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Summary 

In this thesis work the relevance of pharmacogenetics of antiviral treatment has been 

assessed by investigating, through three different approaches, the impact of host genetic 

variation on antiretroviral drug disposition (namely efavirenz and lopinavir) and on natural or 

treatment-induced clearance of hepatitis C virus. 

The influence of host genetic variation on efavirenz and its primary metabolite plasma levels 

was assessed by single candidate gene approach, through comprehensive analysis of 

cytochrome P450 (CYP) 2A6 – involved in efavirenz accessory metabolic pathway. The 

study could demonstrate that CYP2A6 genotype became increasingly relevant in the setting 

of limited CYP2B6 function – involved in efavirenz main metabolic pathway – and that 

individuals with both main and accessory metabolic pathways impaired were at higher risk for 

treatment discontinuation, overall emphasizing the predictive power of genotyping. 

The influence of host genetic variation on lopinavir clearance was assessed by large scale 

candidate gene approach, through analysis of genes involved in the absorption, distribution, 

metabolism and elimination. The study identified four genetic variants in drug transporters 

and metabolizing enzymes that explained 5% of the interindividual variability in lopinavir 

clearance.  

The influence of host genetic variation on hepatitis C virus (HCV) natural or treatment-

induced clearance was assessed through genome-wide association study approach. This 

study identified an intergenic polymorphism, part of a linkage disequilibrium block 

encompassing the interferon- 3 gene, as highly associated with treatment-induced and 

spontaneous HCV clearance. Resequencing and recombinant mapping lead to the 

identification of four potentially causal genetic variants. Finally, we could assess the net 

contribution of genetic variants in interferon- 3 to clearance by controlling for viral diversity, 

gender and co-infection status in a single source infected cohort.  

This thesis highlights the various genetic tools available to pharmacogenetic discovery 

(candidate gene, pathway or and genome-wide approaches), and the importance of 

resequencing for mapping of causal variants. 
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Résumé 

Dans ce travail de thèse, l‟importance de la pharmacogénétique des traitements antiviraux a 

été évaluée en déterminant, au moyen de trois différentes approches, l‟impact de variations 

génétiques sur la pharmacocinétique de deux traitements antirétroviraux (à savoir l‟efavirenz 

et le lopinavir) ainsi que sur la capacité de pouvoir éliminer le virus de l‟hépatite C de façon 

naturelle ou suite à un traitement médicamenteux. 

L‟influence des variations génétiques sur les taux plasmatiques de l’efavirenz et de ses 

métabolites primaires a été évaluée par l‟analyse d‟un seul gène candidat : le cytochrome 

P450 (CYP) 2A6, impliqué dans une voie métabolique accessoire de l‟efavirenz. Cette étude 

a permis de démontrer que le génotype du CYP2A6 devient cliniquement déterminant en 

l‟absence de fonction du CYP2B6, impliqué dans la voie métabolique principale, et que la 

perte simultanée des voies métaboliques principales et accessoires entraine une augmen-

tation du risque d‟interruption du traitement, soulignant la valeur prédictive du génotypage. 

L‟influence de la génétique sur la clairance du lopinavir a été évaluée par l‟analyse à 

grande échelle de gènes candidats, à savoir les gènes potentiellement impliqués dans 

l‟absorption, le métabolisme, la distribution et l‟élimination d‟un médicament. Cette étude a 

permis l‟identification de 4 polymorphismes, dans des transporteurs et des enzymes 

métaboliques, associés à la clairance du lopinavir et expliquant 5% de la variabilité inter-

individuelle de ce phénotype. 

L‟influence de la génétique sur la capacité d‟éliminer le virus de l’hépatite C, de façon 

naturelle ou à la suite d‟un traitement, a été évaluée par l‟analyse du génome entier. Cette 

étude a permis l‟identification d‟un polymorphisme situé à proximité de l‟interféron- 3. Quatre 

variations génétiques potentiellement causales ont ensuite pu être identifiées par 

reséquencage. Finalement, la contribution nette de ce gène sur l‟élimination du virus a pu 

être évaluée dans une cohorte infectée par une seule et même source, permettant ainsi de 

contrôler l‟effet de la diversité virale, du genre et de la présence de co-infections. 

Cette thèse a permis de mettre en évidence les diverses méthodes disponibles pour la 

recherche en pharmacogénétique, ainsi que l‟importance du reséquencage pour 

l‟identification de variations génétiques causales. 
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1.1. Genetics 

The genetic code is part of a multifactorial interplay making of each individual a 

unique entity with specific phenotypes. Genetics has generated much interest for years, but 

has particularly exploded this last decades with the completion of the Human Genome 

Project (http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml [101]), the 

International HapMap Project (http://www.hapmap.org/ [102]) and the 1000 Genomes Project 

(http://www.1000genomes.org/page.php [103]). These databases together with the 

availability of new high throughput genotyping and sequencing technologies have made 

genetic analyses much more accessible. 

The human genome is made of approximately 3 billion base pairs (bp) [1]. While 

~99.9% of the DNA sequence is shared by any two unrelated individuals, the remaining 

0.1%, or ~3*106 bp, is not [2, 3]. DNA sequence differences involve single nucleotide 

polymorphisms (SNPs), nucleotide insertions, deletions and inversions, as well as copy 

number variations (CNVs) and variable number of tandem repeats [2, 3]. These genetic 

variations may affect the DNA secondary structure, the mRNA transcription, stability and 

splicing, the amino acid sequence, etc., overall potentially altering the expression or the 

function of the encoded protein at the cellular level. At the organism level, there are two main 

issues where phenotypic traits might be influenced by genetic variants: the first being native 

phenotypic traits including characteristics such as blood type and eye color, and diseases or 

disorders such as hemophilia and albinism; and the second being phenotypic traits displayed 

in response to exogenous influences such as drugs, pathogens or food.  

Understanding how genetic variations might influence the latter phenotypes, and more 

especially response to treatment (called “pharmacogenetics” by Friedrich Vogel since 1959) 

and disease susceptibility, is of great interest given the prospects of providing individualized 

drug therapy and personalized medicine for preventing or treating complex diseases [4].  

  

http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml
http://www.hapmap.org/
http://www.1000genomes.org/page.php


INTRODUCTION 3 
 

For this purpose, three main approaches are currently being used: 

1. Single candidate gene studies, consisting in analyzing one or more genes encoding 

proteins already identified as being involved in a given phenotype. 

2. Large scale candidate gene analyses, consisting in analyzing genes encoding 

proteins potentially involved in a given pathway or phenotype, according to their 

described or supposed functions. 

3. Genome wide association studies (GWAS), consisting in screening the whole 

genome for genetic variations associated with a given phenotype, with no a priori 

hypothesis of the involved encoded proteins.  

One essential genomic feature, largely decreasing the number of variants 

investigated in the two latter approaches, is that nearby genetic variants might be inherited 

together, forming haplotypes (Figure 1) [3]. This non-random occurrence of genetic variants 

on the same allele is measured by the degree of linkage disequilibrium (LD). The LD 

between two genetic variants can be defined by two parameters: r2 and D‟. R2 is the square 

of the correlation coefficient for a given marker pair, it ranges from 0 (no correlation) to 1 

(perfect correlation, implying that both genetic variants have the same allelic frequency and 

are always present together on the same allele; in this case the two variants are said to be in 

perfect linkage). D‟ is the normalized covariance for a given marker pair and can be seen as 

the probability of non-randomly finding the two genetic variants on the same allele. D‟ ranges 

from 0 (both genetic variant are independent) to 1 (complete dependency of one of the 

marker pair [the less frequent one] with the other one [more frequent]; in this case the two 

variants are said to be in perfect or complete linkage, depending whether r2=1 or r2<1) [5].  
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Figure 1: SNPs, haplotypes and tag SNPs [3].  

a, SNPs. Shown is a short stretch of DNA from four versions of the same chromosome region in 

different people. Most of the DNA sequence is identical in these chromosomes, but three bases are 

shown where variation occurs. 

b, Haplotypes. A haplotype is made up of a particular combination of alleles at nearby SNPs. Only 

the variable bases are shown, including the three SNPs that are shown in panel a.  

c, Tag SNPs. Genotyping just the three tag SNPs out of the 20 SNPs is sufficient to identify these four 

haplotypes uniquely.  

 

An approach consisting in the selective assessment of a specific SNP tagging a given 

haplotype (tag SNP), instead of performing a comprehensive analysis of all variants in the 

chromosomic region encompassing genetic variants in high LD (or LD block), is therefore 

used in large scale candidate gene studies and GWAS [3, 6, 7]. Typically, any untyped 

genetic variants should have a minimum r2 threshold of 0.8 with a tag SNP [8], for further 

inference in a given haplotype [3, 6, 7]. 

  In return, the SNPs identified in these studies as being associated with the studied 

phenotype (hit SNPs), are not necessarily the causal variants, but might rather tag them. 
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No standard method for the identification of the causal genetic variant responsible for the 

associated phenotype has yet been established. However, one strategy consists in 

resequencing the chromosomic region or the gene, in individuals with concordant and 

discordant genotype-phenotype. Concordant individuals carry the hit SNP and harbor the 

associated phenotype, or at the opposite neither carry the hit SNP nor harbor the associated 

phenotype. Discordant individuals carry the hit SNP but do not harbor the associated 

phenotype, or at the opposite do not carry the hit SNP but harbor the associated phenotype. 

Recombinant mapping of the genetic region in these individuals with extreme phenotype-

genotype combinations should allow the identification of genetic variants tagged by the hit 

SNP. The candidate causal variants are expected to be as frequent as or more frequent than 

the hit SNP in concordant individuals and/or less frequent in discordant individuals.  

 

The three different approaches above mentioned were used to investigate the two 

main issues addressed in this thesis work: 

 The influence of host genetics on antiretroviral agents’ pharmacokinetics 

 The influence of host genetics on hepatitis C virus natural or treatment-induced 

clearance 
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1.2. Antiretroviral Therapy 

Twenty-seven years after the human immunodeficiency virus (HIV) was discovered 

as the agent responsible of acquired immune deficiency syndrome (AIDS), 25 anti-HIV 

compounds have been approved for clinical use by the US Food and Drug Administration 

(FDA) [104]. These compounds fall into five categories according to the step they target in 

the virus life cycle (illustrated in Figure 2 [9]):  

1. M (macrophage)-tropic and T (lymphocyte)-tropic HIV strains use respectively the co-

receptors CC chemokine receptor 5 (CCR5) or CXC chemokine receptor 4 (CXCR4) to 

enter the target cells. The only co-receptor inhibitor approved at present, maraviroc, 

prevents viral entry by binding to the human CCR5 chemokine receptor [10-12]. 

