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Abstract

Inverse‐variance weighted two‐sample Mendelian randomization (IVW‐MR) is the

most widely used approach that utilizes genome‐wide association studies (GWAS)

summary statistics to infer the existence and the strength of the causal effect

between an exposure and an outcome. Estimates from this approach can be subject

to different biases due to the use of weak instruments and winner's curse, which

can change as a function of the overlap between the exposure and outcome

samples. We developed a method (MRlap) that simultaneously considers weak

instrument bias and winner's curse while accounting for potential sample overlap.

Assuming spike‐and‐slab genomic architecture and leveraging linkage dis-

equilibrium score regression and other techniques, we could analytically derive,

reliably estimate, and hence correct for the bias of IVW‐MR using association

summary statistics only. We tested our approach using simulated data for a wide

range of realistic settings. In all the explored scenarios, our correction reduced the

bias, in some situations by as much as 30‐fold. In addition, our results are consistent

with the fact that the strength of the biases will decrease as the sample size

increases and we also showed that the overall bias is also dependent on the genetic

architecture of the exposure, and traits with low heritability and/or high

polygenicity are more strongly affected. Applying MRlap to obesity‐related
exposures revealed statistically significant differences between IVW‐based and

corrected effects, both for nonoverlapping and fully overlapping samples. Our

method not only reduces bias in causal effect estimation but also enables the use of

much larger GWAS sample sizes, by allowing for potentially overlapping samples.
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1 | INTRODUCTION

Mendelian randomization (MR) is a method that uses
genetic variants (typically single‐nucleotide polymorphisms;
SNPs) as instrumental variables (IVs) to infer the existence

and the strength of the causal effect between an exposure
and an outcome (Lawlor et al., 2008). In particular, two‐
sample summary data MR (Burgess et al., 2013), which
requires solely genome‐wide association study (GWAS)
summary statistics, has become increasingly popular. The
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reason for this is that in the last decade, GWASs have
drastically increased in sample size (Visscher et al., 2017) and
the resulting summary statistics are often publicly available.
This allows not only the identification of genetic variants
independently associated with a particular exposure, that is,
IVs but also the look‐up of the effect of such variants on a
wide range of outcome traits in different samples. Each IV
provides an independent estimate for the causal effect and
these estimates can then be combined using a fixed effect,
inverse variance‐weighting (IVW) meta‐analysis (Burgess
et al., 2013). When the summary statistics for the two‐sample
IVW‐MR estimator come from the same sample, it is
equivalent to the two‐stage least squares estimator applied to
individual‐level data from that sample. MR relies on three
main assumptions (Figure 1): (1) relevance—IVs must be
robustly associated with the exposure; (2) exchangeability—
IVs must not be associated with any confounder of the
exposure–outcome relationship; (3) exclusion restriction—
IVs must be independent of the outcome conditional on the
exposure and all confounders of the exposure–outcome
relationship.

In addition, two‐sample MR methods expect the
exposure and the outcome GWAS summary statistics to be
obtained from independent samples. Sample overlap acts as
a modifier for two well‐known sources of bias in MR, weak
instrument bias and winner's curse. Two‐sample MR
estimates obtained from nonoverlapping samples are known
to be biased toward the null. When using overlapping
samples, the causal effect estimate can be biased toward the
observational correlation, which includes the correlation
induced by confounders (Burgess et al., 2016). Most MR
methods assume that SNP‐exposure effects are measured
without noise (NO Measurement Error [NOME] assump-
tion) (Bowden, Del Greco, et al., 2016). This simplification

leads to regression dilution bias, which increases as the
instruments get weaker. For this reason, the bias introduced
by the NOME assumption is referred to as weak instrument
bias and it becomes more and more severe as the average
variance of the exposure explained by the IVs decreases
(Burgess & Thompson, 2011b). When combined with sample
overlap, the effect of weak instrument bias will move toward
the observational correlation (Burgess & Thompson, 2011a;
Zheng et al., 2017). Using IVs strongly associated with the
exposure and/or increasing the sample size can mitigate
weak instrument bias (Burgess & Thompson, 2011a).
Although the exact multiplicative bias due to the NOME
assumption can be expressed analytically (proportional to
the inverse of the F‐statistic), the estimator for the
multiplicative constant has typically high variance and
works poorly in practice (Bowden, Del Greco, et al., 2016).
The simulation‐extrapolation‐based SIMEX method proved
to yield more robust corrections both for IVW (Bowden
et al., 2017) and MR‐Egger estimates (Bowden, Del Greco,
et al., 2016). More recently, methods that incorporate
measurement errors have been proposed to tackle weak
instrument bias. This is the case, for example, of radial MR
that uses modified second‐order weights (Bowden
et al., 2018), MR‐RAPS (Zhao et al., 2020) that maximizes
the profile likelihood of the ratio estimate, or dIVW (Ye
et al., 2021) that uses an explicit bias correction factor, based
on asymptotic properties, to de‐bias the IVW estimator. In
addition, MR estimates are subject to winner's curse, which
occurs when the same sample is used to select IVs and
estimate their effect on the exposure. In such a case, the
observed IV effect on the exposure is not an unbiased
estimator for its true effect and is likely to be overestimated
(in absolute value). This would affect the causal effect
estimate (underestimation in nonoverlapping samples and
bias towards the observational correlation in fully over-
lapping samples) (Zheng et al., 2017). Using a third
independent sample to select instruments (Zhao et al., 2019),
and therefore avoiding winner's curse, is a valid solution, but
summary statistics from such additional samples are rarely
available. Based on the expectation of truncated normal
distribution (Palmer and Pe'er, 2017), a correction can be
applied for the SNP‐exposure effect sizes. However, the
additional estimator variance such correction entails can
outweigh the benefit of the reduced bias, which can be
mitigated by directly maximizing the conditional likelihood
(Zhong & Prentice, 2008). Still, all these methods account for
winner's curse for a single SNP but do not model the bias
induced by the IV selection process from millions of
potential markers, which is far more complex and depends
on the underlying genetic architecture of the exposure.
While previous approaches aimed at tackling one bias at a
time, the intricate way these different sources of biases
interplay with each other remains poorly understood, and

FIGURE 1 Main assumptions of Mendelian randomization.
(1) Relevance—instrumental variables (IVs), denoted by G, are
strongly associated with the exposure. (2) Exchangeability—G is
not associated with any confounder of the exposure–outcome
relationship. (3) Exclusion restriction—G is independent of the
outcome conditional on the exposure and all confounders of the
exposure–outcome relationship (i.e., the only path between the IVs
and the outcome is via the exposure).
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there is currently no method that simultaneously handles
them. To fill this gap, we propose a new method called
MRlap, which is a summary statistics‐based MR framework
that simultaneously takes into account weak instrument bias
and winner's curse, while accounting for potential sample
overlap, which modifies these biases.

