure 5B).

Levels of PMN-MDSCs and M-MDSCs at ICU admission correlate with outcome

PMN-MDSCs and M-MDSCs levels at ICU admission were higher in patients who later died during the
hospital stay, though results were only significant for CD15+* M-MDSCs (Survivors: 0.7% [0.5-1.3], non-
survivors: 2.1% [1.8-2.4], P=0.02) (Figure 6A-B). We stratified patients into low and high MDSC levels
based on cutoff values corresponding to the highest tertile, which was 10% for PMN-MDSCs and 1.3%
for CD15* M-MDSCs. Using this segregation method, all patients with low PMN-MDSCs (n=20)
survived, while 33% of patients with high PMN-MDSCs (n=12) died (P=0.0046) (Figure 6C).
Similarly, all patients with low CD15+* M-MDSCs (n=21) survived, while 36% of patients with high M-
MDSCs (n=11) died (P=0.014, Figure 6D). Sorting patients with low PMN-MDSCS and/or low CD15*
M-MDSCs in one group (n=24) and comparing them with high PMN-MDSCs and high CD15* M-MDSCs
in the other group (n=8) presented a mortality rate in the high expression group of 50% (P=0.0014)
(Figure 6E). Receiver operating characteristics (ROC) and area under the ROC curve (AUC) analyses
were used to assess the predictive survival performance of MDSCs (Figure 6F); PMN-MDSC levels
(AUC 0.70, 95% CI: 0.40-1) and to a superior extent CD15+* M-MDSC levels (AUC 0.86, 95% CI: 0.62-
1) predicted mortality well.
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Discussion

Our data show that the generation of MDSCs is strongly stimulated by endotoxin infusion, and that
MDSCs can risk-stratify non-infected critically ill patients. M-MDSCs levels at admission correlated
with the development of gram-negative infections, while the highest levels of PMN-MDSCs and CD15*
M-MDSCs were predictors of mortality for ICU patients.

Minimal phenotypic characteristics of MDSCs have been proposed, but there is no specific marker for
these cells. New cell surface molecules are occasionally proposed to ease the identification of MDSCs
[10, 11, 19]. Further, it is difficult to compare data between studies using different biological specimen,
antibody cocktails for cell labelling, gating strategies and flow cytometer apparatus. Consequently,
MDSC levels may differ between studies, showing as much as 10-fold differences in healthy subjects
[13-16, 20-23]. The quantification of MDSCs in whole blood by flow cytometry for routine analyses
remains an important, yet challenging task. Here, we used whole blood staining and automatic

clustering of the acquired data to minimize variations due to cell preparation and gating strategies.

Our strategy allowed us to capture CD15* and CD15- MDSCs in ICU patients. CD15 is a cell adhesion
molecule (known as Lewis X antigen) known to be expressed by granulocytes, but also by monocytes,
macrophages, mast cells and normal myeloid precursor cells. A study in the late 90’s described a minor
population of monocytes with high SSC parameter, CD15 expression and production of ROS [24], which
appears to be similar to M-MDSCs. Our study shows that a subdivision on CD15 for M-MDSCs is useful
in a critical care setting. This subdivision might also be useful for other diseases. Interestingly, CD15*
M-MDSCs expression levels correlated with mortality, suggesting that these cells might be a useful

marker in other pathologies.

Human experimental endotoxemia induced by intravenous administration of E. coli LPS is used to
study pathophysiological changes observed in septic patients. Experimental endotoxemia induces a
well-controlled systemic inflammatory response accompanied by high blood levels of proinflammatory
and anti-inflammatory cytokines [25]. These cytokines, chemokines and growth factors stimulate bone
marrow production of MDSCs, which we observed during endotoxemia. Interestingly, PMN-MDSCs
and M-MDSCs differentially responded to endotoxin infusion. PMN-MDSCs increased quickly and
sharply, while M-MDSCs showed an initial drop before a progressive increase from 3-4 hours onwards,
a time at which M-MDSCs became a dominant monocytic population. These fluctuations reflected, to

some extent, the temporary neutrophilia and monocytopenia characterizing human endotoxemia [26].

We did not measure cytokines in healthy subjects infused with endotoxin, but it is very likely that
cytokine levels would correlate with MDSCs influx in blood. In patients admitted in the ICU, M-MDSCs
correlated with blood levels of IL-6, chemokines (IL-8, MIP-1, MCP-1 and eotaxin) and growth factors
(SDF-1a, HGF), while PMN-MDSCs inversely correlated with PDGF-BB. This may reflect the fact that
the accumulation of MDSCs in critically ill patients, particularly of PMN-MDSCs, were initiated before
ICU admission. Therefore at ICU inclusion we may not capture the entire spectra of mediators

influencing the expression of MDSCs.
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IL-6 is a pivotal regulator of the accumulation and activation of MDSCs, and chemokines are
chemoattractants for MDSCs in the tumor environment [27-31]. Targeting MIP-13 and HGF decreased
MDSCs accumulation in tumors. It follows that these molecules might represent targets for MDSCs in
critically ill patients [32, 33]. MCP-1 and eotaxin, which are potent chemoattractant for regulatory T
cells (Treg) and eosinophils, are produced by M-MDSCs in tumorigenic mice [34]. The inverse
correlation of MDSCs with IL-13 and IL-31 is more puzzling, as these cytokines are mainly produced by
T helper 2 (Th2) cells, a cell type induced by MDSCs [13]. It is possible that high levels of IL-6 inducing
MDSCs accumulation also skewed T helper cell polarization away from Th2 cells [35]. We observed an
inversed correlation between PMN-MDSCs and growth factor PDGF-BB. This was unexpected as
MDSCs from tumorigenic mice secrete PDGF-BB [36]. However, in sepsis patients, PDGF-BB levels

correlated with survival [37].

MDSCs were elevated in patients admitted in ICU, and normalized at ICU discharge. Accordingly, all
studies comparing MDSC levels in ICU patients with levels in healthy controls showed elevated levels
of MDSCs in critically ill patients [14-16, 20, 21, 23]. We did not find a correlation between MDSCs
levels and nosocomial infections. However, high levels of M-MDSCs, and especially CD15+ MDSCs,
correlated with the occurrence of gram-negative infection. Moreover, M-MDSCs increased up to 10-fold
during endotoxemia. In line with these observations, high M-MDSCs levels were linked to gram-

negative sepsis [14, 20].

Importantly, all non-survivors presented with high levels of PMN-MDSCs and CD15+* M-MDSCs at ICU
admission. In accordance with these observations, high levels of PMN-MDSCs at admission correlated
with mortality in patients with severe sepsis/septic shock, septic patients after esophageal cancer
resection, non-surgical ICU patients and patients with COVID-19 [16, 22, 23, 38]. These data suggest
that MDSCs expression levels could be used as stratifying markers to identify patients who might benefit
from aggressive targeted therapy [39]. In fact, preclinical sepsis studies targeting MDSCs showed
promising results lowering MDSC levels and increasing T-cell function, where phase II clinical trials

targeting MDSCs in oncologic patients are ongoing [22, 40-45].

A limitation of our work is that we defined MDSCs by their phenotype and not by their function.
However, previous studies have shown the functionality of MDSCs isolated based on phenotype [14, 21,
46-49]. Moreover, MDSCs levels positively correlated with levels of well-known inducers and regulators
of MDSCs, such as IL-6, HGF and SDF-1q, and inversely correlated with interleukins produced by
effector cells. Another limitation of this study is the limited number of ICU patients included in this

study, particularly of patients with unfavorable outcomes.

In conclusion, we show that MDSCs are highly responsive to endotoxin, and correlate with the
development of gram-negative nosocomial infections, length of ICU stay and outcome. M-MDSCs levels
correlated with cytokines, chemokines and growth factors, which may present targets for MDSC
targeted therapies in critically ill patients. Finally, our results suggest that monitoring MDSCs in
patients admitted to the ICU might provide prognostic biomarkers for outcome, and might therefore

aid clinicians by risk-stratifying patients.
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Tables and figures

Table 1. Patient characteristics

Endotoxin study

PIPOVAP study

Baseline Survivors Non-survivors
(28 day) (28 day)
Number of subjects/patients 7 28 4
Gender, male 7 (100%)* 15 (54%) 3 (75%)
Age (years) 23.5 [22-27]* 64 [52-68] 63 [563-67]
Severity of illness at admission:
Mechanical ventilation - 28 (100%) 4 (100%)
APACHE Il score - 22 [19-31] 15[10.5-21.01**
SOFA score 0 11 [10-14] 9.5[6.8-11.5]
Developed a secondary infection - 22 (69%) 2 (50%)
Type of secondary infection:
VAP/HAP - 13 (59%) 1 (50%)
Non-VAP HAI - 9 (41%) 1 (50%)
ICU stay (days) - 8.5[6.00-16.25] 7 [6.50-9.25]
CRP (mg/L) - 23.5 [6.5-74.5] -
Leukocytes (x 10°/L) 5.9 [5.5-7.4] 12.5[10.6-16.0] 14.4 [11-20]

Lactate (mmol/L)

1.7 [0.90-3.28]

2.3 [1.43-3.93]

*Medians [IQR] or n (%). **, P<0.05 (survivors versus non-survivors).
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Figure 1. MDSCs in the blood of healthy subjects challenged with endotoxin. Blood collected
from eight healthy subjects before and 1, 2, 3, 4, 6, 8, 24 and 168 hours after endotoxin infusion was
added to Duraclone tubes containing antibodies directed against CD3, CD14, CD15, CD11b, CD16,
CD19, CD33, CD45, CD56, CD124 and HLA-DR, and analyzed using flow cytometry (see Materials
and Methods). A) t-SNE plots of leukocyte populations. B) Expression levels of cell surface markers
and FSC-A/SSC-A characteristics of leukocyte populations identified in A. C) t-SNE plots of leukocyte
populations over time. D) Absolute counts (left panel) and percentage in leukocytes (right panel) of
PMN-MDSCs and neutrophils. E) Absolute counts (left panel) and percentage in monocytic cells (right
panel) of M-MDSCs, classical monocytes and intermediate/non-classical monocytes. Graphs show
median with standard deviation. LIN: lineage (i.e., positive for CD3, CD56 or CD19), DCs: dendritic
cells, M-MDSCs: monocytic MDSCs, PMN-MDSCs: polymorphonuclear MDSCs.
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Figure 2. MDSCs in the blood of intubated ICU patients. Blood was obtained at study inclusion
(n=32) and at ICU discharge (n=17) from intubated ICU patients without infection. Blood was incubated
with fluorescently labelled antibodies directed against CD3, CD14, CD15, CD11b, CD16, CD19, CD33,
CD45, CD56, CD124 and HLA-DR and analyzed by flow cytometry (see Materials and Methods). A) t-
SNE plots of leukocyte populations. B) Expression levels of cell surface markers and FSC-A/SSC-A
characteristics of leukocyte populations identified in A. C) Counts of leukocyte populations at study
inclusion and at ICU discharge. Boxplots show median, upper and lower quartiles. The whiskers show
the 5 to 95 percentiles. * P<0.05, ** P<0.01.
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Figure 3. Comparison of MDSCs levels between healthy subjects infused with endotoxin and
intubated ICU patients. Percentages in leukocytes of PMN-MDSCs and M-MDSCs in healthy subjects
infused for 0, 4 and 8 hours with endotoxin, and in intubated ICU patients at study inclusion and at ICU
discharge. Statistics between baseline endotoxin patients and other groups. Boxplots show median,
upper and lower quartiles. The whiskers show 5 to 95 percentiles.
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Figure 4. Correlation analysis between the expression levels of MDSCs, cytokines, chemokines
and growth factors. Blood was collected from patients at their admission in the ICU to quantify 23
cytokines, 11 chemokines, and 15 growth factors by multiplex bioassay and MDSCs by flow cytometry.
Correlations were calculated using Spearman’s rank correlation controlled for False Discovery Rate
using the BH step-up procedure. The correlation plot depicts mediators with a correlation coefficient
greater than 0.3 with at least one population of MDSCs. * P<0.05, ** P<0.01, *** P<0.001.
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Figure 5. MDSCs at admission correlate with the development of gram-negative infection in
intubated ICU patients. A) Percentages of PMN-MDSCs and M-MDSCs in leukocytes of patients that

do not develop an infection (No HAI, n=8), hospital-acquired infection (HAI, n=10) and ventilator-

associated pneumonia (VAP, n=14). B) Percentage of MDSCs at admission in patients who developed

gram negative (gram-) or gram positive (gram+) infections. Boxplots show median, upper and lower

guartiles. The whiskers show 5 to 95 percentiles. Each dot represents an individual sample.
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Figure 6. High MDSCs levels at admission are associated with a worse outcome for intubated
ICU patients. A) Leukocyte populations expressed as percentage for the intubated ICU patients,
comparing survivors (n=28) and non-survivors (n=4). B) Boxplot showing CD15- MDSCs and CD15*
MDSCs levels in survivors and non-survivors. C) Kaplan-Meier 28 day survival curve of patients with
low (<10%) and high (>10%) levels of PMN-MDSCs. D) Kaplan-Meier 28 day survival curve of patients
with low (<1.3%) and high (>1.3%) levels of CD15* M-MDSCs. E) Kaplan-Meier 28 day survival curve
for patients split on low and/or high of either PMN-MDSCs (split on 10%) and CD15+ M-MDSCs (split
on 1.3%), and high levels of both PMN-MDSCs and CD15* M-MDSCs. F) ROC curves of PMN-MDSCs
and CD15* M-MDSCs for patient mortality. The area under the curve (AUC) and the confidence of
intervals (Cl) are given. Boxplots show median, upper and lower quartiles. The whiskers show 5 to 95
percentiles. Each dot represents an individual sample. The association of MDSCs with survival was
assessed using the Mann-Whitney U and the Kruskal-Wallis. The cutoff values of MDSCs used to
segregate high and low levels for the event curve were based on the highest tertile and statistical
differences were assessed using the log-rank test.
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Figure S1. Gating strategy to exclude debris, doublets and non-hematopoietic cells when

analyzing blood leukocytes by flow cytometry.
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collected from eight healthy subjects before and 1, 2, 3, 4, 6, 8, 24 and 168 hours after endotoxin

infusion. CD45* cells were quantified by flow cytometry.
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Figure S3. MDSCs in the blood of intubated ICU patients. Blood was obtained at study inclusion
(n=32) and at ICU discharge (n=17) from intubated ICU patients without infection. Blood was analyzed
by flow cytometry as described in Materials and Methods. Data are presented as the percentage of
leukocytes. Boxplots show median, upper and lower quartiles. The whiskers show 5 to 95 percentiles.
LIN: lineage (i.e., positive for CD3, CD56 or CD19), DCs: dendritic cells. * P<0.05.
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Figure S4. Comparison of MDSCs levels between healthy subjects infused with endotoxin and
intubated ICU patients. Absolute counts of PMN-MDSCs and M-MDSCs in healthy subjects infused
for 0, 4 and 8 hours with endotoxin, and in intubated ICU patients at study inclusion and at ICU
discharge. Statistics between baseline endotoxin patients and other groups. Boxplots show median,

upper and lower quartiles. The whiskers show 5 to 95 percentiles.
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3.3. Rapid increase of myeloid-derived suppressor cells, and prolonged innate

immune dysfunctions in patients with COVID-19.
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Giuseppe Pantaleo?, Thierry Calandra'*, Thierry Roger*

1. Infectious Diseases Service and 2 Service of Immunology and Allergy, Department of Medicine,
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Manuscript in preparation
Summary:

The COVID-19 pandemic gave us the unique opportunity to set up a cohort with sepsis and non-sepsis
patients caused by one specific pathogen, SARS-CoV-2. Like patients with bacterial sepsis, COVID-19
patients show concurrent signs of exuberant inflammation and immunosuppression. The objective of
the study was to define whether the expression of MDSCs and the production of cytokines by innate
immune cells in blood were affected by COVID-19 and, if so, whether these effects persisted over time.
Blood was collected from 10 healthy controls and 56 COVID-19 patients at study inclusion and 3 months
later. Blood was stimulated with Toll-like receptor ligands. Leukocytes, including PMN-MDSCs and M-
MDSCs, and up to 49 mediators (cytokines, chemokines and growth factors) were analyzed by flow
cytometry, mass cytometry, multiplex bead assay, and ELISA. PMN-MDSCs and M-MDSCs were 2-3.7-
fold higher in COVID-19 patients than in controls (P < 0.05) and were associated with disease severity
(P < 0.01). MDSCs inversely correlated with T cell counts, and positively correlated with blood
cytokines. The proportion of monocytes and DCs producing TNF and IL-6, and the concentrations of
cytokines were reduced in ex vivo-stimulated whole blood from COVID-19 patients. Three months after
COVID-19 diagnosis, irrespective of initial disease severity, MDSCs were back to normal levels while
the production of cytokines by blood cells was still largely affected. These data suggest that COVID-19

induces rapid and long-standing innate immune dysregulation.

My contribution to this work:

I participated into the design of the study. I performed flow cytometry experiments, analysed the data,

and performed correlation studies. I drafted the article.
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Background. Acute COVID-19 has been associated with exuberant inflammation, but COVID-19
patients also exhibit immunosuppression. The objective of the study was to define whether the
expression of myeloid-derived suppressor cells (MDSCs) and the production of cytokines in blood are

affected by COVID-19, and whether these effects persist over time.

Methods. Blood was collected from 10 healthy controls and 56 (45 moderate, 11 severe) COVID-19
patients at study inclusion and 3 months later. Blood was stimulated with Toll-like receptor ligands.
Leukocytes including polymorphonuclear and monocytic MDSCs (PMN-MDSCs and M-MDSCs), and
up to 49 cytokines (including chemokines and growth factors) were analyzed by flow cytometry and
mass cytometry, multiplex bead assay and ELISA.

Results. PMN-MDSCs and M-MDSCs were 2-3.7-fold higher in COVID-19 patients than in controls (P
< 0.05) and were associated with disease severity (P < 0.005). MDSCs inversely correlated with T cell
counts, and positively correlated with blood cytokines. The proportion of monocytes and DCs producing
TNF and IL-6, and the concentrations of cytokines were reduced in ex vivo-stimulated whole blood from
COVID-19 patients. Three months after COVID-19 diagnosis, irrespective of initial disease severity,
MDSCs were back to normal levels while the production of cytokines by blood cells was still largely
affected.

Conclusions. PMN-MDSCs and M-MDSCs were elevated and correlated with disease severity and
blood cytokine concentrations in COVID-19 patients. Innate immune response of whole blood was
strongly impaired in patients and largely persisted for up to 3 months. These data suggest that COVID-

19 induces rapid and long-standing innate immune dysregulation.

Key words: COVID-19, SARS-CoV-2, innate immunity, myeloid-derived suppressor cells, cytokine,

monocyte, dendritic cell.
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Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) quickly spread worldwide following its
discovery in December 2019, with more than 170 million cases (June 1%t, 2021) of infection reported
worldwide. SARS-CoV-2 is responsible for Coronavirus disease 2019 (COVID-19), which presents with
a wide clinical spectrum. Most cases of COVID-19 are asymptomatic or involve mild symptoms, but 10%
to 20% of patients develop pneumonia that can progress into acute respiratory distress syndrome
(ARDS) resulting in high in-hospital mortality [1-3]. Numerous factors including the SARS-COV-2
strain and patient’s demographics, underlying conditions, and immune status influence outcome (4-

11).

SARS-CoV-2 is an enveloped, positive-sense, single-stranded RNA coronavirus that binds to
angiotensin-converting enzyme 2 (ACE2) expressed on nasal, bronchial and alveolar cells to promote
infection [12]. Innate immune sensing of the virus relies on the expression of pattern recognition
receptors (PRRs) such as Toll-like receptor (TLR) 3, TLR7, retinoic acid inducible gene I (RIG-I) and
melanoma differentiation associated gene 5 (MDA-5) [13-17]. Triggering of these PRRs results in the
production of type I interferons (IFNs), cytokines and chemokines that promote anti-viral responses
and SARS-CoV-2 elimination. However, uncontrolled overwhelming cytokine production can be
pathogenic, leading to a cascade of immune-related manifestations including organ failure (sepsis), and

death [3, 11, 18, 19].

The “cytokine storm”, which defines the release of large amounts of cytokines that trigger systemic
inflammation involved in multi-organ failure, is commonly associated with the pathogenesis of severe
COVID-19. However, COVID-19 patients with ARDS have relatively low blood concentrations of
cytokines when compared to patients with ARDS unrelated to COVID-19 and to patients with bacterial
sepsis [20-22]. Patients with COVID-19 show severe lymphopenia and impaired immune effector cell
functions associated with secondary infections and death [3, 18]. Thus, besides hyperinflammation,
immunosuppression may play a significant role in COVID-19 morbidity and mortality [23-26].

However, the persistence of immune dysfunctions in COVID-19 pathogenesis remains unclear.

The replication-competent SARS-CoV-2 is typically no longer detectable after 4 weeks, signifying the
end of acute COVID-19. However, a fraction of patients exhibits so-called long-COVID with persistent
symptoms including tiredness, myalgia, cough, shortness of breath, and loss of taste and/or smell [27-
30]. Recent estimates suggest that as much as 10-22% of individuals still have symptoms 5-12 weeks
after SARS-CoV-2 infection, and 70% of COVID-19 hospitalized patients still experience shortness-of-
breath one month after discharge [30, 31]. Furthermore, abnormalities persisting beyond 12 weeks after
acute COVID-19 indicate a post-acute COVID-19 syndrome [29]. Long COVID and post-acute COVID-
19 syndrome are similar to post-sepsis syndrome. This debilitating chronic phase of physical and
psychological long-term effects following sepsis is characterized by immunosuppression associated with

a persistent low-grade inflammation which can remain for months or years [32, 33].

Myeloid-derived suppressor cells (MDSCs) are immature-like myeloid cells that suppress innate and
adaptive immune responses through different mechanisms. MDSCs expand during sterile and

infectious inflammation through the induction of inflammatory and danger signals. MDSCs can be
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generated through the expansion and egress of immature myeloid cells with suppressive functions into
the circulation. An alternative proposition is the generation of MDSCs though the conversion of
neutrophils and monocytes into so-called pathologically-activated MDSCs [34]. MDSCs are usually
divided into two major groups of granulocytic/polymononuclear MDSCs and monocytic MDSCs (PMN-
MDSCs and M-MDSCs) [34-41]. The role of MDSCs is mainly studied in cancer, where these cells
accumulate in tumor micro-environments to suppress anti-tumor immunity and rise in blood
circulation to one of the main leukocyte subtypes [42, 43]. MDSCs are usually associated with poor
clinical outcomes, and viewed as biomarkers for a number of pathological conditions including cancer

and autoimmune diseases [33-35, 40, 41, 44].