 
2. Enfuvirtide, the only fusion inhibitor currently approved, is a polypeptide homologous to 

a segment of the viral envelope glycoprotein gp41. As a consequence of their coil-coil 

interaction, fusion of the virus particle with the outer cell membrane is blocked [10, 12]. 

 
3. The reverse transcriptase, a specific viral enzyme that retrotranscribes the viral single-

stranded RNA genome to double-stranded proviral DNA, is the target for three classes of 

inhibitors: nucleoside reverse transcriptase inhibitors (NRTIs: zidovudine, 

didanosine, zalcitabine, stavudine, lamivudine, abacavir and emtricitabine), nucleotide 

reverse transcriptase inhibitors (NtRTIs: tenofovir) and non-nucleoside reverse 

transcriptase inhibitors (NNRTIs: nevirapine, delavirdine, efavirenz and etravirine). 

The NRTIs and NtRTIs are converted to their active form in the host cell by tri/di-

phosphorylation respectively, acting as competitive inhibitors/alternate substrates of the 

normal deoxynucleoside triphosphate substrate, leading to the chain termination of the 

proviral DNA. The NNRTIs induce allosteric changes in the reverse transcriptase, 

assumed to disturb its normal functioning, by binding to a pocket located at a short 

distance from the catalytic site [10].  
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4. The viral integrase is required for each of the three sequence-specific events critical for 

integration of the HIV-1 proviral DNA into the host cell genome: assembly with the viral 

DNA, 3‟ endonucleolytic processing and strand transfer. The integrase inhibitor 

raltegravir elicits its antiviral effect by binding to the site of the integrase enzyme 

normally responsible for binding to human chromosomal DNA, therefore blocking the 

integration of the viral DNA [9, 11]. 

 
5. Finally, the protease inhibitors (saquinavir, ritonavir, indinavir, nelfinavir, amprenavir, 

lopinavir, atazanavir, fosamprenavir, tipranavir and darunavir) prevent the cleavage by 

the viral protease of the precursor viral polyprotein into smaller mature (both structural 

and functional) viral proteins. They act as competitive inhibitors by binding to the active 

site of the viral protease [10-12]. 

 

Figure 2: the HIV-1 life cycle and antiretroviral agent targets. PIC: pre-integration complex [9].  
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1.2.1. Pharmacogenetics of Antiretroviral Agents 

Availability of highly active antiretroviral therapy (HAART) has considerably 

decreased HIV morbidity and mortality, transforming HIV-infection from an inevitable fatal to 

a treatable chronic disease [13]. Drug tolerability is a key issue for treatments that must be 

taken lifelong. However, most of the antiretroviral drugs have been approved following an 

accelerated procedure, because of the advantageous benefice/risk ratio of their 

commercialization. This has limited the capacity to fully define some of the pharmacokinetic 

parameters and the profile of medium and long term toxicity. Moreover, given HIV propensity 

to replicate and mutate rapidly, antiretroviral therapy (ART) relies on the combination of 

multiple agents (at least three drugs belonging to minimum two classes) to prevent viral 

resistance. This may increase rates of toxicity, drug-drug interactions, diminished compliance 

and treatment failure, depicted by a median duration of initial regimens of only 1.6 years – 

half of the discontinuation events being related to toxicity [14]. 

The high interindividual variability in antiretroviral agents‟ pharmacokinetics and 

pharmacodynamics is multifactorial but host genetics is believed to play a significant role 

[15]. Pharmacogenetics of antiretroviral agents could thus help identifying the best tolerated 

combination of drugs when comparable efficacy in controlling HIV infection is expected, or 

guiding dose adaptation when toxicity or resistance emergence are anticipated due to 

undesired drug concentration [16]. 

Understanding the interindividual variability in antiretroviral drug pharmacokinetics is 

therefore crucial and might be achieved through the genetic assessment of encoded proteins 

involved in the drug Absorption, Distribution, Metabolism and Elimination (ADME) [17]. 
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1.2.1.1. ADME Related Genes 

There are two main categories of proteins implicated in ADME: drug metabolizing 

enzymes (DMEs) and drug transporters (DTs) [18]. 

Both classes can influence drug pharmacokinetics by two distinct ways. DMEs 

regulate the relative quantity of the parental compound and its metabolites [18], whereas DTs 

regulate the amount of drug passing through diverse membranes (gut lumen, enterocytes, 

hepatocytes, etc.) and are therefore implicated in the absorption, distribution and elimination 

steps [18]. 

1.2.1.1.1. Drug Metabolizing Enzymes 

Drugs can undergo phase I (functionalisation) and/or phase II (conjugation) 

biotransformation rendering the compound more polar and hydrophilic to farther excretion 

[19]. It is estimated that 20-25% of all drug therapies are influenced by polymorphism in 

genes encoding DMEs to an extent that treatment outcome is affected [20, 21].  

The most relevant DMEs in drug pharmacokinetics are the cytochrome P450 (CYP) 

proteins. CYP superfamily plays a critical role in metabolism of both endogenous and 

exogenous compounds. Isoenzymes of families CYP1, CYP2 and CYP3 are collectively 

responsible for most (>75%) phase I biotransformation of drugs and other xenobiotics in 

human liver [22, 23]. In addition, anti-HIV drugs are largely metabolized by CYP2 and CYP3 

families (http://www.hiv-pharmacogenomics.org/ [105]; [24]). The human CYP genes are 

highly polymorphic. The different alleles are summarized at the Human CYP allele 

nomenclature committee home page (www.cypalleles.ki.se [106]), wherein the highest 

number of variant alleles are described for CYP2D6 (78 alleles), CYP2A6 (37), CYP2C9 (34) 

and CYP2B6 (29).  

 

  

http://www.hiv-pharmacogenomics.org/
http://www.cypalleles.ki.se/
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Because of such variability, the population can be classified into four phenotypes [25, 26]: 

 Ultrarapid metabolizers, with more than 2 active copies of the gene 

 Extensive metabolizers, carrying two functional copies of the gene 

 Intermediate metabolizers, usually carrying 1 functional and 1 defective allele but may 

also carry 2 partially defective alleles 

 Poor metabolizers, lacking functional enzyme due to defective/deleted genes 

 

1.2.1.1.2. Drug Transporters 

While drug passage across cell membranes can occur passively through simple 

diffusion, depending on the drug physicochemical properties, DTs are present on cell 

membrane to assist this step through active transport [27]. DTs are divided into two classes, 

uptake and efflux transporters, according to their location in the cell (basolateral/apical 

membrane) and/or their role. Both classes together regulate the systemic and intracellular 

drug levels by contributing, like phase I and phase II DMEs, to the detoxification system: 

uptake transporters help delivering the drug to the metabolizing system, whereas efflux 

transporters help delivering the compounds to the excretion systems [28]. There are two 

major transporter superfamilies, the solute carrier (SLC) transporters, which can generally 

transport substrates bidirectionally using electrochemical potential or ion gradient, and the 

ATP-binding cassette (ABC) transporters, which actively pump out substrates from 

intracellular compartment using ATP hydrolysis energy to cross the membrane against a 

concentration gradient [29].  

The role of ABC and SLC transporters is relevant to the disposition of antiretroviral 

drug (reviewed in [30]), and is a determinant of effective treatment by enabling drug 

accumulation in cells that support viral replication.  

It is only recently that DTs have been recognized as determinants of drug 

pharmacokinetics and dynamics, resulting in a relatively late emergence of DT 
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pharmacogenetic and genomic research as compared to DMEs. Although DT 

pharmacogenetics is on its early stage, it should be emphasized that drug pharmacokinetic 

properties are mainly the results of interacting activity of drug transporters and metabolizing 

enzymes, with the uptake clearance determining the amount of drug accessing to the 

metabolism machinery and the efflux clearance decreasing the load of the DMEs [28]. 

Despite high genetic diversity (http://pharmacogenetics.ucsf.edu/cgi-bin/Study.py 

[107]), no genetic variant leading to a complete loss of function of the encoded proteins have 

yet been described for transporters, resulting in more subtle phenotypes than seen for 

cytochrome P450 family [31]. Nevertheless, there is increasing evidence for the presence of 

clinically relevant polymorphisms in SLC transporter superfamily, notably in SLCO1B1 

(specifically expressed in the liver and considered to be of particular importance for hepatic 

drug disposition), as shown by the increased plasma concentration and enhanced risk of 

simvastatin-induced myopathy associated with a non-synonymous amino acid change 

(V174A) in the encoded protein [32]. On the other hand, although efflux transporters are 

recognized as playing a determinant role in intracellular drug accumulation, variability in 

genes encoding ABC transporters does not seem to affect drug response in a relevant and 

conclusive manner, potentially due to overlapping substrate specificity [28, 31]. 

 

Of note, serum binding proteins and transcription factors or modifiers that can either 

alter the expression of ADME genes or affect the biochemistry of ADME proteins (such as 

cytochrome P450 oxidoreductase and nuclear receptors) may also have a role in drug 

pharmacokinetics [26].   

 

In this work, we have investigated the influence of genetic variants on two 

antiretroviral drugs, namely efavirenz and lopinavir. 

  

http://pharmacogenetics.ucsf.edu/cgi-bin/Study.py
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1.2.2. Efavirenz 

Efavirenz (EFV) is a non-nucleoside reverse transcriptase inhibitor approved for the 

treatment of HIV-1 infection, as a first line therapy, in combination with other antiretroviral 

drugs, in treatment naïve patients [33]. Its long half-life (40 to 55 hours after multiple-dose 

oral administration) allows a once daily administration (usually 600 mg) [33]. EFV is highly 

bound to plasma proteins (>99.5%, mainly to albumin) and has been shown to cross the 

blood-brain barrier [33]. It is extensively metabolized, principally by CYP isoenzymes to 

hydroxylated metabolites with subsequent glucuronidation [33]. Up to date eight metabolites 

have been reported (Figure 3) [34-36], of which three are primary metabolites (8-hydroxy-

EFV [8-OH-EFV], 7-hydroxy-EFV [7-OH-EFV] and N-glucuronide-EFV [N-gln-EFV]) and six 

are secondary metabolites. CYP2B6 has been shown to be the main isoenzyme involved in 

EFV 8-hydroxylation, the major primary metabolic pathway [33, 36]. 