Another major source of bias in MR is pleiotropy. In
the presence of uncorrelated pleiotropy (reducing the
exclusion restriction to the INSIDE assumption; Bowden
et al., 2015), the causal effect estimate from IVW‐MR is
still consistent. Correlated pleiotropy (which can be
induced by the existence of a genetic confounder acting
on both the exposure and the outcome), however, can
lead to the violation of the second assumption and more
severe biases. Some approaches can be used to relax this
assumption by assuming that at least 50% of the
instruments are valid (Bowden, Davey Smith, et al., 2016)
or that non‐pleiotropic instruments are the most frequent
(Hartwig et al., 2017). Since our MRlap approach does
not explicitly tackle pleiotropy, we compared the impact
of different sources of biases (pleiotropy, weak instru-
ment bias, winner's curse in the presence of potential
sample overlap) on IVW‐MR, MR‐RAPS, dIVW,
weighted median, weighted mode, and MRlap.

In this paper, we will first introduce a two‐sample
MR framework that simultaneously takes into
account weak instrument bias and winner's curse,
while accounting for potential sample overlap and its
effect as a modifier of these biases, to obtain a
corrected causal effect estimate. We will then test our
approach and compare the proposed correction of the
IVW‐MR causal effect estimate against its uncorrected
counterpart (and some pleiotropy robust methods)
using a wide range of simulation settings, including
scenarios with pleiotropy. Finally, to demonstrate its
utility, we will apply our approach to obesity‐related
traits using UK Biobank (UKBB; Sudlow et al.,
2015) data.

2 | METHODS

2.1 | Expectation of the causal effect
estimate

Let X and Y denote two random variables representing
two complex traits. Genotype data is denoted by G and
its jth column by gj (columns representing genetic
variants, rows representing individuals). To simplify
notation we assume that X Y GE[ ] = E[ ] = E[ ] = 0 and

X Y GVar( ) = Var( ) = Var( ) = 1. Let us assume that X is
observed in sample A of sample size nA, Y is observed

in sample B of sample size nB with an overlap of nA B∩

individuals between the two samples. The vector of
realizations of ZC is denoted by zC for all variables
(Z X Y G g= , , , ) and samples (C A B A B= , , ∩ ). Let us
assume the following models

x γ ϵ

x γ ϵ

y x γ ϵ

G

G

α G

= × +

= × +

= × + × +

,

x x

x x

y y

A A A

B B B

B B B B

(1)

where γx are the effect sizes of the genetic variants on
X γ, y are their pleiotropic effects on Y . Assuming that
there is a single environmental confounder U (with
UE[ ] = 0 and UVar( ) = 1) acting linearly on both traits

(as used for simulations) the error term can split into two
parts: ϵ u εκ= × +x

C
x

C C and ϵ u εκ= × +y
C

y
C C, where

κx and κy refer to the effect of U on X and Y ,
respectively, εC is independent of the confounder and C
can take the values A B, or A B∩ as above.

Under the INSIDE assumption (Bowden et al., 2015)
(INstrument Strength Independent of Direct Effect, i.e.,
horizontal pleiotropic effects are independent of the
direct effect), γ γCov( , ) = 0x y and γE[ ] = 0y . We denote

ϵ ϵρ κ κCov( , ) = ×x y x y≔ . It corresponds to the part of
the observational correlation (r) due to a (nongenetic)
confounder (r ρ α= + ). Note that genetic confounding,
as well as reverse causal effect, are also affecting
observational correlation, but as long as the instruments
used for MR are not associated with the confounder nor
the outcome, their effect would be captured by ρ.

The univariable effect size estimates from GWASs for
genetic variant j are as follows:

( )

( )

( )

( )

( )

( )

g x

g γ ϵ

g y

g x γ ϵ

β

G

β

α G

^ = × ′ ×

= × ′ × × +

^ = × ′ ×

= × ′ × × + × +

,
x x

y y

x

A

j
n j

A A

n j
A A A

y

B

j
n j

B B

n j
B B B B

1

1

1

1

A

A

B

B



 






 




(2)

where the genotype data for genetic variant j for
individuals in sample A is denoted by gj

A.
We intend to use MR to estimate the causal effect of

X on Y . We will use m linkage disequilibrium (LD)
independent genetic variants as IVs. Let us now
consider the fixed‐effect IVW meta‐analysis for the
ratio estimates for the causal effect α. Each IV j

provides a ratio estimate
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(4)

Hence, the weights (wj) of IV j for estimating the IVW
causal effect are:

( )
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(5)

Finally, the estimate can be written in the following form
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(6)

Here, the last approximation is based on the realistic
assumption that the individual pleiotropic effect of each
SNP is very small.

To account for winner's curse, we need to consider the
probability of being selected for each genetic variant. Let us
consider a thresholdT (for example,T p= −Φ ( 2) 5.45−1 ∕ ≈
for p = 5 × 10−8, genome‐wide significance threshold) and

use only IVs with β n T( ^ ) × >x

A

j A  . By denoting

S β n T{ ( ^ ) × > }j x

A

j A≔   , the causal effect estimate (6)

changes to

α

β S β S Pr S

β S Pr S
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^ × ^ × ( )

^ × ( )

.

j
M

y

B

j
j x

A

j
j j

j
M

x

A

j
j j

IVW

=1

=1

2
≈







 


  









 


  










 


  




(7)

Note that while m denoted the number of IVs, M
represents the number of genome‐wide variants from which
IVs are selected. By approximating the expectation of a ratio
by the ratio of expectations (see Supporting Information
Section SA for details about this assumption), the expectation
of the causal effect estimate (7) can be written as

α

β S β S Pr S

β S Pr S

s Pr S
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 (8)

The values of s t,j j, and Pr S( )j can be analytically
derived (presented in Supporting Information Section SA),
and we show that (8) translates to

