
Citation: Cencelli, G.; Pacini, L.; De

Luca, A.; Messia, I.; Gentile, A.; Kang,

Y.; Nobile, V.; Tabolacci, E.; Jin, P.;

Farace, M.G.; et al. Age-Dependent

Dysregulation of APP in Neuronal

and Skin Cells from Fragile X

Individuals. Cells 2023, 12, 758.

https://doi.org/10.3390/

cells12050758

Academic Editor: Illana Gozes

Received: 6 November 2022

Revised: 2 January 2023

Accepted: 6 January 2023

Published: 27 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Article

Age-Dependent Dysregulation of APP in Neuronal and Skin
Cells from Fragile X Individuals
Giulia Cencelli 1,2, Laura Pacini 1,3, Anastasia De Luca 1,† , Ilenia Messia 1, Antonietta Gentile 1,4 ,
Yunhee Kang 5 , Veronica Nobile 6, Elisabetta Tabolacci 6 , Peng Jin 5 , Maria Giulia Farace 1

and Claudia Bagni 1,7,*

1 Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata,
00133 Rome, Italy

2 Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a
Carattere Scientifico (IRCCS), Catholic University, 00168 Rome, Italy

3 Faculty of Medicine, UniCamillus, Saint Camillus International University of Health and Medical Sciences,
00131 Rome, Italy

4 Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma, 00166 Rome, Italy
5 Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
6 Institute of Genomic Medicine, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a

Carattere Scientifico (IRCCS), Catholic University, 00168 Rome, Italy
7 Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne,

1005 Lausanne, Switzerland
* Correspondence: claudia.bagni@unil.ch or claudia.bagni@uniroma2.it
† Current address: Department of Biology, Faculty of Sciences, University of Rome Tor Vergata,

00133 Rome, Italy.

Abstract: Fragile X syndrome (FXS) is the most common form of monogenic intellectual disability
and autism, caused by the absence of the functional fragile X messenger ribonucleoprotein 1 (FMRP).
FXS features include increased and dysregulated protein synthesis, observed in both murine and
human cells. Altered processing of the amyloid precursor protein (APP), consisting of an excess of
soluble APPα (sAPPα), may contribute to this molecular phenotype in mice and human fibroblasts.
Here we show an age-dependent dysregulation of APP processing in fibroblasts from FXS individuals,
human neural precursor cells derived from induced pluripotent stem cells (iPSCs), and forebrain
organoids. Moreover, FXS fibroblasts treated with a cell-permeable peptide that decreases the
generation of sAPPα show restored levels of protein synthesis. Our findings suggest the possibility
of using cell-based permeable peptides as a future therapeutic approach for FXS during a defined
developmental window.

Keywords: Fragile X syndrome; APP processing; protein synthesis; peptide therapy; iPSCs; ADAM10;
SAP97

1. Introduction

Fragile X syndrome (FXS), an X-linked condition, is the most frequent form of hered-
itary intellectual disability (ID) and monogenic cause of autism [1]. Individuals with
FXS show physical and behavioral features, including intellectual disability, attention-
deficit/hyperactivity disorder (ADHD), repetitive behaviors, and anxiety. Reduced social
interactions have been reported in FXS individuals diagnosed with autism spectrum disor-
der (ASD) [2–7]. Indeed, around 40% of patients with FXS meet the criteria for ASD [8–10].

FXS occurs due to the absence or mutation of fragile X messenger ribonucleopro-
tein 1 (FMRP). FMRP is an RNA-binding protein involved in several aspects of mRNA
metabolism, including the regulation of mRNA translation [11–15]. The absence of FMRP
compromises the regulated expression of a variety of proteins critical for brain development,
synaptic plasticity, and dendritic spine morphology, ultimately impinging on cognition
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and behavior [2,12,15]. Consistent with its key role in the brain, FMRP regulates a large
subset of mRNAs [12,16,17], including the mRNA encoding amyloid precursor protein
(APP) [12,18–21].

APP is a type I transmembrane protein central to the pathogenesis of Alzheimer’s
disease (AD) [22,23]. Besides its well-established role in neurodegeneration, APP also
exerts a key role in physiological functions, including synaptogenesis and synaptic plas-
ticity [24–29]. APP undergoes a complex series of proteolytic processing events, which
can be divided into amyloidogenic and non-amyloidogenic pathways. The amyloidogenic
pathway is characterized by the production of Aβ peptides, which are associated with
AD progression [23,28]. Under physiological conditions, the non-amyloidogenic pathway
results in the release of the soluble amyloid precursor protein-alpha (sAPPα) [24,25,28,30]
catalyzed by/driven by the α-secretase activity of the disintegrin and metalloprotease
ADAM10 [31–33]. The sAPPα fragment, regulates several processes in brain development,
including synaptic plasticity, spine density, and cognition [25,30,34,35].