The aim of this study was to determine the dynamics of MDSCs and the innate immune response in
COVID-19 patients. To assess this aim we used highly discriminative technologies applied to healthy
controls and 56 hospitalized COVID-19 patients sampled during hospitalization and 3 months later. We
observed that MDSCs were elevated in patients and correlated with disease severity and immunological
parameters. Our results suggest that COVID-19 induces rapid and long-standing innate immune

dysregulation.
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Materials and methods

Subjects and ethic statement

Fifty-six hospitalized PCR-confirmed SARS-COV2 infected adult patients were enrolled in the Lausanne
University Hospital (LUH) COVID-19 cohort study. The exclusion criterion for study enrolment was
pregnancy. Blood samples were collected at study inclusion and 3 months later. Moderate COVID-19
was defined as hospital admission without the need for intubation, while severe COVID-19 was defined
as hospital admission with intubation or death. A control group was comprised of 10 age- and sex-
matched healthy individuals. Exclusion criteria were prior diagnosis of SARS-COV2 infection, acute or
chronic viral hepatitis, autoimmune disease, immunodeficiency and use of immunomodulatory drugs.
This study was approved by the Commission cantonale d'éthique de la recherche sur 1'étre humain,

Canton de Vaud, Switzerland (CER-VD). Study participants provided written informed consent.

Detection of MDSCs in whole blood by flow cytometry

One hundred pL of EDTA-anticoagulated blood were incubated for 20 minutes at room temperature in
the dark with a cocktail of antibodies directed against CD3, CD7, CD11b, CD14, CD15, CD16, CD19,
CD33, CD45, CD56, CD135 and HLA-DR (supplementary Table 1). Samples were diluted with 2 mL
1x 1-step Fix/Lyse solution (eBioscience™), washed once with cell stain medium (CSM: PBS containing
0.5% BSA and 0.02% sodium azide) and acquired using an Attune NxT Flow Cytometer (Thermo Fisher
Scientific, Waltham, MA, USA). For analysis, debris, doublets and non-hematopoietic cells were
excluded using manual gating (Supplementary Figure 1), followed by FlowSOM unsupervised
clustering using the biexponential transformed expression levels of CD11b, CD14, CD15, CD16, CD33,
CD45, HLA-DR and lineage markers (CD3, CD7, CD19, CD56). Metaclustering was set on 30
populations manually merged into populations based on biological knowledge as represented in tSNE
plots (Figure 1). PMN-MDSCs were identified based on their relatively low expression levels of CD16
and CD11b when compared to mature neutrophilic granulocytes, while M-MDSCs were identified based

on low expression levels of HLA-DR.

Profiling of blood T cell populations and quantification of serum mediators

T cell populations were profiled through flow cytometry and mass cytometry (detailed in [45]). The
concentrations of cytokines (IL-1a, IL-1RA, IL-1f, IL-2 , IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-12p70,
IL-13, IL-15, IL-17A, IL-18, IL-21, IL-22, IL-23, IL-27, IL-31, IFN-a, IFN-3, TNF), chemokines (CCL2,
CCL3, CCL4, CCL5, CCL11, CXCL1, CXCL8, CXCL9,CXCL10, CXCL12, CXCL13) and growth factors
(TNF-B, NGF-f, BDNF, EGF, FGF-2, HGF, LIF, PDGF-BB, PIGF-1, SCF, VEGF-A, VEGF-D, BAFF, GM-
CSF, and G-CSF) were determined by multiplex bead assay using the Luminex xMAP Technology
(Luminex Corporation, Austin, TX) and a BioPlex 200 array reader (Bio-Rad Laboratories, Hercules,
CA).

Whole blood stimulation assay

To quantify cytokine production by monocytes and DCs, 300 uL of EDTA-anticoagulated blood was
incubated for 4 hours at 37°C with or without 100 ng/mL Escherichia coli 055:B5 ultrapure ultrapure
lipopolysaccharide (LPS), 5 ug/mL R848, 100 ng/mL Pam;CysSerLys, (Pam;CSK,), and 5 ug/mL CpG
ODN 2216 (Invivogen, San Diego, CA). Brefeldin A (5 pg/mL, Invitrogen, Carlsbad, CA) was added
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during the incubation. To analyze monocytic cells, 100 pL of reaction mixtures were incubated with
LIVE/DEAD™ reagent and antibodies directed against CD14, CD16, CD19, CD33, CD56, HLA-DR and
PD-L1/CD274. To analyze on DCs, 200 uL of reaction mixtures were incubated with LIVE/DEAD™,
Anti-Human Lineage Cocktail 2 (Lin-2, i.e. anti-CD3, CD14, CD19, CD20 and CD56 antibodies), and
anti-CD1c, CD11c, CD16, CD123, HLA-DR and PD-L1/CD274 antibodies. After 20 minutes of incubation
at room temperature in the dark, samples were diluted with 2 mL 1x 1-step Fix/Lyse Solution
(eBioscience™), washed with CMS, incubated for 10 minutes with CMS containing 0.3% saponin
(Sigma-Aldrich, Saint Louis, MI), incubated for 20 minutes with CMS containing antibodies directed
against TNF, IL-6 and IL-10, washed and acquired using an Attune NxT Flow Cytometer. Reagents are
described in supplementary Table 2. Samples were analyzed after excluding debris, doublets and
dead cells (LIFE/DEADT™), To analyze monocytic cells, SSC-A intermediate, CD33+, CD3- and CD20-
cells were selected by manual gating. FlowSOM automatic unsupervised clustering (metacluster set on
20) was performed based on the expression of HLA-DR, CD14, CD16, CD33, CD56 and SSC-A.
Monocytic cells were selected for a second round of clustering to distinguish classical monocytes, (HLA-
DR+ CD14* CD16°), non-classical and intermediate monocytes (HLA-DR* CD14+/- CD16*), and M-
MDSCs (HLA-DR+*/- CD14* CD16"). FlowSOM unsupervised clustering (metacluster set on 12) based on
intracellular cytokine labelling (TNF, IL-6 and IL-10) was applied to quantify cytokine-producing
monocytic cells. To analyze DCs, HLA-DR* and Lin2- cells were selected. Patients with very low counts
of DCs (< 30 cells/mL) were excluded. FlowSOM (metacluster set on 12) based on the intracellular
cytokine labelling (IL-6, IL-10 and TNF) and PD-L1 expression was applied to quantify DCs producing

cytokines and expressing PDL-1.

To quantify cytokine release by whole blood, 30 pL of EDTA-anticoagulated blood was incubated for 24
hours at 37°C with or without LPS, Pam;CSK,, R848 and CpG as described above. Supernatants were
collected and used to quantify mediators by multiplex bead assay using the Luminex xMAP Technology
and TNF and IL6 by TNF ELISA Set (555212, Becton Dickinson, NJ, USA) and Human IL-6 ELISA MAX
set (B214736, BioLegend, CA, USA).

Statistics and software

Manual gating was performed on FlowJo™ Software version 10.6.2 (Ashland, OR). Statistical analyses
and figure design were performed using R v.3.6.0 (R Foundation for Statistical Computing, Vienna,
Austria). Baseline characteristic comparisons were made using Mann-Whitney U, Chi square or
Kruskall-Wallis tests for skewed variables and student’s t-test or Chi square for normal distributed
variables. Cytokine and flow cytometry data were compared using the Kruskall-Wallis test, Mann-
Whitney U, or Spearman’s rank correlation controlling for False Discovery Rate (FDR) using the BH
step-up procedure. PMN-MDSCs and M-MDSCs levels were split into high (> 0.86 and > 0.12 x
10%/mL), intermediate (0.12-0.86 and 0.05-0.12 x 10¢/mL) and low (< 0.12 and < 0.05 x 10¢/mL) levels
based on cutoff values corresponding to tertiles for further analyses. For Luminex and Elisa samples
analysis, we normalized both data using a root-mean-square normalization, merged the data, and
linearly scaled the merged data making the maximum value one and minimum value zero. A 2-tailed P

< 0.05 was considered statistically significant.

84 Irene T. Schrijver



3. Results

Results

MDSCs increase transiently in COVID-19 patients

We analyzed 56 hospitalized PCR-confirmed SARS-COV2 infected adult patients included in the
Lausanne University Hospital COVID-19 cohort study (Table 1). Forty-five patients (80%) developed
moderate COVID-19 and did not require intubation. Eleven patients (20%) developed severe COVID-
19, of which 2 died (3.5%). The groups of moderate and severe COVID-19 patients were similar in
gender, age, immunosuppressive drug medication and number of comorbidities. Severe COVID-19
patients had a longer hospital stay than moderate COVID-19 patients (moderate vs severe: 3.5 [IQR:
1.8-6.5] vs 24 [21-27] days, P < 0.001) and higher leukocyte counts (3.0 [2.4-4.7] vs 7.0 [3.3-10.9] x 109
cells/mL, P = 0.024) (Table 1).

Blood was collected at study inclusion and 3 months later for 21 patients (14 moderate and 7 severe
COVID-19). Immune profiling targeted at MDSCs was performed by flow cytometry followed by
automatic unsupervised clustering with FlowSOM based on the expression of CD3, CD7, CD11b, CD14,
CD15, CD16, CD19, CD33, CD45, CD56, CD135 and HLA-DR (Figure 1A-B). PMNs were at 1.7 [1.1-2.3]
x 106 cells/mL, representing around 50% [38-63%] of total leukocytes irrespective of infection status
and timing of blood collection (Figure 2). Lineage (CD3, CD7, CD19 or CD56) positive cells and DCs
(Lin*/DCs) represented the second largest group, followed by CD14* CD16- classical monocytes and
PMN-MDSCs (Figure 2). Patients with an active SARS-CoV-2 infection had less Lin*/DCs and
monocytes than healthy controls, but 4-fold more PMN-MDSCs (control vs COVID-19: 0.11 [0.07-0.23]
US 0.40 [0.09-1.6] x 106 cells/mL, P = 0.031) and 2-fold more M-MDSCs (control vs COVID-19: 0.038
[0.021-0.045] vs 0.076 [0.040-0.15] x 10° cells/mL, P = 0.01) (Figure 2). The counts of PMN-MDSCs
and M-MDSCs, as well as the counts of leukocytes, were normalized in blood collected from patients 3

months after study inclusion (Figure 2).

MDSCs counts correlate with COVID-19 severity and blood cytokine levels

PMN-MDSCs and M-MDSCs counts were 10- and 4-fold higher in severe COVID-19 patients compared
with moderate COVID-19 patients, respectively (P = 0.0013 and P = 0.0014) (Figure 3). In contrast,
PMNS, eosinophils, basophils, Lin*/DCs and monocytes were similarly expressed in severe and
moderate COVID-19 patients (Figure 3). PMN-MDSCs and M-MDSCs levels correlated with each other
(correlation coefficient (p) = 0.43, P = 0.03) (Figure 4A). They did not correlate with the use of

immunosuppressive drugs (P = 0.47 and P = 0.28).

Lymphocytopenia and high serum cytokine levels at time of hospitalization were predictors of COVID-
19 severity (3, 18, 46). We took advantage of the measurements of lymphocyte populations and 49
cytokines, chemokines, and growth factors in the blood of COVID-19 patients at study admission ((45))
to perform correlation studies between the absolute counts of MDSCs and immunological parameters.
PMN-MDSCs and M-MDSCs inversely correlated with lymphocyte, T cells, CD4* T cells, CD8* T cells
and T regulatory cells (Tregs) counts. The strongest association was between PMN-MDSCs and
lymphocytes (p = -0.37, P = 0.025) (Figure 4A-B). B cell numbers were not affected by SARS-CoV2

infection in our cohort study (P > 0.05), and correlation with MDSCs was not considered.
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PMN-MDSCs and M-MDSCs had a positive correlation with the 33 mediators detectable in the serum
of patients (positive vs negative association: red vs blue dots, 53/66 vs 3/66 associations) (Figure 5A).
Eight statistically-significant positive associations were identified after correction for multiple
comparisons. PMN-MDSCs and M-MDSCs correlated with epidermal growth factor (EGF) and
hepatocyte growth factor (HGF) (PMN-MDSCs: p = 0.47, P = 0.01 and p = 0.42, P = 0.02; M-MSDCs:
p =0.44, P =0.02 and p = 0.46, P = 0.01), M-MDSCs correlated with IL-1p (p = 0.42, P = 0.03), IL-7
(p = 0.38, P = 0.05), platelet-derived growth factor-BB (PDGF-BB) (p = 0.56, P < 0.0001) and vascular
endothelial growth factor (VEGF) (p = 0.40, P = 0.03) (Figure 5A). Normalized values per patient are
depicted in supplementary Figure 2.

To have a more detailed view about the relationship between the expression of MDSCs and the
expression of serum mediators, we partitioned PMN-MDSCs and M-MDSCs into high, intermediate,
and low expression levels (high: > 0.86 and > 0.12, intermediate: 0.12-0.86 and 0.05-0.12, and low: <
0.12 and < 0.05 x 10° cells/mL, respectively; cutoffs based on tertiles) (Figure 5B). Twenty-three
mediators were differentially expressed in the 6 groups constituted (high, intermediate and low PMN-
MDSCs and M-MDSCs). High expression levels of PMN-MDSCs and M-MDSCs were in general
associated with high concentrations of mediators (15/23 and 16/23 of associations, respectively)
(Figure 5B). Low expression levels of M-MDSCs were associated with high levels of MCP-1, CXCLog,
CXCL10 and CXCL13.

COVID-19 durably impairs cytokine response of blood monocytes and dendritic cells

MDSCs drive immunosuppressive functions on both innate and adaptive immune cells (34, 35). COVID-
19 has persistent effects on the adaptive immune system, but the long-term impact on the innate
immune system is largely unknown. Thus, we investigated the consequence of COVID-19 on innate
immune functions. We exposed whole blood from COVID-19 patients (at study inclusion and after 3
months) and from healthy subjects to LPS, R848, Pam;CSK, and CpG (i.e. ligands of TLR4, TLR7/8,
TLR1/2 and TLR9). After for 4 hours, we performed intracellular cytokine staining (ICS) followed by
flow cytometry analysis of TNF and IL-6 expression by monocytes and DCs.

In healthy controls, 0.02% [0-0.04] and 4.3% [3.0-5.0] of monocytes produced TNF and IL-6 at
baseline, 24% [17-25] and 17% [14-20] in response to LPS, and 79% [67-81] and 46% [32-50] in response
to R848, respectively. The percentage of blood monocytes producing TNF and IL-6 in response to LPS
and R848 was 1.3-4.9-fold lower in COVID-19 patients (LPS: P < 0.001, R848: P < 0.05) (Figure 6A-
B). The reduction was more striking in severe than in moderate COVID-19 patients (Figure 6C-D).
The impaired response of monocytes persisted up to 3 months in COVID-19 patients (Figure 6A-B).
A similar pattern was observed when subdividing monocytes into classical and intermediate/non-
classical monocytes (Supplementary Figure 3A-D). Of note, few M-MDSCs produced TNF and IL-
6 in response to LPS and R848 (Supplementary Figure 3A-D). The percentages of monocytes
producing TNF and IL-6 in response to Pam3;CSK, and CpG and IL-10 in response to LPS, R848,
Pam3;CSK, and CpG were, nonetheless lower in COVID-19 patients. The decrease was essentially

normalized in patients analyzed after 3 months (supplementary Figure 4 and 5).
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DCs presented a similar response pattern to that observed with monocytes. In healthy controls, 0.6%
[0.5-1.6] and 0.6% [0.2-0.6] of DCs produced TNF and IL-6 at baseline, 38% [36-45] and 36% [34-40]
in response to LPS, and 68% [48-77] and 58% [47-75] in response to R848, respectively. TNF and IL-6
response by DCs was 2.1-5.1-fold lower in COVID-19 patients (P < 0.001) (Figure 7A-B), more
impaired in severe than in moderate COVID-19 patients (Figure 7C-D), and still reduced after 3
months. The percentage of DCs producing TNF and IL-6 upon stimulation with Pam;CSK, and CpG,
and IL-10 at baseline and upon stimulation was too low (< 0-5%) to reliably detect an effect of COVID-
19. PD-L1 expression by DCs was decreased in COVID-19 patients and was normalized to healthy control

levels after 3 months (Supplementary Figure 3B).

Finally, we assessed whether the defects observed in monocytes and DCs impacted the production of
cytokines/chemokines/growth factors by whole blood. The concentrations of 24 mediators were
measured by multiplex bead assay, and that of TNF and IL-6 by ELISA in the supernatants of blood
incubated for 24 hours with LPS and R848 (Figure 8). Upon stimulation, 71% and 54% (17/24 and
13/24) of mediators were secreted at lower concentrations in blood of COVID-19 patients tested at
inclusion, while 25% and 29% (6/24 and 7/24) were at lower concentrations in blood of patients tested
after 3 months, respectively (Figure 8A). The concentrations of TNF induced by LPS and R848 and of
IL-6 induced by LPS were lower in COVID-19 patients tested at inclusion. Moderate and severe COVID-
19 were similarly affected (Figure 8B-E).
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Discussion

We analyzed immune parameters in whole blood of hospitalized patients with moderate and severe
COVID-19, and healthy subjects. Along with cytokine levels, PMN-MDSCs and M-MDSCs were
increased in patients and were associated with T cell depletion and worse outcomes. Ex vivo production
of cytokines by innate immune cells in response to stimulation with TLR agonists was downregulated,
particularly in severe COVID-19 patients. We are the first to report that MDSCs returned to normal
levels while innate immune dysregulation was persisting over 3 months from disease symptoms.

MDSCs may represent early markers of COVID-19 severity.

Massive release of cytokines has been associated with the pathophysiology of COVID-19, but its
consequences on the dysregulated response affecting adaptive and innate arms of the immune system
remain poorly understood. Systemic inflammation fuels widespread tissue damage and organ
dysfunction. However, it also stimulates myelopoiesis and consequently the generation of MDSCs [47-
53]. MDSCs represented 10-15% of blood leukocytes in COVID-19 patients. This situation is reminiscent
of that observed in sepsis patients, in whom MDSCs strongly increased and eventually exceeded 40% of
total leukocytes [54-56]. Interestingly, M-MDSCs levels in blood, but not in airways, correlated to
COVID-19 severity [49], confirming that peripheral blood is a reliable source of biomarkers of COVID-

19 disease.

We show that PMN-MDSCs were 4-10-fold more abundant than M-MDSCs. This mirrors
measurements in other COVID-19 studies and other pathologies, though subtypes of MDSCs were not
always differentiated [48-52]. Of note, there are discrepancies in MDSCs numbers in between studies,
illustrated by one measuring a 90% PMN-MDSC proportion of total blood mononuclear cells in patients
with severe COVID-19 [47], while in another showed similar frequencies of M-MDSCs and PMN-
MDSCs [52]. Discrepancies reported in the literature may involve patient heterogeneity, but can also be
related to different labelling and gating strategies to define MDSCs by flow cytometry since there is no
specific marker allowing indisputable delineation of MDSCs. To rule out problems associated with
manual gating, we applied automatic unsupervised clustering to analyze our flow cytometry data. We
did not establish the immunosuppressive function of MDSCs. However, several studies demonstrated
that PMN-MDSCs and M-MDSCs of COVID-19 patients inhibited the proliferation and cytokine
production by T cells [47-49, 51]. Of note, in all but one of these studies, MDSCs were isolated though
magnetic cell isolation technology, and therefore may not fully reflect the populations detected using

more sophisticated flow cytometry analyses.

Single cell RNA sequencing (scRNA-seq) and single cell multi-omics analyses have been used to profile
immune cells in the blood of COVID-19 patients [57-59]. Unfortunately, MDSCs were not identified by
dimensional reduction of transcriptomic data. This was rather disappointing since in one of these
studies, immunosuppressive myeloid cells were documented functionally. Low density gradient
neutrophils and immature HLA-DRlow CD14+ monocytes suppressed T cell activity, and to a higher
extent in severe patients who patient survived than in those who deceased [57]. Moreover, comparative
gene profiling of PMN-MDSCs and neutrophils on the one hand, and of M-MDSCs and monocytes on
the other hand, revealed great differences in cancer patients [40]. Similarly, a pilot scRNA-Seq study of
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MDSCs in sepsis patients suggested the existence unique transcriptional responses [60]. Further work
will be required to identify the mechanisms driving the expansion of MDSCs or the differentiation of
neutrophils and monocytes into MDSCs and markers that could be used to discern MDSCs from

classical monocytes and neutrophils by flow cytometry.

High levels of MDSCs at study inclusion, i.e. at hospital admission for virtually all patients, were
associated with high circulating levels of cytokines and worse outcomes, and were inversely associated
with lymphocytopenia. In addition, monocytes and DCs of COVID-19 patients showed severely reduced
cytokine production in response to stimulation with TLR ligands, a dysfunction that was extreme in
most severe patients. These observations supported the assumption that exuberant immune response
to SARS-CoV-2 infection exacerbates the development of an immunosuppression environment limiting
anti-microbial defenses. This is congruent with reports showing that severe COVID-19 patients have an

increased risk of contracting nosocomial bacterial and fungal infections [61, 62].

Lymphopenia and high expression levels of cytokines (including IL-18, IL-6, IL-7, IL-8, IL-10, IL-12,
IL-1Ra, IFNy, TNF, CCL2, CCL3, CXCL9, CXCL10, CXCL11, CXCL13, G-CSF and HGF) are hallmarks
of severe COVID-19 [3, 18, 63]. Strengthening this notion, a retrospective study identified high IL-6, IL-
8 and TNF levels at time of hospital admission as a signature predicting COVID-19 severity and survival
[46]. PMN-MDSCs and M-MDSCs levels correlated with blood concentrations of EGF and HGF, and M-
MDSCs also with PDGF-BB, VGEF, IL-1$ and IL-7. Growth factors are involved in the expansion of
MDSCs, and EGF and HGF act as chemoattractant of MDSCs in the tumor environment [64, 65]. IL-13
stimulates myelopoiesis [53, 66], while IL-7 sustained the expansion and T cell-suppressing activity of
MDSCs as well as the expression of IL-10-producing B cells following sepsis [67, 68]. Targeting EGF
and HGF pathways with tyrosine kinase inhibitors might be viable therapies in COVID-19, especially

since inhibitors are used in the field of cancer [69, 70].

PMN-MDSCs and M-MDSCs as well as monocytes, DCs and lineage positive leukocytes were back to
healthy control levels in patients screened 3 months after study inclusion. However, monocytes and
DCs were still harboring reduced functionality (i.e. cytokine production), indicative for long-term
immune disturbances. In a similar way, patients recovering from COVID-19 showed signs of profound
cellular abnormalities, including signs of T cell activation/exhaustion several months after infection [71-
75]. Failure to restore immune homeostasis, as observed in the post-sepsis syndrome [32, 33], may be

one of the drivers of long-COVID and post-acute COVID-19 syndrome [27-30].