( )

( )

( ) ( )
( )

( )
( )

E α α
π σ a b n σ

d n T π σ
λ

π a b n σ π c

d n T π σ

[ ˆ ] ×
× × 2 × + × 1 + ×

, , ,
+ ′

×
× 2 × + × 1 + × + (1 − ) × 2 ×

, , ,
,

x x A x

A x x

x A x x

A x x

IVW

2 2

2

2

2

≈

(9)

with

( )
( )

a
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n σ
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n σ
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c T T ϕ T
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= 2 ×
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2 + 1

2 1 +
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2

2

2

2 3 2∕




















 (10)
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x
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4 2






















 (11)

πx and σx
2 are characteristics of the genetic architecture

of trait X (respectively, a measure of the polygenicity and
the per variant heritability, see S35) (Zeng et al., 2018) and
λ′ is a quantity closely related to the cross‐trait LD score
regression (LDSC) intercept (Bulik‐Sullivan, Finucane,

et al., 2015) (λ): λ′ =
λ

n n×A B
. The constants a b, , and c do

not depend on the causal effect α nor the sample overlap
since nA B∩ is only affecting λ′ (see 10 and S33). The same
is true for the denominator (11).

We can see that in the absence of sample overlap, the
second term is equal to 0 and the bias is multiplicative. In
this case, αE[ ˆ ]IVW is lower than α and the IVW‐based
effect will be biased towards the null (Figure S1). The only
parameters affecting the bias are πx and h n,x A

2 , and T .
When πx is smaller, or hx

2 is larger, then IVs have stronger
effects, leading to a smaller bias when all other parameters
are kept constant. As expected, since these are commonly
used approaches to limit weak instrument bias, using a
more stringent threshold and/or increasing the exposure
sample size reduces the bias.

When there is sample overlap (with % overlap defined
as n

n n×
A B

A B

∩ ), the expression of αE[ ˆ ]IVW is more complex.

The magnitude of the bias will not only depend on the
parameters described for nonoverlapping samples
(Figures S2–S4) but also on the confounder's effect (ρ)
that can affect both the magnitude and the direction of the
bias. For example, when the percentage of overlap is
relatively low (20%) and ρ has the same sign as α, then the
estimate will be further biased towards the null, whereas a
confounder having an opposite sign (as the causal effect)
will reduce the bias (Figure S2). When the percentage of
overlap increases (Figures S3 and S4), the secondterm
starts to dominate, and the bias direction strongly depends
on ρ.

All parameters except α are known or can be estimated
from the data. We assume that sample sizes for X and Y
(respectively, nA and nB) are known, as well as the
threshold used to select IVs (T ). Parameter λ′ can
be estimated from cross‐trait LDSC (Bulik‐Sullivan,
Finucane, et al., 2015). πx and σx

2 are estimated by matching

the denominator of this formula, ( )d n T π σ, , ,A x x
2 , to the

denominator of (8) (see Supporting Information Section SB
for details).

From (9), we can derive a corrected effect for the
causal effect

(
)

( )

( )

( )

( )

( ) ( )
α

α d n T π σ λ

π a b σ n

π c

π σ a b n σ
ˆ =

ˆ × , , , − ′

× × 2 × + × 1 + ×

+ (1 − ) × 2 ×

× × 2 × + × 1 + ×
.c

A x x

x x A

x

x x A x

IVW
2

2

2 2

(12)

We also derived the standard error of the corrected
effect as well as the covariance between IVW‐based
and corrected effects in Supporting Information
Section SC. Note that the formula proposed by Burgess
et al. (2016) (Supporting Information Section SD)
under the null is a special case of ours when all
instruments are selected based on external data (i.e.,
there is no winner's curse).

This approach has been implemented in an
R‐package (MRlap—https://github.com/n-mounier/
MRlap/), using existing functions from the two‐sample
MR R‐package (Hemani et al., 2018) and the LDSC
implementation from the GenomicSEM R‐package
(Grotzinger et al., 2019). All analyses presented in this
paper have been performed using version 0.0.2. IVs were
selected for different T thresholds and independent IVs
were identified using distance pruning (500 kb, which is
equivalent to using LD pruning with an LD cutoff of 0).
For the LDSC analyses, we used the 1000G LD scores
(Bulik‐Sullivan, Loh, et al., 2015).

2.2 | Simulations

We used UKBB (Sudlow et al., 2015) genotypic data and
restricted our analyses to unrelated individuals of British
ancestry (identified using genomic principal components)
and HapMap3 genetic variants (International HapMap 3
Consortium, 2010) (M 1, 150, 000≈ ) to simulate pheno-
typic data. From this set of 379,530 individuals, we first
sampled the exposure dataset (nA individuals) and five
different outcome datasets of sample size nB, with an overlap
with the exposure dataset varying (from no overlap to full
overlap, increasing in increments of 25%). Next, causal SNPs
for the exposure were randomly drawn from the set of
1,150,000 genetic variants, based on the polygenicity of X
(πx), and their effects were simulated using the heritability of
X (hx

2) as follows:
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γ

π

h

M π
π

~

0 with probability 1 − ,

for non‐causal variants

0,
×

with probability ,

for causal variants

.x

x

x

x
x

2




















(13)

For simplicity, we assumed that there were no direct
genetic effects on the outcome. Then, phenotypic data for
X and Y were simulated for all individuals included in
the exposure or in any of the outcome samples, taking
into account the effect of the confounderU on X and Y
(respectively, κx and κy) and the causal effect of X on Y
(α), using the following design

u ~ (0, 1), (14)

( )( )
x γ uG κ

h κ

= × + × + ϵ

with ϵ ~ 0, 1 − + ,

x x x

x x x
2 2N

(15)

( )( )
y x uα κ

α κ α κ κ

= × + × + ϵ

with ϵ ~ 0, 1 − + + 2 × × × .

y y

y y y x
2 2N

(16)

Note that this design ensures that both X and Y have
a zero mean and a variance of 1. Slightly different
designs, with the same property, were used to simulate
phenotypic data when the exposure was binary
(case–control) and in the presence of uncorrelated or
correlated pleiotropy (Supporting Information
Section SE). A GWAS was performed for each sample
(one for the exposure and five GWASs for the outcome,
one for each sample overlap) using BGENIE (Bycroft
et al., 2018). We then applied MRlap to these GWAS
summary statistics to obtain the IVW‐based and the
corrected effect estimates.