Several points of evidence support the involvement of APP in the FXS phenotype [18,36–41].
FMRP mediates mGluR5-dependent translation of APP mRNA, and its absence leads to ex-
aggerated APP expression in Fmr1 KO mice and individuals with FXS [18,20,36,40]. Genetic
reduction of APP expression rescues synaptic deficits and behavioral phenotypes in the Fmr1
KO mice [20,40,41]. In addition, FMRP regulates Adam10 mRNA translation, and lack of FMRP
in mice (Fmr1 KO) increases both APP and ADAM10 protein levels [18,20]. This dysregulation
ultimately leads to excessive production of sAPPα during a specific developmental window in
mice (analogous to childhood and early adolescence in human), corresponding to a critical stage
of synaptogenesis [20]. Excessive release of sAPPα contributes to some of the main molecular
features of FXS, namely increased protein synthesis, aberrant spine morphology, and altered
synaptic function and behavior [2,20,42]. Of note, treatment of juvenile Fmr1 KO mice with a spe-
cific cell-permeable peptide (TAT-Pro ADAM10709−729) that interferes with ADAM10-mediated
APP processing rescues mRNA translation, spine morphology and behavioral defects [20].

Despite the promising results obtained in Fmr1 KO mice, the use of a rodent model
for FXS presents limitations that may hamper the translation of preclinical data to humans.
Several clinical trials for FXS, based on findings generated in the mouse model, have not
been very successful so far [4,5,43,44], suggesting that models using human patient-derived
cells will be important for the development of new and personalized therapies.

In the present study, we analyzed the processing of APP in FXS human fibroblasts,
neurons derived from human induced pluripotent stem cells (iPSCs), and human forebrain
organoids. We observed a specific age-dependent dysregulation of APP metabolism in
human cells. In addition, treatment of FXS fibroblasts with the cell-permeable TAT-Pro
ADAM10709−729 peptide reduces sAPPα release and normalizes the level of protein synthe-
sis. These findings suggest that a subset of individuals with FXS, those with elevated protein
synthesis, could benefit from a peptide therapy based on the reduction of excessive sAPPα.

2. Materials and Methods
2.1. Human Fibroblasts and iPSCs Cultures

Fibroblasts. Control fibroblast cell lines (n = 19, age range 5–57 years) were purchased
from the Coriell Cell Repositories. FXS fibroblast cell lines (n = 32, age range 6–69 years)
were obtained from dermal biopsies with patient consent and under approval from multiple
centers as listed in Table S1 (CHUV University Hospital of Lausanne; M.I.N.D. Institute in
Sacramento; Erasmus Medical Center in Rotterdam and University Hospital A. Gemelli
in Rome). The clinical assessment, inclusion criteria, study protocol, the FMR1 mRNA
and FMRP levels, and all amendments for Switzerland, USA, and Netherlands cohorts
have been previously described [42]. The samples collected at the University Hospital A.
Gemelli in Rome were derived from 4 FXS individuals (ET001, ET002, ET003, and ET004).
CGG sizing and methylation status were evaluated using AmplideX® PCR and AmplideX®

mPCR assays (Asuragen, Austin, TX, USA) or by Southern blot analysis using HindIII
restriction enzyme and/or the methylation-sensitive enzyme EagI (New England Biolabs,
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Ipswich, MA, USA). The study protocol was approved by the Ethics Committee of the
University Hospital A. Gemelli in Rome (prot. N. 9917/15 and prot.cm 10/15). The level of
FMR1 mRNA and FMRP for these lines are included in Figure S1.

Fibroblasts were maintained in DMEM/F-12 (Gibco, Thermo Fisher Scientific, Waltham,
MA, USA) supplemented with 10% fetal bovine serum (Gibco, Thermo Fisher Scientific), 1X
GlutaMaxTM (Gibco, Thermo Fisher Scientific), 1X penicillin-streptomycin (Gibco, Thermo
Fisher Scientific) and MycoZap reagent (Lonza, Basel, Switzerland).

Induced pluripotent stem cells (iPSCs). iPSCs derived from fibroblasts of typically
developing individuals (TDI) and FXS individuals were established at the Children’s
Hospital of Orange County and kindly provided by Dr. Philip H. Schwartz [45]. iPSCs
were cultured on Matrigel (BD Biosciences, Franklin Lakes, NJ, USA) in mTeSR medium
(Stem Cell Technologies, Vancouver, BC, Canada). The clinical characteristics of iPSCs used
in the present study are summarized in Table S2. The relative levels of FMR1 mRNA and
FMRP are shown in Figure S1.