Taken together, our findings demonstrate that MDSCs rapidly and strongly expanded in COVID-19
patients and correlated to disease severity, suggesting that MDSCs may represent interesting markers
to stratify SARS-CoV-2 infected patients. MDSCs recovered to baseline levels, but monocytes and DCs
showed persistent signs of dysfunction over 3 months from disease onset. Therefore, while
immunotherapies have been focusing on reducing inflammation, adjunct therapies targeting MDSCs or
immune dysfunctions might be useful to counterbalance immunosuppression, reduce nosocomial and

long-term infections and decrease late mortality in severe COVID-19 patients.
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Tables and figures

Table 1. Patient’s characteristics

3. Results

Characteristic Control Moderate Severe 3 months after

COVID-19 COVID-19 study
inclusion

Number of subjects 10 45 11 21

Gender, male 7 (70%) 31 (70%) 7 (64%) 15 (71%)

Age (years) 58 (55-65) 62 (53-74) 60 (48-63) 61 (54-75)

Charlson comorbidity - 3(1.8-6) 2 (1-4.5) 2 (1-6)

index

Immunosuppressive - 7 (16%) 1 (%) 5%

drugs

Days of symptoms before - 7 (5-10) 7 (5-11) 9 (6.5-11)

inclusion

Length of hospital stay* - 3.5(1.8-6.5) 24 (21-27)*** 5(2.5-17)

Death - - 2 (18%) -

Leukocytes (x 10° cells/L) 3.4 (3.2-3.7) 3.0(2.4-4.7) 7.0 (3.3-10.9)* 3.9 (3.2-4.8)

PMN-MDSCs (x 10°cells 0.1 (0.07-0.2) 0.2 (0.08-1.0) 2.3 (0.6-8.6)** 0.1 (0.06-0.2)

/L)

M-MDSCs (x 10°cells /L) 0.04 (0.02- 0.05 (0.03-0.1) 0.22 (0.11- 0.04 (0.02-0.07)

0.05) 0.31)**

Data are medians (IQR) or N (%). *Excluding non-survivors, from moment of inclusion to hospital

discharge. Statistics between moderate and severe COVID-19 patients: * P < 0.05, * P < 0.01, ** P <

0.001.
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Figure 1. Identification of MDSCs in the blood of COVID-19 patients. A) Blood was obtained from
10 healthy subjects and 56 COVID-19 patients (46 moderate and 11 severe COVID-19) at study
inclusion and after 3 months (N=17), stained with antibodies directed against CD3, CD14, CD15,
CDl11b, CD16, CD19, CD33, CD45, CD56, CD124 and HLA-DR, and analyzed by flow cytometry (see
Materials and Methods). A) t-SNE plots of leukocyte populations. B) Expression levels of cell surface
markers and FSC-A/SSC-A of leukocyte populations. PMN-MDSCs: polymorphonuclear-MDSCs, M-
MDSCs: monocytic-MDSCs, LIN: lineage (i.e. positive for CD3, CD56 or CD19), DCs: dendritic cells.
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Figure 2. MDSCs increased rapidly in the blood of COVID-19 patients. Counts in million cells/mL

of leukocyte populations identified as described in Figure 1. Boxplots show median, upper and lower

quartiles. The whiskers show 5 — 95 percentiles. Each dot represents an individual sample. N = 10
healthy subjects, 56 COVID-19 patients at inclusion and 17 COVID-19 patients at month 3. * P < 0.05,
** P <0.01, *** P <0.001.
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Figure 3. MDSCs are increased in patients with severe COVID-19. Counts in million cells/mL of

leukocyte populations. Boxplots show median, upper and lower quartiles. The whiskers show 5 — 95

percentiles. Each dot represents an individual sample. N = 45 moderate and 11 severe COVID-19

patients. ** P < 0.01.
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Figure 4. High MDSCs levels inversely correlate with lymphocytopenia. A) Correlation plot matrix
for MDSCs and lymphocyte populations in 48 patients. Correlations were calculated using Spearman’s
rank correlation controlled for False Discovery Rate (FDR). * P < 0.05. B) Scatterplot showing an inverse

correlation between PMN-MDSCs and total lymphocytes.
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Figure 5. Correlation between MDSCs, cytokines, chemokines and growth factors expression
levels. A) Correlation plot matrix for PMN-MDSCs and M-MDSCs (counts measured by flow cytometry)
and 33 serum mediators (14 cytokines, 10 chemokines and 9 growth factors) measured in 36 patients.
Correlations were calculated using Spearman’s Rank-Order correlation controlled for FDR. * P < 0.05.
B) Heatmap scaled expression plot divided on high, intermediate and low levels of PMN-MDSCs and
M-MDSCs (high: > 0.86 and > 0.12, intermediate: 0.12-0.86 and 0.05-0.12, and low: < 0.12 and < 0.05
x 108 cells/mL, respectively; cutoffs based on tertiles). Mediators showing differences between

subgroups are depicted.
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Figure 6. Long-lasting reduced cytokine response by monocytes of COVID-19 patients. Blood
was obtained from 10 healthy subjects and COVID-19 patients at study inclusion (N = 50) and after 3
months (N = 19), exposed for 4 hours to LPS (100 ng/mL) and R848 (5 pg/mL), and analyzed by
intracellular cytokine staining (ICS) followed by flow cytometry analysis of TNF and IL-6 expression by
monocytes (see Materials and Methods). A-B) Percentage of TNF* and IL-6* monocytes in healthy

subjects and COVID-19 patients tested at study inclusion and after 3 months. C-D) Percentage of TNF*

and IL-6" monocytes in healthy subjects, moderate (N = 41) and severe (N = 9) COVID-19 patients

tested at study inclusion. Boxplots show median, upper and lower quartiles. The whiskers show 5 — 95

percentiles. Each dot represents an individual sample. * P < 0.05; ** P < 0.01; *** P < 0.001; **** P <

0.0001.
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Figure 7. Long-lasting reduced cytokine response by DCs of COVID-19 patients. Blood from

healthy subjects and COVID-19 patients was exposed for 4 hours to LPS and R848, and analyzed by
ICS followed by flow cytometry analysis of TNF and IL-6 expression by DCs. A-B) Percentage of TNF*
and IL-6* DCs in healthy subjects (N = 8) and COVID-19 patients tested at study inclusion (N = 49) and
after 3 months (N = 18). C-D) Percentage of TNF* and IL-6* DCs in healthy subjects, moderate (N =
42) and severe (N = 7) COVID-19 patients tested at study inclusion. Boxplots show median, upper and
lower quartiles. The whiskers show 5 — 95 percentiles. Each dot represents an individual sample. * P <

0.05; ** P <0.01; ** P < 0.001; *** P < 0.0001.
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Figure 8. Production of cytokines, chemokines and growth factors by whole blood. Blood was

incubated for 24 hours with LPS (100 ng/mL) and R848 (5 pg/mL). Supernatants were collected to

guantify serum mediators by multiplex bead assay (A) and TNF and IL-6 by ELISA (B-E). A) Heat map

scaled expression plot of serum mediators in healthy controls (N = 5) and COVID-19 patients at

inclusion (N = 13) and after 3 months (N = 12). B-E) TNF and IL-6 concentrations were measured by

multiplex bead assay and ELISA (N = 4 healthy controls, 38 patients at inclusion, and 10 patients after

3 months). Results were normalized to the highest value set at 1. Boxplots show median, upper and

lower quartiles. The whiskers show 5 — 95 percentiles. Each dot represents an individual sample. * P <
0.05; ** P < 0.01; *** P < 0.001.
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Supplementary tables and figures

Diagnostic profiling of MDSCs in sepsis

Supplementary Table 1: Antibodies used in flow cytometery targeting MDSC

Target Clone Fluorochrome Company Reference number
CD3 UCHT1 AlexaFluor 700 eBioscience 56-0038-42
CD7 M-T701 AlexaFluor 700 BD 561603
CD11b Bearl PC-7 Beckman Coulter ~ A54822
CD135 BV10A4H2 PE Biolegend 313305
CD14 RMO52 APC-AF750 Beckman Coulter B92421
CD15 80H5 Pacific Blue Beckman Coulter B49218
CD16 3G8 ECD Beckman Coulter B49216
CD19 J3.119 AlexaFluor 700 Beckman Coulter B76284
CD33 D3HL60.251 APC Beckman Coulter IM2471
CD45 J33 Krome orange Beckman Coulter B36294
CD56 HCD56 AlexaFluor 700 Biolegend 318316
HLA-DR Immu-357 FITC Beckman Coulter  IM1638U
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Supplementary Tables 2. Antibodies used in flow cytometery targeting dendritic cells and

monocytes

Dendritic cells

Target Clone Fluorochrome Company Reference number
LIVE/DEAD™ Fixable Aqua Invitrogen™ L34957

CD1c L161 AF700 biolegend 331530

CDllc B-ly6 PE-TXR BD Pharmingen 562393

CD123 6H6 BV711 biolegend 306030

CD16 3G8 PB BD Pharmingen 558122

CD274 MIH1 PE-Cy™7 BD Pharmingen 558017

HLA-DR REA332 APC-Vio770 Miltenyi Biotec 130-104-871

Lin-2 multiple FITC BD 643397
Monocytes

Target Clone Fluorochrome Company Reference number
LIVE/DEAD™ Fixable Aqua Invitrogen™ L34957

CD3 SP34 APC-C7 BD Pharmingen 557757

CD14 18D11 FITC ImmunoTools 21620143

CD16 3G8 PB BD 558122

CD19 SJ25C1 APC-C7 BD Pharmingen 557791

CD274 MIH1 PE-Cy™7 BD Pharmingen 558017

CD33 WM33 BV711 BD Pharmingen 563171

CD56 HCD56 AF700 Biolegend 318316

HLA-DR Immu-357 PE-TXR Beckman Coulter ~ B94238

Intracellular staining monocytes/DCs

Target Clone Fluorochrome Company Reference number
IL-6 MQ2-13A5 PerCP/Cy5.5 Biolegend 501117
IL-10 JES3-9D7 PE BD Pharmingen 559337
TNF-a MAb11 APC biolegend 307626
25.06.2021 103



FSC-H

FSC-W

Diagnostic profiling of MDSCs in sepsis

MDSCs
= = <
O . Q O
FSC-A FSC-A
Monocytes
(e}
o =+ o } <
"f ' O @) I O
4 n o5 N
i L o o
FSC-W CD33 CD33
DCs
T < x
? ? ¥
L w T
FSC-H FSC-A Viability Lin-2

Supplementary Figure 1. Gating strategy to exclude debris, doublets and non-hematopoietic

cells to analyze blood leukocytes by flow cytometry.
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Supplementary Figure 3. Long-lasting reduced cytokine response by LPS and R848-stimulated
monocytic subpopulations of COVID-19 patients. Blood from healthy subjects and COVID-19
patients was exposed for 4 hours to LPS (100 ng/mL) and R848 (5 (ug/mL) and analyzed by intracellular
cytokine staining (ICS) followed by flow cytometry analysis of TNF and IL-6 expression by classical
monocytes, intermediate/non-classical monocytes, and M-MDSCs (see Materials and Methods). A-C)
Percentage of TNF* and IL-6* cells in healthy subjects (N = 10) and COVID-19 patients tested at study
inclusion (N = 41 moderate and 9 severe COVID-19) and after 3 months (N = 19). Boxplots show
median, upper and lower quartiles. The whiskers show 5 — 95 percentiles. Each dot represents an
individual sample. * P < 0.05; ** P < 0.01; *** P < 0.001; *** P < 0.0001.
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Supplementary Figure 4. Long-lasting reduced cytokine response by Pams;CSK4 and CpG-
stimulated monocytes of COVID-19 patients. Blood from healthy subjects and COVID-19 patients
was exposed for 4 hours to PamzCSK4 (100 ng/mL) and CpG (5 pg/mL), and analyzed by ICS followed
by flow cytometry analysis of TNF and IL-6 expression by DCs. A-B) Percentage of TNF* and IL-6*
monocytes in healthy subjects (N = 10) and COVID-19 patients tested at study inclusion (N = 50) and
after 3 months (N = 19). Boxplots show median, upper and lower quartiles. The whiskers show 5 — 95

percentiles. Each dot represents an individual sample. * P < 0.05; ** P < 0.01; *** P < 0.001; **** P <

0.0001.
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Supplementary Figure 5. IL-10 production by monocytes and PD-L1 expression by DCs of
COVID-19 patients. Blood from healthy subjects and COVID-19 patients was exposed for 4 hours to
LPS, R848, Pam3CSK4 and CpG, and analyzed by ICS followed by flow cytometry analysis of IL-10 and
PD-L1 by monocytes and DCs. A) Percentage of IL-10* monocytes. B) Percentage of PD-L1* DCs.
Boxplots show median, upper and lower quartiles. The whiskers show 5 — 95 percentiles. Each dot
represents an individual sample. Stimulation did not influence IL-10 and PD-L1 expression, therefore

only LPS is shown. * P < 0.05; ** P < 0.01; ** P < 0.001; **** P < 0.0001.
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Supplementary Figure 6. Production of cytokines, chemokines and growth factors by whole
blood. Blood was incubated for 24 hours with PamsCSKs (100 ng/mL) and CpG (5 pg/mL).

Supernatants were collected to quantify serum mediators by multiplex bead assay. Results were

represented with a heat map scaled expression plot of serum mediators in healthy controls (N = 5) and

COVID-19 patients at inclusion (N = 13) and after 3 months (N = 12). The control panel is identical to

the one presented in Figure 8.
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3. Results

3.4. High levels of monocytic myeloid-derived suppressor cells correlate with

iImproved outcome in sepsis patients with multi-organ dysfunction syndrome.

Irene T. Schrijver!, Eleni Karakike2, Charlotte Théroude!, Pétra Baumgartner3, Alexandre Harari3,
Evangelos J. Giamarellos-Bourboulis?, Thierry Calandra'*, Thierry Roger*

. Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Lausanne,
Switzerland.

2. 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School,
Athens, Greece.

3- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne,
Switzerland.

*These authors contributed equally to this work.
Manuscript in preparation
Summary:

For this study, we aimed to assess whether MDSCs correlated with disease severity in critically ill sepsis
patients with MODS. We conducted a prospective observational study embedded in the INCLASS study
(NCT03345992) conducted in eight Greek hospitals. Adult sepsis patients with pneumonia were
included when they presented a SOFA score of at least 7, combining respiratory failure (PiO2/FiO2 <
200), and any other organ system failure. Blood collected at days 1, 5, and 10 from inclusion were added
into lyophilized antibody tubes designed to detect MDSCs by flow cytometry. FlowSOM was used for
clustering and identification of leukocyte populations. Forty-eight patients were included, of which 34
(71%) died within 9o days. At study inclusion, M-MDSCs and PMN-MDSCs represented 3% and 22% of
leukocytes, respectively. M-MDSCs were higher in survivors than in patients who died within 28-days
(P = 0.028). Stratification of patients based on MDSCs levels revealed that M-MDSCshish patients had
improved 9o-day survival (high versus low M-MDSCs: 53% versus 16% survival, P = 0.003, hazard ratio
(HR) = 3.2). The effect was even more pronounced in patients who had a low APACHE II score (high
versus low M-MDSCs: 80% versus 20% survival, P = 0.0096, HR: 7.2). Lastly, high levels of PMN-
MDSCs were associated with secondary infections and new sepsis episodes. Overall, high levels of M-
MDSCs were associated with the survival of sepsis patients with MODS, especially in patients with a low
APACHE II score. This is the first study to attribute a beneficial role to MDSCs in sepsis. Further
investigations are needed to assess whether MDSCs can be used as prognostic and/or theragnostic

biomarkers in sepsis patients.

My contribution to this work:

I was a sub-investigator of the INCLASS study. I participated into the design of the study and to organize

blood collection. I performed flow cytometry experiments, and analysed the data. I drafted the article.
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3. Results

High levels of monocytic myeloid-derived suppressor cells are associated with favorable

outcome in sepsis patients with multi-organ failure

Irene T. Schrijver, MD, PhD?, Eleni Karakike, MD, PhD?, Charlotte Théroude, PhD?, Pétra Baumgartner,
PhD3, Alexandre Harari, PhD3, Evangelos J. Giamarellos-Bourboulis, MD, PhD?, Thierry Calandra, MD,
PhD?, Thierry Roger, PhD?

linfectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of
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Diagnostic profiling of MDSCs in sepsis

Abstract

Objectives: Myeloid derived suppressor cells (MDSCs) are immature myeloid cells with
immunosuppressive functions subclassified into polymorphonuclear and monocytic MDSCs (PMN-
MDSCs and M-MDSCs). Clinical studies have reported increased levels of MDSCs that were associated
with poor outcome in sepsis patients. Since sepsis patients exhibit signs of inflammation and
immunosuppression, MDSCs may provide benefit by dampening deleterious inflammation in some
patients. To challenge this hypothesis, we measured MDSCs in critically ill sepsis patients with multi-
organ dysfunction syndrome (MODS) and a high likelihood of death.

Design: Multi-center prospective observational study.

Setting: Eight ICUs in Athens and Thessaloniki, Greece.

Patients: Critically ill patients with pneumosepsis and MODS.

Measurements and main results: Forty-eight patients were included, of whom 34 died within 9o
days. Blood MDSCs were quantified by flow cytometry and unsupervised clustering. At study inclusion,
PMN-MDSCs and M-MDSCs were increased in sepsis patients when compared to healthy subjects (22%
vs 2.1% and 3.07% vs 0.96% of leukocytes, respectively; p < 104). High levels of PMN-MDSCs were
associated with secondary infections (p = 0.024) and new sepsis episodes (p = 0.036). Interestingly, M-
MDSCs were more abundant in survivors than in patients who died within 28-days (p = 0.028).
Stratification of patients according to M-MDSC levels revealed that high levels of M-MDSC were
associated with reduced 9o-day mortality (high vs low M-MDSCs: 47% vs 84% mortality, p = 0.003,
hazard ratio = 3.2). Combining high M-MDSC levels with low APACHE II score improved further
patient stratification (high-M-MDSCs/low-APACHE II vs low-M-MDSCs/low-APACHE II: 20% vs 80%
90-day mortality, p = 0.0096, hazard ratio = 7.2).

Conclusions: This is the first study to associate high levels of M-MDSCs with improved survival in
sepsis patients. Additional investigations will be required to assess whether MDSCs are prognostic

and/or theragnostic biomarkers in sepsis.
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Introduction

Sepsis is defined as a dysregulated host response to an infection resulting in life-threatening organ
dysfunction. Exuberant proinflammatory responses during the early phase of sepsis are implicated in
tissue damage, organ dysfunctions and early mortality [1]. A compensatory anti-inflammatory response
promotes immunosuppression that can persist for weeks to months [2]. Immunosuppression is
associated with adverse effects, and is responsible for more than half of all sepsis deaths. Hence,
immunomodulatory therapies in sepsis should target inflammation or immunosuppression depending
on patient’s status [1, 2]. Theranostics approaches hold promise for monitoring immune status and
selecting the most appropriate host-directed immunotherapy to be implemented in a personalized

manner.

Myeloid derived suppressor cells (MDSCs) are immunosuppressive immature myeloid cells, rare in
blood at homeostasis and expanding in inflammatory conditions. MDSCs are subdivided into
polymorphonuclear and monocytic MDSCs (PMN-MDSCs and M-MDSCs), yet additional subtypes
have been proposed [3]. MDSCs are mainly studied in the field of cancer, a condition in which these
cells are enriched in tumor environment and impair anti-tumor immunity. Clinical trials targeting

MDSCs are running to counterbalance tumor-associated immunosuppression in cancer patients [4].

In the field of infection and sepsis, clinical studies have shown an association between high levels of
PMN-MDSCs and M-MDSCs in the blood and development of nosocomial infections and mortality [5].
These observations led to the proposal that MDSCs sustain immunosuppression, and could be targeted
to reverse immunosuppression in septic patients. However, clinical studies included a limited number
of patients [2, 5]. Moreover, MDSCs may have context-dependent impacts depending on disease
progression [5]. Hence, we conducted a prospective clinical study in patients with sepsis due to
pneumonia, multi-organ failure and high likelihood of poor outcome to characterize MDSCs in severely

ill sepsis patients.

Materials and Methods

Between December 2017 and February 2019, 48 adult patients with pneumonia were prospectively
recruited from 8 hospitals in Athens and Thessaloniki, Greece (Table 1). This was part of the INCLASS
study (Benefit of clarithromycin in patients with severe infections through modulation of the immune
system study; registered at ClinicalTrials.gov, reference NCT03345992). Inclusion criteria were a
Sequential Organ Failure Assessment (SOFA) score > 7, including respiratory failure (PiO2/FiO2 <
200), and any other organ system failure with SOFA score > 3. Exclusion criteria were pregnancy,
allergy to macrolides, macrolide treatment, corticosteroid intake, neutropenia (< 1000/mms3), HIV
infection (with CD4* T cells < 200/mms3), transplantation or neoplasm. EDTA-anticoagulated blood
samples were collected at study inclusion and 5 and 10 days later. Patients were followed-up for 28 days,
recording all-cause mortality and incidence of secondary infections and new sepsis episodes. A late
assessment of mortality at 9o days was performed. The study was conducted in compliance with the

declaration of Helsinki, and was approved by the central Ethics committee (52086/2017) and the
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National organization for Medicines-EOF (51239/01-06-2017) in Athens, Greece. Written informed
consent was obtained from study participants or legal representatives prior to enrollment. Eighteen

healthy volunteers served as controls (Table 1).

One hundred microliter of blood were added to tubes containing lyophilized antibodies
(clone/fluorochrome) directed against CD3 (UCHT1/APC-AF700), CD11b (Beari/PE-Cy7), CD14
(RMO52/APC-AF750), CD15 (80oHj5/Pacific Blue), CD16 (3G8/ECD), CD19 (J3-119/APC-AF700),
CD33 (D3HL60.251/APC), CD45 (J33/Krome Orange), CD56 (NKH-1/APC-AF700), CDi24
(Go77F6/PE) and HLA-DR (Immu-357/FITC) (DURACIlone, Beckman Coulter, Brea, CA). After 20
minutes, 900 uL of 1 x BD FACS™ lysing solution (BD Biosciences, San Jose, CA) were added. Samples
were vortexed, washed and acquired using an Attune NxT Flow Cytometer (Thermo Fisher Scientific,
Waltham, MA, USA). Debris, doublets and CD45 negative cells were excluded by manual gating using
FlowJo™ (v10.6.2, Ashland, OR). We applied FlowSOM for unsupervised clustering using the
biexponential transformed and normalized expression levels of cell surface markers. Metaclusters were
set on 30 populations, manually merged into 8 populations based on biological knowledge and marker

expression, as represented in tSNE and heatmap plots (Figure 1A).

Baseline patient characteristics were compared using chi-square exact test, Mann-Whitney U test, and
Kruskal-Wallis test as appropriate. Correlations between cell populations and clinical data were
evaluated using the Mann-Whitney U test. M-MDSCs < 4.3% and > 4.3% of leukocytes were considered
as low and high percentages, respectively. The cutoff value was based on highest tertile of % M-MDSCs
in sepsis patients. APACHE II scores < 20 and > 20 (cutoff values based on median) were considered
as low and high. Statistical differences between survival and event curves were assessed with the log-
rank test. Statistics and figure design were performed using R v.3.6.0 (R-Foundation for Statistical

Computing, Vienna, Austria). p values < 0.05 were considered to be statistically significant.