For each parameter setting we tested, 100 datasets
were simulated. Our standard parameter settings con-
sisted of simulating data for n = 20, 000A and
n = 20, 000B individuals. X was simulated with moderate
polygenicity and large heritability (π = 0.001x and
h = 0.4x

2 ). U had a moderate effect on both X and Y

(κ κ= 0.3, = 0.5x y ), leading to a correlation (ρ) of 0.15
induced by the confounder. We varied the size of the
causal effect of X on Y from null (α = 0) to moderate
(α = 0.2).

In addition to these standard settings, we explored
various other parameter values. We investigated the
effect of a confounder of the opposite sign (κ = −0.3x and
κ = 0.5y ) and tested different strengths for the confound-
ing factor (weaker: κ = 0.15x and κ = 0.3y , and stronger:
κ = 0.5x and κ = 0.8y ). We also considered a case–control

design, where the exposure was first simulated on the
liability scale before being converted to the observed
scale for our analyses. For this setting, we used larger
sample sizes (n n= 100, 000, = 100, 000A B ) and a preva-
lence of 0.1 to define cases and controls. We explored a
scenario with more realistic parameters: larger sample
sizes (n n= 100, 000, = 100, 000A B ), increased polygeni-
city (π = 0.005x ), lower heritability (h = 0.2x

2 ), and a
smaller causal effect (α = 0.1). Finally, we simulated data
in presence of both uncorrelated and correlated pleiot-
ropy. For the uncorrelated pleiotropy, we used the
standard settings parameters and added direct genetic
effects on Y (π = 0.002y and h = 0.3y

2 ). Sixty percent of
the SNPs having a direct effect on X were also directly
affecting Y and their direct effects on each trait were
uncorrelated. To simulate data in presence of correlated
pleiotropy, we added to the model a genetic confounder
(Ug) acting both on X and Y , with respective effects qx
and qy. First, we modeled a genetic confounder that was

highly polygenic and fairly heritable (π = 0.0001u and
h = 0.2u

2 ), with moderate effects on the two traits
(q = 0.4x and q = 0.3y ). Then we slightly increased

the confounder's polygenicity and, to make the genetic
confounding effect stronger, we increased its
heritability and its effects on X and Y

(π h q= 0.0005, = 0.3, = 0.5u u x
2 , and q = 0.7y ).

For each scenario, IVW‐based and corrected causal
effects were compared for different degrees of sample
overlap and different instrument selection thresholds.
The results quality was assessed using root‐mean‐square
error (RMSE), coverage, 95% confidence interval width,
and power. Note that RMSE is a measure of the bias‐
variance trade‐off, and that coverage might be influenced
by the severity of the bias but also by the standard error
of the estimator.

For a given instrument selection threshold, we
obtained 500 causal effect estimates: one for each of the
100 simulated datasets for each of the five degrees of
sample overlap (ranging from 0% to 100%). Causal effect
estimates should ideally not depend on the extent of
overlap between the exposure and outcome samples. To
quantify the extent to which this holds, we grouped
estimates according to which sample overlap degree they
came from and compared the between‐group variance
relative to the within‐group variance of the estimates. A
method that is robust to overlap between the exposure
and outcome samples will have a small between‐group
variance relative to the variance of the estimator
(characterized by the within‐group variance).

Finally, we tested for differences between IVW‐based
and corrected effects using the following test statistic
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t
α α

α α α α
=

ˆ − ˆ

Var( ˆ ) + Var( ˆ ) − 2 × Cov( ˆ , ˆ )
.IVW c

c c

diff

IVW IVW

(17)

In addition to those scenarios, we wanted to assess
the potential gain, in terms of bias and variance, arising
from the possibility of performing analyses using the full
UKBB sample instead of having to split it into two halves
to avoid sample overlap. To do so, we simulated data
using the following parameters: large polygenicity and
moderate heritability (π = 0.01x and h = 0.15x

2 ), moder-
ate confounder effect (κ κ= 0.3, = 0.5x y ), and a fairly
small causal effect (α = 0.1). In this case, we only
compared the IVW‐based causal effect estimates from
nonoverlapping samples (n n= 180, 000, = 180, 000A B ,
roughly half of UKBB sample size) and the corrected
causal effect estimates from fully overlapping samples
(n n= 360, 000, = 360, 000A B ) by measuring the bias, the
variance, and the RMSE.

Finally, we also compared our MRlap results to
those of pleiotropy robust approaches, such as weighted
median (Bowden, Davey Smith, et al., 2016), weighted
mode (Hartwig et al., 2017), MR‐RAPS (Zhao et al., 2020),
and dIVW (Ye et al., 2021), both under the standard
settings and in all scenarios with pleiotropy, for all
degrees of sample overlap. For all methods, we use a
p‐value threshold of 5 × 10−8 to select IVs. Since dIVW
does not directly accounts for winner's curse, the authors
suggest using this estimator without instrument screen-
ing, and additional analyses using dIVW were performed
without selection (a threshold of 1), using observed
p values but also random p values for pruning, for
nonoverlapping samples.

2.3 | Application to UKBB

To assess the effect of sample overlap on real data, we
used a design very similar to the one used for
simulations. We used both genotypic and phenotypic
data from UKBB (Sudlow et al., 2015) and restricted our
analyses to the same subsets of individuals and genetic
variants. From this set of individuals, we first sampled
the exposure dataset (100,000 individuals) and five
different outcome datasets (100,000 individuals), where
the overlap with the exposure dataset varied (from no
overlap to full overlap, increasing in increments of 25%—
in the case of unequal sample sizes, the percentage of
overlap for the samples proportionally increased from 0
to the maximum value attainable given the difference in
sample sizes). Note that we always used the full set of
individuals to create the 100,000 individual samples, so
the percentage of missing data in each sample will be the

same as in the UKBB. Therefore, the total number of
individuals with phenotypic data (effective sample size)
will vary depending on the traits. First, we performed
“same‐trait” analyses to estimate the causal effect of body
mass index (BMI) on itself, and the causal effect of
systolic blood pressure (SBP) on itself, using only the
nonoverlapping samples. In addition, for all degrees of
sample overlap, we assessed the effect of BMI on SBP, on
the number of cigarettes previously smoked daily
(smoking), and on alcohol intake frequency (alcohol).
For smoking, answers coded as “−10” or “−1” were
considered missing. For alcohol, answers were recoded to
correspond to an increased intake frequency, and
answers coded as “−3” were considered missing. Details
about the pairs of traits analyzed are available in
Table S1.