Forebrain organoids. Human forebrain organoids used in this study were generated
from TDI and FXS iPSCs at Emory University School of Medicine in Atlanta and previously
characterized [46]. iPSCs were cultured on irradiated mouse embryonic fibroblasts (MEFs)
in human iPSC medium consisting of DMEM/F-12 (Gibco, Thermo Fisher Scientific),
20% knockout serum replacement (KSR, Gibco, Thermo Fisher Scientific), 1X GlutaMAX
(Gibco, Thermo Fisher Scientific), 1X MEM non-essential amino acids (Gibco, Thermo Fisher
Scientific), 100 µM β-mercaptoethanol (Gibco, Thermo Fisher Scientific), and 10 ng/mL
human basic FGF (PeproTech, London, UK).

2.2. iPSC Neural Differentiation

iPSCs were differentiated into neurons as previously described [47]. Briefly, iPSCs
were maintained in culture in defined default media (DDM) consisting of DMEM/F-12
supplemented with 1X N-2 supplement (Gibco, Thermo Fisher Scientific), 1X B-27 supple-
ment (Gibco, Thermo Fisher Scientific), bovine albumin fraction V 7.5% (Gibco, Thermo
Fisher Scientific), 1X MEM non-essential amino acids (Gibco, Thermo Fisher Scientific),
1 mM sodium pyruvate (Gibco, Thermo Fisher Scientific), 100 µM β-mercaptoethanol
(Gibco, Thermo Fisher Scientific), and 100 ng/mL human recombinant Noggin (Stem
Cell Technologies) with a daily medium change [47,48]. After 16 days, the medium was
changed to DDM, supplemented with B-27 supplement (Gibco, Thermo Fisher Scientific)
without recombinant Noggin. After 24 days, cells were dissociated and plated into poly-
ornithine/laminin-coated wells. Five to seven days after dissociation, half of the medium
was replaced with neurobasal (Gibco, Thermo Fisher Scientific) supplemented with 1X
B-27 supplement (Gibco, Thermo Fisher Scientific) and 2 mM glutamine (Gibco, Thermo
Fisher Scientific).

2.3. Human Forebrain-Specific Organoid Cultures

Forebrain-specific organoids were generated using established protocols as previ-
ously described [46,49]. Human iPSC colonies were detached from the MEF feeder layer
with 1 mg/mL collagenase treatment for 1 h and suspended in embryonic body (EB)
medium, consisting of FGF-2-free iPSC medium supplemented with 2 µM dorsomorphin
(MilliporeSigma, Burlington, MA, USA) and 2 µM A-83 (Tocris Bioscience, Bristol, UK) in
non-treated polystyrene plates for 4 days with a daily medium change. On days 5–6, half
of the medium was replaced with induction medium consisting of DMEM/F-12, 1X N-2
supplement (Gibco, Thermo Fisher Scientific), 10 µg/mL heparin (MilliporeSigma) 1X
penicillin/streptomycin, 1X MEM non-essential amino acids (Gibco, Thermo Fisher Scien-
tific), 1X GlutaMAX (Gibco, Thermo Fisher Scientific), 4 ng/mL WNT-3A (R&D Systems,
Minneapolis, MN, USA), 1 µM CHIR99021 (Tocris Bioscience), and 1 µM SB-431542 (Tocris
Bioscience). On day 7, organoids were embedded in Matrigel (BD Biosciences) and grown
in the induction medium for 6 more days. On day 14, embedded organoids were me-
chanically dissociated from Matrigel by pipetting onto the plate with a 5 mL pipette tip.
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Typically, 10–20 organoids were transferred to each well of a 12-well spinning bioreac-
tor (SpinΩ) containing differentiation medium, consisting of DMEM/F-12, 1X N-2, and
B-27 supplements (Gibco, Thermo Fisher Scientific), 1X penicillin/streptomycin, 100 µM
β-mercaptoethanol (Gibco, Thermo Fisher Scientific), 1X MEM non-essential amino acids
(Gibco, Thermo Fisher Scientific), and 2.5 µg/mL insulin (MilliporeSigma). Media was
changed every other day.

2.4. SUnSET Assay

Protein synthesis assays were performed as previously described using the surface
sensing of translation (SUnSET) technique [42,50]. Briefly, cells (80,000/well) were seeded
on 12-multiwell plate wells and incubated with 5 µg/mL puromycin (Merck, Darmstadt,
Germany) for 30 min, chased with fresh complete medium for 15 min, and then lysed. Cell
lysates were analyzed for puromycin incorporation by Western blotting using a specific
antibody against puromycin (PMY-2A4, DSHB, Iowa City, IA, USA). Coomassie staining of
total proteins was used as a loading control.

2.5. Ammonium Sulfate Precipitation

For protein precipitation, 1.5 volumes of saturated ammonium sulfate (according
to [51]) was added to the cell media for protein extraction. Proteins were precipitated by
centrifugation at max speed for 20 min, and the pellet was resuspended in Laemmli buffer.