Results

Forty-eight patients with sepsis due to pneumonia were included in the study, of whom 23 (48%) died
within 28 days and 34 (71%) died within 9o days (Table 1). A targeted flow cytometry approach (using
DURACIone tubes, see Materials and Methods) combined to unsupervised automatic clustering was
used to identify PMN-MDSCs and M-MDSCs in blood samples (Figure 1A). PMN-MDSCs and M-
MDSCs represented 2.1% [0.7-3.1] and 0.96% [0.46-1.5] of leukocytes in healthy individuals (median,
[IQR]). In sepsis patients analyzed at study inclusion, PMN-MDSCs and M-MDSCs represented 22%
[7.9-43.0] and 3.1% [2.0-4.9] of leukocytes (p < 104 vs healthy individuals). These percentages
remained stable over a 10-day follow-up period, and subsequent analyses were done using levels at

study inclusion.
Twenty-six (66.7%) patients developed a secondary infection, among which 23 (47%) were associated

with a new sepsis episode. These patients presented higher levels of PMN-MDSCs than patients that did
not develop a secondary infection (31% [13-46] vs 11% [7-26]; p = 0.03) and new sepsis episode (33%
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[14-45] vs 11% [7-26]; p = 0.04) (Figure 1B). No difference was observed for M-MDSCs. PMN-MDSCs
and M-MDSCs were similarly represented in patients with gram-negative (n = 23) and gram-positive

(n = 8) infections.

At study inclusion, sepsis survivors and non-survivors (90-days) had similar SOFA scores (p = 0.41)
and leukocyte counts (p = 0.32), while survivors were younger (57 [47-74] vs 75 [67-86]; p = 0.0014)
and had a lower APACHE II score (15.5 [14-20.8] vs 23 [18-27]; p = 0.009), Charlson comorbidity index
(4 [1-5] vs 6 [5-9]; p = 0.002) and lactate levels (p = 0.02). Survivors and early and late deaths (i.e. <
28 and >28 days) expressed similar levels of PMN-MDSCs (Figure 1C). In contrast, survivors
expressed 1.64-fold more M-MDSCs (4.6% [2.6-6.7]) than early deaths (2.8% [1.5-3.6], p = 0.028), and
1.55-fold more M-MDSCs than late deaths (3.0% [2.3-4.7], p = 0.19) (Figure 1C).

We then stratified patients according to the expression of M-MDSCs (low and high levels: < 4.3% and
> 4.3%) and the APACHE II score (low and high: < 20 and > 20) (see Materials and Methods). Ninety-
day mortality was decreased in patients with high levels of M-MDSCs (high vs low MDSCs: 47% vs 84%
mortality, p = 0.003, hazard ratio = 3.2, 95%CI 1.4-7.2) (Figure 1D, left). Combining M-MDSCs and
APACHE II score in the analysis increased patient stratification. The 9o-day mortality rate was 20% in
patients with high M-MDSCs and low APACHE II score, while it was 71-88% in the three other groups
(overall comparison: p = 0.0062; high M-MDSCs/low APACHE II vs low M-MDSCs/low APACHE II:
20% vs 80%; p = 0.0096, hazard ratio = 7.2, 95%CI 1.6-32) (Figure 1D, right).

Discussion

To our knowledge, this is the first study reporting that high expression levels of M-MDSCs are associated

with improved outcome of sepsis patients.

Experimental investigations and all clinical studies to date suggested that MDSCs are detrimental
during sepsis [2, 5-8]. For example, high levels of MDSCs at admission correlated with early mortality
of surgical septic shock patients [7], and high levels of MDSCs on days 6-8 correlated with mortality and
secondary infections in septic shock patients [8]. In the present cohort, high levels of PMN-MDSCs were
associated with the occurrence of secondary infections and new sepsis episodes. These data confirmed

that MDSCs may drive negative effects in sepsis patients.

However, MDSCs help fighting infections through phagocytosis and killing of microorganisms. MDSCs
may also dampen systemic or local inflammation induced by molecular patterns of pathogen or
endogenous origin, the latter being released upon stress or during tissue injury. Accordingly, MDSCs
harvested from septic mice protected recipient mice from acute infections [5]. Remarkably, in patients
with multi-organ failure and high likelihood of mortality, highest levels of M-MDSCs were associated
with reduced 90-day mortality independently from the APACHE II score. Considering that M-MDSCs
are more potent immunosuppressive cells than PMN-MDSCs on a per cell basis [5], increased M-

MDSCs might drive beneficial effects through dampening inflammation-induced organ dysfunction in
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severely ill sepsis patients. A limitation of our study is the characterization of MDSCs by phenotypic and
not functional analyses, and the absence of immunological correlates. Yet, several studies reported the

immunosuppressive function of MDSCs based on their phenotype [6, 9, 10].

To conclude, this represents the first report of an association between high levels of M-MDSCs and
improved outcome of sepsis patients. It should incite additional studies to appreciate the role of MDSCs
especially in patients with severe sepsis and multi-organ failure.

Author contributions statement

ITS, EK, EJGB, TC and TR conceptualized and designed the study. ITS, PB, AH and TR developed
custom-made DURACIlone tubes. EK and EJGB designed the clinical study and organized blood
sampling. ITS and CT analyzed the samples. All the authors interpreted the data. ITS and TR wrote the

manuscript. All the authors revised the manuscript.

Conflict of Interest Statement

The authors do not have any conflict of interest regarding this manuscript.

118 Irene T. Schrijver



3. Results

References

1.

10.

van der Poll, T, van de Veerdonk, FL, Scicluna, BP, and Netea, MG. (2017) The
immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol 17, 407-420
Venet, F, and Monneret, G. (2018) Advances in the understanding and treatment of sepsis-
induced immunosuppression. Nat Rev Nephrol 14, 121-137

Veglia, F, Sanseviero, E, and Gabrilovich, DI. (2021) Myeloid-derived suppressor cells in the
era of increasing myeloid cell diversity. Nat Rev Immunol

Law, AMK, Valdes-Mora, F, and Gallego-Ortega, D. (2020) Myeloid-Derived Suppressor Cells
as a Therapeutic Target for Cancer. Cells 9

Schrijver, IT, Theroude, C, and Roger, T. (2019) Myeloid-Derived Suppressor Cells in Sepsis.
Front Immunol 10, 327

Uhel, F, Azzaoui, |, Gregoire, M, Pangault, C, Dulong, J, Tadie, JM, et al. (2017) Early
Expansion of Circulating Granulocytic Myeloid-derived Suppressor Cells Predicts
Development of Nosocomial Infections in Patients with Sepsis. Am J Respir Crit Care Med
196, 315-327

Mathias, B, Delmas, AL, Ozrazgat-Baslanti, T, Vanzant, EL, Szpila, BE, Mohr, AM, et al.
(2017) Human Myeloid-derived Suppressor Cells are Associated With Chronic Immune
Suppression After Severe Sepsis/Septic Shock. Ann Surg 265, 827-834

Waeckel, L, Venet, F, Gossez, M, Monard, C, Rimmele, T, and Monneret, G. (2020) Delayed
persistence of elevated monocytic MDSC associates with deleterious outcomes in septic
shock: a retrospective cohort study. Crit Care 24, 132

Janols, H, Bergenfelz, C, Allaoui, R, Larsson, AM, Ryden, L, Bjornsson, S, et al. (2014) A
high frequency of MDSCs in sepsis patients, with the granulocytic subtype dominating in
gram-positive cases. J Leukoc Biol 96, 685-693

Damuzzo, V, Pinton, L, Desantis, G, Solito, S, Marigo, |, Bronte, V, and Mandruzzato, S.
(2015) Complexity and challenges in defining myeloid-derived suppressor cells. Cytometry B
Clin Cytom 88, 77-91

25.06.2021 119



Diagnostic profiling of MDSCs in sepsis

Table 1. Patient characteristics

Characteristic Healthy controls Survivors Non-survivors p*
(90 days) (90 days)
Number of patients 18 14 34
Gender, male 15 (83%) 11 (79%) 24 (71%)
Age (years) 53 [25-58] 57 [47-74] 75 [67-86] 0.0014
Type of infection: -
VAP/HAP - 11 (79%) 22 (65%) 0.35
HCAP - 3 (21%) 12 (35%)
Severity of iliness at admission:
APACHE Il score - 16 [14-21] 23 [18-27] 0.009
SOFA score - 10 [8.8-11] 10 [9-12] 0.41
Secondary infections - 9 (64%) 17 (50%) 0.36
New sepsis episode - 7 (50%) 16 (47%) 0.85
Charlson Comorbidity Index - 4 [1-5] 6 [5-9] 0.002
Length of hospital stay - 36 [24-48] 14 [8-28] 0.003
Length of ICU stay - 26 [13-37] 15 [8-28] 0.16
Leukocytes (x 10%/L) - 13.9 [7.5-16.0] 13.8 [10.6-20.4] 0.32
M-MDSCs (% of leukocytes) 0.96 [0.46-1.5] 4.6 [2.6-6.5] 2.9[1.8-4.1] 0.052
PMN-MDSCs (% of leukocytes) 2.1[0.74-3.1] 22 [6-44] 22 [8-37] 0.96
Lactate (mmol/L) - 1.4[0.85-2.2] 2.8[1.6-2.8] 0.02

Data are medians [IQR] or n (%). VAP: ventilator associated pneumonia, HAP: hospital acquired
pneumonia, HCAP: healthcare-associated pneumonia, M-MDSCs: monocytic-myeloid-derived
suppressor cells, PMN-MDSCs: polymorphonuclear-MDSCs. *p values comparing survivors and non-

survivors at 90 days.
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Figure 1: MDSCs in sepsis patients with MODS. Blood collected at study inclusion was analyzed by
flow cytometry and unsupervised clustering (see Materials and Methods). A) t-SNE plots of leukocyte
populations and relative SSC-A and expression levels of surface markers. LIN: lineage (CD3, CD19,
CD56), DCs: dendritic cells. B) PMN-MDSCs in relation with secondary infection and new sepsis
episode. C) PMN-MDCs and M-MDSCs in survivors (alive, n = 14), early deaths (< 28 days, n = 23)
and late deaths (> 28 days, n = 12). Boxplots show median, upper and lower quartiles. Whiskers show
5 to 95 percentiles. Each dot represents an individual sample. D) Kaplan Meier 90-day survival curve
based on M-MDSC levels and APACHE Il score. Statistical differences were assessed using the log-

rank test.
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4. Discussion and perspectives

The goal of this thesis was to elucidate the behaviour of MDSCs during sepsis because we were interested
in the diagnostic, prognostic, and theragnostic potential of MDSCs. We utilized four cohorts: 1) healthy
volunteers infused with endotoxin as a model of early sepsis (Endotoxin study); 2) non-infectious
critical-ill patients without antibiotics who were admitted to the intensive care unit (PIPOVAP study),
with the hypothesis that patients with high levels of MDSCs would contract more nosocomial infections;
3) patients hospitalized with COVID-19 (LUH-COVID study), as the COVID-19 pandemic presented the
unique opportunity to study sepsis and non-sepsis hospitalized patients infected with SARS-COV-2;
and 4) sepsis patients with MODS (INCLASS study) (Figure 11).

Few publications have focused on the role of MDSCs during sepsis. Furthermore, results from individual
studies are difficult to compare due to differences between methodologies and markers used to identify
MDSCs, illustrated by the huge variation of MDSC levels measured in healthy subjects (Result section
2.1). To limit this problem, we applied a uniform protocol across the Endotoxin, PIPOVAP, LUH-
COVID-19, and INCLASS studies. We showed that MDSCs closely correspond to inflammation and were
associated with the development of secondary infections and mortality. Interestingly, and following our
overall hypothesis, our data suggest that MDSCs can have either a beneficial or a detrimental role on
the patient’s outcome, depending on their state of inflammation (an overall summary of the results can

be found in Figure 11).

The dynamic profile of blood MDSCs

Endotoxin infusion is a model used to mimic the early events of Gram-negative sepsis, which results in
clinical symptoms and metabolic responses similar to sepsis. However, endotoxin given as a bolus
infusion is cleared by the liver within a few minutes. Cytokines and chemokines IL-6, IL-1f3, IL-8, and
TNF levels peak in blood 2 hours after endotoxin infusion and return to baseline levels 6 hours later
[285, 286]. This allowed us to assess the longevity of MDSCs but contrasts with the more progressive
development of sepsis, which is characterised by prolonged exposure to endotoxin and the rise of
cytokines and chemokines. We observed that PMN-MDSCs levels increased quickly and M-MDSCs
levels increased more gradually after endotoxin infusion. After 24 hours, the percentage and absolute
count of MDSCs returned to baseline levels indicating that both types of MDSCs respond quickly to

inflammatory mediators, as well as also disappear quickly (Figure 11, Result section 2.2).
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Figure 11. Summary of results: the behaviour and effect of MDSCs in four different cohorts. Dotted lines
represent changes of PMN-MDSCs (orange) and M-MDSCs (purple) over time. Blue areas represent
inflammation. Green areas represent immunosuppression. The x-axis represents time, with the origin starting at
time of inclusion to the study. PIPOVAP: Profile, Interaction, and PrOgnosis in Ventilator Associated Pneumonia;
LUH: Lausanne University Hospital; COVID-19: Coronavirus Disease 2019; INCLASS: Benefit of Clarithromycin
in Patients With Severe Infections Through Modulation of the Immune System; PMN-MDSCs:
Polymorphonuclear MDSCs; M-MDSCs: monocytic-MDSCs; ICU: Intensive Care Unit; EGF: Epidermal growth
factor; HGF: Hepatic growth factor; IL: Interleukin.
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In the blood, human granulocytes and monocytes have lifespans is 2-5 days and 1-2 days, respectively.
These lifespans increase when exposed to endotoxin and other DAMPs [287-289]. This caused us to
question the fate of MDSCs during endotoxemia. The rapid reduction of MDSCs after an initial increase
post-endotoxin infusion may be due to a short half-life of these cells. For example, PMN-MDSCs in
cancer patients showed a shorter life span compared with their mature counterparts [290].
Alternatively, the decrease in cytokines and growth factors during the resolution of inflammation might
allow MDSCs to differentiate into mature myeloid cells such as neutrophils, DCs, and macrophages,
therefore reducing the proportion of blood MDSCs. This is supported by the fact that MDSCs began
differentiating into mature cell populations after the blockage of TNF with the TNF antagonist
Entanercept [291]. Finally, MDSCs may have migrated into other tissues such as the spleen, lymph
nodes, and lungs, which has been reported to occur in mouse models of for endotoxemia and sepsis

[292].

The dynamic profile of MDSCs in human endotoxemia showed that MDSCs are quick to rise and then
to dissipate. However, this may not be the case in critically ill patients, where inflammatory mediators
that impact the fate of MDSCs tend to persist. We therefore hypothesized that prolonged elevation of
MDSCs could induce and sustain long-lasting immunosuppression in sepsis patients [97]. To challenge
this hypothesis, we measured MDSCs in the PIPOVAP, COVID-19, and INCLASS studies. We observed
that MDSCs levels increased in critically ill patients. MDSCs returned to baseline levels in critically ill
patients discharged from the ICU (between 2 and 22 days), and after 3 months in COVID-19 patients
(Result section 2.2 and 2.3). Yet 3 months after the initial COVID-19 infection, monocytes and DCs
showed reduced cytokine production after TLR stimulation (Result section 2.3). This suggests that
mechanisms besides those involving MDSCs, affect innate immune responses in the long-term, for
instance, through the exhaustion of monocytes and DCs. Interestingly, in patients with MODS (Result
section 2.4), we did not observe a decrease of MDSCs over the first 10 days, and patients with high
levels of PMN-MDSCs had a higher risk of secondary infections and sepsis occurrence. This may
indicate that a long-lasting immunosuppressive response sustained by MDSCs occurs during bacterial
sepsis. This is supported by the presence of immunosuppressive MDSCs for 21 days in sepsis patients
compared to control patients [238]. Alternatively, as hypothesized for endotoxemia, MDSCs might
migrate from the bloodstream to tissues where they can sustain an immunosuppressive state [82, 293,
294]. Future studies should follow up on the levels and functionality of MDSCs in sepsis patients with

MODS for months, or even years.

MDSCs as a biomarker and therapeutic target

One of the current challenges in the diagnostics of sepsis is the differentiation between gram-positive
and gram-negative infections. In current practice, Gram staining and blood cultures have limitations;
gram staining provides diagnostic results in 30-40% of patients, and blood cultures can take days before
turning positive [295, 296]. M-MDSCs have been reported to increase to a higher degree in gram-
negative sepsis, as opposed to gram-positive sepsis [263, 266]. Accordingly, we observed that the levels
of M-MDSCs at ICU inclusion correlated with subsequent gram-negative, but not gram-positive,

nosocomial infections (Results 2.2). Monocytic HLA-DR expression paralleled the counts of M-
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MDSCs and currently represents one of the most advanced biomarkers in the sepsis field [267]. The
development of an automated bedside flow cytometer for monocytic HLA-DR determination could
provide a fast and practical way to assess the status of sepsis patients [297]. In surgical sepsis patients,
lower monocytic HLA-DR expression was associated with gram-negative infection [87]. Yet, another
study showed that monocytic HLA-DR expression was lower in sepsis patients infected with S.
pneumoniae and S. aureus compared with gram-negative pathogens [298]. However, S. pneumoniae
and S. aureus-infected patients were more severely ill, which may have affected HLA-DR expression
and biased conclusions of the study. Indeed, a recent study based on similar outcomes did not show
differences between pathogens and monocytic HLA-DR expression [88]. Despite conflicting
observations, it appears that M-MDSCs counts or monocytic HLA-DR expression have potential as
diagnostic biomarkers for gram-positive and gram-negative sepsis guiding antibiotic therapy. As
described in the introduction, whole blood transcriptome profiles have been used to discriminate sterile
inflammation from sepsis, viral from fungal and bacterial infections and to correlate with outcome in
infected patients [177-180]. Combining different innovative approaches will certainly benefit patient

stratification.

Predicting mortality at admission to the ICU can aid clinicians to manage patients, such as by initiating
aggressive therapy in the most severe cases, yet robust mortality scores are currently lacking [154].
MDSCs were associated with mortality (Result section 2.2 and 2.4) and are frequently considered as
promising therapeutic targets in cancer patients [274]. In addition, we hypothesized that MDSCs may
have predictive values in critically ill patients. In non-infectious critically ill patients, we observed that
M-MDSCs and IL-6 levels were associated, and that high MDSCs levels correlated with mortality rates
(Result section 2.2). However, in sepsis patients with MODS (INCLASS study), high levels of M-
MDSCs were associated with lower mortality rates (Result section 2.4) and inversely correlated with
IL-6 levels in non-survivors (Figure 12). IL-6 is an important regulator of MDSCs accumulation and
activation [299]. The contrasting MDSCs/IL-6 correlations in PIPOVAP and INCLASS studies most
likely reflect differences in patient inclusion. Non-infectious critical care patients were studied at ICU
admission. In these patients, high IL-6 levels potentially stimulated the generation of MDSCs reaching
the bloodstream. In contrast, sepsis patients with MODS were on a dynamic immunosuppressive path,
downregulating IL-6 levels. It is possible that combining IL-6 and MDSCs will help identify patients
with worse predicted outcomes, particularly since IL-6 is an often-mentioned predictive biomarker for

mortality [300, 301].
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Figure 12. Correlation between IL-6 and M-MDSCs in peripheral blood of sepsis patients with MODS.

Targeting MDSCs to treat malignant tumours has advanced from the preclinical test phase but they are
not yet used in clinical practice. There are multiple ways to target MDSCs (Figure 10), yet it is not clear
which therapy is most beneficial in sepsis. Preclinical murine studies showed that ATRA (all-trans
retinoic acid, which induces the differentiation of MDSCs into mature cells), LDK378 (an inhibitor of
anaplastic lymphoma kinase-ALK), and YCP (an a-glucan, purified from the marine fungus Phoma
herbarum, which has displayed antitumor activity) decreased MDSC levels and improved survival rates
in sepsis models [264, 279-282] (Introduction 1.1.10). We observed that PMN-MDSCs and M-
MDSCs correlated with blood concentrations of hepatocyte growth factor (HGF) in non-infectious
critically ill patients and COVID-19 patients (PIPOVAP: p = 0.08, p = 0.38, COVID-19: p = 0.42, p =
0.46). HGF acts as a pleiotropic cytokine that can stimulate cell motility, morphogenesis and limit
endothelial injury in sepsis [302-304]. In tumorous mice, HGF upregulated the expansion of MDSCs
[305, 306]. Targeting HGF to limit MDSCs might have counterproductive effects such as increasing
endothelial injury. However, HGF treatment in endotoxemic mice protected them from multiple organ
injuries and death [307]. Therefore, an active-formed HGF might be the ideal treatment option for

limiting inflammation severe sepsis patients.

Caveats prior to clinical implication targeting MDSCs, and ongoing studies

We have shown that the levels of MDSCs increased rapidly during endotoxemia, that they were
associated with severity, secondary infections, and mortality in critically ill patients. Therefore, MDSCs
might represent potential biomarkers in critically ill patients. However, before MDSC sepsis research
can make the transition from “bench to bedside”, two caveats need to be resolved. First, a standardized
MDSCs identification protocol needs to be defined. Second, understanding the functional plasticity of
MDSCs in acute diseases like sepsis is required. Currently, the differentiation between PMN-MDSCs
from mature neutrophils, as well as M-MDSCs from mature monocytes, is based on the expression of
cell surface markers that are gradually expressed according to cell maturation [98]. This generates
gating bias and makes it difficult to compare results between studies. A cell surface marker or
combination of surface markers unique for MDSCs is imperative to be able to standardize research and,
more importantly, to develop future biomarkers for use in clinical care. For example, in patients with

cancer, LOX-1 presents on the surface of PMN-MDSCs. Other markers, including CD1d, CD13 and
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CD39, have been described for MDSCs [308-311]. Recently, LOX-1 PMN-MDSCs have also been
described in sepsis shock patients, where they peaked one week after ICU admission [312]. To
illuminate the expression of these and other markers on MDSCs in sepsis patients, we constructed a
mass cytometry panel of 39 surface markers of which 25 have been described specifically to aid
identifying MDSCs (Table 9). This approach has been used in the INCLASS and PIPOVAP study (data
not yet analysed) giving us the opportunity to better delineate surface markers that are exclusive to
MDSCs in sepsis, that point towards discrete MDSCs subpopulations, and to correlate these markers

with other immune cell populations.

Table 9. Mass cytometry panel targeted on MDSCs

Antibody lons Antibody lons Antibody lons
Caspase 3 142Nd CD32 152Eu CD86 146Nd
CDlc 143Nd CD33 197AU CD115 174Yb
cbid 154Sm CD34 156Gd CD123 (IL3r) 162Dy
CD3 148Sm CD38 194Pt CD135 158Gd
CD4 144Nd CD39 173Yb CD192 (CCR2) 165Ho
CD7 169Tm CD45 089Y CD195 (CCR5) 153Eu
CD8 145Nd CD45RA 166Er CD197 (CCR7) 150Nd
CD11b 141Pr CD48 168Er CD274 (PD-L1) 171Yb
CDl1lc 163Dy CD56 159Th CD279 (PD1) 164Dy
CD13 198Pt CD62L 172Yb HLA-DR 170Er
CD14 160Gd CD64 175Lu LOX1 167Er
CD16 209Bi CD66b 149Sm slan 151Eu
CD20 147Sm CD74 176Yb
CD27 155GD CD80 161Dy

Bold and underlined surface markers have been described to identify (subpopulations of) MDSCs.