Phenotypic data were normalized (inverse‐normal
quantile transformed) and subsequently adjusted for
the following covariates: sex, age, age × age, and the
first 40 principal components. Similarly to what we
did for simulations, a GWAS was performed for each
sample (the exposure dataset and the five outcome
datasets, one for each sample overlap) using BGENIE
(Bycroft et al., 2018). We then applied MRlap to
these GWAS summary statistics to obtain the IVW‐
based and the corrected effect estimates. In addition,
since in this case, a reverse causal effect (from the
outcome on the exposure) could exist, we filtered out
variants that were statistically significantly more
strongly associated with the outcome than with the
exposure to remove potentially invalid IVs (Steiger
filter).

We repeated this sampling approach 100 times. For
each repetition, IVW‐based and corrected causal effects
were compared using the within‐group and between‐
group variances and we tested for differences between
the IVW‐based and the corrected effects using (17).

3 | RESULTS

3.1 | Overview of the method

We propose a two‐sample MR framework that takes
into account two sources of bias: weak instrument
bias and winner's curse, while simultaneously ac-
counting for potential sample overlap and its effect as
a modifier of these biases. We analytically derived the
expectation of the observed effect for IVW‐based MR
estimate:

( )E α f α n n T π σ λ[^ ] = , , , , , , ,A B X XIVW
2
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which depends on the true causal effect size (α), the
sample sizes of the exposure and outcome GWASs
(n n,A B), the threshold used to select IVs (T ), the cross‐
trait LDSC intercept (λ, which depends on the degree of
the sample overlap, the true causal effect and the
strength of the confounder) and the genetic architecture
of the exposure (characterized by the polygenicity πX and

per variant heritability σ =X
h

M π
2

×
X

X

2

, M being the number

of potential IVs). All parameters (except α) are either
known or can be estimated from the data. This allows us
to adjust the IVW causal effect estimate with the aim of
making it unbiased.

3.2 | Simulations

To compare the standard IVW approach and our method,
we used simulated data for a wide range of scenarios: in
the presence and in absence of a true causal effect,
varying the strength of the environmental confounder,
simulating correlated and uncorrelated pleiotropy, and so
forth. We assessed the extent of the bias for both
approaches, compared the bias‐variance trade‐off as well
as coverage, and explored how the bias is affected by
sample overlap and instrument selection threshold.

Simulation results under our standard settings show a
large discrepancy between the IVW‐based causal effects
estimated using different degrees of sample overlap,
while the corrected effects are more closely aligned with
the true causal effects (Figure 2a). We observe a 10%
overestimation of the causal effect for fully overlapping
samples, and a 15% underestimation of the causal effect
for nonoverlapping samples, due to winner's curse and
weak instrument bias both biasing the estimate towards
the null. As expected from (9), the bias is larger when
using less stringent thresholds T . For all the thresholds
tested, the ratio of the between‐group and the within‐
groups variances is larger (up to 26 times) for IVW‐based
effects than for corrected effects (Table S2), highlighting
the differences in IVW‐based effects when estimated
using different degrees of overlaps. The fact that the
within‐group variance is 1.3 times higher for the
corrected effects compared to the uncorrected counter-
part is due to the slightly increased variance of the bias‐
corrected estimator. The RMSE of the IVW‐based effects
is very dependent on the degree of overlap (being larger
for nonoverlapping and fully overlapping samples) while
the RMSE of the corrected effects is consistent across
varying degrees of overlap and up to 1.75 times lower for
nonoverlapping samples (Figure 2b). The corrected
effects also yield a much better coverage, close to 95%
for all degrees of overlap (Figure 2c). The corrected

effects are statistically significantly different from the
IVW‐based effects for all overlaps values except 50% and
all thresholds. The absolute bias of the IVW‐based effects
goes up to 0.033 while for the corrected effect it is smaller
than 0.012 for all overlaps and thresholds.

The bias of IVW‐based effects depends on the
strength of the confounder. If the confounder is weak,
IVW‐based effects are mostly biased towards the null for
low overlaps (Figure S5; Table S3). When we simulated a
stronger confounder, the bias of the IVW‐based effects
for fully overlapping samples increased (Figure S6;
Table S4). In both cases, the corrected and the IVW‐
based effects are statistically significantly different for
almost all overlaps and thresholds, and the corrected
effects are substantially less biased than the IVW‐based
effects.

When the confounder effect (ρ κ κ×x y≔ ) and the
causal effect (α) have different signs (i.e., one >0 and one
<0), the results are particularly interesting because
winner's curse and weak instrument bias are biasing
the results towards the null regardless of the sample
overlap degree (Figure 3a). In this case, IVW‐based
effects are more similar across the different degrees of
sample overlap tested, but all are underestimating the
true causal effect. For this reason, we do not observe a
less striking decrease in the heterogeneity of the
estimates across different sample overlaps upon correc-
tion (the ratio of the between‐ and the within‐group
variance is five times larger for IVW‐based effects), but
still, the correction reduces RMSE and bias, as well as
leads to better coverage, for all overlaps and thresholds
(Figure 3; Table S5). In this scenario, IVW‐based and
corrected effects statistically significantly differ for all
overlaps and thresholds, with an average underestima-
tion of 13% for IVW‐based effects.

In the absence of a true causal relationship between
the exposure and the outcome, IVW‐based effects from
nonoverlapping samples are unbiased. However, for fully
overlapping samples, the IVW‐based effects are biased
towards the confounder‐induced correlation (Figure S7;
Table S6). We showed that for large overlap percentages
(≥50%), the corrected effects are statistically significantly
different from the IVW‐based effects (60% smaller), and
they are less biased for all overlaps and thresholds.
Moreover, while the false positive rate (at a 5% level) for
IVW‐based effects using nonoverlapping samples is
below 5%, it is much larger (between 20% and 40%
depending on the threshold) when using fully over-
lapping samples. The correction proposed here provides
much better control of the false positive rate for all
degrees of sample overlap (Figure S8).