2.6. Peptide Treatment

TAT-Pro ADAM10709−729 and TAT-Ala ADAM10709−729 peptides were produced by
Peptide 2.0 Inc. (https://www.peptide2.com/) and resuspended in sterile H2O. Cells were
treated with 20 µM TAT-Pro or TAT-Ala peptide, added to the medium. After 18 h, protein
extracts were prepared from the collected cell medium.

2.7. Western Blot

Standard methodologies were used. Protein extracts were separated by 10% or 8%
SDS-PAGE and transferred to a PVDF membrane. Membranes were incubated using
the following specific antibodies, including mouse anti-puromycin (1:500, DSHB), mouse
anti-Vinculin (1:2000, Merck), mouse anti-GAPDH (1:2000, Invitrogen, Thermo Fisher
Scientific, Waltham, MA, USA), rabbit anti-APP (1:2000, Merck), rabbit anti-ADAM10
(1:500, Abcam, Cambridge, UK), mouse anti-sAPPα (1:500, IBL America, Minneapolis, MN,
USA), rabbit anti-OCT3/4 (1:1000, Santa Cruz Biotechnology, Dallas, TX, USA), mouse
anti-MAP2 (1:2000, Merck), mouse anti-Nestin (1:1000 Santa Cruz Biotechnology), mouse
anti-SAP97 (1:1000, ENZO Life Sciences, Farmingdale, NY, USA) and rabbit anti-FMRP
(1:1000, produced in house PZ1 [52]), HRP-conjugated anti-rabbit and anti-mouse secondary
antibodies (1:5000, Cell Signaling Technology, Danvers, MA, USA). Proteins were revealed
using an enhanced chemiluminescence kit (Bio-Rad, Hercules, CA, USA) and the imaging
system LAS-4000 mini (GE Healthcare, Chicago, IL, USA). Quantification was performed
using the IQ ImageQuant TL software (GE Healthcare). Detection of GAPDH, Vinculin,
and Coomassie staining were used as normalizers. For all SDS-PAGE PageRuler™ Plus
Prestained Protein Ladder (10 to 250 kDa, Thermo Fisher Scientific) was used.

2.8. RT-qPCR

Total RNA was extracted with TRIzol according to the manufacturer’s protocol (In-
vitrogen, Thermo Fischer Scientific). For the synthesis of cDNA, 500 ng of total RNA was
used. mRNAs were quantified by real-time PCR using SYBR® Green Master Mix (Bio-Rad)
on StepOnePlus™ Real-Time PCR machine (Applied Biosystems, Thermo Fischer Scientific,
Waltham, MA, USA) according to the manufacturer’s instructions using specific primers.
mRNA levels were expressed as relative abundance compared to HPRT1 and GAPDH
mRNAs using the (2−∆∆CT) method. The primers used for the amplification of the selected
human genes are:

https://www.peptide2.com/
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• hFMR1 Forward 5′-TGT CAG ATT CCC ACC TCC TG-3′

• hFMR1 Reverse 5′-TAA CCA CCA ACA GCA AGG CT-3′

• hHPRT1 Forward 5′-TGC TGA GGA TTT GGA AAG GGT-3′

• hHPRT1 Reverse 5′-TCG AGC AAG ACG TTC AGT CC-3′

• hGAPDH Forward 5′-CTC AAC TAC ATG GTT TAC ATG-3′

• hGAPDH Reverse 5′-CCA TTG ATG ACA AGC TTC CCG-3′

2.9. Statistics

Sample size calculation was performed based on the level of sAPPα in fibroblasts mea-
sured in a preliminary study. We determined the need for a sample size of at least n = 16/TDI
and n = 28/FXS with a power of 80%, alpha = 0.05, and effect size d = 0.92. The analysis was
performed using G*Power 3 [53]. Statistical analysis was performed with Prism GraphPad
version 5.0. Data distribution was tested for normality using the Kolmogorov–Smirnov test.
Non-normally distributed data were analyzed through non-parametric tests. The significance
level was established at p < 0.05. Differences between the two groups were analyzed using an
unpaired Mann–Whitney test. The correlation was assessed by Spearman’s correlation test.
Two-way ANOVA without repeated measures, followed by Sidak’s multiple comparisons test,
was performed to examine the effect of genotype and treatment and their interaction. All data
are expressed as mean ± SEM and as fold change relative to TDI.

3. Results
3.1. Age-Dependent Dysregulation of APP Processing in Human FXS Fibroblasts

Previous work in mice revealed that impaired processing of APP leads to excessive
production of sAPPα, at a critical developmental period (Post-natal day 21, P21), contribut-
ing to molecular, cellular, and behavioral FXS phenotypes [18,20,40]. An overall increase in
APP, ADAM10, and sAPPα was previously reported in a small sample of FXS fibroblasts
compared to controls [20].