The high plasticity of MDSCs increases the complexity of MDSCs definition. It has been proposed that
MDSCs can mature and lose their suppressive function, differentiate into osteoclasts, tolerogenic
dendritic cells, and tumour-associated macrophages, or can shift between MDSC-subtypes [313, 314].
Most research (including ours) portrays two separate entities of MDSCs, but it is more likely that
MDSCs shift between a range of subtypes with more or less suppressive states (Figure 12) [313]. This
is illustrated by a murine CLP-induced sepsis study that showed increased levels of IL-10, IL-6, ARG1
and less TNF in MDSCs collected 12 days after CLP, compared with MDSCs collected after 3 days [248].
This change in cytokine expression during CLP pathogenesis, shows that MDSCs shift towards a more
immunosuppressive state [248]. Furthermore, studies have shown that the adoptive transfer of CLP-
induced MDSCs in CLP-subjected mice can either protect against or exacerbate mortality depending on
the moment at which MDSCs have been harvested from sick mice. This suggests that transferred MDSCs

differentiate to become more immunosuppressive cells [241, 246, 248].

Our results support the assumption that MDSCs might likewise shift functionality, depending on
disease development. We observed different behaviours of MDSCs in sepsis patients with MODS,
compared with non-infectious critically ill patients (Result section 2.4 versus 2.2). Furthermore, we
are in the process of better defining phenotypical and immune functional differences over time in the

endotoxin, PIPOVAP, and INCLASS studies. In addition to the mass cytometry studies, we analysed the
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response of whole blood to stimulation with microbial ligands by flow cytometry. We observed that in
the Endotoxin study, in comparison with mature neutrophils, PMN-MDSCs expressed less IL-6, ARG1,
and MPO levels at baseline and did not respond to stimulation. These PMN-MDSCs are most likely very
immature cells that will become more actively immunosuppressive over time (see preliminary
Supplementary results 6.1: “Neutrophil granulocyte and polymorphonuclear myeloid-derived
suppressor cell tolerance in human endotoxemia”). This aligns with observations obtained in mouse
studies and as illustrated in Figure 13 [246, 248]. Our ongoing functional studies in the PIPOVAP and
INCLASS studies will provide more insights into the plasticity of MDSCs in sepsis and critically ill

patients.
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Figure 13. Myeloid suppressive states are highly heterogeneous and context dependent. A) The dominant
view of MDSC phenomena defines two major subtypes of suppressive cells (M-MDSC and PMN-MDSC) with
ontological and functional differences. B) The emergent view of MDSCs as a facet of emergency haematopoiesis
captures the heterogeneity and plasticity of these myeloid cell states in a more “ruffled” ontogenetic landscape.
Abbreviations: GMP, granulocyte-monocyte progenitor; MDP, monocyte-dendritic cell progenitor; cMoP, common
monocyte progenitor; proNeu, neutrophil progenitor. Reprinted by permission from: Elsevier, “Immunity” [313].

The main limitation of our studies, as in most studies in the field, is the lack of immunosuppressive
functional conformation of the MDSCs, which is the “gold standard” in the field. However, all studies
published to date have shown that cells with a similar phenotype have immunosuppressive properties
in patients with cancer, COVID-19, and sepsis [236, 263, 266, 315, 316]. The in- and exclusion criteria
of our studies were very strict, as we aimed to include specific subpopulations: a relatively homogeneous

sepsis population (INCLASS study) and, to include critically ill patients without antibiotics, to diminish
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antibiotic influence on secondary infections (PIPOVAP study). The advantage of this approach is that
we collected distinct cohorts, which allowed us to observe a unique, often hypothesized consequence of
MDSCs levels, which could have been overlooked in larger but less selected patient populations.
However, by adhering to these strict criteria this also resulted in smaller cohorts, which could be

considered a limitation of these studies.

Conclusions and perspectives

Evolutionarily, MDSCs may have developed to protect the host from overwhelming inflammation, in
particular during pregnancy and the early neonatal period. [317]. In pregnant women, MDSCs
accumulate in the circulation during early gestation and remain elevated until they return to baseline
levels several few days postpartum [318, 319]. Furthermore, maternal PMN-MDSCs are highly present
in the placenta, where they play a major role in maternal-foetal tolerance by suppressing T cells and NK
cells that respond to the foetus [320, 321]. This is exemplified by the increased risk of spontaneous
abortion in pregnant women with low levels of functional MDSCs. In addition, women with high MDSC
levels have an increased chance of successful in vitro fertilisation [322-324]. Neonates also present with
increased levels of MDSCs during their first weeks and months of life [321, 325, 326]. MDSCs might
protect neonates from overwhelming inflammation when exposed to commensal bacteria, and, as
MDSCs are highly bactericidal, from neonatal infections [327]. This is signified by the inverse

correlation of MDSCs with the development of necrotizing enterocolitis in prematurely born infants

[328, 329].

Here, we report a dual role of MDSCs in critically ill patients depending on inflammation levels (Figure
11). The dual role becomes more apparent when comparing between different diseases. In cancer
patients - where immunosuppression drives tumour growth and spread, higher levels of MDSCs
correlate with metastasis risk, resistance to therapy, and higher mortality [330, 331]. In transplantation
patients — where immunosuppression is desirable, higher levels of MDSCs corresponded to less graft-
versus-host disease, less antibody-mediated rejection, and longer graft survival [332]. In autoimmune
diseases, the relation between MDSCs and outcome is more nuanced. Generally, more severe
autoimmune diseases have higher levels of MDSCs, but this is most likely a compensatory response to
limit inflammation [98]. Overall, immunosuppressive MDSCs might be beneficial or detrimental

depending on inflammation and pathogenesis.

Research in sepsis and other fields reported promising observations for the use of MDSCs as a
biomarker and targeted therapy (Text box 1). However, several challenges must be overcome before
MDSCs can be used in clinical practice. In particular, we need specific standardized phenotypic
protocols for MDSCs, specifically for PMN-MDSCs. In the meantime, monocytic HLA-DR expression
can be used as a proxy for M-MDSCs levels, but more research is needed to confirm this. Single-cell
RNA sequencing (scRNA-seq) and single-cell multi-omics analyses could lead to the discovery of new

MDSC surface markers and possibly uncover new MDSC subtypes.
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In cancer patients, a fairly unique transcriptomic profile for PMN-MDSCs has been obtained based on
increased gene expression associated with cell cycle and autophagy, and decreased gene expression
associated with NF-kB signalling. Moreover, transcriptomics guided the discovery of a novel surface
marker e.g., LOX-1 to identify MDSC Unfortunately, the transcriptomic profiles of MDSCs in cancer
patients may differ from those of MDSCs in sepsis patients. Indeed, a pilot scRNA-seq study in two
sepsis patients reported that MDSCs from sepsis patients differ from MDSCs from cancer patients, even
though cells from both groups were phenotypically similar. For example, the expression of Argi and
PD-L1 was low on MDSCs found in sepsis patients when compared to MDSCs found in cancer patients
[238]. Interestingly, we observed using flow cytometry that there was a similar low Argi expression in
PMN-MDSCs from patients infused with endotoxin (Supplementary result 6.1). Two recent multi-
omic studies in COVID-19 patients illuminated the diversity of myeloid cells [333, 334]. A subgroup of
immunosuppressive neutrophils similar to PMN-MDSCs presented high expression of PD-L1 and
ZC3H12A (an MCP1 induced protein acting as an inflammatory regulator) [334]. However, this was not
repeated in a second study [333], which reported high expression levels of CEACAMS8 (CD66b) and
DEFA3 (human alpha defensin 3) in a subgroup of immunosuppressive neutrophils reminiscent of
immature neutrophils [333]. These results illustrate that a multi-omics approach can aid the discovery

of unique MDSCs profiles in sepsis.

To conclude, many hurdles exist to assess MDSCs in sepsis. MDSCs lack a clear phenotypic definition
and there is a lack of knowledge of their functionality and plasticity in sepsis. Sepsis, as mentioned in
the introduction, is a heterogeneous syndrome without clearly defined phenotypes, and lacks long-term
follow-up. MDSCs in sepsis research shows promising results and the advances in high-dimensional
research could help unravel the heterogeneity in MDSCs and sepsis. Following this, we suggest two

short-term (points 1 and 2) and two long-term (points 3 and 4) future lines of studies:

1) To assess the cellular landscape in critically ill patients to aid the characterization of MDSCs in
sepsis (performed in INCLASS and PIPOVAP study) employing high-dimensional phenotyping.

2) To provide insights into the functionality and plasticity of MDSCs in critically ill patients
(performed in INCLASS and PIPOVAP study) in whole blood stimulated cells assessed by multi-
colour flow cytometry.

3) To exhaustively characterize myeloid cells in sepsis patients by integrating multi-omics data, for
example by combining mass cytometry, scRNA-seq, single-cell metabolomics (using mass-
cytometry-based metabolome profiling), and functionality testing.

4) To identify patients that could profit from targeting MDSCs by advancing sepsis phenotyping

studies in relation to MDSCs levels (as extensively discussed in Introduction 1.1.4).

Overall, this thesis explored the modulation of MDSCs in sepsis and supports the use of MDSCs as
biomarkers in sepsis. Improving the understanding of sepsis and the role of MDSCs in sepsis could aid
the identification of patients who would benefit from MDSCs-targeted therapy; particularly as such
therapies are advanced in cancer patients. This suggests that MDSCs may play a leading role in future

clinical (post-) sepsis care, both as a biomarker and as a target for therapy.
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Textbox 1. Potential applications for MDSCs in sepsis

MDSCs as biomarkers

7

« Diagnostic:
=  PMN-MDSCs as markers for severity of inflammation.
= M-MDSCs as markers for gram-negative bacterial infections.
« Prognostic:
= Predictor of outcome, specifically secondary infections and mortality.
« Theragnostic:
= Potentially, MDSC in combination with IL-6 for MDSCs targeted therapy.
= Guiding antibiotic therapy (orientating towards gram-positivity/negativity).
MDSCs as targets for therapy
< Limiting inflammation:
= By expanding MDSCs in sepsis patients with MODS, potentially by using an active-
formed HGF.
« Reversing immunosuppression:
= Prevention of long-term infections and mortality in sepsis-induced
immunosuppressed patients with high levels of MDSCs by treatment with e.g.,
ATRA, LDK378 and YCP.
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6.1. Preliminary results: Neutrophil granulocyte and polymorphonuclear

myeloid-derived suppressor cell tolerance in human endotoxemia.

Preliminary results.

Summary:

Polymorphonuclear neutrophils (PMNs) are the most abundant leukocytes in human blood. PMNs are
professional phagocytic cells that play a critical in resolving bacterial and fungal infections. Upon
infection, inflammatory mediators (cytokines, growth factors) and microbial products such as
endotoxin present in the blood stimulate the pool of granulocytes residing in the bone marrow to
migrate into the blood and the production of newly generated granulocytes to restore homeostatic
steady state. This orchestrated process is called emergency granulopoiesis. However, the striking
neutrophilia in sepsis patients does not protect from infections, indicating that these might be fully.
This study aimed to profile cell populations, and especially neutrophils, during human endotoxemia.
We infused healthy subjects twice at one week apart with endotoxin and analysed whole blood by mass
cytometry (CyTOF) on 15 different time points. One hour after endotoxin infusion neutrophils were 0.5
fold lower compared to baseline, but after 4 hours they increased reaching up to 3.5 times baseline. This
was mainly due to the increase of CD11c low, CD32 low granulocytes, a population resembled PMN-
MDSCs, which was barely present at baseline. After the second endotoxin infusion, this population only
increased by 15%. We assessed neutrophil function by flow cytometry focussing on MDSC-functionality
by stimulating whole blood for 4 hours with different Toll-like receptor ligands. We observed that
granulocytes drawn 4 hours after endotoxin infusion, had a reduced IL-6 response after stimulation,
which is not yet normalized 24 hours after endotoxin infusion, but return to baseline levels after 7 days.
Comparing PMN-MDSCs and mature neutrophils, we observe that the former show less baseline
expression of IL-6, are non-responsive to stimulation and, contrary to our expectation, do not produce
more ARG1 and MPO. With this study, we provide insight into the effect of endotoxin and endotoxin
tolerance on granulocytic neutrophils. Our results suggest that neutrophils might be interesting targets

and biomarkers for therapy in sepsis.
My contribution to this work:

I participated into the design of the endotoxin study and the drafting of the protocol. I performed

experiments, analysed the data, and drafted the preliminary results.
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Preliminary results: Polymorphonuclear neutrophils (PMNs), PMN-myeloid-
derived suppressor cells (PMN-MDSCs) and tolerance in experimental human

endotoxemia.

Background

Polymorphonuclear neutrophils (PMNs) are the most abundant leukocytes in human blood. PMNs are
professional phagocytic cells that play a critical in resolving bacterial and fungal infections [1]. Upon
infection, inflammatory mediators (cytokines, growth factors) and microbial products such as
endotoxin present in the blood stimulate the pool of granulocytes residing in the bone marrow to
migrate into the blood and the production of newly generated granulocytes to restore homeostatic
steady state. This orchestrated process is called emergency granulopoiesis [1-4]. However, the striking
neutrophilia in sepsis patients does not protect from infections, suggesting that newly generated
granulocytes might not be fully functional [5]. PMN-myeloid-derived suppressor cells (PMN-MDSCs)
are a neutrophil subtype triggered by emergency granulopoiesis notorious for their immunosuppressive
function. PMN-MDSCs are immature PMNs phenotypically characterized as CDiib+* CDig-
CD15*/CD66b+* and CD16'w CD33o» when compared with their mature counterparts [3, 6]. Others and
we have shown that PMN-MDSCs rise in patients with sepsis (Result sections 2.2, 2.3 and 2.4) [3,

5].

The model of endotoxin (LPS) infusion in healthy subjects mimics early events of host response to gram-
negative bacteria infection. LPS induces tolerance, defined as a refractory state of response to LPS of
innate immune cells previously exposed to minute amounts of LPS. Tolerance has mainly been studied
for monocytes/macrophages [7-10]. Tolerance impacts not only on cell to LPS, but also on cell response
to other microbial stimuli, what is commonly termed cross-tolerance. Clinically, tolerance may affect
monocytes/macrophages in sepsis patients, contributing to immunosuppression and increasing

susceptibility to nosocomial infections.

Our aim was to profile cell populations, and especially neutrophils, during human endotoxemia. We
infused healthy subjects twice at one week apart with endotoxin and analysed whole blood cells by mass
cytometry (CyTOF). Since we detected major modifications in a cell population resembling PMN-
MDSCs, we subsequently assessed the function of neutrophilic cells by flow cytometry, focussing on
MDSCs.
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Materials and methods

Study design.

Seven healthy male volunteers were enrolled at the Radboud University Medical Center, the
Netherlands. Volunteers were infused twice at 1 week apart with a bolus of 2 ng/kg endotoxin (from
Escherichia coli 0O:113, Lot #94332B1, National Institutes of Health, Bethesda, MD) following a
standardized protocol [11]. Blood was drawn in K-EDTA tubes o, 1, 2, 3, 4, 6, 8 and 24 hours after the
first infusion of endotoxin, and 1, 2, 3, 4, 6, 8 hours after the second infusion of endotoxin. This study
was approved by the local ethics review board (CMO Arnhem-Nijmegen; reference no. 2017-3607) and
was conducted in compliance with the declaration of Helsinki (Forteleza, 2013); International
Conference on Harmonisation Good Clinical Practice guidelines, and the rulings of the Dutch Medical
Research Involving Human Subjects Act. Written informed consent was obtained from study

participants.

Sample processing.

One mL blood was incubated for 10 minutes at 20°C with 1.4 mL of Smart Tube Proteomic Stabilizer
(Smart Tube Inc.), and frozen at -80°C. Additionally, 1 mL blood collected o0, 4, 24, and 168 hours after
endotoxin infusion was incubated for 4 hours at 37°C with or without 10 ng/mL Escherichia coli O55:B5
ultrapure lipopolysaccharide (LPS), 1 mg/mL Pam;CysSerLys, (Pam;CSK,), 1 uM R848. Brefeldin A (5
ug/mL, Invitrogen, Carlsbad, CA) was added during the incubation. After 4 hours, samples were treated

with Smart Tube Proteomic Stabilizer as mentioned above.

For mass cytometry analyses, samples were thawed for 6 minutes at 10°C, and incubated twice for 5
minutes at 20°C with 25 mL Lyse Buffer (Smart Tube Inc.). Samples were resuspended in 1 mL
inactivated FCS and filtered through a 85-um filter (Sefar, Nitex). Non-stimulated samples were
counted and aliquoted per 2.5 million cells in tubes and washed three times in ice-cold PBS. Samples
were barcoded with palladium and indium labelled anti-CD45 monoclonal antibodies (mAbs)
(supplementary Table 1) in ice-cold PBS containing 0.02% saponin [12, 13]. Barcoded samples were
incubated for 15 min at 4°C, washed with cell staining medium (CSM: PBS, 0.5% BSA, 0.02% sodium
azide) and pooled. Pooled samples were incubated for 30 min at 20°C with 20 pL Fe-block (Beriglobin®
diluted 500 ug/mL) and mAbs directed against CCR2, CCR5, CD1c, CD1d, CD3, CD4, CD7, CD8, CD11b,
CD11c, CD14, CD16, CD20, CD26, CD32, CD33, CD36, CD38, CD45, CD45RA, CD56, CD62L, CD64,
CD66b, CD74, CD8o, CD86, CDi23, CDig41, CD223, CX3CRi, HLA-DR, PDi, PD-Li, Slan
(supplementary Table 1) in 100 puL. CSM, washed with CSM, and incubated for 30 min at 20°C with
streptavidin-gold. Samples were washed with PBS, and incubated for 30 minutes at 20°C with
intercalation solution (PBS, 0.3% saponin, 1% formaldehyde, 125 nM iridium CellID (Fluidigm)).
Samples were acquired on a Helios apparatus (CyTOF System, Fluidigm) at a flow rate of 0.030

mL/min.

For flow cytometry analyses, samples were thawed as described above, transferred into a 96 well plate,
washed once with CSM and incubated for 30 min at 20°C with Fe-block and mAbs directed against CD3,
CD7y, CD11c, CD16, CD19, CD32, CD33, CD56 and CD66b (supplementary Table 2) in 50 uL. CSM.
Samples were incubated for 20 min at 20°C with 200 uL PBS, 2.4% formaldehyde, washed with CSM
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and CSM containing 0.03% saponin, and intubated for 30 min on 20°C with mAbs directed against
arginase 1 (Arg1), caspase-3, IL-6, IL-10 and myeloperoxidase (MPO) (supplementary Table 2).
Samples were washed twice with CSM and acquired on an Attune NxT Flow Cytometer (Thermofisher
scientific, Waltham, MA, USA).

Data processing and analysing.

Mass cytometry data files were normalized using MATLAB normalizer [14]. Debris, doublets, apoptotic
cells, and CD45- cells were manually gated out and files were de-barcoded. A high caspase-3 level was
used to remove apoptotic cells. Viability staining based on intact cell membrane was not feasible since
cells were fixated before freezing and transportation to Switzerland [15]. The expression levels were
scaled and biexponential transformed as described previously (Herderschee et al., in revision,
supplementary file section 6.3). Cells were clustered using FlowSOM (metaclusters set on 40) based on
the biexponential transformed expression levels of all surface markers and merged into populations
based on biological knowledge, as depicted in tSNE plots and heatmap representation (Figure 1) [16,
17]. For expression levels of granulocytes over time, CD11clow granulocytes and mature granulocytes
were analysed together. For flow cytometry data, debris, doublets and dead cells were excluded by
manual gating. Neutrophilic granulocytes were selected based on SSC-A and FSC-A parameters
(Supplementary Figure 1) before applying automated FlowSOM clustering (metaclusters set on 20)
based on the expression of CD molecules. Clusters that were non-granulocytic were removed, and
FlowSOM clustering reapplied to identify PMN-MDSCs (based on CD11c/CD16!% expression) and
mature PMNs. Intracellular cytokine expression was expressed as the median expression of the
population depicted as a fold change with the non-stimulated, baseline sample set as 1. FlowSOM
clustering was used to distinguish granulocytes producing or not Argi, IL-6, IL-10 and MPO. Arg1 and
IL-10 showed minimal differences between clusters, and were excluded from the analyses of the

percentage or positive cells.

Statistics and software.

Cytokine and flow cytometry data were compared using the Kruskall-Wallis test and Mann-Whitney U.
A 2-tailed P < 0.05 was considered statistically significant. Manual gating was performed on FlowJo™
Software version 10.6.2 (Ashland, OR: Becton, Dickinson and Company; 2019). Statistical analyses and
figure design were performed using R statistical software version 3.6.0 (R Foundation for Statistical

Computing, Vienna, Austria).
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Results

We included seven healthy male subjects with a median age of 23.5 years [interquartile range (IQR):
22-27] and baseline leukocyte count of 5.9 x 109 cells/mL [5.5-7.4]. Subjects were infused twice at 1
week apart with a bolus of 2 ng/kg E. coli endotoxin. Blood was drawn o, 1, 2, 3, 4, 6, 8, 24 and 168
hours after the first infusion of endotoxin, and 1, 2, 3, 4, 6, 8 hours after the second infusion of
endotoxin. Samples from 6 subjects were analysed by mass cytometry, and samples from 7 subjects by

flow cytometry.

Characterization of leukocyte populations over time by mass cytometry

At baseline, neutrophils represented 57% [56-59] of leukocytes (2.2 x 10° cells/mL measured by flow
cytometry). One hour after the first infusion of endotoxin, neutrophils represented 48% [39-54] (0.7 x
10° cells/mL [0.6-0.9]) of leukocytes (Figure 2, Supplementary Figure 2 and Tables 3 and 4).
They increased sharply to reach 94% [93-96] (7.6 x 106 cells/mL [6.5-8.6]) of leukocytes at 4 hours.
After 7 days, neutrophils were back to baseline levels. Following the second infusion of endotoxin,
neutrophils increased to represent 66% [59-76] (2.5 x 10° cells/mL [1.8-3.6]) of leukocytes after 1 hour.
They started to decline after 8 hours.

The sharp rise in neutrophils was caused by a subgroup of cells expressing low levels of CD11c (integrin
oX) and CD32 (FcyRII), named CDiiclew neutrophils (Figure 1 and 2B). CDiiclov neutrophils
increased from 0.14 x 106 cells/mL [0.08-0.20] (3% [2-4] of leukocytes) at baseline to 1.1 x 106 cells/mL
[0.8-1.3] (29% [24-29]) at 2 hours, peaked at 3.0 x 10¢ cells/mL (37% [31-39]) at 4 hours (Figure 2,
Supplementary Figure 2 and Tables 3 and 4). CD11clov neutrophils normalized after 24 hours.
Following the second endotoxin infusion, CD11clew neutrophils peaked at 2 hours at 1.0 x 106 cells/mL
(16% [13-19]).