Simulating binary, instead of continuous, exposure
led to very similar results. The absolute bias was on
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(a)

(b)

(c)

(d)

FIGURE 2 Simulation results for standard settings. n n π h κ κ α= = 20, 000, = 0.001, = 0.4, = 0.3, = 0.5, = 0.2A B x x x y
2 Panel (a) shows

the mean IVW‐based and corrected effect for each overlap and threshold obtained from 100 simulations (the dashed line represents the true
causal effect). Panel (b) shows the mean RMSE obtained for IVW‐based and corrected effect for each overlap and threshold. Panel (c) shows
the coverage of the 95% confidence interval for IVW‐based and corrected effect for each overlap and threshold. Panel (d) shows the width of
the 95% confidence interval for IVW‐based and corrected effect for each overlap and threshold.

322 | MOUNIER and KUTALIK

 10982272, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gepi.22522 by B

cu L
ausanne, W

iley O
nline L

ibrary on [09/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



(a)

(b)

(c)

(d)

FIGURE 3 Simulation results for a scenario with a negative confounder. n n π h κ κ= = 20, 000, = 0.001, = 0.4, = −0.3, = 0.5,A B x x x y
2

α = 0.2 Panel (a) shows the mean IVW‐based and corrected effect for each overlap and threshold obtained from 100 simulations (the dashed
line represents the true causal effect). Panel (b) shows the mean RMSE obtained for IVW‐based and corrected effect for each overlap and
threshold. Panel (c) shows the coverage of the 95% confidence interval for IVW‐based and corrected effect for each overlap and threshold.
Panel (d) shows the width of the 95% confidence interval for IVW‐based and corrected effect for each overlap and threshold.
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average 2.3 times larger for IVW‐based effects than for
corrected effects and the causal effect estimates were
much more consistent across varying degrees of overlap
after correction (Figure S9; Table S7). Results obtained
using more realistic parameters in terms of sample sizes,
genetic architecture, and causal effect strength show a
similar pattern. We observe an important bias of IVW‐
based causal effects, mostly when estimated from
nonoverlapping (22% underestimation) or fully over-
lapping samples (30% overestimation), that is strongly
reduced when using our correction (Figure S10;
Table S8). Corrected effects statistically significantly
differ from IVW‐based effects for the most extreme
overlaps values (0%, 75%, 100%) for which corrected
effects are on average five times less biased than IVW‐
based effects.

We compared corrected effects obtained using the full
(overlapping) sample to IVW‐based effects obtained by
splitting it into two halves to avoid sample overlap. We
showed that the IVW estimators were 3.27 times more
biased than those from MRlap and the latter reduced
the estimator variance by more than threefold (3.43)
thanks to the elevated sample size. In addition, the
corrected effects estimates had better coverage (88% vs.
72%) and higher power (100% vs. 94%). Thus, we have
demonstrated that applying MRlap to the full (over-
lapping) sample is a better strategy than ensuring no
sample overlap and applying the IVW estimator because
it is less biased and has considerably lower variance
(Table S9).

We also investigated the extent of the bias, for both
IVW‐based and corrected effects, in scenarios with either
uncorrelated pleiotropy (Figure S11; Table S10), moder-
ately correlated pleiotropy (Figure S12; Table S11) and
strongly correlated pleiotropy (Figure S13; Table S12).
Results obtained in presence of uncorrelated pleiotropy
are very similar to the ones obtained for the standard
settings, with slightly larger within‐group variances. MR‐
RAPS and dIVW, however, did not perform particularly
well, even in the standard settings scenario, potentially
because the instruments are relatively strong and their
estimates are therefore most affected by winner's curse.
Using a third sample to select instruments and avoid
winner's curse was out of the scope of the paper, but we
did try to use alternative selection approaches for dIVW,
focusing on nonoverlapping samples (Figure S14). We
ignored the selection step (only pruning the SNPs to
obtain independent instruments, but not using any
selection threshold) to reduce the impact of winner's
curse, as suggested in Ye et al. (2021). Surprisingly, the
causal effect estimates for both methods were more
strongly biased than when using a p value threshold of 5e
−08. We believe that is due to the pruning step (keeping

the most strongly associated instrument in each region),
as using random p values instead of observed p values for
pruning yielded unbiased estimates (at the cost of much
larger variance). In presence of correlated pleiotropy, we
observe a bias towards the ratio of the genetic
confounder effects on Y and X (0.75 for moderately
correlated pleiotropy and 1.4 for strongly correlated
pleiotropy) for both IVW‐based and corrected effects for
all sample overlap degrees. This can be explained by the
fact that there is now a third source of bias, correlated
pleiotropy, affecting the causal effect estimates. This
source of bias is independent of sample overlap, and
corrected effect estimates are able to recover consistent
causal effect estimates across varying degrees of overlap,
corresponding to the sum of the true causal effect and of
the bias induced by correlated pleiotropy. When compar-
ing our results to results obtained using pleiotropy robust
methods (Figure 4), we observe that for nonoverlapping
samples, weighted median, weighted mode, and MR‐
RAPS estimates are able to recover the value of the IVW‐
based estimate from the standard settings scenarios (i.e.,
a downward biased causal effect estimate). However, for
large degrees of sample overlap (≥50%), these approaches
are biased toward the observational correlation, and their
causal effect estimates are strongly overlap‐dependent.

3.3 | Application to UKBB

We tested our method on UKBB obesity‐related expo-
sures using a similar approach and splitting the full
dataset into samples of varying degrees of overlap. We
started by estimating the causal effect of BMI on BMI and
the causal effect of SBP on SBP as these are expected to
be equal to 1. In this case, we only looked at
nonoverlapping samples and compared the IVW‐based
and the corrected effects to the true expected effect
(Figure 5). IVW‐based effects are biased towards the null
for all thresholds (95% confidence intervals do not
include 1, coverage between 0% and 18%), with the bias
being stronger for less stringent thresholds. Corrected
effects however were less biased (at the cost of a slightly
higher variance) and statistically nonsignificantly differ-
ent from 1 for all thresholds (coverage of between 65%
and 96%), illustrating the importance of correcting for
weak‐instrument bias and winner's curse even in the
absence of sample overlap.