Here we addressed the contribution of age and cell type specificity to the dysregulation
of APP processing in human cells derived from FXS individuals. Specifically, we analyzed
APP metabolism in cells derived from a large cohort of FXS subjects with different ages
(n = 32; age range 6–69 years) and typically developing individuals (TDI n = 19; age range
5–57 years) (Figure 1). FXS individuals and TDI were subdivided in three different groups:
group 1 with an age below 20 years (TDI n = 10; FXS n = 10); group 2 between 20 and 30 years
(TDI n = 5; FXS n = 11); group 3 above 30 years (TDI n = 4; FXS n = 11). The expression
of APP, the α-secretase ADAM10 and, as control, FMRP was analyzed in cellular extracts,
while the release of sAPPα was assessed in cell media. Increased levels of sAPPα and
ADAM10 were observed only in FXS individuals belonging to groups 1 and 2 (<30 years)
(Figure 1A,B) compared to age-matched controls, whereas no significant differences were
detected in group 3 (>30 years) (Figure 1C). The level of full-length APP remained elevated
in all FXS conditions, independently of age as in [20]. In conclusion, the dysregulation of
APP processing is age-dependent and in FXS primary somatic cells appears during the first
three decades of postnatal life.

Next, we investigated whether the dysregulation of APP processing was associated
with disease severity. Based on Vineland adaptive behavioral scale (VABS) scores available
for 18 FXS individuals [42] (see details in Material and Methods and Table S1) we analyzed
correlations between the levels of sAPPα and the scores in four VABS main domains,
namely daily living, communication, adaptive behavior, and socialization. Data on motor
skills were available only for a few individuals and were not included in the analysis. We
found that sAPPα levels negatively correlated with daily living score for the entire cohort,
while no significant correlation was detected with other VABS domains (Figure 2).
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Figure 1. APP processing in human TDI and FXS fibroblasts. Representative Western blot showing
sAPPα, ADAM10, and FMRP in TDI and FXS individuals stratified according to the age: (A) <20 years
(TDI n = 10; FXS n = 10), (B) between 20 and 30 years (TDI n = 5; FXS n = 11) and (C) >30 years old
(TDI n = 4; FXS n = 11). The bar plots show the quantification of sAPPα and ADAM10 levels in TDI
and FXS fibroblast cell lines normalized to Coomassie staining and Vinculin, respectively. Error bars
represent the SEM (* p < 0.05, Mann–Whitney test). ADAM10 and FMRP proteins were detected on
separate blots, each with its own control Vinculin.
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Figure 2. Correlation between four main domains of Vineland adaptive behavior scale and sAPPα
levels in FXS. (A) Daily living score, (B) socialization score, (C) communication score, and (D) adap-
tive behavior score of FXS individuals were plotted against the levels of sAPPα detected in fi-
broblasts from 18 individuals described in Figure 1 (see Materials and Methods and Table S1 for
details)(* p < 0.05, Spearman correlation coefficient).

3.2. Peptide-Based Cellular Therapy Reduces sAPPα Release and Exaggerated Protein Synthesis

Previous work showed that the TAT-Pro ADAM10709–729 peptide (TAT-Pro) blocks the
interaction of ADAM10 with the synapse-associated protein 97 (SAP97), thereby reducing
ADAM10 localization at the cell surface [54–56] (Figure 3A). In addition, we have previ-
ously shown that the modulation of ADAM10 activity and APP processing with TAT-Pro
peptide restored excessive protein synthesis and rescued key behavioral deficits in Fmr1
KO mice [20].

Here we found that SAP97 expression in human fibroblasts is significantly increased
in FXS fibroblasts compared to TDI (TDI n = 8; FXS n = 8: Figure 3B), further supporting
the relevance of the SAP97-ADAM10 interaction in FXS neuronal and non-neuronal cells.
Next, we investigated the effects of the TAT-Pro peptide in FXS fibroblasts. To define
optimal conditions for TAT-Pro peptide treatment, a FXS fibroblast cell line secreting a
high level of sAPPα (ID: 94E0363 described in Table S1 and [42]) was treated with different
concentrations of peptide (5, 10, and 20 µM) and the amount of sAPPα released in the cell
media was measured by Western blot at different time points, i.e., 6, 12 and 18 h. Optimal
reduction of released sAPPα was obtained after a treatment with 20 µM TAT-Pro peptide
for 18 h (Figure S2).