Non-granulocytic subpopulations including classical, intermediate and non-classical monocytes,
monocytic myeloid-derived suppressor cells (M-MDSCs), CCR2+ and CD45RA+ CD4* and CD8+* T cells,
B cells and CD56Mhigh and CD56'w NK cells and DCs decreased after endotoxin infusion. Notably, classical
monocytes, which represent the largest monocytic subtype in peripheral blood, decreased from 1.5 x 103
cells/mL [1.2-2.0] at baseline to 0.02 x 103 cells/mL [0.02-0.02] 1 hour after endotoxin infusion
(Supplementary Figure 3). Classical monocytes were back to baseline levels after 24 hours.
Following the second endotoxin infusion, monocytic subpopulations similarly declined and returned to
baseline levels within 6 hours for classical monocytes. Intermediate monocytes and M-MDSCs were 1.5
times baseline values, 6 hours after the second infusion (baseline versus 6 hours for intermediate
monocytes 0.9 x 103 cells/mL[0.5-2.1] to 1.7 x 103 cells/mL[1.4-1.8], and M-MDSCs: 0.56 x 103 cells/mL
[0.44-0.73] to 0.83 x 10° cells/mL [0.63-0.91]). Lymphocytes showed a similar decline after the first

and second endotoxin infusion.

A close look at neutrophils (neutrophils and CD11clow neutrophils) revealed that 2 to 8 hours after the
first infusion of endotoxin the expression levels of CD11c, CD16, CD32, CD62L and CD66b decreased
while that of CD195 increased (Figure 3). The second infusion of endotoxin modestly affected the
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expression of these molecules. These data indicated that neutrophils were impacted by endotoxin

infusion, possibly showing signs of tolerance.

Impact of endotoxin infusion on neutrophil response to TLR ligands

We tested whether neutrophils in subjects infused with endotoxin were tolerized. Blood collected o, 4,
24, and 168 hours after endotoxin infusion was incubated for 4 hours with medium (control), LPS,
Pam;CSK,, and R848. We then measured by intracellular flow cytometry the production of Argi, IL-6,
IL-10 and MPO by neutrophils, which was expressed as median expression levels (Figure 4), and as
relative proportion of positive cells (Figure 5). In blood collected before endotoxin infusion,
neutrophils upregulated IL-6 and MPO in response to stimulation with LPS and Pam;CSK, (P < 0.001
for both), while they downregulated Arg1 in response Pam3;CSK, and R848 (P < 0.001 and P = 0.02,
respectively) (Figure 4AB). Infusion with endotoxin increased baseline expression of Argi (4 and 168
hours), reduced baseline expression of Arg1 (4 hours) and IL-6 (4 and 24 hours), and did not modify
MPO. In blood drawn 4 hours after endotoxin infusion, neutrophils did not upregulate IL-6 after
stimulation with LPS and R848. The upregulation of IL-6, and MPO in response to LPS, Pam;CSK, and
R848 was normalized in blood collected 168 hours after endotoxin infusion (Figure 4AB).

A similar picture was obtained when looking at the percentage of neutrophils that expressed the
molecules of interest (Figure 5). After stimulation with LPS and Pam;CSK,, the percentage of
neutrophils that produced IL-6 increased from 23% [20-28] (baseline) to 32% [30-36] and 31% [30-
34], respectively. Four and 24 hours after endotoxin infusion, 15% [13-16] and 17.9% [14-21] of
neutrophils produced IL-6. This proportion did not increase after ex vivo stimulation in blood collected
4 hours after endotoxin infusion. It increased to 25% [23-29] LPS-stimulated blood collected 24 hours
after endotoxin infusion (Figure 5A). At baseline, MPObigh neutrophils increased from 56% [54-61] to
77% [65-80], 72% [73-76] and 62% [48-63] upon LPS, Pam;CSK, and R848 stimulation. This did not
change significantly in blood collected 4 and 24 hours after endotoxin infusion. However, 168 hours
after infusion, MPOhigh neutrophils increased from 59% [57-68] to 80% [74-82], 79% [79-80] and 69%
[62-79] upon LPS, Pam;CSK, and R848 stimulation (significant for Pam;CSK,) (Figure 5B).

PMN-MDSCs raised transiently following endotoxin infusion

PMN-MDSCs rise in the blood in conditions of systemic inflammation and can be viewed as an
“immature” subset of neutrophilic granulocytes. Therefore, we quantified mature neutrophils and
PMN-MDSCs by flow cytometry (Figure 6). PMN-MDSCs differentiated from mature neutrophils
primarily based on strongly low levels of CD16. Additionally, PMN-MDSCs expressed lower levels of
CD11c, CD32, CD33 and CD66D cells (Figure 6B). PMN-MDSCs raised from 4% [1-15] at baseline, to
35% [7-47] 4 hours after endotoxin infusion. PMN-MDSCs returned to baseline levels 24 hours after

endotoxin infusion (Figure 6C).

Finally, we compared the expression of Argi, IL-6 and MPO by PMN-MDSCs and neutrophils in whole
blood incubated with medium (control), LPS, Pam;CSK,, and R848. Overall, PMN-MDSCs expressed
lower levels of Arg1 and IL-6 but not of MPO when compared to neutrophils (Figure 7A). PMN-MDSCs

and neutrophils responded similarly to stimulation regarding the expression of Argt and MPO

25.06.2021 155



Diagnostic profiling of MDSCs in sepsis

(although on a lower level for Arg1). PMN-MDSCs did not increase IL-6 expression upon stimulation

(Figure 7B).

Conclusions

We found that neutrophilic granulocytes rise strongly after LPS infusion mainly due to the increase of
CD11clow granulocytes. After the second infusion of endotoxin, we see a similar increase of neutrophilic
granulocytes but these consist of less CD11clow granulocytes. Generally, we see less expression of CD11c,
CD32, CD16, CD62L and CD66b by neutrophil granulocyte and upregulation of CD195 after the first
infusion of endotoxin. This disappears after the second infusion suggesting that neutrophilic
granulocytes develop a type of endotoxin tolerance. When stimulating neutrophilic granulocytes with
TLR ligands, we observed an upregulation of IL-6 and MPO, and a downregulation of Arg1i. Four hours
after endotoxin infusion, granulocytes showed a cross tolerance regarding IL-6. This result is subtle but
we see a similar trend looking at median expression and percentage of cells producing the mediators.
When splitting granulocytes in PMN-MDSC-like cells and more mature neutrophils, we observed that
the former show less baseline expression of IL-6, are non-responsive to stimulation and, contrary to
expectation, do not produce more Argi and MPO. With this study, we provide insights on the effect of

endotoxin and endotoxin tolerance on granulocytic neutrophils.
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Figure 1. Identification by mass cytometry of leukocyte populations in the blood healthy
subjects infused with endotoxin. Six healthy subjects were infused with endotoxin (bolus of 2 ng/kg)
twice at 1 week apart. Blood was drawn from 0, 1, 2, 3, 4, 6, 8, 24 and 168 hours after the first infusion,
and 1, 2, 3, 4, 6, 8 hours after the second infusion. Samples were stained and analysed by mass
cytometry as described in Materials and Methods. A) t-SNE plots of leukocyte populations. B)
Expression levels of cell surface markers. DN: double negative.
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Figure 2. Dynamic changes of leukocyte populations in the blood of healthy subjects infused
with endotoxin. Six healthy subjects were infused with endotoxin (bolus of 2 ng/kg) twice at 1 week
apart. Blood was drawn from 0, 1, 2, 3, 4, 6, 8, 24 and 168 hours after the first infusion, and 1, 2, 3, 4,
6, 8 hours after the second infusion. Samples were stained and analysed by mass cytometry as
described in Materials and Methods. A) t-SNE plots of leukocyte populations over time. B) Percentage
of CD11c'"" neutrophils and mature neutrophils within leukocytes. Line graphs describe the medians,

bars represent the median absolute deviation.
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Figure 3. Expression of CD11c, CD16, CD195, CD32, CD62L and CD66b by neutrophils in the
blood of healthy subjects infused with endotoxin. Six healthy subjects were infused with endotoxin
(bolus of 2 ng/kg) twice at 1 week apart. Blood was drawn from 0, 1, 2, 3, 4, 6, 8, 24 and 168 hours
after the first infusion, and 1, 2, 3, 4, 6, 8 hours after the second infusion. Samples were stained and
analysed by mass cytometry as described in Materials and Methods. The heat map shows normalized
expression of the marker by mature neutrophils and CD11c'"*% neutrophils. h = hours after endotoxin

infusion.
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Figure 4. Reduced IL-6 production by neutrophils in blood collected 4 h after endotoxin infusion.

Blood was collected from 7 healthy subjects 0, 4, 24, and 168 hours after endotoxin infusion, exposed

for 4 hours to 10 ng/ml LPS, 1 ug/mL Pam3CSK4 and 1 uM R848, and analyzed by intracellular staining

followed by flow cytometry analysis of Argl, IL-6 and MPO by neutrophils (see Materials and Methods).

Expression was set as fold change from unstimulated baseline conditions (before endotoxin infusion).

A) Heatmap and, B) Boxplots showing the expression of Argl, IL-6 and MPO. Boxplots show median,

upper and lower quartiles. The whiskers show 5-95 percentiles. Each dot represents an individual
sample. * P < 0.05; ** P < 0.01; ** P < 0.001.
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Figure 5. Reduced frequency of neutrophil responding to TLR ligands in blood collected 4 h

after endotoxin infusion. Blood was collected from 7 healthy subjects 0, 4, 24, and 168 hours after

endotoxin infusion, exposed for 4 hours to 10 ng/ml LPS, 1 yg/mL PamsCSK4 and 1 yM R848, and

analyzed by intracellular staining followed by flow cytometry analysis of Argl, IL-6 and MPO by
neutrophils (see Materials and Methods). A-B) Percentage of IL-6* and MPQOM" neutrophils, 0, 4, 24

and 168 hours after endotoxin infusion. Boxplots show median, upper and lower quartiles. The whiskers

show 5-95 percentiles. Each dot represents an individual sample. * P < 0.05; ** P < 0.01; *** P < 0.001.
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Figure 6. Dynamic changes of neutrophils and PMN-MDSCs in the blood of healthy subjects
challenged with endotoxin. Blood was collected from 7 healthy subjects 0, 4, 24, and 168 hours after
endotoxin infusion and analyzed by flow cytometry (see Materials and Methods). A) t-SNE plots of
neutrophilic populations over time. B) Expression level of cell surface markers. C) Percentage of
CD11c'o¥ neutrophils and (mature) neutrophils within leukocytes. PMN-MDSCs: polymorphonuclear-

MDSCs. Line graphs describe the medians, bars represent the median absolute deviation.
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Figure 7. Differential expression of Argl, IL-6 and MPO by neutrophils and PMN-MDSCs in the
blood of healthy subjects challenged with endotoxin. Blood was collected from 7 healthy subjects
0, 4, 24, and 168 hours after endotoxin infusion, exposed for 4 hours to 10 ng/ml LPS, 1 pug/mL
PamsCSK4 and 1 uM R848, and analyzed by intracellular staining followed by flow cytometry analysis
of Argl, IL-6 and MPO by neutrophils (see Materials and Methods). A) Heat map of relative MFI by
neutrophils and PMN-MDSCs per time point, and per stimuli. B) Boxplots of relative expression of
neutrophils and PMN-MDSCs. Expression was calculated as fold change from values obtained in
unstimulated neutrophils from blood collected before endotoxin infusion. Boxplots show median, upper

and lower quartiles. The whiskers show 5-95 percentiles. Each dot represents an individual sample.
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Supplementary tables and figures.

Supplementary Table 1. Antibodies and barcodes used in mass cytometry

Target Clone Manufacturer Isotope
Barcode Scn-BN-EDTA In lab 104Pd
Barcode Scn-BN-EDTA In lab 105Pd
Barcode Scn-BN-EDTA In lab 106Pd
Barcode Scn-BN-EDTA In lab 108Pd
Barcode Scn-BN-EDTA In lab 110Pd
Barcode mDOTA In lab 113In
Barcode mDOTA In lab 115In
CCR2 B27 Biolegend 165H0
CCR5 Rea245 Miltenyi 153Eu
CDl1c L161 Biolegend 143Nd
CD1d 51.1 Biolegend 154Sm
CD3 UCHT1 Biolegend 148Nd
CDh4 RPA-T4 Biolegend 144Nd
CD7 CD7-6B7 Biolegend 169Tm
CD8 SK1 Biolegend 145Nd
CD11b ICRF44 Biolegend 141Pr
CD11c Bul5 Biolegend 163Dy
CD14 HCD14 Biolegend 160Gd
CD16 3G8 Fluidigm 209Bi
CD20 2H7 Biolegend 147Sm
CD26 BA5b Biolegend 173Yb
CD32 FUN2 Biolegend 152Sm
CD33 REA775 Miltenyi 197AU
CD36 5-271 Biolegend 174Yb
CD38 HIT2 Biolegend 142Nd
CD45 HI30 Fluidigm 89Y
CD45RA HI100 Biolegend 166Er
CD56 R19-760 BD 159Thb
CD62L DREG-56 Biolegend 172Yb
CD64 10.1 Biolegend 175Lu
CD66b REA306 Miltenyi 158Gd
CD74 5-329 Miltenyi 176Yb
CD80 2D10 Biolegend 161Dy
CD86 IT2.2 Biolegend 146Nd
CD123 6H6 Biolegend 162Dy
CD141 M80 Biolegend 168Er
CD223 7H2C65 Biolegend 167Er
CX3CR1 2A9-1 Biolegend 156Gd
HLA-DR L243 Biolegend 170Er
PD1 EH12.2H7 Biolegend 164Dy
PD-L1 29E.2A3 Biolegend 171Yb
Slan DD1 Miltenyi 151Eu
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Supplementary Table 2. Antibodies used in flow cytometry

Target Clone Fluorochrome Company ESIT?LEGTCE
Argl 125D2C253 APC Biolegend 369706
Caspase-3 C92-605 PE BD 55082

CD3 UCHT1 AlexaFluor 700 eBioscience 56-0038-42
CD7 M-T701 AlexaFluor 700 BD 561603
CD11c Bul5 PB Biolegend 337212
CD16 3G8 PE-CF594 Beckman Coulter B49216
CD19 J3.119 AlexaFluor 700 Beckman Coulter B76284
CD32 FUN2 APC-F750 Biolegend 303220
CD33 WM33 BV711 BD 563171
CD56 HCD56 AlexaFluor 700 Biolegend 318316
CD66b G10F5 PE-CY7 Biolegend 305116
IL-10 JES3-9D7 BV650 BD 6E+06

IL-6 MQ2-13A5 PerCP-EF710 Biolegend 501117
MPO Rea491 FITC miltenyi 130-120-241
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Supplementary table 3. Cell population (%) per time point (Median [IQR])

Hours after first

. - 0 1 2 3 4 8 24
infusion
. 53 (51, 38(32, 51(43, 68(58, 59(55 67 (55 70 (56,
Neutrophils 54) 48) 55) 72) 64) 68) 74) 62 (59, 69)
CD11c low 29 (24, 24(22, 37(31, 27(26, 23(18,
neutrophils 3(24) 5(46) 9" 33 39) 38 35) 424
. 57 (56, 48(39, 81 (77, 91(90, 94 (93, 94(93, 91 (90,
Total neutrophils 50) 54) 81) 92) 95) 94) 92) 72 (66, 72)
Hours after _ 0 1 > 3 4 8
second infusion
. 50 (41, 64 (54, 71(63, 76(71, 79(73, 81(78, 74 (65,
Neutrophils 58) 71 76)  77) 82  81) 76
CD11c low 16 (13, 13(12, 98, 8 (7,
neutrophils 329 4@7) "o 16) 13 100 °®@9
. 53(48, 66(59, 87(83, 90(88, 89 (88, 88(87, 82(81,
Total neutrophils 60) 76) 89) 91) 90) 88) 83)
Supplementary table 4. Cell population (Million cells/ml) per time point (Median [IQR])
Hour_s after first 0 1 > 3 4 6 8 2
infusion
. 1.9(1.8, 05(0.5 1.9(1.1, 3.6(29, 4.4(3.8, 50(3.7, 4232, 3.2(21,
Neutrophils 2.2) 0.8) 2.1) 5.5) 5.1) 6.0) 5.3) 3.3)
CD11c low 0.1(0.1, 0.1(0.0, 1.1(0.8, 2.0(1.4, 3.0(2.3, 2.6(1.4, 1.8(1.1, 0.1(0.1,
neutrophils 0.2) 0.1) 1.3) 2.3) 4.8) 3.3) 2.1) 0.2)
Total neutrophils 22 20, 0.7(0.6, 28(L9, 50(45, 7.6(65 7.7(68 55(5.2, 33(26,
P 2.3) 0.9) 3.2) 7.6) 8.6) 8.3) 5.8) 3.6)
Hours after 0 1 2 3 4 6 8
second infusion
. 15(.5 24(1.7, 43(3.2, 51(35 b5.7(45 6.7(47, 54(3.9,
Neutrophils 2.3) 3.4) 5.4) 6.7) 6.8) 8.3) 6.7)
CD11c low 0.1(0.1, 0.2(0.1, 1.0(0.7, 0.8(0.7, 0.7(0.6, 0.7(0.5, 0.8(0.4,
neutrophils 0.5) 0.2) 1.7) 2.0) 0.8) 0.9) 0.9)
. 19(1.6, 25(1.8, 55(4.4, 6.4(50, 69(55 7.6(5.0, 6.0(4.9,
Total neutrophils ™, 3.6) 6.2) 7.5) 7.5) 9.0) 7.5)
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Supplementary figure 1. Gating strategy to exclude debris, doublets and non-hematopoietic

cells to analyze blood leukocytes by: A) mass cytometry, and B) flow cytometry.
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Supplementary figure 2. Dynamic changes of neutrophils in the blood of healthy subjects
challenged with endotoxin. Six healthy subjects were infused with endotoxin (bolus of 2 ng/kg) twice
at 1 week apart. Blood was drawn from 0, 1, 2, 3, 4, 6, 8, 24 and 168 hours after the first infusion, and
1, 2, 3, 4, 6, 8 hours after the second infusion. A) Absolute counts of CD11c'" neutrophils and mature
neutrophils. B) Percentage of neutrophils within leukocytes. Line graphs describe the medians, bars

represent the median absolute deviation.
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Supplementary figure 3. Dynamic change of leukocyte populations in the blood of healthy
subjects challenged with endotoxin. Six healthy subjects were infused with endotoxin (bolus of 2
ng/kg) twice at 1 week apart. Blood was drawn from 0, 1, 2, 3, 4, 6, 8, 24 and 168 hours after the first
infusion, and 1, 2, 3, 4, 6, 8 hours after the second infusion. From top to bottom: absolute counts of
monocytic, T cell, B-cells, basophils, NK cells and dendritic cells populations. Line graphs describe the

medians, bars represent the median absolute deviation.

25.06.2021 171



Diagnostic profiling of MDSCs in sepsis

172 Irene T. Schrijver



6. Supplementary files

6.2. High-dimensional mass cytometry reveals persistent HCV-mediated
immune dysfunction in patients successfully treated with direct-acting

antiviral agents.

Jacobus Herderschee!, Tytti Heinonen!, Craig Fenwickz, Irene Schrijver?, Khalid Ohmiti2, Darius
Moradpours, Matthias Cavassini!, Giuseppe Pantaleo24, Thierry Roger*, Thierry Calandra'*, and the
Swiss HIV Cohort Study

tInfectious Diseases Service, 2Division of Immunology and Allergy, and 3-Division of Gastroenterology
and Hepatology, Department of Medicine, Lausanne University Hospital and University of Lausanne,

Lausanne.
4-Swiss Vaccine Research Institute, Lausanne, Switzerland.

Manuscript submitted.
Summary:

Chronic hepatitis C virus (HCV) infection affects the immune system. Whether elimination of HCV with
direct-acting antivirals (DAA) restores immunity is unclear. To address that question, we used mass
cytometry to get a broad and in-depth assessment of blood cell populations of patients with chronic
HCV before and after DAA therapy. Before and 12 weeks after sustained virological response to DAA
therapy (SVR12), blood was collected from 10 healthy controls and 20 patients chronically infected with
HCV with (10) or without human immunodeficiency virus (HIV) (10) infection. We analyzed 22 blood
cell populations by mass cytometry. Chronic HCV infection caused profound alterations in the
frequency of 14 out of 22 (64%) blood cell populations. At baseline, the fraction of intermediate and
non-classical monocytes, conventional dendritic cells type 2, and CD56dim natural killer cells were
reduced by 35% to 65%, particularly in HCV/HIV co-infected patients. In contrast, the fraction of
activated double-negative T cells, CD4 and CD8 T cells increased by 1.4 to 3.5 times. Upon stimulation
with Toll-like receptor ligands ex vivo, innate immune cells of HCV-infected and particularly of
HIV/HCV co-infected patients displayed up-regulated pro-inflammatory cytokine expression profile.
Remarkably, most immune cell alterations persisted long after viral clearance (i.e. up to SVR12). To
conclude, chronic HCV and HCV/HIV infections induce profound and durable perturbations of innate

and adaptive immune homeostasis.

My contribution to this work:

I processed part of the samples, revised the figures and the manuscript.
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Abstract

Objectives

Chronic hepatitis C virus (HCV) infection affects the immune system. Whether elimination of HCV with
direct-acting antivirals (DAA) restores immunity is unclear. We used mass cytometry to get a broad and
in-depth assessment of blood cell populations of patients with chronic HCV prior to and after DAA
therapy.

Methods

Before and 12 weeks after sustained virological response to DAA therapy (SVR12), 22 cell populations
were analysed by mass cytometry in blood collected from 10 healthy controls and 20 HCV patients with
(10) or without human immunodeficiency virus (HIV) (10) infection.

Results

HCV infection altered the frequency of 14/22 (64%) blood cell populations. At baseline, the frequencies
(median [IQR]; control, HCV, HCV/HIV) of intermediate monocytes (1.2 [0.47-1.46], 1.76 [0.83-2.66],
0.78 [0.28-1.77]), non-classical monocytes (1.11 [0.49-1.26], 0.9 [0.18-0.99], 0.54 [0.28-1.77]),
conventional dendritic cells type 2 (0.55 [0.35-0.59], 0.31 [0.16-0.38], 0.19 [0.11-0.36]) and CD56dim
natural killer cells (8.08 [5.34-9.79], 4.72 [2.59-6.05], 3.61 [2.98-5.07]) were reduced by 35% to 65%,
particularly in HCV/HIV co-infected patients. In contrast, activated double-negative T cells (0.07 [0.06-
0.10], 0.10 [0.09-0.19], 0.19 [0.12-0.25]), activated CD4 T cells (0.28 [0.21-0.36], 0.56 [0.33-0.77],
0.40 [0.22-0.53]) and activated CD8 T cells (0.23 [0.14-0.42], 0.74 [0.30-1.65], 0.80 [0.58-1.16]) were
increased 1.4 to 3.5 times. Upon stimulation with Toll-like receptor ligands, the expression of cytokines
was up-regulated in 7/9 (78%) and 17/19 (89%) of the conditions in HCV and HCV/HIV patients,
respectively. Most alterations persisted at SVR12.