 

Figure 3: Efavirenz metabolic pathways [34-37]. CYP, cytochrome P450. UGT, UDP-glucuronosyl-

transferase. SULT, sulfotransferase. 
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The most frequently reported adverse effect for EFV-containing therapy is 

neuropsychological toxicity that can affect up to 50% of individuals [38]. Central nervous 

system (CNS) disturbances range from dizziness to hallucinations, including frequent 

nightmares, impaired concentration, somnolence and insomnia [33]. Normally, adverse 

effects are mild, such as headache, dizziness, insomnia or fatigue; however, cases of severe 

toxicity such as psychosis with suicidal ideations, hallucinations, depression or manic 

episodes have also been described. Symptoms usually resolve within the first month of 

therapy but neuropsychological toxicity may also occur during long term therapy [33]. 

The high interindividual and low intraindividual variability in EFV plasma 

concentrations, as well as the potential relationship between treatment failure and CNS side 

effects with EFV plasma levels, support therapeutic drug monitoring (TDM) [39-41]. Factors 

involved in EFV interindividual variability have given rise to extensive research. Most of the 

data seem to suggest a trend toward higher plasma EFV concentrations in women than in 

men, which may be related to differences in body weight [15, 42]. Ethnicity has also been 

associated with EFV plasma levels, being generally higher in non-Caucasian individuals [43]. 

Finally, genetic variations in CYP2B6 account for a large extent to the interindividual 

variability in EFV exposure [44-47], but the high remaining interindividual variability in 

individuals with impaired CYP2B6 is still unexplained, and we hypothesize that it might be 

attributed to other genes involved in EFV metabolism.  

 

In this work, we have investigated EFV accessory metabolic pathway, through a 

single candidate gene approach, by a comprehensive analysis of CYP2A6 which is known 

to be involved in the formation of 7-OH-EFV (Figure 3) [34]. 
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1.2.3. Lopinavir 

Lopinavir (LPV) is a protease inhibitor (PI) approved for the treatment of HIV-1 

infection, as a first line therapy, in combination with other antiretroviral drugs, in treatment 

naïve and experienced adults and in children older than 6 months [48, 49]. Administered 

alone, LPV exhibits very low bioavailability, and is extensively metabolized by CY3A 

isoenzymes into 12 oxidative metabolites [50]. Co-administration of low sub-therapeutic 

doses of ritonavir (RTV), a PI with potent inhibiting activity against members of the CYP and 

ABC transporters family, dramatically increases LPV bioavailability and prevent its extensive 

metabolism [51], illustrated by 89% plasma radioactivity attributed to the parent compound 

after single dose administration of 14C-LPV [49]. LPV is the first and only protease inhibitor to 

be solely found co-formulated with RTV, further referred as LPV/r (Kaletra®) [49]. This co-

formulation allows reduced pill burden, by increasing LPV bioavailability and short half-life 

from ~1 hour to 4-6 hours after multiple-dose oral administration LPV/r, making once daily 

administration possible in treatment naïve individuals, whereas twice daily administration is 

still recommended in treatment experienced individuals [49]. 

At steady state, LPV is approximately 98-99% bound to plasma proteins, namely 

alpha-1-acid glycoprotein (AAG) and albumin, with a higher affinity for AAG [49], and has 

been shown in the co-formulated form to cross the blood-brain barrier [52].  

LPV/r is generally well tolerated. The most frequently reported adverse effect is 

diarrhea that can affect up to 25% of individuals, nausea and vomiting. Like other members 

of the protease inhibitor class, LPV/r may however cause significant lipid elevations and fat 

redistribution. Less common adverse effects include allergic reaction, asthenia, malaise, 

headache, myalgias, arthralgia, myocardial infarction, seizures and lactic acidosis. Severe 

side effects of LPV/r are unusual [48, 49, 53].  
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The related relationship between LPV/r through plasma concentration with efficacy 

and toxicity (increased lipid elevation is expected above 8mg/L) [54, 55], together with high 

described interindividual variability and two different efficacy threshold ascribed according to 

the patient treatment history (1mg/L in treatment naïve individuals, and 4 to 5.7 mg/L in 

treatment experienced individuals) support TDM [56, 57]. Identification of factors contributing 

to the high interindividual variability in LPV/r pharmacokinetics are thus of prime importance, 

in the goal of reducing the proportion of individuals with drug concentration outside the 

therapeutic window. Up to date, the only factor related to LPV/r exposure is body weight, 

however, leaving a large remaining unexplained variability [57]. Little is known about 

pharmacogenetic determinant of LPV/r disposition. RTV boosting effect might in part explain 

the lack of determinant genetic factors identified. Moreover, at the opposite of the well 

described LPV metabolism, LPV transport has not been yet completely solved. LPV has 

consistently been shown in vitro to be a substrate for P-glycoprotein (P-gp, encoded by 

ABCB1) [58, 59], whereas its transport by multidrug resistance protein (MRP) 1 and 2 

(encoded by the ABCC1 and 2) is controversial [58-60]. Recently LPV has also been 

reported to be a substrate of the organic anion transporting polypeptide (OATP) 1A2, 1B1 

and 1B3 (respectively encoded by SLCO1A2, 1B1 and 1B3) [61]. In addition, potential 

interaction between efflux transporters in the gastro-intestinal tract and CYP3A metabolizing 

enzymes may also be a source of variation associated with LPV/r absorption and distribution 

[63]. 

 

Overall, little is known about pharmacogenetic factors determinant for LPV/r 

pharmacokinetics; thus we performed in this work a large scale candidate ADME gene 

analysis, and then comprehensively analyzed the identified candidate gene(s) by 

resequencing and fine mapping strategy to identify potential causal variants. 
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1.3. Hepatitis C Virus Infection 

Hepatitis C virus (HCV) infection is one of the major causes of chronic hepatitis, liver 

cirrhosis, hepatocellular carcinoma and liver-related morbidity and mortality. Worldwide, 

around 170 million people are chronically infected, and ~3% of the world population is 

thought to be or have been infected [64]. Although a wide range of innate and adaptive 

immune responses are induced upon acute infection with HCV, the virus might escape host 

immunologic detection and elimination, resulting in a chronic infection in most individuals 

[65], while only 20-50% acutely infected individuals are able to clear the virus [65-67]. 

Spontaneous HCV clearance and chronic infection are respectively characterized by the 

absence and presence of HCV RNA in the serum of HCV seropositive individuals [65]. The 

still limited therapeutic options and current lack of protective vaccine, mainly due to the 

multiple existing HCV genotypes and the protein antigenic property alterations caused by the 

virus constant mutations [68], turn HCV infection into a major public health problem. 

Female gender, symptomatic acute hepatitis C, young age and non-african ethnicity 

correlate with lower rate of HCV chronicity, but the control of HCV is thought to be largely 

dependent on the effectiveness of host immune responses [65, 68].  

The first host immune response activated by HCV particles is mediated through 

interferon production by infected hepatocytes [67]. This response is initiated by two pattern 

recognition receptors, toll like receptor 3 (TLR3) and retinoic acid-inducible gene I (RIG-I). 

After activation, both processes result in downstream signaling ultimately leading to 

synthesis of interferon  (IFN ). Binding of IFN  to IFN- /  receptors, in turn, activates 

signaling cascade resulting in the induction of interferon-stimulated genes (ISGs) [67]. 

ISG products activate viral-regulatory functions that limit HCV replication through 

processes that include disruption of viral RNA translation and inhibition of RNA synthesis [67, 

69]. ISG expression not only causes an antiviral state but also amplifies the IFN response by 

stimulation of IFN-  synthesis [67, 69]. In addition to inducing ISG expression, IFN-  induces 
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the maturation of immune effector cells, stimulating the production of other proinflammatory 

cytokines and indirectly modulating the cell-mediated defenses and adaptive immunity to 

HCV [69]. Local IFN production in hepatic tissue is therefore likely to influence HCV 

replication and contribute to the resolution of acute HCV infection [69]. However, HCV is able 

to attenuate IFN signaling through multiple mechanisms, involving notably the viral protease 

complex NS3-4A, resulting in control of ISG expression or function [67, 69]. The virus 

constant mutations resulting in quasispecies formation affords significant adaptive potential 

for HCV to co-exist with the host immune response. Indeed, viral variants able to persist and 

resist IFN action may be selected under host immune pressure [69]. The flow-diagram shown 

in Figure 4 provides a model of virus-host interactions and viral adaptation that form a 

foundation for chronic infection [69]. 

 

Figure 4: HCV infection outcome. Virus-host interactions within the host response to HCV infection 

define the outcome from acute exposure to HCV. RIG-I, retinoic acid-inducible gene I. TLR3, toll like 

receptor 3. IFN, interferon. ISG, interferon-stimulated gene [69]. 
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1.3.1. Pharmacogenetics and Clearance of Hepatitis C Virus  

The basis of spontaneous and treatment-induced HCV clearance phenotype is 

multifactorial but host genetics is believed to play a significant role, highlighted by single 

source HCV exposed cohorts sharing similar demographic characteristics while undergoing 

both outcomes (either spontaneous/treatment-induced HCV clearance or chronic infection) 

[70]. 

Identification of host genetic factors susceptible to influence natural or treatment-

induced HCV infection outcome could therefore help to better understand the molecular 

pathogenesis of HCV infection. In addition, better understanding HCV-host interaction 

network is strongly needed and might help developing new preventive strategies and 

treatments, as the current standard regimen therapy consisting in pegylated IFN-  (peg-IFN-

) and ribavirin is not well tolerated, expensive, and inefficient in up to 50% cases [65]. 

On this purpose, as HCV is known to interact with innate and adaptive immune 

response, many candidate gene studies have been carried out (reviewed in [65]), including 

immune response genes, killer immunoglobulin-like receptors, human leukocyte antigens, 

chemokines, cytokines and lipoprotein receptors (see Figure 5, [65]). However, many 

studies were underpowered, or did not apply correction for population stratification or multiple 

comparisons, and candidates were not confirmed in validation cohorts.  

As candidate gene studies failed to identify determinant host genetic factors involved 

in HCV clearance, larger studies including analysis of non-a priori involved genes such as 

GWAS are needed. 
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Figure 5: Host genes with published (boxes) polymorphisms associated with hepatitis C 

clearance. HLA, human leucocyte antigen. ISG, interferon-stimulated gene. KIR, killer 

immunoglobulin-like receptor. LDL, low-density lipoprotein. NK, Natural killer. OAS, 2‟5‟-

oligoadenylate-synthetase-directed ribonuclease. PKR, Protein kinase R. TLR, Toll-like receptor. 