Fibroblasts derived from 10 FXS subjects and 6 TDI were treated with control (TAT-Ala)
or specific (TAT-Pro) peptides. TAT-Pro peptide treatment caused an significant reduction
of sAPPα release in FXS fibroblasts, while no differences were observed in the control group
(Figure 3C), suggesting a specific effect on FXS cells with altered APP processing.
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Figure 3. Modulation of ADAM10 in human TDI and FXS fibroblasts. (A) Schematic representation
of the mechanism of action of the TAT-Pro peptide (image created in BioRender.com). (B) Left,
representative Western blot showing SAP97 expression in TDI and FXS fibroblasts. Right, the bar
plot shows the quantification of SAP97 levels in TDI and FXS fibroblasts (TDI n = 8; FXS n = 8).
Error bars represent the SEM (** p < 0.01, Mann–Whitney test). (C) Left, representative Western blots
showing the levels of sAPPα in non-treated fibroblasts (NT), treated with the control peptide (Ala) or
with the specific peptide (Pro). Right, the bar plots show the quantification of sAPPα normalized to
Coomassie staining (TDI n = 6, FXS n = 10). Error bars represent the SEM (Two-way ANOVA analysis:
genotype effect F (1, 42) = 61.97 *** p < 0.001; treatment effect F(2, 42) = 2.866 p > 0.05; interaction effect
F(2, 42) = 4.422) (*** p < 0.001 NT TDI vs. NT FXS; *** p < 0.001 TAT-Ala TDI vs. TAT-Ala FXS, Sidak’s
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multiple comparisons test). (D) Left, representative Western blot showing the levels of puromycin
incorporation in fibroblasts NT, treated with the Ala or Pro peptides. Right, the bar plots show the
quantification of puromycin normalized to Coomassie staining in TDI and FXS fibroblasts expressing
regular or high levels of protein synthesis (TDI n = 6, FXS high n = 5; FXS regular n = 5). Error bars
represent the SEM (Two-way ANOVA analysis: genotype effect F(2, 39) = 34.87 *** p < 0.001; treatment
effect F(2, 39) = 0.4527 p > 0.05; interaction effect F(4, 39) = 2.008 p > 0.05) (*** p < 0.001 NT TDI vs. NT
FXS; ** p < 0.01 TAT-Ala TDI vs. TAT-Ala FXS, Sidak’s multiple comparisons test).

Since sAPPα levels affect brain protein synthesis [20,57–61], we analyzed the level
of mRNA translation in fibroblasts upon treatment with TAT-Pro peptide. Considering
that not all FXS individuals exhibit increased protein synthesis and that such variability
does not appear to be age-dependent [42,62], we stratified FXS fibroblasts according to
their rate of protein synthesis. Fibroblast lines showing 50% more puromycin incorporation
than the average in TDI cell lines were classified as “high protein synthesis”. Remarkably,
the treatment of FXS cells with TAT-Pro peptide decreased protein synthesis to levels
comparable to control cells—specifically in the subset of patients with a higher translation
rate (n = 5) (Figure 3D). No significant effects were observed in the subgroup of FXS
individuals with levels of mRNA translation comparable to controls (n = 5) or in the control
(TDI) group itself (n = 6) (Figure 3D).

Overall, these findings show the specificity of action of TAT-Pro peptide on a well-
defined subgroup of FXS individuals with possible implications for therapy.

3.3. Excess of sAPPα Is Detected in Differentiating FXS iPSCs and Forebrain Organoids

Fibroblasts are well suited to age-dependent studies, since they retain the epigenetic
imprinting of gene expression based on donor’s age [63–65]. However, addressing the role
of sAPPα in patient-derived cellular models, such as neurons differentiated from iPSCs
and forebrain organoids, represent a necessary step forward to validate the relevance of
this pathway in FXS.

Cortical neurons derived from FXS and control iPSCs were obtained using a well-
established protocol [47]. Neuronal differentiation was monitored following the cellular
morphology and evaluating the expression of specific pluripotency and neuronal markers
(Figure 4A,B). During neural differentiation (day 0 iPSCs, day 6, day 24 neural precur-
sor cells (NPCs) and day 60 neurons), a gradual reduction of the pluripotency marker
OCT3/4 and a progressive appearance of cortical neural progenitor (Nestin) and neuronal
(MAP2) markers were observed (Figure 4B). The release of sAPPα was analyzed in vitro on
different days after neuronal differentiation in cells derived from 3 FXS and 3 TDI. Protein
levels were measured at specific stages: iPSCs (day 0), neural precursors cells (NPCs)
(day 19 and day 24), and neurons (day 60) (Figure 4C–F). A significant increase in sAPPα
release was observed in the media of FXS NPCs at day 24 compared to control media, while
no significant genotype-dependent difference was detected in iPSCs, NPCs at day 19, or
mature neurons (Figure 4C–F).