When looking at the IVW‐based effect of BMI on SBP
(Figure 6a), we observed that the estimates obtained
using different p value thresholds vary considerably,
independently of sample overlap. Even though we expect
an increase in bias when reducing the threshold
used, as shown in simulations, here we see that for
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nonoverlapping samples the IVW‐based effect is larger
for less stringent thresholds. This is inconsistent with
winner's curse and weak instrument bias that leans the
estimate towards the null and we would expect the IVW‐
based effects for less stringent thresholds to be smaller
(in absolute value). Hence, we believe that this phenom-
enon is not related to any of the biases discussed here
and is due to other reasons such as the existence of
multiple causal effects depending on exposure subtype or
the presence of a heritable confounder (see Section 4).
Here, we will focus on the results obtained using a
p value threshold of 5e−8.

When using IVs reaching genome‐wide significance,
the IVW‐based effects range between 0.095, for non-
overlapping samples, and 0.129, for fully overlapping
samples. After correction, the range of the estimated
effect is about two times smaller (0.108–0.128). The
better agreement of corrected effects across overlaps can
be seen by looking at the ratio between the between
groups and the within groups variance which is
reduced fourfold upon correction (Table S13). For

nonoverlapping samples, the difference between the
IVW‐based and corrected effect is statistically signifi-
cant (p = .0049diff ), and standard two‐sample MR
underestimates the causal effect by about 25% compared
to the corrected effect (the IVW‐based effect is 0.095
while the corrected effect is 0.126). For fully overlapping
samples, there is no statistically significant difference
between IVW‐based and corrected effects. We observed
a similar pattern when investigating the effect of BMI
on smoking (Figure S15; Table S14) where the largest
bias occurs for nonoverlapping samples. The IVW‐based
causal effect at p= 5e−8 is 0.130 for nonoverlapping
samples while results after correction point towards a
causal effect of 0.170 (underestimation of 24%—
statistically significant difference between IVW‐based
and corrected effects, p = .0137diff ). We do not see a
statistically significant difference between IVW‐based
and corrected effects for larger overlap values, but it is
important to note that in this case, because of the
impact of missing data on our design, the largest
possible overlap was only 48.5%.

(a) (b)

(c) (d)

FIGURE 4 Comparison of different MR approaches. Causal effects estimates were obtained from 100 simulations using six different
methods (MRlap in green, IVW in turquoise blue, weighted median in light blue, weighted mode in dark blue, MR‐RAPS in purple, and
dIVW in pink). The dashed line represents the true causal effect. Panel (a) shows results for the standard settings scenario (no pleiotropy).
Panel (b) shows results in presence of uncorrelated pleiotropy. Panel (c) shows results in presence of moderately correlated pleiotropy. Panel
(d) shows results in presence of strongly correlated pleiotropy. The average number of instruments and mean F‐statistic (at 5e−08) are
indicated for each scenario.
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Our results implicate the existence of an environ-
mental confounder biasing the causal effect estimate of
BMI on alcohol intake frequency. At p = 5e−8, IVW‐
based effects range between −0.187 for nonoverlapping
samples and −0.218 for fully overlapping samples,
whereas the corrected effects are larger (−0.244 to
−0.2515) (Figure 6b; Table S15). The between‐group
variance is much smaller for the corrected effects. The
difference between IVW‐based and corrected effects is
statistically significant for all overlaps and the cor-
rected effects being stronger than the IVW‐based ones
hints at the existence of an environmental confounder
having a concordant effect on BMI and alcohol intake
frequency, biasing all estimates towards the null (as
shown in simulations, Figure 3). While we could not
identify any plausible confounder of this relationship,
its existence is supported by the fact that the
observational correlation between BMI and alcohol
intake frequency (−0.13 among the 379,530 genetically

British individuals in the UKBB) is weaker than the
standardized causal effect.

4 | DISCUSSION

We developed a method that models the entire instru-
ment selection process, sample overlap, and exposure
effect estimation error. As a result, our approach reduces
winner's curse and weak instrument bias, even when the
degree of overlap is unknown. Descriptive work has
recently focused on a single relationship, investigating
the effect of winner's curse in the estimation of the causal
effect of BMI on coronary artery disease, including
comparisons of the effect estimates for nonoverlapping
and fully overlapping samples (Jiang et al., 2022). To the
best of our knowledge, while some empirical work
describing the interplay between these biases has been
done (Sadreev et al., 2021), no other method can tackle

(a)

(b)

FIGURE 5 Effect of BMI on BMI and effect of SBP on SBP. This figure shows the mean IVW‐based and corrected effect (and 95%
confidence interval) for each threshold obtained from 100 different sampled datasets, using nonoverlapping samples. The true causal effect
is expected to be 1, as represented by the dashed line. Panel (a) corresponds to the effect estimates of BMI on BMI. Panel (b) corresponds to
the effect estimates of SBP on SBP.
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all the aforementioned biases while using summary
statistics from exposure and outcome GWASs with
arbitrary sample overlap. We tested our approach using
a wide range of simulations scenarios: varying the
strength of the causal effect, the strength of the
confounder effect, sample sizes for the exposure and
the outcome, as well as the genetic architecture of the
exposure and demonstrated that both estimates for
nonoverlapping and fully overlapping samples can be
biased. The direction and the magnitude of the bias
depend on sample overlap and are strongly influenced by
the effect of the confounder. When the confounder and
the causal effect have the same sign, observed effects are
overestimated for fully overlapping samples and under-
estimated for nonoverlapping samples. However, when
they have opposite signs, these are underestimated for all
overlaps because the direction of the biases is towards the
null for any degree of sample overlap. We also showed
that in the absence of a causal effect, results from
overlapping samples would be biased, potentially leading
to elevated Type I error.

The correction we proposed worked remarkably well
under all scenarios and permits drastically reducing the
bias. For standard settings for example, we observed a
15% overestimation for fully overlapping samples and a
10% underestimation for nonoverlapping samples, which
were respectively reduced to a 5% overestimation and a
2% underestimation after correction. We also found
statistically significant differences between IVW‐based
and corrected effects for fully overlapping samples under
all scenarios. For nonoverlapping samples, IVW‐based
and corrected effects were statistically significantly
different under all scenarios except in the case of the
absence of a causal effect. The decreased bias leads to
better coverage of the 95% confidence interval, but the
correction also comes with increased variance. Still, in all
of our simulation scenarios, the correction yielded
reduced estimation error (RMSE) for at least one, if not
all, sample overlap degrees. Moreover, while the RMSE
of IVW‐based effects strongly depends on the degree of
overlap (because the bias is overlap‐dependent), the
RMSE of corrected effects is very similar for all overlaps.