 

In this work, we have therefore investigated the influence of host genetics on HCV 

infection outcome using a GWAS approach and then comprehensively analyzed the 

identified candidate gene(s) by resequencing and fine mapping strategy in order to identify 

potential causal variants. 
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2.1. General Aims 

The study strategy intends to increase, through 3 different approaches (single 

candidate gene, candidate pathway, GWAS), the current understanding of:  

 toxicity and efficacy of antiviral treatment at patient and population level, in order to 

improve the long term tolerability and response. 

 infectious disease susceptibility, in order to improve our understanding of the host-

pathogen interactions in view of developing new preventive and treatment strategies.  

 

2.2. Pharmacogenetics of Antiretroviral Agents 

2.2.1. Efavirenz 

The specific aims are: 

 to investigate the contribution of EFV accessory metabolic pathway (7-hydroxylation, 

see Figure 3) on EFV and its primary metabolite plasma levels, through single 

candidate gene (CYP2A6) analysis. We expect that integration of EFV metabolite 

profile phenotypes will help at deciphering the multiple genetic and environmental 

influences affecting EFV disposition. 

 to determine the clinical implementation of the results by making a population 

pharmacokinetics analysis. 

 to assess the clinical relevance of changes in EFV metabolic pathways. 

 to compare EFV individualized dose adjustment determined by therapeutic drug 

monitoring or predicted by genetic analyses. 
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2.2.2. Lopinavir 

The specific aims are: 

 to investigate the contribution of genes encoding proteins involved in ADME, or 

implicated in ADME protein regulation, on LPV/r clearance, by performing a large 

scale candidate gene analysis. 

 to identify the causal variant(s) responsible for alteration in LPV/r clearance. 

 to determine the clinical implementation of the results by making a population 

pharmacokinetics analysis. 

 to assess the clinical relevance of the genetic variations associated with altered LPV/r 

clearance. 

 

2.3. Pharmacogenetics and Clearance of Hepatitis C Virus 

The specific aims are: 

 to investigate the association between host genetics and hepatitis C virus treatment 

and infection outcome, through a genome wide association study approach. 

 to identify the causal variant(s) responsible for increased susceptibility to hepatitis C 

virus spontaneous or treatment-induced clearance. 

 to estimate the net contribution of host genetics on hepatitis C virus infection 

outcome, by analyzing a single source cohort allowing the control for cofactors such 

as viral genotype, gender and co-infection. 



 



MATERIALS AND METHODS 25 
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3.1. General Feature – Nomenclature 

Current Nomenclature is to use italics for genes and alleles – which are designated 

by the name of the gene followed by an asterisk and an Arabic number (with or without an 

upper-case Roman letter) – and roman type for the encoded protein. The base A in the 

initiation codon ATG is denoted +1 and the base before A is numbered –1. “g.” followed by 

the nucleotide number refers to genomic DNA and “c.” refers to coding DNA. 

 

3.2. Pharmacogenetics of Antiretroviral Agents 

3.2.1. Efavirenz 

Materials and methods are described in the original articles  

(Chapters 4.1.1.1., 4.1.1.2., 4.1.1.3. & 4.1.1.4.). 

 

3.2.2. Lopinavir 

Materials and methods are described in the original articles  

(Chapters 4.1.2.1. & 4.1.2.2.). 

 

3.3. Pharmacogenetics and Clearance of Hepatitis C Virus 

Materials and methods are described in the original articles and manuscripts  

(Chapters 4.2.1.1. & 4.2.1.2.). 
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4.1. Pharmacogenetics of Antiretroviral Agents 

4.1.1. Efavirenz 

4.1.1.1. Original article 

 

In Vivo Analysis of Efavirenz Metabolism in Individuals with Impaired CYP2A6 

Function 

Julia di Iulio1, Aurélie Fayet2*, Mona Arab-Alameddine2*, Margalida Rotger1, Rubin 

Lubomirov1, Matthias Cavassini3, Hansjakob Furrer4, Huldrych F. Günthard5, Sara Colombo1, 

Chantal Csajka2,6, Chin B. Eap7, Laurent A. Decosterd2, Amalio Telenti1, and the SHCS 

 

1Institute of Microbiology, University Hospital Center, University of Lausanne; 2Division of Clinical 

Pharmacology, University Hospital Center, University of Lausanne; 3Division of Infectious Diseases, 

University Hospital Center, University of Lausanne; 4Division of Infectious Diseases, University 

Hospital Bern, University of Bern; 5Division of Infectious Diseases and Hospital Epidemiology, 

University Hospital, Zurich; 6Department of Pharmaceutical Sciences, University of Geneva-Lausanne, 

Geneva; 7Biochemistry and Clinical Psychopharmacology Unit, Center for Psychiatric Neurosciences, 

Cery Hospital, University of Lausanne; Switzerland 

 

*Equal contribution as second authors (AF: pharmacology; MAA: pharmacokinetics) 

 

Pharmacogenetics and Genomics 2009 April; 19(4):300-309 
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Author contributions 

Study concept and design: A. Telenti, C. B. Eap, J. di Iulio, M. Rotger 

Genetic analysis: J. di Iulio, M. Rotger 

Drug and metabolite levels determination: A. Fayet, L. A. Decosterd, S. Colombo 

Population pharmacokinetics: C. Csajka, M. Arab-Alameddine 

Data interpretation: J. di Iulio, M. Rotger, A. Telenti 

Sample contribution: M. Cavassini, H. Furrer, H. F. Günthard 

Study supervision: A. Telenti, L. A. Decosterd 

Drafting of the manuscript: J. di Iulio, A. Telenti  

Critical revision of the manuscript for important intellectual content: all authors 

 

Detailed personal contribution 

I was the main person in charge of the project. I notably participated in the study concept and 

design, sample recruitment, data analyses and interpretation, drafting of the manuscript, as 

well as in the genetic characterization of individuals included in the study by performing 

comprehensive CYP2A6 analysis, consisting in: 

 CYP2A6 exon-intron boundaries resequencing (N=23) 

 Genotyping of 12 CYP2A6 alleles (N=146) 

 CYP2A6 copy number variation assessment (N=169) 
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Comments on the article:  

  As it has been reported that CYP2A6 contributes to EFV metabolism in vitro, the aim 

of this study was to fully characterize CYP2A6 genetic diversity (polymorphism, copy number 

variation, gene chimera). This information allowed the assessment of CYP2A6 role in vivo in 

EFV metabolism among individuals with different CYP2B6 genetic background.  

  CYP2A6 functional variants were investigated in one hundred and sixty-nine HIV-

infected individuals receiving EFV. Drug and metabolite concentrations were measured in 

plasma samples. Correlation between EFV and its primary metabolite plasma levels and 

CYP2A6 genotype was assessed among individuals with known CYP2B6 functionality. 

  By investigating CYP2A6 genotype, we identified a new allele (*34). In addition, the 

results are consistent with the role of CYP2A6 in EFV metabolism as accessory isoenzyme. 

Its function becomes increasingly relevant in the setting of limited CYP2B6 function. Thus, 

the simultaneous occurrence of impaired function in CYP2B6 and CYP2A6 results in the 

redirection of EFV metabolism from hydroxylation to N-glucuronidation, which however does 

not compensate the loss of the other isoenzymes, leading to marked EFV accumulation. 
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4.1.1.2. Original article 

 
Pharmacogenetics-Based Population Pharmacokinetic Analysis of Efavirenz in 

HIV-1-Infected Individuals 

 

M. Arab-Alameddine1,2§, J. di Iulio3§, T. Buclin1, M. Rotger3, R. Lubomirov3, M. Cavassini4, A. 

Fayet1, L.A. Décosterd1, C.B. Eap5, J. Biollaz1, A. Telenti3 and C. Csajka1,2; the Swiss HIV 

Cohort Study 

 

1Division of Clinical Pharmacology and Toxicology, University Hospital Center, University of Lausanne;  

2Clinical Pharmacy Unit, Department of Pharmaceutical Sciences, University of Geneva, University of 

Lausanne; 3Institute of Microbiology, University Hospital Center, University of Lausanne; 4Division of 

Infectious Diseases, University Hospital Center, University of Lausanne, 5Biochemistry and Clinical 

Psychopharmacology Unit, Cery Hospital, University of Lausanne, Switzerland 

 

§contributed equally to this work (MAA: pharmacokinetics; JdI: pharmacogenetics) 

 

Clinical Pharmacology and Therapeutics 2009; 85(5): 485-494 
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Author contributions 

Study concept and design: C. Csajka, A. Telenti, J. di Iulio, M. Arab-Alameddine 

Population pharmacokinetics: M. Arab-Alameddine, C. Csajka, T. Buclin  

Genetic analysis: J. di Iulio, M. Rotger 

Data interpretation: J. di Iulio, M. Arab-Alameddine, C. Csajka, M. Rotger 

Statistical analysis: T. Buclin, M. Arab-Alameddine, C. Csajka 

Sample contribution: M. Cavassini 

Study supervision: C. Csajka, A. Telenti, J. Biollaz 

Drafting of the manuscript: M. Arab-Alameddine, C. Csajka, T. Buclin 

Critical revision of the manuscript for important intellectual content: all authors 

 

Detailed personal contribution 

I was one of the main persons in charge of the project. I notably participated in the study 

concept and design, sample recruitment, data analyses and interpretation, as well as in the 

genetic characterization of individuals included in the study by performing: 

1. Comprehensive CYP2A6 characterization, including: 

 CYP2A6 exon-intron boundaries resequencing (N=23) 

 Genotyping of 12 CYP2A6 alleles (N=146) 

 CYP2A6 copy number variation assessment (N=169) 

 

2. CYP3A characterization, including: 

 Genotyping of 8 CYP3A alleles (N=169) 
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Comments on the article:  

  We demonstrated in our previous work the determinant impact of genetic variations in 

genes encoding enzymes involved in EFV accessory metabolic pathways. 

  In this study, we performed a population pharmacokinetic analysis using not only 

demographic and environmental influences as covariates, but also the genetic data of the 

enzymes involved in EFV main (CYP2B6) and accessory (CYP2A6 and CYP3A family) 

hydroxylating metabolic pathways, in order to better characterize the interplay between these 

different influences and quantify their contribution to the interindividual variability in EFV 

pharmacokinetics (PK).  

  We could demonstrate that while CYP2B6 functional alleles accounted for the 

majority of EFV PK interindividual variability, genetic variations in EFV accessory metabolic 

pathways influenced EFV disposition as well. This study provides new insights in the 

understanding of the mechanisms of genetic influences and can be used to build up rational 

dosage guidance according to multiple genetic polymorphisms. 