Finally, we evaluated APP processing in human forebrain organoids derived from
TDI and FXS. APP and sAPPα expression were analyzed at two different developmental
stages—day 30 and day 69—in both TDI and FXS human forebrain organoids. While APP
expression was increased in FXS organoids regardless of the developmental stage, the
levels of sAPPα were specifically upregulated in the early phase of forebrain development
(Figure S3), consistent with the results obtained in the 2D stem cell model (Figure 4).
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Figure 4. Expression of sAPPα during neuronal differentiation. (A) Schematic representation of
the neural differentiation and representative bright-field microscopy images of differentiating cells.
(B) Representative Western blots showing the expression of differentiation markers (OCT3/4, Nestin,
and MAP2) during neurogenesis at day 0, day 6, day 24, and day 60. (C–F) Left, representative
Western blots showing the level of sAPPα release in the cell media. Protein levels were measured at
several neuronal differentiation stages: (C) iPSCs, (D) NPCs day 19, (E) NPCs day 24, and (F) neurons
day 60 (TDI n = 3; FXS n = 3). Right, the bar plots show protein quantification normalized to
Coomassie staining. Error bars represent the SEM (* p < 0.05 Mann–Whitney test).
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4. Discussion

Several FXS clinical and behavioral phenotypes, such as attention and social deficits,
aggressive behavior, and brain structural abnormalities, undergo considerable changes
during development [7,66–73]. Therefore, a better understanding of the time window
during which the dysregulation of specific molecular pathways occurs might help to design
more precise therapeutic interventions.

Here, we demonstrated that the dysregulation of APP processing occurs in an age-
dependent manner in three different human FXS cellular models and that such dysregula-
tion can be targeted by using a specific cell-permeable peptide. Particularly, we observed
increased levels of released sAPPα in fibroblasts derived from young FXS individuals,
iPSC-derived NPCs, and early-stage forebrain organoids.

Age-dependent dysregulation of APP processing in FXS fibroblasts and NPCs. sAPPα
plays a key role in processes that are crucial for proper brain structure and function, such
as synaptogenesis, synaptic plasticity, protein synthesis, and ultimately, memory forma-
tion [28,34,35,60,61,74,75]. The dysregulated release of sAPPα may affect critical neuronal
functions and, ultimately, lead to neurodevelopmental defects. Consistent with this pro-
posed mechanism, increased sAPPα levels have been found in the plasma of pediatric FXS
subjects [38] and in juvenile Fmr1 KO mice [20]. In contrast, increased Aβ levels have been
observed in plasma and post-mortem brain samples of adult FXS individuals and in adult
Fmr1 KO mice [18,20,37,76], supporting the development-dependent dysregulation of APP
processing in FXS. Of note, high levels of sAPPα have also been reported in the plasma of
juvenile idiopathic autistic patients [37–39,77–81], in ASD individuals with severe clinical
manifestations [78–80] and subjects with Angelman syndrome [82], suggesting that sAPPα
may play a critical role in the pathogenesis of different neurodevelopmental disorders.

The reprogramming and differentiation of patient-derived cells into neurons allows
investigators to model/duplicate some of the cellular and molecular features of neurode-
velopmental disorders [83–85]. Neurons and brain organoids derived from FXS iPSCs
recapitulate several cellular pathological aspects reported in the murine model, such as
deficits in neurite initiation and outgrowth, increased protein synthesis, neuronal hyperac-
tivity, and deficits in action potential firing and spontaneous synaptic activity [46,86–96].
Moreover, FXS NPCs showed increased proliferation and protein synthesis [46,86,89,96],
and several studies demonstrated the involvement of sAPPα in the proliferation and dif-
ferentiation of murine NPCs [97–100]. In addition, a study performed on iPSCs derived
from TDI reported that non-amyloidogenic processing of APP occurs predominantly at the
early stages of neurogenesis [101]. sAPPα, therefore, plays an important role in the initial
step of neuronal induction for proper brain development. Here, we observed an excess of
sAPPα release in FXS NPCs derived by iPSCs in both 2D and 3D cellular models, which
may underlie some of the pathological FXS phenotypes observed in NPCs [46,86,96] and
the long-lasting defects reported in the mature neurons [90].

Contribution of sAPPα to FXS clinical manifestations. Although the number of individuals
with FXS included in our analysis is limited, our findings showing a negative correlation
between the levels of sAPPα and Vineland scale scores, – specifically, the daily living
score –suggest that the levels of sAPPα may be predictive of the clinical outcome. We
based the present study on a heterogeneous group of FXS individuals from four cohorts
from different countries (see Table S1) and used standardized methods for the molecular
analyses. Additional multicentric studies that include a longitudinal follow-up will be
valuable and necessary to further validate the presence of excessive sAPPα during a defined
developmental window to consider sAPPα as a biomarker for FXS.