(a)

(b)

FIGURE 6 Effect of BMI on SBP and effect of BMI on alcohol intake frequency. This figure shows the mean IVW‐based and corrected
effect for each overlap and threshold obtained from 100 different sampled datasets. Panel (a) corresponds to the effect estimates of BMI on
SBP. Panel (b) corresponds to the effect estimates of BMI on alcohol.

MOUNIER and KUTALIK | 327

 10982272, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gepi.22522 by B

cu L
ausanne, W

iley O
nline L

ibrary on [09/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



In the simulations, we mostly compared our corrected
effect to its IVW‐based counterpart, and only considered
methods that can deal with weak instruments, such as
MR‐RAPS (Zhao et al., 2020) and dIVW (Ye et al., 2021),
for a small number of scenarios. Comparisons with these
approaches are not optimal, as they require a third
sample to be robust to winner's curse, and are expected to
perform better using a larger set of weaker instruments.
We only investigated MRlap performance for thresholds
smaller than 1e−06 since using less stringent thresholds
will increase the chances of using IVs that would violate
the relevance assumption. We believe that the thresholds
that have been used, both for simulations and real data
analyses are realistic and that more lenient thresholds
are unlikely to be used for IVW‐MR in practice.

For real data, we used a sampling strategy to compare
results obtained using varying degrees of sample overlap.
We first focused on “same‐trait” (BMI on BMI and SBP
on SBP) analyses for which the true causal effect is
expected to be 1, using nonoverlapping samples. IVW‐
based effects were strongly biased towards the null
(between 18% and 30% depending on the threshold) and
it is important to note that the 95% confidence intervals
did not overlap with one for any of the traits. Corrected
effects were less biased and their confidence intervals
were overlapping with one (partly because of the lower
precision of the estimator). We observed a slight
overcorrection for the most stringent thresholds that
could be due to potential violations of our assumptions
regarding the genetic architecture of the exposure (spike‐
and‐slab distribution). For the three other relationships
we looked at, strong discrepancies were observed for low
degrees of overlap, with statistically significant differ-
ences between IVW‐based and corrected effects. This
means that standard two‐sample MR settings often lead
to an underestimation of the true causal effect, which can
be corrected using our approach. We also demonstrated
that while most studies are extremely keen on avoiding
any sample overlap while performing two‐sample MR
analysis fearing potential bias, the bias is often much less
substantial for higher degrees of sample overlap. Among
our many examples, we found that the IVW‐MR estimate
for the effect of BMI on alcohol intake frequency using
the fully overlapping samples is biased by a confounder.
In this case, the confounder and the causal effect had
opposite signs, leading to an underestimation of the
IVW‐based effect for all overlaps. We have also high-
lighted that there is important heterogeneity in causal
effect estimates that vary with the IV selection threshold,
due to heterogeneity in the estimates between the groups
of genetic variants used for different thresholds. This can
happen if there is strong phenotypic heterogeneity in the
exposure, in which case different groups of IVs could be

affecting the exposure through different pathways (Foley
et al., 2020). Alternatively, in the presence of a genetic
confounder, IVs picked up at a less stringent threshold
may be associated with a confounder, hence violating the
second assumption of MR. Such a phenomenon is out of
the scope of our paper. In such case, IVW two‐sample
MR estimates would be biased, and more sophisticated
approaches either specifically account for this genetic
confounding (CAUSE [Morrison et al., 2020]; LHC‐MR
[Darrous et al., 2021]) or others allowing for multiple
causal effects (MR‐Clust [Foley et al., 2020]) would be
needed.

Our approach has its own limitations. As IVW‐MR
estimates, our corrected effect estimates will also be
biased in case of the existence of a genetic confounder
through which some of the selected instruments are
primarily acting on the exposure, as shown in our
simulations with correlated pleiotropy. In addition, our
analytical derivation hinges on a genetic architecture of
the exposure, namely assuming a spike‐and‐slab distri-
bution of the multivariable effect sizes. Although this is a
widely used and confirmed polygenic model, deviations
from it could reduce the efficiency of our bias correction.
It is also important to note that our work focused on
continuous traits, and our approach would only work
using case–control designs if the sample overlap degree
does not differ between cases and controls. A simplifica-
tion of the simulated model is that we assumed only a
single confounder, but the bias estimation does not
depend on this assumption. Finally, we have not
explicitly modeled the local LD in the IV selection
process, whereby a small winner's curse bias may be
introduced when selecting the SNP with the strongest
effect (at a given locus) as the IV.

Nowadays, samples from large biobanks are often
used to estimate SNP effect sizes for both the exposure
and the outcome, and hence it will be less and less
possible to ensure that the two samples used are not
overlapping. Thus, the need for nonoverlapping samples
forces researchers to use summary statistics from
reduced sample sizes. Most published MR analyses go
to great lengths to ensure nonoverlapping samples are
used, for example, Davies et al. (2019), Cornish et al.
(2020), Yang et al. (2022), Brumpton et al. (2020) (one of
their seven estimates split the sample to avoid sample
overlap). Sample overlap is a key point in the STROBE
guidelines for MR (Skrivankova et al., 2021), in item 10d.
It is also included in rule #7 in a popular MR guideline
(Taliun & Evans, 2021). Avoiding sample overlap
remains the predominant approach in the MR field,
without major attempts to quantify the extent of bias it
gives rise to. While our results have shown that for
nonoverlapping samples the biases usually do not
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strongly reduce power or change the clinical conclusions,
which is in line with results from (Jiang et al., 2022), not
accounting for these biases can still dramatically
decrease coverage. We believe that our approach is of
particular interest when it is not possible to use
nonoverlapping samples (for example, exposure and
outcome only measured in a specific cohort). In this
case, weak instrument bias and winner's curse could
increase the false positive rate quite drastically if there is
a strong observational correlation. For these reasons,
estimating the corrected effect using our approach
(implemented in an R‐package to facilitate its use) can
be performed as a sensitivity analysis: if the corrected
effect does not statistically significantly differ from the
IVW‐based effect, then the IVW‐MR estimate can be
safely used (with the advantage of having lower
variance). However, if there is a statistically significant
difference, corrected effects should be preferred as they
are less biased, independently of sample overlap.
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