  Thus, this study formalizes, in a population pharmacokinetics/pharmacogenetics 

analysis, the relevance of principal and accessory pathways to EFV metabolism. 
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4.1.1.3. Original article 

 
Association of Pharmacogenetic Markers with Premature Discontinuation of 

first-line anti-HIV Therapy: an Observational Cohort Sstudy 

 

Rubin Lubomirov1*, Sara Colombo1*, Julia di Iulio1, Bruno Ledergerber2; Raquel Martinez1, 

Matthias Cavassini3, Bernard Hirschel4; Enos Bernasconi5, Luigia Elzi6, Pietro Vernazza7, 

Hansjakob Furrer8, Huldrych F. Günthard2; Amalio Telenti1, and the Swiss HIV Cohort Study 

 

1Institute of Microbiology, University Hospital Center, University of Lausanne; 2Division of infectious 

Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich; 3Infectious 

Diseases Service, University Hospital Center, University of Lausanne; 4Infectious Disease/HIV Unit, 

Division of Infectious Diseases, University Hospital Geneva; 5Ospedale Regionale, Lugano; 6University 

Hospital Basel; 7Kantonsspital St. Gallen; 8University Clinic for Infectious Diseases, Bern University 

Hospital and University of Bern; Switzerland 

 

*contributed equally to this work  

Journal of Infectious Diseases 2010; in press 
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Author contributions 

Study concept and design: A. Telenti, L. Lubomirov, S. Colombo, B. Ledergerber  

Genetic analysis: J. di Iulio, R. Martinez 

Sample collection: S. Colombo 

Data analysis: R. Lubomirov, B. Ledergerber, S. Colombo 

Clinical data contribution: M. Cavassini, B. Hirschel, E. Bernasconi, L. Elzi, P. Vernazza, H. 

Furrer, H. F. Gunthard 

Study supervision: A. Telenti 

Drafting of the manuscript: R. Lubomirov, S. Colombo, A. Telenti 

Critical revision of the manuscript for important intellectual content: all authors 

 

Detailed personal contribution 

I participated in the sample recruitment and DNA extraction, data interpretation, as well as in 

the genetic characterization of individuals included in the study by genotyping 5 variants that 

could not be analysed in the array (for technical reason) or that failed quality control: 

 rs28399433 (CYP2A6) in individuals under efavirenz containing regimen (N=272) 

 rs4646437 (CYP3A4) in individuals under efavirenz containing regimen (N=272) 

 rs7412 (APOE) in individuals under lopinavir containing regimen (N=184) 

 rs429358 (APOE) in individuals under lopinavir containing regimen (N=184) 

 rs8175347 (UGT1A1) in individuals under atazanavir containing regimen (N=121) 
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Comments on the article:  

Given the high prevalence of treatment discontinuation in individuals under 

antiretroviral therapy, it is of importance to identify predictors susceptible to guide treatment 

combination or dosage. 

We retrospectively determined if genetic variations influencing antiretroviral drug 

pharmacokinetics or pharmacodynamics would be associated with drug tolerance at the 

population level, assessed through the phenotype of treatment discontinuation.  

Individuals under tenofovir, abacavir, efavirenz, lopinavir/ritonavir or 

atazanavir/ritonavir – containing regimen were included in the study.  

We could demonstrate that individuals under efavirenz-containing regimen with 

impaired function of the main (CYP2B6) and accessory (CYP2A6 and/or CYP3A4) metabolic 

pathways discontinued their treatment significantly more often (P=0.008), and that toxicity 

was the main reason for discontinuation. This study demonstrates that genetic analysis might 

help predict the best drug dosage or combination for efavirenz containing regimen, but 

further prospective analyses are still needed to confirm these results.  
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4.1.1.4. Original article 

 
Successful Efavirenz Dose Reduction Led by Therapeutic Drug Monitoring 

Aurélie Fayet Mello1, Thierry Buclin1, Laurent A. Decosterd1, Cécile Delhumeau2, Julia di 

Iulio3, Alessandra Fleurent3, Marie-Paule Schneider4, Matthias Cavassini5, Amalio Telenti3, 

Bernard Hirschel2 and Alexandra Calmy2 

 

1 Division of Clinical Pharmacology, University Hospital of Lausanne, 2 HIV Unit, University Hospital of 

Geneva, 3 Institute of Microbiology, University Hospital of Lausanne,4 Pharmacy, Outpatient Medical 

Clinic, University Hospital of Lausanne, 5 Service of Infectious Diseases, University Hospital of 

Lausanne; Switzerland$ 

 

Antiviral Therapy 2011; in press 
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Author contributions  

Study concept and design: A. Calmy, T. Buclin, A. Telenti, L. Decosterd, A. Fayet, J. di Iulio 

Efavirenz plasma levels determination: A. Fayet 

Genetic analysis: J. di Iulio, A. Fleurent  

Interpretation of data: A. Fayet, J. di Iulio 

Statistical analysis: C. Delhumeau, A. Fayet 

EFV adherence monitoring and analysis: M-P. Schneider 

Study supervision: A. Calmy, B. Hirschel, M. Cavassini, A. Telenti 

Drafting of the manuscript: A. Calmy, A. Fayet  

Critical revision of the manuscript for important intellectual content: all authors 

 

Detailed personal contribution 

I participated in the study concept and design, sample recruitment and DNA extraction, data 

analyses and interpretation, as well as in the genetic characterization of individuals included 

in the study by performing: 

1. Genetic characterization of individuals with genetic consent selected for efavirenz dose 

reduction (N=12): 

 Comprehensive CYP2B6 characterization including exon-intron boundaries 

resequencing and copy number variation assessment 

 Comprehensive CYP2A6 characterization including exon-intron boundaries 

resequencing and copy number variation assessment 

 Genotyping of 2 CYP3A4 variatiants (rs2740574 [CYP3A4*1B] and rs4646437)  

 

2. Genetic characterization of individuals not selected for efavirenz dose reduction (N=59): 

 Genotyping of rs3745274 (CYP2B6*6)  
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Comments on the article:  

Individuals receiving an efavirenz-containing regimen depict a wide interindividual 

variability in EFV exposure. In this study we investigated whether a therapeutic drug 

monitoring (TDM) based algorithm could help determining the dose reduction needed (either 

400mg QD or 200mg QD) in individuals with high plasma levels, to fall into the therapeutic 

window (1000-4000 ng/mL). We then compared the dosage reduction estimated through the 

TDM-based algorithm with the one predicted by genetic analysis.  

Individuals with EFV plasma concentration between the 75th and the 95th percentile 

received a reduced dose of 400mg EFV QD, whereas individuals with concentration above 

the 95th percentile received a dose of 200mg EFV QD.  

The genetic dose reduction prediction was based on the hypothesis that all 

individuals without impaired CYP2B6 function would not require a dose reduction. Individuals 

with impaired CYP2B6 function and reference alleles for CYP2A6 and CYP3A4 would need a 

one unit dose reduction (=400mg EFV). Finally, individuals with impaired CYP2B6 function 

and impaired CYP2A6 and/or CYP3A4 would need a two unit dose reduction (=200mg EFV).  

The genotyping results could predict nearly the same dose reduction than the TDM-

based algorithm. There were only three discrepant individuals: two individuals remained with 

high EFV plasma concentration after a TDM-guided one unit dose reduction, whereas 

genotyping would have predicted a two unit dose reduction. One individual achieved the 

lowest EFV plasma concentration in the studied population after a TDM-guided two unit dose 

reduction, whereas genotyping would have predicted a one unit dose reduction. 

This study emphasizes the predictive power of genotyping, but further prospective 

analyses are still needed to confirm these results.  
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4.1.2. Lopinavir 

4.1.2.1. Original article 

ADME Pharmacogenetics – Investigation of the Pharmacokinetics of the 

Antiretroviral Agent Lopinavir 

Rubin Lubomirov1, Julia di Iulio1, Sara Colombo1, Raquel Martinez1, Catia Marzolini2, 

Hansjakob Furrer3, Pietro Vernazza4, Alexandra Calmy5, Matthias Cavassini6, Patrick 

Descombes7, Thierry Buclin8, Laurent A. Decosterd8, Chantal Csajka8,9, Amalio Telenti1, and 

the Swiss HIV Cohort Study 

 

1Institute of Microbiology, University Hospital Center, University of Lausanne, Lausanne, 2Division of 

Infectious Diseases and Hospital Epidemiology, University Hospital, Basel, 3Division of Infectious 

Diseases, University Hospital and University of Berne, Berne, 4Department of Internal Medicine, 

Cantonal Hospital, St. Gallen, 5HIV Unit, Division of Infectious Diseases, University Hospital, Geneva; 

6Division of Infectious Diseases, University Hospital Center, University of Lausanne, Lausanne, 

7Genomics Platform, National Center of Competence in Research “Frontiers in Genetics”, CMU -

University of Geneva, Geneva, 8Division of Clinical Pharmacology and Toxicology, University Hospital 

Center, University of Lausanne, Lausanne, 9Department of Pharmaceutical Sciences, Clinical 

Pharmacy Unit, University of Geneva, Geneva; Switzerland 

 

Pharmacogenetics and Genomics 2010 April; 20(4):217-230 
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Author contributions 

Study concept and design: A. Telenti, C. Csajka, R. Lubomirov 

Genotyping/genetic analyses: P. Descombes, J. di Iulio, R. Martinez  

Resequencing and recombinant mapping: J. di Iulio, A. Telenti 

Population pharmacokinetics: C. Csajka 

Sample collection: S. Colombo 

Data analysis: R. Lubomirov 

Clinical data contribution: H. Furrer, P. Vernazza, A. Calmy, M. Cavassini 

Study supervision: A. Telenti, C. Csajka 

Drafting of the manuscript: R. Lubomirov, A. Telenti 

Critical revision of the manuscript for important intellectual content: all authors 

 

Detailed personal contribution 

I contributed, with A. Telenti, in the establishment of a new approach to identify candidate 

causal variants responsible for the phenotype associated with a putatively non-functional hit 

SNP. This fine mapping strategy consisted in: 

 SLCO1B1 promoter, exon-intron boundaries and 3‟UTR resequencing (N=24) 

 Haplotype inference and phylogenetic classification 

 Data analysis and interpretation for candidate causal variants identification 

I also participated in the sample recruitment and DNA extraction as well as in the genetic 

characterization of individuals included in the study, in both discovery and replication steps: 

1. Discovery step (N=207): 

 Genotyping of 5 putative/known functional variants that were not included in the array 

(rs2306283 & rs4149015 in SLCO1B1; rs35199625, rs2306168 & rs12422149 in 

SLCO2B1) 
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2. Replication step (N=148) included:  

 genotyping of 6 hit SNPs identified in the discovery step (rs4149056 & rs4149032 in 

SLCO1B1; rs10841795 in SLCO1A2; rs1077858 in SLCO2B1; rs717620 in ABCC2 

and rs6945984 in CYP3A locus) 

 genotyping of the 3 candidate causal variants (rs17328763, rs11045819 & 

rs11045891) tagged by rs4149032, identified through fine mapping strategy 
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Comments on the article:  

Individuals receiving a lopinavir/ritonavir (LPV/r) containing regimen show a wide 

interindividual variability in LPV/r exposure. We aimed at identifying genetic factors 

influencing LPV/r pharmacokinetics parameters. On this purpose we investigated genes 

encoding proteins involved in drug absorption, distribution, metabolism and elimination 

(ADME).  