Some FXS clinical features show changes in severity across ages; deficits in social
behavior, for example, appear to improve during development [7,70–72]. It is tempting to
hypothesize that age-dependent dysregulation of sAPPα could contribute to this clinical
manifestation. In agreement with this, data generated in the mouse model of FXS showed
that the age-dependent upregulation of sAPPα has an effect on a measure/aspect of social
activity (nest building) that is rescued by decreasing the excess of sAPPα [20]. In addition,
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a clinical manifestation that tends to resolve over time is the presence of seizures [6,102].
Interestingly, seizures have also been reported in individuals with ASD [103,104] and
with Angelman syndrome [105,106], which share with FXS the excessive sAPPα produc-
tion [78–80,82].

TAT-Pro peptide treatment as a therapeutic strategy for FXS. Despite the efforts to un-
derstand the pathophysiology of FXS, to date, there is still no effective treatment for this
disorder. Reduction of sAPPα levels by modulating its receptor activity and downstream-
activated pathways might represent a valid approach to reducing the pathological effects
of exaggerated sAPPα release. Nevertheless, no specific receptor for sAPPα has been
currently identified. The postsynaptic α7 nicotinic acetylcholine receptor (nAChR) [107]
and GABABR1a have been recently proposed as candidates for sAPPα receptors [108,109].
However, both receptors have different crucial functions in the brain and are not specific
for sAPPα, therefore their modulation may have deleterious consequences in FXS [110].

The use of cell-permeable peptides represents a new promising therapeutic strategy for
precise medicine, and several peptides are currently being tested in clinical trials [111–115].
ADAM10 activity can be modulated using a specific cell-permeable peptide, which is able
to reduce ADAM10 localization to the membrane [55]. We previously demonstrated that
modulation of ADAM10 activity using TAT-Pro peptide normalizes sAPPα levels in Fmr1
KO mice and ameliorates various molecular, synaptic, and behavioral defects, including
exaggerated protein synthesis, enhanced mGluR-dependent long-term depression (LTD),
maternal/social skills, memory, and hyperactivity [20]. In addition, the same TAT-Pro
peptide treatment has been demonstrated effective in rescuing cognitive decline in a murine
model for Huntington’s disease [56].

Here, we tested and demonstrated the validity of a peptide-based strategy in human
FXS fibroblasts. Although the iPSC-derived NPCs and neurons represent a suitable tool for
drug discovery [116,117], the reprogramming of adult somatic cells to the stem cell state
seems to be independent of the age of the individuals [118]. In contrast, fibroblasts retain
the epigenetic memory of the donor’s age [63–65], allowing the identification of subgroups
of FXS that may benefit from the use of the TAT-Pro peptide.

Aberrant mRNA translation represents one of the major hallmarks of FXS and, there-
fore, a putative therapeutic target [2,14,119]. While therapies aimed at rescuing protein
synthesis have provided successful results in mice [120], similar approaches have failed in
clinical trials, highlighting the difficulties of translating data obtained in murine models to
the clinic [4,5,43,44,66,121]. Several factors may explain these failures, including the lack
of patient stratification, varying ages of the enrolled FXS subjects, and the validity of the
outcome measures [4,43,66]. In this context, we reported that the dysregulation of protein
synthesis is observed only in a subset of patient-derived fibroblasts [42]. We observed
a positive effect of the TAT-Pro peptide treatment on protein translation, specifically in
FXS cells derived from children/adolescents with a high translation rate. Our findings
supporting the hypothesis that targeting protein synthesis, based on patient’s stratification,
may be a valid outcome measure in future clinical trials based on personalized medicine [4].
Nevertheless, the restoration of sAPPα levels upon peptide treatment should be carefully
monitored over time to maintain sufficient sAPPα levels. Indeed, an excessive reduction of
ADAM10 activity has been linked to learning deficits, altered spine morphology, defective
synaptic functions, and increased formation of Aβ peptides in mice [122]. Furthermore,
subchronic treatment of WT mice with the TAT-Pro peptide has been used to generate a
model of sporadic AD that mimics the events occurring in the disease, including β-amyloid
aggregate production [54]. Although TAT-Pro peptide is not currently used in clinical
trials, our results in human cells, as well as its ability to cross the blood-brain barrier
in vivo [20,56], support the possible application of TAT-Pro peptide as a new therapeutic
approach for a subgroup of individuals with FXS.
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5. Conclusions

Overall, our study demonstrates an age-dependent regulation of APP metabolism
in different FXS cellular models (fibroblasts, iPSCs, and brain organoids). Particularly,
sAPPα is involved in the APP-mediated increase in protein synthesis in FXS, supporting
the critical role of APP processing in the pathophysiology of FXS. This work identifies
the early stages of childhood and adolescence in humans as the crucial time window for
therapeutic intervention based on the restoration of protein homeostasis following the
regulation of sAPPα release, with possible long-lasting effects. Our findings suggest that
APP may therefore represent a new therapeutic target and/or biomarker for FXS and for
other neurodevelopmental disorders and intellectual disabilities, such as ASD, that share
with FXS the dysregulation of APP processing.
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