Conclusions

Chronic HCV and HCV/HIV infections induces profound and durable perturbations of innate and

adaptive immune homeostasis.
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Introduction

Infections with hepatitis C virus (HCV) and human immunodeficiency virus (HIV) are leading causes
of morbidity and mortality worldwide [1]. In 2015, a study estimated that 71 million people were
chronically infected with HCV. Among the 37.9 million people living with HIV, 2.3 million were
coinfected with HCV [1, 2]. Patients with HCV and HIV coinfection have higher mortality rates than
patients with HCV or HIV monoinfection [3]. The ability of HIV and HCV to subvert and evade the host
immune response explains why the diseases follow a chronic course [4, 5].

HCV evades the host innate immune system efficiently, preventing a successful adaptive immune
response, resulting in chronic infection in up to 80% of patients [1, 5]. In infected hepatocytes, HCV
proteins inhibit transduction of signals from pattern recognition receptors and cap-dependent mRNA
translation, limiting the production of type I interferon (IFN) and other cytokines, thereby preventing
the establishment of an antiviral state [6]. After infection, HCV titers rise within days, reach a plateau
of 105—107 IU/mL and decrease after 4 to 8 weeks contemporaneously with the appearance of HCV-
specific CD8 T cells [7]. HCV replication results in prolonged antigenic stimulation associated with
disappearance of HCV-specific CD4 T cells and exhaustion of CD8 T cell responses [6, 8]. In HCV/HIV
coinfected patients, HCV-specific immunity is impaired further by the depletion of CD4 T cells.
Depletion of mucosal CD4 T cells also impairs gut barrier function, leading to increased microbial
translocation and production of pro-fibrotic cytokines by Kupffer cells [6]. Thus, HIV infection alters
the course of HCV disease via combined effects on innate and adaptive immunity.

For two decades, studies of the innate immune responses during HCV therapy were hampered by
the use of pegylated-IFNa that exerts widespread effects on cellular immune functions. This changed
with the introduction of direct-acting antivirals (DAA) for the treatment of hepatitis C. In this study, we
used high-dimensional mass cytometry to get a broad and in-depth qualitative and quantitative
assessment of blood cells before, during and after DAA-based therapy in patients with chronic hepatitis

C with or without HIV coinfection.

Results

Characteristics of patients and controls

We conducted a longitudinal, non-interventional study in 10 patients infected with HCV, 10 patients
infected with HCV and HIV (HCV/HIV), and 10 healthy subjects (controls) (Figure 1a and Table S1).
Patients and controls were recruited by the Infectious Diseases Service and Division of Gastroenterology
and Hepatology of Lausanne University Hospital (Switzerland). HCV patients were slightly older than
controls (p=0.001) and HCV/HIV patients (p=0.042). Baseline HCV loads and viral load reductions
were comparable in HCV and HCV/HIV patients. All subjects achieved sustained virologic response 12
weeks after the end of therapy and completed the follow-up period (Figure 1b). Whole blood was
collected from healthy controls and patients just before, during and after DAA therapy and used

immediately to perform in-depth immunoprofiling (Figure 1a).
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HCV infection causes extensive and sustained changes in populations of circulating immune
cells

Twenty-two cell populations were identified in whole blood by mass cytometry and FlowSOM clustering
(Figure 1c,d, Figs S1-S3). It included 3 granulocyte clusters (basophils, CD11bhigh and CDi1blow
neutrophils), intermediate and non-classical monocytes, type 2 conventional DCs (¢cDC2), plasmacytoid
DCs (pDCs), classical, CD56high and CD56dim NK cells, CD1c*, CD11c+ and CD1c/CD11c B cells, CD4 and
CD8 double-negative (DN), single-positive (SP) and double-positive (DP) T cells. T cell subsets included

activated and non-activated T cells according to CD38 and HLA-DR expression.

We compared the frequency of merged clusters at baseline in controls and patients using
generalized mixed linear models [9]. The full dataset of the normalized frequencies of immune cell
populations prior to antiviral therapy and at SVR12 is shown in Figure 2a. The proportion of the main
subsets of innate and adaptive immune cells is reported in Table S2 and Table S3. Overall, both HCV
monoinfection and HCV/HIV coinfection were associated with significant changes in the frequency of
14 of 22 (64%) immune cell populations (Figure 2b). Prior to therapy, innate immune cells were
markedly reduced. The reduction was 35% to 51% for intermediate and non-classical monocytes
(HCV/HIV, p=0.038), 44% to 65% for cDC2 (HCV, p=0.007; HCV/HIV, p<0.001) and 42% to 55% for
circulating CD56dim NK cells (HCV, p=0.074; HCV/HIV, p=0.012). In contrast, the frequencies of
activated DN T cells (HCV, p=0.042; HCV/HIV, p<0.001), activated CD4 T cells (HCV, p=0.059), CD8
T cells (HCV/HIV, p<0.001) and activated CD8 T cells (HCV, p=0.023; HCV/HIV, p=0.025) were
increased by a factor ranging from 1.4 to 3.5. The frequencies of B cells and CD11c* B cells were increased
2.1 and 3-fold in HCV/HIV coinfected patients (p=0.125 and p=0.042). Except for cDC2 (HCV patients)
and activated DN cells (HCV and HCV/HIV patients), changes in innate and adaptive cell populations
persisted up to SVR12 (Figs 2 and 3). Consistent with this observation, SVR12 samples tended to cluster

with baseline samples from the same group.

Impact of HCV infection on innate immune responses

To investigate the effect of HCV on innate immune function, we stimulated whole blood with TLR
agonists (LPS and R848) and analysed the expression of pro-inflammatory (TNF, IL-1a, IL-1f, IL-6, IL-
8, IL-12p40, IFNa and MCP-1) and anti-inflammatory (IL-1RA and IL-10) cytokines by mass cytometry
(Figures S4-S9). The full dataset of cytokine expression is shown in Figure 4a, Figure 5, Table S4 and
Table S5. Cytokine expression induced by LPS and R848 clustered by cell type (Figure 4a). Classical,
intermediate and non-classical monocytes and ¢cDC2 had the highest frequencies of TNF, IL-1a, IL-1
and IL-8-positive cells after LPS stimulation. All classes of innate immune cells had a high frequency of
TNF-positive cells after R848 stimulation, while ¢DC2, classical, intermediate and non-classical
monocytes had the highest frequencies of IL-1f and IL-8-positive cells and pDCs had the highest
frequency of IFNa-positive cells. Overall, the frequency of TNF, IL-1q, IL-1f3, IL-6 and IL-8 cytokine-
positive cells was higher in classical, intermediate and non-classical monocytes especially in HCV/HIV
patients after stimulation with R848 (Figure 4b). The trend was less striking in cDC2. The frequency of
IFNa-positive cells was also higher in HCV/HIV patients than in controls. In contrast, the expression

of IL-1RA and IL-10 by monocytes and DCs did not differ between patients and controls. The pro-
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inflammatory signature of monocytes persisted up to SVR12 in HCV/HIV patients and to a lesser degree

in HCV patients (Figure 5).

Inflammatory signals enhance the expression of CD80 and CD86 co-stimulatory molecules and
PD-1 and PD-L1 immune checkpoint molecules by antigen presenting cells [10]. Considering the pro-
inflammatory signature of HCV patients, we analysed the expression CD80, CD86, PD-1 and PD-L1 by
monocytes, cDC2 and pDCs. At baseline or 24 hours after LPS stimulation, we found no differences in
the expression of these molecules by innate immune cells of patients and controls (¢cDC2 are shown in

Figure S10).

Discussion

Patients infected with HCV with or without HIV display an immune signature characterized by altered
innate and adaptive immune cell profiles and cytokine response by monocytes and DCs. Innate
immunity was severely dysregulated. Chronic HCV caused a profound and widespread decrease of
intermediate and non-classical monocytes, cDC2 and CD564dim NK cells. Yet, ex vivo production of pro-
inflammatory cytokines by innate immune cells was upregulated particularly in HCV/HIV patients.
Adaptive immune signatures were upregulated, with increased frequencies of activated DN, CD4, and
CD8 T lymphocytes. This HCV-related immune dysregulation persisted up to 12 weeks after HCV
clearance.

Previous studies on the effects of HCV used fresh or cryopreserved peripheral blood mononuclear
cells (PBMCs) or monocyte-derived DCs (moDCs) and a limited number of phenotypic markers [11-19].
Isolation, cryopreservation and differentiation alter the phenotype and function of PBMCs and moDCs.
To avoid these limitations, we analysed blood immediately after drawing and mass cytometry with
clustering strategies allowing the identification of a broad spectrum of immune cells and cytokines.
Studies of innate immunity in HCV patients yielded mixed results. Some studies reported a clear
reduction in the frequency and function of pDCs and ¢DCs, while others did not [11-18, 20]. Our results
are unambiguous with striking reduction of intermediate and non-classical monocytes, ¢cDC2 and
CD564im NK cells. The broad and persistent reduction in circulating innate immune cells is an important
hallmark of acute hepatitis C and possibly part of a strategy whereby HCV evades innate immune
responses and prevents the development of an effective adaptive immune response. HCV-infected
patients do not suffer from opportunistic infections, nor do they appear to be protected against other
infections. The response to vaccination, such as against HBV, appears to be intact in patients with HCV
infection, although some authors have found a reduced response [21].

Cytokine analysis at the single cell level revealed a pro-inflammatory profile in patients. One
cannot exclude a restoration of immune homeostasis beyond SVR12. However, the persistence of
immune alterations may be a systemic signature consistent with reports of ongoing liver inflammation
documented long after SVR in patients with normal levels of transaminases [22-24]. If sustained, the
inflammatory signature may contribute to the development of HCV-associated complications such as
hepatocellular carcinoma, cardiovascular disease and diabetes. Along this line, increased cytokine
response by innate immune cells were more pronounced in HCV/HIV patients than in HCV patients,

indicating that HIV coinfection amplified immunophenotypic alterations. This observation may explain
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the progression of liver disease, including cirrhosis, liver failure and hepatocellular carcinoma in
HCV/HIV patients. Of note, coinfected patients had HIV viral loads below the lower limit of detection.
Coinfected patients receiving HIV treatment progress more slowly than untreated patients. Yet, disease
progression in the context of an undetectable HIV viral load remains incompletely understood [6].

HCV infection has been associated with broad-spectrum alterations of adaptive immunity [5]. We
confirmed and extended these findings by demonstrating increased frequencies of activated DN T cells
at baseline that normalized after viral clearance. We also observed an increase in activated CD8 T cells
in HCV and HCV/HIV at baseline that persisted up to SVR12. A recent study reported a molecular
signature of exhaustion that persisted in HCV-specific CD8 T cells after DAA-mediated cure of HCV [8].
This illustrates the strength of the clustering approach to look at a broad range of cell populations. As
we did not examine antigen specificity of T cells, we did not check for T cell exhaustion in chronically
infected patients. We cannot differentiate between the expansion of HCV-specific T cells driven by the
high HCV mutation rate or the expansion of non-HCV-specific T cells linked to a general pro-
inflammatory status or secondary to other patient characteristics such as fibrosis. Chronic hepatitis C
is characterized by an increased risk of progressive liver fibrosis and immune complex-mediated
autoimmunity [1]. The increased frequencies of activated T cells in patients with chronic HCV infection
may facilitate the development of these features.

Our study has several strengths and limitations. We performed whole blood analysis of 22 cell
populations and conducted ex vivo functional studies by mass cytometry in patients before, during and
up to 12 weeks after DAA-mediated virological cure. The limited number of subjects may have limited
our ability to detect more subtle changes possibly linked to HCV genotype or host genetic or risk factors
features. An HIV mono-infected group could have been included. Finally, all patients were under ART
and had low or undetectable HIV viral loads, precluding to detect interactions between HIV with HCV
infections.

High-dimensional immune profiling of blood cells provided a broad and in-depth picture of the
systemic immune dysregulation induced by chronic HCV. A salient finding was the observation of a
profound derangement of the homeostasis of the immune system triggered by HCV characterized by a
pro-inflammatory innate immune signature extending well beyond the clearance of HCV, especially in
HCV/HIV patients. This inflammatory phenotype may contribute to the pathogenesis of systemic

complications of chronic HCV infection.

Materials and Methods

Subjects

We conducted a longitudinal, non-interventional study in 10 patients with HCV, 10 patients with HCV
and HIV (HCV/HIV), and 10 healthy subjects (controls) (Figure 1, Table S1). Ethical approval was
obtained from the Commission cantonale d'éthique de la recherche sur 1'étre humain, Canton de Vaud,
Switzerland (CER-VD, PB_2016-01464). The project was approved by the Scientific Board of the Swiss
HIV Cohort Study (SHCS, project number 788). Study participants provided written informed consent.
HCV-infected patients received IFNa-free, DAA-based therapy. Depending on the duration of DAA

treatment, follow-up ranged from 6 to 9 months. HCV viral loads were measured at baseline, one or two
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weeks after initiation of treatment, at the end of therapy, and 12 weeks thereafter to determine whether
the patient achieved a sustained virologic response (SVR). For immune profiling, blood was collected
in heparin tubes at baseline (within 4 weeks prior to the initiation of DAA-based therapy) and 12 weeks
after therapy (SVR12) (#1 and #4, Figure 1a). To avoid bias linked to cell isolation or cryopreservation,
blood was immediately either stabilized for frequency analysis or stimulated as described in
Supplementary Materials and Methods. Blood was collected once in healthy controls. HCV or HIV viral
loads were determined by the clinical laboratory of the Division of Immunology and Allergy of Lausanne

University Hospital.

Processing and clustering of CyTOF data

Information about conjugation of antibodies, mass-tag barcoding, sample staining for CyTOF and data
analysis are presented in the Supplementary Materials and Methods and Tables S6-8. Samples were
acquired on a CyTOF 2 (Fluidigm) (25). FCS files were normalized using the MATLAB normalizer [26].
Debris were gated out manually and barcoded files were deconvoluted using OpenCyto-based boolean
gating [27]. FlowSOM clustering was performed on 99.5th percentile scaled, hyperbolic arcsine
transformed expression levels, using co-factor 5, for the markers CD1c, CD3, CD4, CD7, CD8, CD11b,
CD11c, CD14, CD16, CD20, CD38, CD56, CD66b, CD123, CDi41, HLADR and Slan [28]. We
overclustered the data to 40 metaclusters, manually merged into 22 populations based on biological
knowledge [9]. For dimensionality reduction, we performed Uniform Manifold Approximation
Projection (UMAP) with a minimal distance of 0.2 on a dataset down-sampled to 5000 randomly

selected cells per sample [29].

Statistical analysis

Data were analyzed in R with the Ime4 package using generalized linear mixed models [9]. To control
for batch effects, random effects were added for sample and batch. Thresholds for cytokine positivity
were determined as the ggth percentile levels of matched unstimulated samples that were processed
simultaneously and identically as stimulated sample in a subject and time point dependent fashion [30].
Median signal intensities (MSI) of cytokines and co-stimulatory or inhibitory markers were calculated
and compared with linear models. For all methods, p values were extracted and corrected for multiple
testing using the false discovery rate (FDR). We used a threshold of 5% to indicate statistical significance
and of 15% to indicate a trend. Only FDR adjusted p values are shown. Statements regarding percentage
increase or decrease are based on medians. For boxplots show the 75th and 25t percentile, the horizontal
line the median and the whiskers hinges to 1.5-times the interquartile range. Heatmaps show

normalized frequencies where the frequency of each population is scaled 0-1.
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Figure 1. Study design, HCV viral loads and analyses of blood cell populations with mass
cytometry workflow. (a) Blood samples were obtained within 4 weeks of the start of therapy (baseline,
#1), after 1 week of treatment (#2), at the end of treatment (#3), and 12 weeks after the end treatment
and sustained virologic response (SVR12) (#4). Four blood samples (#1 to 4) were collected for
measurement of HCV viral loads and two blood samples (#1 and #4) were collected for immune
profiling. (b) HCV viral loads. Each dot represents one single patient (some dots overlap). The solid line
connects the median viral loads of each time point. RNA levels were similar in patients with HCV or
HCV/HIV infections. The horizontal dotted line indicates the lower limit of detection of the test (15 1U/ml).
(c) Heatmap showing expression of markers and blood cell populations. Each row corresponds to a
manually annotated immune cell type based on the profile identified with the markers (columns) used
for clustering. Data are expressed as median of hyperbolic arcsine transformed signal intensities (MSI).
(d) Dimensionality reduction with UMAP performed with a random subset of 5000 cells per sample.

Colors correspond to merged and annotated FlowSOM clusters (populations).
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(b) HCV HCV/HIV
Baseline | SVR12 Baseline | SVR12
_..? Intermediate monocytes 2.0 (0.076) 0.65(0.038) 0.78(0.126)
% g Non-classical monocytes 0.49(0.038) 0.40(0.019)
€ E B slo- .56 (0.007) 0.35 (< 0.001) 0.51(0.041)
= E SNl 0.58 (0.074) 0.56 (0.146) 0.45(0.012) 0.44 (0.020)
- CcD56"" NK cells 0.60 (o 088)
DN T cells 0.62 (0.146)
2 Activated DN T cells 1.4 (0.042) 2.7 (<0.001)
= Activated DP T cells [P SRR NONE)
= CD4 T cells 0.73 (<0.001) 0.82
E
° Activated CD4 T cells 2.0(0.059) 2.0(0.008)
= CD8 T cells 1.4 (<0.001)
2 Activated CD8 T cells 3.2(0.023) 3.0 (0.024) 3.5 (0.025)
E B cells 2.1(0.125)

CD11c positive B cells 3.0 (0.042)

Figure 2. Changes of immune cell populations in patients infected with HCV or HCV and HIV.
(a) Heatmap showing normalized frequencies of cell subsets in unstimulated samples at baseline and
at SVR12. The scale of normalized frequencies ranges from 0 to 1. Row order was determined by
hierarchical clustering. The group and timepoint column serve as a legend and was not used for
clustering. (b) Summary of statistically significant changes in immune cell populations observed at
baseline and at SVR12 when compared to healthy controls (N=10 in each group). Red, white and blue
squares show increased, unchanged or decreased frequencies of the immune cell populations shown
on the y-axis. Numbers in cells indicate fold-change and p value (in brackets). Medians of the

frequency of cytokine positive cells and p values are provided in Tables S2 and S3.
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Figure 3. Proportions of innate and adaptive immune cells before and after HCV therapy. Box

plots of the frequencies of intermediate monocytes, type 2 conventional DC (cDC2) and CD56%m NK

cells (a) and activated double negative (DN) T cells, activated CD4 T cells and activated CD8 T cells

(b) at baseline and at SVR12. N=10 in each group. Each dot represents one individual subject.

Statistical analyses were performed using mixed linear models. P values corrected for multiple testing

using the false discovery rate are provided in Tables S2 and S3.

25.06.2021

187



Diagnostic profiling of MDSCs in sepsis

() LPS R848 Boo
[ . HCV baseline
HCV SVR12
. HCV/HIV baseline
. HCV/HIV SVR12

Population

B oc2

- Classical monocytes
. Intermediate monocytes
L Non-classical monocytes

oo
Frequency
1
08
) SR N & o SN N& g Y
& SETEETE L L FEE 2 & S O P S
& W h W A 086
& ¢
N 04
&
¢ 02
0
(b) LPS R848
HCV HCV/HIV HCV HCV/HIV
Baseline| SVR12 Baseline| SVR12 | [Baseline| SVR12 Baseline| SVR12
Classical TNF 0.87 (0.029) 0.94 (0.091) 1.04 (<0.001)1.06 (<0.001)
monocytes IL-8 1.05 (0.125) 1.04 (0.005) 1.45 (0.016) 1.21 (0.088) 1.42 (0.004) 1.46 (<0.001)
IL-6 1.52 (<0.001) 1.35 (0.002)
IL-1B 1.02 (0.004) 1.02 (0.005) 1.37 (<0.001) 1.09 (0.143)
[[RET] 0.94 (0.149) 0.95 (0.015) 1.32 (<0.001) 1.23 (0.001)
Intermediate TNF 1.01 (0.041)
monocytes [ 1.20 (0.007) 1.25 (0.055) 2.18 (0.001) 2.04 (<0.001)|ll 1.61 (0.021) 1.39 (0.0186)
[[IETcY 1.04 (0.071) 1.25 (0.055) 1.11 (0.101) 1.09 (0.143)
IL-1a 1.30 (0.038) 1.43 (0.005)
Non-classical TNF 1.07 (0.049)
monocytes [TIR:Y 1.45 (0.059) 1.65 (0.055) 142 (0.143)
I
cDC2 TNF 0.90 (0.023) 0.98 (0.100)
|L-12p40 0.79 (0.026)
IL-6 0.41 (0.143) il 1.33 (0.021) '1.26 (0.100)
IL-1B 0.96 (0.043)
IL-to
pDC IFNa 1.20 (0.026)

Figure 4. Cytokine response of innate immune cells in patients infected with HCV or HCV and
HIV. (a) Frequency of cytokine-positive innate immune cells following stimulation with LPS or R848 of
blood samples collected at baseline and SVR12. Row order was determined by hierarchical clustering.
Left two columns serve as a legend and have not been used for clustering. (b) Summary of statistically
significant changes in the frequency of cytokine-positive innate immune cells at baseline and at SVR12
when compared to healthy controls (N=10 in each group). Red, white and blue squares illustrate
increased, unchanged or decreased frequencies. Numbers in each cell indicate fold-change and p value
(in brackets). Medians of the frequency of cytokine positive cells and p values are provided in Tables
S4 and S5.
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Figure 5. Proportion of cytokine-positive classical monocytes after stimulation with a TLR7/8

agonist. Box plots of the frequencies of classical monocytes positive for IL-1a, IL-1[3, IL-6 and IL-8 after

stimulation with R848 at baseline and at SVR12. N=10 in each group. Statistical analysis was performed

using mixed linear models. P values corrected for multiple testing using the false discovery rate are

provided in Tables S4 and S5.
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The following supplementary files are available upon request:

Supplementary files:

1.

Supplementary methods.

Supplementary Tables:

2.

9.

Table S1. Characteristics of patients and healthy subjects.

Table S2 Proportion of immune cell populations in the blood of healthy controls and HCV and
HCV/HIV infected patients at baseline.

Table S3. Proportion of immune cell populations in the blood of healthy controls and HCV and
HCV/HIV infected patients at SVR12.

Table S4. Cytokine expression by TLR ligand-stimulated innate immune blood cells isolated
from healthy controls and from HCV and HCV/HIV infected patients (baseline).

Table S5. Cytokine expression by TLR ligand-stimulated innate immune blood cells isolated
from healthy controls and from HCV and HCV/HIV infected patients (SVR12).

Table S6. Antibodies and barcodes.

Table S7. Reagents.

Table S8. Softwares.

Supplementary figures:
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Figure S1. Analyses of blood cell populations with mass cytometry.

Figure S2. Staining pattern in ungated cells.

Figure S3. Minimal gating example.

Figure S4. Cytokine expression in healthy controls after LPS stimulation.

Figure S5. Cytokine expression in HCV infected patients after LPS stimulation.
Figure S6. Cytokine expression in HCV/HIV infected patients after LPS stimulation.
Figure S7. Cytokine expression in healthy controls after R848stimulation.

Figure S8. Cytokine expression in HCV infected patients after R848stimulation.
Figure S9. Cytokine expression in HCV/HIV infected patients after R848stimulation.