One hit SNP, leading to a nonsynonymous amino acid change (V174A) in SLCO1B1 

(encoding a solute carrier transporter) reached study-wide significance and was associated 

with low LPV/r clearance. A second SNP in SLCO1B1 (located in intron 2, with a priori no 

functional effect) was associated with the opposite phenotype, although it did not reach 

study-wide significance. We therefore investigated by resequencing and recombinant 

mapping strategy whether it was tagging a functional SNP in SLCO1B1. A potential causal 

variant, leading to a nonsynonymous amino acid change (P155T) and reported to modify 

substrate specificity, was identified. This SNP, together with two other candidate SNPs that 

did not reach study-wide significance in the first round analysis were tested in a replication 

cohort. Overall, we could confirm the effect of 4 SNPs on LPV/r clearance.    

A pharmacogenetics-based population pharmacokinetic analysis of LPV/r was then 

completed, and the genetic variants identified in this study could explain 5% of LPV/r 

clearance variability. 
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4.1.2.2. Original article 

 
Association of Pharmacogenetic Markers with Premature Discontinuation of 

first-line anti-HIV Therapy: an Observational Cohort Study 

 
Rubin Lubomirov1*, Sara Colombo1*, Julia di Iulio1, Bruno Ledergerber2; Raquel Martinez1, 

Matthias Cavassini3, Bernard Hirschel4; Enos Bernasconi5, Luigia Elzi6, Pietro Vernazza7, 

Hansjakob Furrer8, Huldrych F. Günthard2; Amalio Telenti1, and the Swiss HIV Cohort Study 

 
1Institute of Microbiology, University Hospital Center, University of Lausanne; 2Division of Infectious 

Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich; 3Infectious 

Diseases Service, University Hospital Center, University of Lausanne; 4Infectious Disease/HIV Unit, 

Division of Infectious Diseases, University Hospital Geneva; 5Ospedale Regionale, Lugano; 6University 

Hospital Basel; 7Kantonsspital St. Gallen; 8University Clinic for Infectious Diseases, Bern University 

Hospital and University of Bern; Switzerland 

 

*contributed equally to this work  

 

Journal of Infectious Diseases 2010; in press 

 

Author contributions and the article are presented in section 4.1.1.3.  
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Comments on the article:  

Given the high prevalence of treatment discontinuation in individuals under 

antiretroviral therapy [14], it is of prime importance to identify predictors susceptible to guide 

treatment combination or dosage. 

In this aim, we retrospectively determined if genetic variations influencing first-line 

antiretroviral drug pharmacokinetics or pharmacodynamics, would be associated with drug 

tolerance at the population level, assessed through the phenotype of treatment 

discontinuation.  

Individuals under tenofovir, abacavir, efavirenz, lopinavir/ritonavir (LPV/r) or 

atazanavir/ritonavir – containing regimen were included in the study.  

For individuals under LPV/r-containing regimen, we assessed the 4 genetic variations 

associated in our previous work with changes in LPV/r clearance, as well as 8 genetic 

variants associated with dyslipidemia. 

We failed to demonstrate any impact of these genetic variants on LPV/r treatment 

discontinuation rate. However, the small sample size contained in some groups and the 

retrospective aspect of the study might explain these results and emphasizes the need for 

prospective analyses.  
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4.2. Pharmacogenetics and Clearance of Hepatitis C Virus 

4.2.1. Original article 

Genetic Variation in IL28B is Associated with Chronic Hepatitis C and 

Treatment Failure: A Genome-Wide Association Study 

 

A. Rauch1,*, Z. Kutalik2,3*, P. Descombes4, T. Cai5,6, J. di Iulio5, T. Mueller7, M. Bochud8, M. 

Battegay9, E. Bernasconi10, J. Borovicka11, S. Colombo5, A. Cerny12, J-F. Dufour13, H. 

Furrer1, H. F. Günthard14, M. Heim15, B. Hirschel16, R. Malinverni17, D. Moradpour18, B. 

Müllhaupt19, A. Witteck20, J. S. Beckmann2,21, T. Berg7, S. Bergmann2,3,†, F. Negro22,23, †, A. 

Telenti5,†, P-Y. Bochud5, 6, †,, and the Swiss Hepatitis C and HIV Cohort Studies 

 
1University Clinic of Infectious Diseases, University Hospital Bern and University of Bern, Switzerland, 
2Department of Medical Genetics, University of Lausanne, Switzerland, 3Swiss Institute of 

Bioinformatics, Lausanne, Switzerland, 4Genomics Platform, National Center of Competence in 

Research "Frontiers in Genetics", University of Geneva, Switzerland, 5Institute of Microbiology, 

University Hospital and University of Lausanne, Switzerland, 6Infectious Diseases Service, 

Department of Internal Medicine, University Hospital and University of Lausanne, Switzerland, 
7Medical Clinic for Hepatology and Gastroenterology, Medical University Charité Campus, Virchow-

Klinikum Berlin, Germany, 8University Institute for Social and Preventive Medicine, University Hospital 

and University of Lausanne, Switzerland, 9Infectious Diseases and Infection Control Clinic, 

Department of Medicine, University Hospital Basel, Switzerland, 10Infectious Diseases Service, 

Regional Hospital, Lugano, Switzerland, 11Division of Gastroenterology, Canton Hospital St Gallen, 

Switzerland, 12Liver Unit, Clinica Luganese Moncucco, Lugano, Switzerland, 13University Clinic of 

Visceral Surgery and Medicine, Inselspital, University of Bern, Switzerland 

 

*,† contributed equally to this work  

 

Gastroenterology 2010 April; 138(4):1338-1345, 1345.e1-7 
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Author contributions 

Study concept and design: A. Rauch, A. Telenti, P-Y. Bochud, F. Negro 

Genotyping: P. Descombes 

Statistical analysis: Z. Kutalik, T. Cai, J. S. Beckmann, S. Bergmann, A. Rauch 

Resequencing and recombinant mapping: J. di Iulio, A. Telenti 

Study supervision: A. Rauch, A. Telenti, P-Y. Bochud, F. Negro 

Drafting of the manuscript: A. Rauch, A. Telenti, P-Y. Bochud, F. Negro, M. Bochud, D. 

Moradpour  

Data and sample collection: all other authors 

Critical revision of the manuscript for important intellectual content: all authors 

 

Detailed personal contribution: 

I contributed, with A. Telenti, in the establishment of a new approach to identify candidate 

causal variants responsible for the phenotype associated with the putatively non-functional 

hit SNP. This fine mapping strategy consisted in: 

 IL28B promoter, exons, introns and 3‟UTR resequencing (N=47) 

 Haplotype inference and phylogenetic classification 

 Data analysis and interpretation for candidate causal variants identification 
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Comments on the article:  

Hepatitis C infection can result in either spontaneous/treatment-induced clearance or 

chronicity. As host genetics is believed to play a major role in the multifactorial interplay 

determining hepatitis C infection outcome, and although it has triggered much interest this 

last years, no key genetic variants have been identified in the candidate genes analyzed up 

to date.  

We therefore performed a genome wide association study to identify host genetic 

markers associated with HCV infection outcome. 

An intergenic SNP, rs8099917, reached genome-wide significance. As this SNP was 

part of a linkage disequilibrium block emcompassing interferon- 3 (IL28B) locus, we 

investigated by resequencing and recombinant mapping strategy whether this SNP was 

tagging a functional SNP in IL28B. This analysis allowed the identification of distinct 

haplotypes and candidate SNPs associated with HCV infection outcome in IL28B.  

This constituted the first lead to the causal allele and mechanism of action of IL28B 

for the natural control of HCV infection. These SNPs are prime candidates for functional 

assessment. 
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4.2.2. Original Article 

 

Estimating the Net Contribution of IL28B Variation to Spontaneous Hepatitis C 

Virus Clearance 

 

J. di Iulio1, A. Ciuffi1, K. Fitzmaurice2, D. Kelleher3, M. Rotger1, J. Fellay1, R. Martinez1, S. 

Pulit4, H. Furrer5, H.F. Günthard6, M. Battegay7, E. Bernasconi8, P. Schmid9, B. Hirschel10, E. 

Barnes2, P. Klenerman2, A. Telenti1, A. Rauch5; and the Swiss HIV Cohort Study 

 

1Institute of Microbiology, University Hospital Center and University of Lausanne, Switzerland, 2 Oxford 

NIHR Biomedical Research Centre and Nuffield Department of Clinical Medicine, Oxford University, 

UK, 3Institute of Molecular Medicine, University of Dublin, Ireland, 4Brigham and Women's Hospital 

Harvard Medical School, Boston, MA, USA, 5University Clinic of Infectious Diseases, University 

Hospital Bern and University of Bern, Bern, Switzerland,  6Division of Infectious Diseases and Hospital 

Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland, 
7Infectious 

Diseases and Infection Control Clinic, Department of Medicine, University Hospital Basel, Basel, 

Switzerland,  8Infectious Diseases Service, Regional Hospital, Lugano, Switzerland, 9Division of 

Infectious Diseases, Canton Hospital St Gallen, Switzerland, 10Division of Infectious Diseases, 

University Hospital Geneva, Switzerland  

 

Hepatology 2011; in press 

 

  



RESULTS 113 
 

 

Author contributions 

Study concept and design: A. Rauch, A. Telenti, J. di Iulio 

Genetic analysis: J. di Iulio, R. Martinez 

Statistical analysis: A. Rauch, A. Telenti, S. Pulit 

Clinical data contribution: K. Fitzmaurice, E. Barnes, P. Klenerman  

Study supervision: A. Rauch, A. Telenti 

Drafting of the manuscript: J. di Iulio, A. Rauch,  

Critical revision of the manuscript for important intellectual content: all authors 

 

Detailed personal contribution: 

I was the main person in charge of the project. I notably participated in the study concept and 

design, sample recruitment, data analyses and interpretation, drafting of the manuscript, as 

well as in the genetic characterization of individuals included in the study by performing: 

1. IL28B candidate causal variant genotyping optimization 

 

2. Multiple source cohort (N=389) genetic characterization, including : 

 Genotyping of the 4 candidate causal variants (rs4803219, rs28416813, rs8103142 & 

rs4803217) 

 Genotyping of the tag SNP rs12979860 

 Copy number variation assessment 

 

3. Single source cohort (N=71) genetic characterization, including : 

 Genotyping of the 4 candidate causal variants (rs4803219, rs28416813, rs8103142 & 

rs4803217) 

 Genotyping of the tag SNP rs12979860 

 Genotyping of the tag SNP rs8099917  
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Comments on the article:  

In our previous work, we identified an intergenic single nucleotide polymorphism 

(SNP) in the interferon- 3 (IL28B) locus, rs8099917, significantly associated with HCV 

treatment and infection outcome. In the attempt of determining the causal allele, tagged by 

rs8099917, responsible for the natural and treatment induced control of HCV infection, we 

identified 4 SNPs in IL28B as candidates for being causal. 

In this study, we optimized the method for genotyping these 4 candidate SNPs for 

further large scale studies. We then investigated the impact of these variants on HCV 

infection outcome in HIV/HCV co-infected individuals from the Swiss HIV Cohort Study. 

Finally, in order to determine the net contribution of IL28B variation, we analyzed these 

variants in pregnant women infected by the same HCV source, through exposition to 

contaminated immunoglobulin anti-D. This single source study population allowed for the 

control of co-factors such as HCV viral diversity, gender and co-infection (none were HBV or 

HIV co-infected). 

Haplotypes carrying a SNP resulting in a non-synonymous amino acid change (K70R) 

could increase the predictive value of HCV infection outcome, in comparison to the tag SNP 

rs8099917, previously identified in our GWAS. However, these haplotypes were highly linked 

to rs12979860, a tagSNP identified by other groups [71, 72], and had nearly the same 

predictive value, making the assignment of the true causal variant difficult. 
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5.1. Genetics 

In this work, we have explored the influence of host genetics on drug disposition and 

disease susceptibility by single candidate gene, large scale candidate gene and genome 

wide association study approaches. All three approaches have pros and cons that should be 

carefully weighted before choosing the most adapted technique. 

 

5.1.1. Single Candidate Gene Analysis 

Single candidate gene analysis approach arose from the belief that phenotypic traits 

were controlled by a single gene [4]. Although this proves true for Mendelian diseases and 

some pharmacogenetic traits (typically showing a bimodal distribution), most diseases and 

phenotypic traits are believed to result from the interplay of several genes, moving the 

paradigm “one gene, one disease” to “complex disease”, where single variants are able to 

explain only 1% to 5% of the phenotypic variation. Although single candidate gene 

approaches may be reductionistic and result in non-replication of most studies [4, 73], it can 

be a cost effective and efficient tool in the settings of extensive a priori knowledge of the 

involved proteins. 

In this work, we used this approach to investigate the impact of CYP2A6 genetic 

variants on EFV exposure. CYP2A6 is not expected to have a clinically relevant impact on 

EFV metabolism in the general population as it is involved in a minor EFV metabolic pathway 

representing only 7% of EFV metabolism. However, we could point out the influence of 

CYP2A6 genotype on EFV exposure among individuals that had limited CYP2B6 function, 

emphasizing that single candidate gene approach might be helpful in the setting of extensive 

a priori knowledge of the involved proteins. 
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5.1.2. Large Scale Candidate Gene Analysis 

Large scale candidate gene analysis approach aims at providing some understanding 

of the interactions among several candidate genes and how these contribute to a particular 

trait [4]. This strategy involves a larger screen of potential associations, which is in line with 

the new paradigm consisting in linking a trait to a pathway or a biological system, rather than 

linking a phenotype to a single gene [74]. However, like single candidate gene analysis, it 

does not allow the identification of unexpected associations, as there is an a priori hypothesis 

of the genes possibly involved in the phenotypic trait. In addition, a pre-defined SNP array 

might not allow a complete coverage of all variants present in a gene. This is notably the 

case for copy number variants, polymorphisms present in genes that have highly 

homologous counter pairs (such as pseudogenes) [75], and rare/private mutations. Finally, 

as previously mentioned, the SNPs identified in these studies are not necessarily the causal 

variants responsible for the detected effect, but might rather tag them. 

In this work, this approach was used to investigate the impact of genetic variants, 

potentially susceptible to influence drug pharmacokinetics, on LPV clearance. Two of the hit 

SNPs identified were located in SLCO1B1. While the first was known to be functional, the 

second was not. By resequencing and a fine mapping strategy, the study identified a SNP 

leading to a non synonymous amino acid change likely to be responsible for the detected 

effect and which had not formerly been associated with LPV clearance. This method also 

allowed the identification of two other SNPs in other genetic loci, overall emphasizing that 

large scale candidate gene approach is helpful in identifying candidate genes for further 

functional analysis or more comprehensive genetic mapping. 
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5.1.3. Genome Wide Association Studies (GWAS) 

Genome wide association studies aim at discovering biological pathways involved in 

a given phenotype. This strategy implies a whole genome scan for potential associations and 

in recent years it has been the state of the art approach to identify candidate genes involved 

in “complex diseases”. Contrary to single candidate gene and large scale candidate gene 

analyses, there is no a priori hypothesis of the involved genes in the phenotypic trait. 

However, genome-wide SNP arrays do not allow a complete coverage of all variants present 

in a gene, which is exacerbated by the fact that solely variants with a minor allelic frequency 

(MAF) of at least 0.05 are assessed in GWAS. Usually the lower the MAF is, the higher 

becomes the level of detectable contribution of the variant to a phenotype. This highlights the 

fact that GWAS are aimed at identifying biological pathways and genes involved in a given 

phenotype rather than variants with the highest relative risk [4]. Finally, the SNP arrays 

should be customized according to the study population. This is notably the case for African 

individuals, who tend to be more difficult to tag because of higher recombination rate and 

therefore a larger number of SNP is needed to allow a full characterization [4]. 

In this work, this approach was used to investigate the impact of genetic variants on 

HCV treatment and infection outcome. Several SNPs located in the IL28 locus were 

identified. As the hit SNP was not likely to be functional, the study proceeded to 

resequencing and fine mapping. This strategy served to identify four candidate functional 

SNPs. In addition, at the time of analysis, the encoded protein, interferon 3, had not been 

yet neither investigated nor associated with HCV infection outcome, emphasizing that GWAS 

approach might be helpful in identifying candidate genes for further functional analysis or 

more comprehensive genetic mapping. 
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5.2. Pharmacogenetics of Antiretroviral Agents 

Pharmacogenetics involves the assessment of the influence of genetics on either 

pharmacokinetic or pharmacodynamic drug outcome. Although drug pharmacodynamics is a 

critical outcome, we focused in this work in genes involved in drug pharmacokinetics for 

three reasons: 

1. Drug pharmacokinetics is primarily determined by ADME related genes. As the ADME 

pathway is common for all drugs, it narrows the window of genes susceptible to be 

implicated. 

2. Drug pharmacodynamic outcome is dependant of the drug pharmacokinetic 

properties. Indeed, functional genetic variation in ADME genes can account for much 

of the variation in drug toxicity and response phenotypes [26]. 

3. In the case of antiretroviral treatment, the drug pharmacodynamic outcome is not only 

related to host genetics but also to viral genetics. Given the lack of error proofing of 

the viral polymerase, there is a facilitated path to viral mutation that affect drug 

efficacy. 
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5.2.1. Efavirenz 

We have improved the understanding of efavirenz pharmacogenetics. This was 

achieved by investigating genetic variation in accessory metabolic pathways, and by 

resequencing (including the identification of a new null CYP2A6 allele). The composite 

analysis of genetic variation in main and accessory metabolic pathways identified individuals 

that, in the setting of multiple non-functional alleles, experienced extremely high drug levels. 

The very complete understanding of the genetic determinants of efavirenz 

pharmacokinetics allowed (i) the in vivo dissection of efavirenz metabolism, and (ii) the 

development of a population pharmacokinetics model with genetic covariates.  

These new findings might help a better understanding of efavirenz associated 

neuropsychotoxicity. The correlation between treatment naïve individual‟s genotype and the 

time to discontinuation/dose reduction of efavirenz treatment showed that individuals with 

impaired function in both main and accessory metabolic pathways interrupted their 

medication more often (71.2%) than the remaining individuals (28.1%) during the first year of 

treatment, mainly because of toxicity.  

Finally, we could demonstrate that TDM-guided dose adjustment could be predicted 

with nearly the same precision by genetic assessment. This tends to the final objective of 

making efavirenz genetic based dose adjustment possible. The advantage here is the 

possibility to determine the appropriate dose before treatment start, and therefore before 

experiencing treatment failure or toxicity. 

 

  



DISCUSSION 131 
 

 

5.2.2. Lopinavir 

We improved the understanding of LPV/r pharmacogenetics. This was achieved by 

investigation of the role of genetic variation in ADME related genes. The composite analysis 

of genetic variation in three replicated loci (SLCO1B1, ABCC2, CYP3A locus) identified 

individuals that, in the setting of homozygocity for SLCO1B1*4 (which has been associated 

with differences in substrate-specific transport kinetics) experienced extremely high LPV/r 

clearance, whereas in the setting of multiple alleles associated with decrease of function in 

either SLCO1B1, ABCC2 or CYP3A locus, individuals experienced significantly lower LPV/r 

clearance. 

The better understanding of the genetic determinants of LPV/r pharmacokinetics 

allowed the development of a population pharmacokinetics model with genetic covariates 

and highlights the potential use of the array for other antiretroviral drugs. 

Despite the high pharmacokinetic relevance of these variants, their clinical impact 

could not be demonstrated through the retrospective assessment of the correlation between 

treatment naïve individual‟s genotype and LPV/r discontinuation rate. In this study, 

homozygocity for SLCO1B1*4 was considered as a protective trait against treatment 

discontinuation given the lower risk of treatment toxicity originated from increased clearance. 