. Figure S10. Baseline and induced expression of inhibitory and co-stimulatory molecules in

cbC2.

. Figure S11. Depletion of CD15 positive cells does not affect the frequency of other immune

subsets.
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6.3. Impact of the Timeliness of Antibiotic Therapy on the Outcome of Patients

with Sepsis and Septic Shock.

Sandra A Asner?, Florian Desgrangesz?, Irene T. Schrijver2, Thierry Calandra2

1. Paediatric Infectious Diseases and Vaccinology Unit, Department Mother-Woman-Child, Lausanne
University Hospital, University of Lausanne, Switzerland; Infectious Diseases Service, Department of
Medicine, Lausanne University Hospital, University of Lausanne.

2. Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Lausanne,
Switzerland.

Journal of Infection, May 2021 | https://doi.org/10.1016/}.jinf.2021.03.003

Summary:

With this research, we aimed to review the impact of the timeliness of antibiotic therapy on the outcome
of patients with sepsis or septic shock. We searched MEDLINE, EMBASE, the Cochrane Library, Web
of Science, Open-SIGLE databases, ClinicalTrials.gov, and the metaRegister of Controlled Trials on July
27, 2020, for relevant studies on the timing of antibiotic therapy in adult patients with sepsis or septic
shock. The primary outcome measure was all-cause crude or adjusted mortality at reported time points.
We included 35 sepsis studies involving 154,330 patients. Nineteen studies (54%) provided information
on the appropriateness of antibiotic therapy in 20,062 patients of whom 16,652 patients (83%) received
appropriate antibiotics. Twenty-four studies (68.6%) reported an association between time-to-
antibiotics and mortality. Time thresholds associated with patient's outcome varied considerably
between studies consisting of a wide range of time cut-offs (1 h, 125 min, 3 h or 6 h) in 14 studies, hourly
delays (derived from the analyses of time intervals ranging from to 1 to 24 h) in 8 studies or time-to-
antibiotic in 2 studies. Analyses of subsets of studies that focused on patients with septic shock (11
studies, 12,756 patients) or with sepsis (6 studies, 24,281 patients) yielded similar results. To conclude,
two-thirds of sepsis studies reported an association between early administration of antibiotic therapy
and patient outcome but the time-to-antibiotics metrics varied significantly across studies and no

robust time thresholds emerged.

My contribution to this work:

I analysed part of the data, created figures, and revised the manuscript.
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sepsis or septic shock.
Available online 17 March 2021

Objectives: To review the impact of the timeliness of antibiotic therapy on the outcome of patients with

Methods: We searched MEDLINE, EMBASE, the Cochrane Library, Web of Science, Open-SIGLE databases,
ClinicalTrials.gov and the metaRegister of Controlled Trials on July 27, 2020 for relevant studies on the

gi{,ﬁ(xds' timing of antibiotic therapy in adult patients with sepsis or septic shock. The primary outcome measure
Sepsis was all-cause crude or adjusted mortality at reported time points.
Septic shock Results: We included 35 sepsis studies involving 154,330 patients. Nineteen studies (54%) provided in-
Antibiotic formation on the appropriateness of antibiotic therapy in 20,062 patients of whom 16,652 patients (83%)
Timing received appropriate antibiotics. Twenty-four studies (68.6%) reported an association between time-to-
Mortality antibiotics and mortality. Time thresholds associated with patient’s outcome varied considerably between
studies consisting of a wide range of time cutoffs (1 h, 125 min, 3 h or 6 h) in 14 studies, hourly delays
(derived from the analyses of time intervals ranging from to 1 to 24 h) in 8 studies or time-to-antibiotic
in 2 studies. Analyses of subsets of studies that focused on patients with septic shock (11 studies, 12,756
patients) or with sepsis (6 studies, 24,281 patients) yielded similar results.
Conclusions: While two-thirds of sepsis studies reported an association between early administration of
antibiotic therapy and patient outcome, the time-to-antibitiocs metrics varied significantly across studies
and no robust time thresholds emerged.
© 2021 The Authors. Published by Elsevier Ltd on behalf of The British Infection Association.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Introduction outcome.'®2! This prompted us to review the literature on the

Current global estimates indicate that 49 million cases of sep-
sis occur annually worldwide with about 11 million deaths.! Sepsis
results in mortality rates of about 10% in patients with sepsis and
of more than 40% in patients with septic shock.? Administration
of appropriate antimicrobial agents is a cornerstone of sepsis man-
agement guidelines and bundles.>~® However, there is considerable
controversy on the target for time-to-antibiotic therapy in patients
with sepsis.”~1* Several studies indicated that early administration
of antibiotics reduces sepsis mortality.’->15-17 Yet, other studies
found no association between early antibiotic therapy and patient’s

Abbreviations: ICU, Intensive care units; ED, Emergency Department; LOS, Length
of hospital stay; RR, Risk ratio; OR, Odds ratio; ClI, Confidence interval; IQR, In-
terquartile range; SOFA Score, Sequential Organ Failure Assessment, IRB, Institute
for Research in Biomedicine.

* Corresponding author.
E-mail address: Thierry.Calandra@chuv.ch (T. Calandra).

https://doi.org/10.1016/j.jinf.2021.03.003

timeliness of antibiotic therapy on the outcome of patients with
sepsis with the aim to identify targets for time-to-antibiotics asso-
ciated with favorable outcomes.

Materials and methods
Search strategy

The literature search was performed on July 27, 2020 in MED-
LINE, EMBASE.com, and the Cochrane Library Wiley for relevant
studies published any year and in any language. We also searched
proceedings of conference from 2008 to 2020 using the Web of
Science and unpublished studies using Open-SIGLE databases, the
US National Institutes of Health Ongoing Trials Register Clinical-
Trials.gov (https://clinicaltrials.gov) and the metaRegister of Con-
trolled Trials (www.controlled-trials.com). We also reviewed the
reference lists of articles for additional relevant studies. The search
criteria used the following Medical Subject Headings terms: (sep-

0163-4453/© 2021 The Authors. Published by Elsevier Ltd on behalf of The British Infection Association. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)
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sis OR severe sepsis OR septic shock) AND (antimicrobial agents OR
antibacterial agents OR antibiotics) AND (Time-factor OR time-to-
treatment OR time-to-antibiotic OR timing).

Data extraction and eligibility criteria

Two authors (SAA and TC) independently reviewed the articles
selected for full-text screening of eligibility criteria. We included
studies of adult patients (> 18 years) with sepsis, severe sep-
sis or septic shock as defined in the 1991 ACCP/SCCM Consensus
Conference definitions (retrospectively labelled Sepsis-1), the 2001
SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Confer-
ence (retrospectively labelled Sepsis-2), The Third International
Consensus Definitions for Sepsis and Septic Shock (Sepsis-3), codes
(995.92 and 785.52) of the International Classification of Diseases,
9th Edition and the predisposition, infection, response and organ
failure (PIRO) score.~*>?* For the analyses of the impact of the
timing of antibiotic therapy in subgroups of sepsis patients, we
assumed that patients with “severe sepsis” (according to Sepsis-1
and Sepsis-2) and the patients with “sepsis” (according to Sepsis-3)
had similar grades of sepsis severity. Eligible studies included ran-
domized controlled trials, observational cohort studies and anal-
yses of prospectively collected datasets providing information on
the timing of antibiotic therapy. We excluded animal studies, case
reports, case studies, meta-analyses, editorials and letters to the
editor.

Patient characteristics

We recorded information on the selection of patients, inclu-
sion criteria, the duration and time period of the study, the setting
(emergency department versus intensive care units versus wards),
the study design and the total number of patients in each sepsis
severity stratum. We also extracted data on other key study char-
acteristics such as the set point (i.e. time zero), the time cutoffs
or intervals used for assessing the timing and impact of antibi-
otic therapy, the assessment of the appropriateness of antibiotic
therapy and the study endpoints. Criteria used for the analysis of
antibiotic appropriateness were based on in vitro susceptibility of
causative pathogens in case of microbiologically-documented infec-
tions or on antibiotic therapy management guidelines in case of
clinically-documented infections.?”

Subgroup analyses

We performed subgroup analyses to investigate the effects of
sepsis severity strata (sepsis versus septic shock) on study end-
points. We also conducted post-hoc stratified analyses of studies
that addressed the appropriateness of antibiotic administration.

Outcome measures

The primary outcome was all-cause mortality at the time points
reported in the study. All but five studies?®~*" adjusted mortality
using multivariable analyses which included covariates considered
to be potential confounders such as age, gender, Acute Physiol-
ogy and Chronic Health Evaluation II (APACHE II), Charlson index
measures, site of infection, hypotension, SOFA score, lactate clear-
ance, fluid resuscitation and the use of vasopressors. Secondary
outcomes included admission to the ICU, length of ICU or of hospi-
tal stay (LOS), progression from sepsis/severe sepsis to septic shock
and mortality at fixed time-points (one, three or twelve months)
after hospital discharge. The principal summary measures for di-
chotomous outcomes were odds ratio (OR) with 95% confidence in-
terval (CI) (as provided by the authors or calculated based on avail-
able data) and risk ratios (RR). Medians with interquartile range
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(IQR) were reported for continuous outcomes. Given that we did
not perform a systematic review with meta-analysis, we do not
provide information on cumulative OR, RR or on the heterogene-
ity of studies (12). Statistical analyses and figure design were per-
formed using IBM SPSS Statistics version 26.0 (IBM Corp., New
York, USA) and R statistical software 3.6.0 (R Foundation for Sta-
tistical Computing, Vienna, Austria).

Results
Selection of studies

Fig. 1 shows the flow diagram for the selection of studies. We
screened the abstracts of 4409 records and selected 94 articles for
full-text screening. The Cohen’s kappa coefficient for agreement
between the two reviewers was 0.78.2° After full-text screening,
we included 35 studies, of which 34 were observational cohorts
(retrospective: 20 studies, prospective: 14 studies) and one was an
analysis of patients enrolled in a randomized controlled trial.

Study characteristics

Table 1 shows a summary of the 35 studies that included
154,330 patients (median: 1058 patients per study, range: 117 to
49,331). The enrolment period ranged from 1989 to 2020 (Fig. 2).
The median duration of studies was 2.1 years (range: 0.4 to 15.5).
The criteria used for the selection of patients varied between stud-
ies (Supplementary Table 1). The set point or “time zero”, the time
cutoffs (1, 3, 6, 12, 24 or 48 h) and the time intervals (hourly in-
crements up to 24 h) used for assessing the timing of antibiotic
therapy varied considerably between studies (Table 1). The set-
tings were emergency departments in 21 studies, ICUs in 8, hospi-
tal wards in 1 and a combination of emergency departments, ICUs
and wards in 5 (Table 1). Septic shock and sepsis with or with-
out organ dysfunction occurred in 51,094 patients (33.1%), 61,094
patients (39.6%) and 13,444 patients (8.7%), respectively. In nine
studies, 28,698 patients (18.6%) with sepsis, severe sepsis and sep-
tic shock were grouped together. All but one study used mortal-
ity endpoints, which was adjusted mortality in 29 studies (83%),
all-cause crude mortality in five (14.3%) and a combination of ad-
justed and unadjusted mortality in one. The time points for assess-
ing mortality were the end of the ICU or the hospital stay in 24
studies (68.6%), day 28 or day 30 in 7 (20.0%), various time points
in three (8.6%) and one year in one (2.8%).

Impact of the timeliness of antibiotic therapy on mortality

In 24 studies (68.6%) time-to-antibiotics was associated with in-
hospital mortality (18 studies),?->+15-17.27.28.31-40 mgrtality at other
time points (5 studies)®*®41-44 and the ICU or hospital length of
stay (one study)®” (Table 1). The time thresholds associated with
patient’s outcome consisted of various time cutoffs (1 h, 125 min,
3 h or 6 h) in 14 studies, hourly delays (based on the analyses of
time intervals ranging from to 1 to 24 h) in 8 studies and time-
to-antibiotic in two studies. Fig. 3 shows the odds ratio plots for
mortality according to three time-to-antibiotics parameters (hourly
delays, 1 h and 3 h time cutoffs). Arrival or registration in the
emergency department (ED) was identified as time zero in 10 stud-
ies,16:20.27,29,34,36,38,45-47 of which 4 reported an association be-
tween time cutoffs (hourly delays, 1 h, 3 h) and patients out-
come in a multivariable analysis.'5-3436:38 Recognition of symp-
toms or signs of sepsis was considered as time zero in 9 stud-
jes,17.26.31.33,40.41.44,48.49 of which 5 reported an association be-
tween time cutoffs (1 h, 125 min, 3 h) and mortality in multivari-
able analyses.!7.31.33.40.44
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Fig. 1. Flowchart of study selection

Fifty-nine studies were excluded after full text screening. Thirty-two studies did not evaluate the timing of antimicrobial therapy, 18 reported on conditions other than sepsis
(bacteremia in 10, febrile neutropenia in 5 and pneumonia in 3). Nine studies were excluded as they focused on predictors for delayed antibiotic administration (n=5) or

enrolled pediatric patients (n=4).

Appropriateness of antibiotic therapy

Nineteen studies (54%) provided information on the appropri-
ateness of antibiotic therapy in 20,062 patients (13.0% of the total
patient population) of whom 16,652 patients (83%) received ap-
propriate antibiotics. Among these 19 studies, 11 based the assess-
ment on in vitro susceptibility criteria and 8 on combined clinical
and microbiological criteria. Ten of these 19 studies reported an
association between time-to-antibiotics and mortality with hourly
delays or using various timecutoffs ranging from 1 h, 3 hor 6 h
delays and onwards. Three studies reported on associations be-
tween one-hour delay or hourly delays and mortality among pa-
tients with septic shock.?:*%:5 All but one study*° conducted mul-
tivariable analyses.

Septic shack and sepsis studies

We then examined the effects of the timing of antibiotic ther-
apy in studies that included patients with septic shock or with sep-
sis.

Septic shock

Twenty-one studies (60%) enrolled patients with septic shock,
of which 11 specifically analysed the impact of the time-to-
antibiotic on mortality in 12,756 patients,?16.18.26.30,40,41,46-48,50
In five studies that included 79.6% of the patients, the in-hospital
mortality or the length of stay in the ICU increased significantly
with each hour delay in the administration of antibiotics®:16.30.40
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or with a start of antibiotics more than 3 h after triage in
the emergency department.’’ No association between early an-

tibiotic therapy and outcome was noted in the other six stud-
ies,18.26.41,46-48

Sepsis

Twenty studies (57.1%) enrolled patients with sepsis and or-
gan dysfunction but without shock, of which six analysed the re-
lationship between time-to-antibiotic and mortality in 24,281 pa-
tients.!6:21.26.32.37.47 I three studies that included 92.0% of the pa-
tients, mortality increased with an hourly delay in antibiotic ther-
apy'®, a longer time-to-antibiotic*? or a delay of more than 6 h in
the administration of empirical antibiotic therapy.?” Of note, one of
these studies reported an 8.0% risk of progression to septic shock
when antibiotic therapy was delayed.*” There was no association
between early antibiotic therapy and mortality in the other three
studies.

Discussion

Overall, two-thirds of the studies included in this review re-
ported an association between time-to-antibiotics and mortality
(Table 1). Yet, the time metrics for antibiotic delivery associated
with patient’s outcome varied considerably among studies and the
time thresholds were wide ranging from one to six hours. The
studies that identified an increase in mortality with each hour de-
lay in the start of antibiotics used risk-adjusted linear models over
time intervals of 6 to 12 h, which are likely to be influenced by the
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Kumar, 2006
Ferrer-1, 2009
Gaieski, 20101
Suberviola Canas, 2015+
Ferrer-2, 2014
Yokota, 2014 1
Puskarich, 2011 1
Jalili, 20131
Whiles, 2017 1
Nygard, 2014 1
Ballester, 2018
Joo, 2014
Zhang, 2015
Lueangarun, 2012
Bloos-1, 2014 1
Seymour-2, 2017 A
Ryoo0, 2015+

Liu, 2017 1
Pruinelli, 20181
De Groot, 2015
Bloos-2, 2017 1
Wisdom, 20151
Tan, 2019+
Castano, 2019+
Peltan, 2019
Londono, 2018
Ascuntar, 2020 A
Alam, 2018 1
Seymour-1, 2017 1
Peng, 20181
Husabo, 2020
Ko, 20201

Abe, 20191

Seok, 20201
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Fig. 2. Study enrolment periods
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The graph displays the patient’s enrolment period of the 34 studies that provided this information. The black or gray filling color symbolizes studies that found (black) or
did not find (gray) an association between time-to-antibiotics and patient’s outcome.

increased odds of mortality associated with long delays in the ini-
tiation of antibiotic therapy (Fig. 3).2:>:16:38.42 Of note, the largest
studies did not find associations between early antibiotic deliv-
ery and patient’s outcome.!?:20.45-48 Therefore, the available data
do not allow making recommendation on the timing of antibiotic
dispensation with a great level of precision in patients with sep-
sis.6.8-11

With a 3-fold larger number of included studies, this re-
view supports the results of two systematic reviews and meta-
analyses.’’* In a review of 11 studies, Sterling et al. reported
no survival benefit with dispensation of antibiotics within one
hour of detection of severe sepsis or septic shock or within three
hours of triage in the emergency department.’! Likewise, a meta-
regression analysis of 13 studies concluded that there was no dif-
ference in mortality between patients receiving antibiotics within
one or three hours after the onset of sepsis.”” In contrast, in a
meta-analysis of 10 studies Johnston et al. found a 33% reduction

25.06.2021
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in the odds of mortality among patients in whom antibiotics were
administred within one hour.>® Yet, their findings were largely in-
fluenced by one study that reported a 7.5% linear increase in the
risk of mortality after adjusting for numerous covariables includ-
ing geographic locations.'® Other limitations are the inclusion of
studies that did not provide information on the type of antibiotics
administered and tying together patients who received antibiotics
over long time intervals (more than one hour to six hours) after
the arrival in the emergency department.

The need for stratifying recommendations for time-to-antibiotic
according to the severity of sepsis is well recognized.'”:!" Given the
extremely high mortality rates of septic shock, antibiotics should
be administered immediately in patients with septic shock. Sepsis
is a continuum with no clear-cut zone of rarity,”* hence the diffi-
culty of providing treatment with robust predictive validity across
a broad range of disease probability. Notwithstanding that delays
were also associated with increased mortality among patients with
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Author, year Total Odds ratio for mortality
(death/N)
a
Bloos-2, 2017 1286/3110 -
Suberviola Canas, 2015 115/342 —a—
Seymour-1, 2017 296/2683 —a—
Seymour-2, 2017 11251/49331 Hil—
Castano, 2019 148/705 o e |
Liu, 2017 3285/35000 ——
Kumar, 2006 1211/2154 —a—
1.00 1.05 1.10 1:15
Antibiotics
Author, year <th >1h Qdds ratio for mortality (log)
(death/N)  (death/N)
b De Groot, 2015 28/431 64737 | —=h
Abe, 2019 96/343 167/781 |
Bloos-1, 2014 120/370 232/641 | ——
Kim, 2018 18/41 37176 i
Ascuntar, 2020 43/340 40/340 —
Puskarich, 2011 11/65 44/226 |
Ryoo, 2015 29/150 57/276 ——
Londono, 2018 28/179 122/705 —te—
Ferrer-2, 2014 1512/4728 4128/13265 Ll
Peltan, 2019 na na -
Yokota, 2014 na na =
Ferrer-1, 2009 175/510 351/862 =
Jalili, 2013 1/26 30/118
Ko, 2020 na na -
Gaieski, 2010 8/41 73/220 ——
Peng, 2018 51/326 86/215 ——
0.5 10 100
Antibiotics
Author, year <3h >3h Odds ratio for mortality (log)
(death/N)  (death/N)
[ & Puskarich, 2011 46/223 9/68 e S |
De Groot, 2015 99/978 13/190 —_—
Seok, 2020 177/340 61/142 ——
Londono, 2018 68/383 82/501 e
Abe, 2019 197/831 66/293 —s—
Gaieski, 2010 48/172 33/89 ——————i
Ryoo, 2015 69/349 1777 | o e |
Ascuntar, 2020 104/781 105/781 ——
Ferrer-1, 2009 403/1082  123/290 k—=—
Seymour-2, 2017 na na [ ]
Peltan, 2019 565/6158  322/4652 HH
Ko, 2020 na na e
Joo, 2014 61/377 49/214 —
Lueangarun, 2012 na na —
Ferrer-2, 2014 3667/12343 1973/5650 -
Kim, 2018 39/96 16/21 —_—
03 1 3 10

Fig. 3. Timeliness of antibiotic therapy and mortality of sepsis. Odds ratio plots for mortality with 95% confidence intervals according to the time-to-antibiotics reported as
hourly delays (panel a), 1 h (panel b) or 3 h (panel ¢) time cutoffs. Data were available from 28 studies.

sepsis, no clear time threshold emerged from available data for this
subgroup. Conceivably, time thresholds for the administration of
antibiotics in patients with suspicion of sepsis could be tailored
to the likelihood of infection. This approach is supported by a re-
cent review by Naucler et al. on the outcome of patients with
bacterial infections of different sources and degrees of severity.””

132

202

While prompt antibiotic therapy was recommended for patients
with septic shock and bacterial meningitis, the authors did not
find evidence of worse outcome when initiation of therapy was
delayed (e.g. by 4 to 8 h) in patients with less severe infections.
A perilous tradeoff of delayed therapy is the risk of progression
from sepsis to septic shock. This was addressed in only one of the
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studies reviewed here and was found to be 8%.3 Assuming a 10%
risk of death in sepsis and 40% in septic shock, an 8% risk of tran-
sition from sepsis to septic shock would result in an increase of
mortality from 10 to 12.4%. Finding an equipoise between poten-
tial morbidity criteria benefit and an increased risk of mortality is
a delicate balancing act. Immunocompetent, non-neutropenic pa-
tients with suspected sepsis without shock and a low probability
of infection could be a suitable patient population to investigate
whether watchful clinical observation and prompt initiation of an-
tibiotic upon documentation of infection is feasible and safe.
Strengths of the current review are a large sample size, a rig-
orous assessment of eligibility increasing the reliability of the re-
sults, subgroup analyses according to sepsis severity defined a pri-
ori and post hoc analyses of studies addressing the appropriateness
of antibiotic therapy. Limitations predominantly relate to the risk
of bias in the included studies inherent to their observational de-
sign. A high degree of heterogeneity regarding the inclusion of pa-
tients with various duration of sepsis and degrees of sepsis sever-
ity, the use of differents definitions of time zero and the lack of
information on time-to-adequate antibiotic therapy may also im-
pact on the robustness of the findings. Few studies provided in-
formation on the number of patients in each sepsis severity stra-
tum, considerably limiting the additional value of cumulative odd
ratios or relative risks. Of note, no study provided information on
source control and therapeutic drug monitoring. Future studies on
this topic should provide information on these critical parameters.

Conclusions

Two-thirds of studies included in this review reported an asso-
ciation between early antibiotics and mortality. However, the time
metrics linking early allocation of antibiotics with mortality varied
significantly across studies and no robust time threshold emerged
from the overall study population or from subsets of studies that
included patients with sepsis or septic shock.
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