However, at the opposite, this could also be seen as a risk factor for treatment 

discontinuation, as individuals might experience higher risk of treatment failure caused by 

sub-therapeutic drug levels. Overall emphasizing that, although we failed to detect any 

clinical relevance of these variants, these results should be interpreted with caution and 

would need further prospective assessment.   
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5.3. Pharmacogenetics and Clearance of Hepatitis C Virus 

We improved the understanding of shared genetic determinants of treatment-induced 

and spontaneous hepatitis C clearance. This could be achieved through several steps, 

including whole genome scan to detect variants associated with HCV infection outcome and 

then resequencing and fine mapping of the candidate gene IL28B, to identify candidate 

functional variants. The net contribution of IL28B was finally assessed in a single source 

cohort of pregnant women infected through the same HCV inoculum, by controlling for 

determinant cofactors such as viral diversity, gender and co-infection. In this cohort, 

individuals carrying one or more of the candidate functional SNPs were up to 5 times less 

likely to spontaneously clear the virus than individuals with the reference allele at the same 

positions. 

Together with other groups‟ work [72, 76], this helped in the understanding of HCV 

pathogenesis, shifting the focus of HCV research towards innate immunity and opening the 

perspectives for future work, notably development of novel therapies such as exogenous 

interferon- 3. Noteworthy, type III interferon receptor expression is tissue dependent - at the 

opposite of type I interferon receptor ubiquitous expression – potentially reducing the high 

prevalence toxicity experienced under pegylated interferon therapy.  
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6. CONCLUSION 
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6.1. General Conclusion 

In this work, three genetic approaches (single candidate gene analysis, large scale 

pathway analysis and genome-wide association study) were applied to investigate 

interindividual variability in either drug disposition/response or disease susceptibility. Each of 

those approaches could demonstrate the importance of the genetic background on these 

phenotypes. 

Through the single candidate gene approach we could demonstrate, by 

comprehensively analyzing CYP2A6, that EFV metabolism was critically dependent of the 

accessory metabolic pathway in the setting of impaired CYP2B6 function. Therefore, 

individuals with impaired main and accessory EFV metabolic pathways might benefit from a 

genotype-guided dose adjustment. This would reduce not only the treatment discontinuation 

rate but also the treatment cost. This might be of relevance in population where CYP2B6 and 

CYP2A6 loss-of-function alleles have a high prevalence, such as in Africans. 

 Through large scale ADME related gene analysis and fine mapping strategy we could 

demonstrate the role of OATP1B1 in LPV/r transport by identifying two functional variants 

influencing LPV/r clearance. At the time of analysis, this was the first lead to a 

pharmacogenetic determinant for LPV/r dispositioin. These results emphasize the discovery 

potential of large scale candidate gene analyses and the benefit of such arrays for drugs with 

ADME pathways that are poorly characterized. 

Through genome-wide association study and fine mapping strategy, we could 

demonstrate that hepatitis C treatment-induced or spontaneous clearance was strongly 

dependent of interferon- 3, which was not known to be involved in HCV infection at the time 

of analyses, and neither had been considered as a candidate. Those results emphasize the 

pathway discovery potential of genome-wide association studies. 
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Overall, this work illustrates the constantly expanding possibilities offered in 

pharmacogenetics/genomics research since the completion of the Human Genome Project, 

the International HapMap Project, the 1000 Genomes Project, and the availability of new 

high throughput genotyping and sequencing technologies. These are the bases for future 

initiatives in personalized medicine and individualized drug therapy. 
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8.1. Pharmacogenetics of Antiretroviral Agents 

8.1.1. Efavirenz 

8.1.1.1. Original article 

In Vivo Analysis of Efavirenz Metabolism in Individuals with Impaired CYP2A6 

Function 

Table S1: Demographic and genetic characteristics of the study population 

 Characteristic Value % study population 
Sex (No.) 

Men 
Women 

 
124 
45 

 
73 
27 

Age (y)  
Median (Range) 

 
47 (30-73) 

 
- 

Body weight (kg)  
Median (Range) 

 
77.5 (44-101) 

 
- 

Height (cm)  
Median (Range) 

 
179 (153-193) 

 
- 

Ethnicity (No.) 
Caucasians 
Africans 
Hispanics 
Asians 

 
142 
16 
6 
5 

 
83 
10 
4 
3 

PIs (No.) 
Ritonavir 
Saquinavir 
Lopinavir 
Atazanavir 

 
20 
4 
15 
18 

 
13 
3 
9 

11 
NRTIs (No.) 

Lamivudine 
Stavudine 
Didanosine 
Tenofovir 
Emtricitabine 
Zidovudine 

 
116 
15 
29 
29 
4 
81 

 
72 
9 

18 
18 
2 

50 

Entry inhibitors (No.) 
Enfuvirtide 

 
4 

 
2 

Efavirenz (No.) 
200 mg 
300 mg 
400 mg 
600 mg 
700 mg 
800 mg 

 
1 
1 
3 

162 
1 
1 

 
<1 
<1 
2 

96 
<1 
<1 

CYP2B6 genotype (No.) 
    Hom Ref 
    Het LOF  
    Hom LOF  
    Het GOF  

 
77 
53 
23 
16 

 
44 
33 
14 
9 

NRTIs, nucleoside reverse transcriptase inhibitors. Pis, Protease inhibitors. Hom, homozygous. Het, heterozygous. Ref, 

reference allele. LOF, decrease/loss-of-function allele. GOF, gain-of-function allele. 
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Table S2: Primers and probes for CYP2A6 genotyping  

 Allele fSNP Meth. Primers Probe Size T° Ref 

        

CYP2A6        

*1H, *1J g.-745A>G Seq. F: 5‟- CCCTCGAATGTGATCTTCTC –3‟;                     
R: 5‟- CAGCGGGTTCTCCCAGAAAG –3‟ - 582 bp 60°C This 

study 

*9, *13, *15 g.-48T>G Taq. Assay on demand from Applied Biosystems: C__30634332_10 - 60°C AB 

*2 g.1799T>A Taq. Assay on demand from Applied Biosystems: C__27861808_60 - 60°C AB 

*17 g.5065G>A Taq. Assay on demand from Applied Biosystems: C__34816076_20 - 60°C AB 

*7, *10, *19 g.6558T>C 
Seq. F: 5‟-TGCAAGTGTACCTGGCAGGAAA-3‟;                  

R: 5‟- CGCATCTTCCCCCCATTCTTATA –3‟ - 654 bp 62°C [1] 
*5 g.6582G>T 

*12 GC Seq. F : 5‟- GGGGGTGAAGGATCCCAGTACT-3‟;              
R : 5‟- GTCCCCTGCTCACCGCCA-3‟ - 1474 bp 65°C [1] 

*4/ *1X2 CNV qPCR Assay on demand from Applied Biosystems: HS0001002_cn - 60°C AB 

        

-Globin       

*1 CNV qPCR F : 5‟-GGCAACCCTAAGGTGAAGGC-3‟;                     
R : 5‟-GGTGAGCCAGGCCATCACTA-3‟ VIC-5‟-CATGGCAAGAAAGTGCTCGGTGCCT-3‟ TAMRA 67 bp 60°C [2] 

SNP, single nucleotide polymorphism. fSNP, functional SNP. Meth., Methods. Seq., Sequencing. Taq., TaqMan allelic discrimination. qPCR, quantitative 

PCR. AB, Applied Biosystems. GC, gene conversion. CNV, copy number variations. Position numbering of the functional SNPs refers to genomic (g.) DNA 

(bp1=A of ATG). F, forward. R, reverse 

1. Haberl M, Anwald B, Klein K, Weil R, Fuss C, Gepdiremen A, et al. Three haplotypes associated with CYP2A6 phenotypes in Caucasians. 
Pharmacogenet Genomics 2005; 15(9): 609-624. 

2. Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, Catano G, et al. The influence of CCL3L1 gene-containing segmental duplications on 
HIV-1/AIDS susceptibility. Science 2005; 307(5714): 1434-1440
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Table S3: Primers used for CYP2A6 resequencing 

Region Primers Size T° Ref 

Promoter 
F: 5‟- CCCTCGAATGTGATCTTCTC –3‟;                               

R: 5‟-CAGCGGGTTCTCCCAGAAAG –3‟ 
582 bp 60°C This study 

Promoter + Exon 1 
F: 5‟-GGCTGTGTCCCAAGCTAGGCA-3‟;                             

R: 5‟-GACTCTGGTCCACACTGGTCAAC-3‟ 
428 bp 62°C [1] 

Exon 2 
F : 5‟-TCCCTGACTGTGAGAACCTGGGT-3‟;                          

R : 5‟-GATGGGGAGGGAAGACCAGACT-3‟ 
407 bp 62°C [1] 

GC In 2 
F : 5‟-GGGGGTGAAGGATCCCAGTACT-3‟;                          

R : 5‟- GTCCCCTGCTCACCGCCA-3‟ 
1474 bp 65°C [1] 

Exon 3 
F: 5‟-CTCTGACTGAGTTTGCAGCTCTG-3‟;                       

R:5‟-AACGCGCGCGGGTTCCTCGT-3‟ 
379 bp 62°C [1] 

Exon 4 
F: 5‟-GCGCTGGGAATTTGGCTCAACAA-3‟;                         

R: 5‟-GGGGACACTGTCTGGAGGGC-3‟ 
375 bp 62°C [1] 

Exon 5 
F: 5‟-GCCCCACTGAAATACCTAAACAAC-3‟;                        

R: 5‟-CTGCCTGCCCCACTCCCAGA-3‟ 
389 bp 62°C [1] 

Exon 6 
F: 5‟-CCCTCTTTCCACCTTTGGTCTGA-3‟;                           

R: 5‟-ATCAGTGCAGACATTTTCAATATTTTAATAT-3‟ 
450 bp 62°C [1] 

Exon 7 
F: 5‟-TGATGTCTGTTCTGTTATGAATGCTCTACT-3‟;                    

R: 5‟-GACAGGGTCTAGAAAGCTTCTAATGT-3‟ 
423 bp 62°C [1] 

Exon 8 
F: 5‟-GTCCCCCAAACTCCTGCCTAGA-3‟;                            

R: 5‟-TACACCGCAGAGAGGGGAGGA-3‟ 
451 bp 62°C [1] 

Exon 9 
F: 5‟-GGTTCACCATTGTTACATCTCTTATAGAAAGAAAT-3‟;                      

R: 5‟-TCCTGCCCCCAGTCTTAGCTG-3‟ 
473 bp 62°C [1] 

GC 3‟ UTR region 
F: 5‟-TGCAAGTGTACCTGGCAGGAAA-3‟;                            

R: 5‟-CGCATCTTCCCCCCATTCTTATA-3‟ 
654 bp 62°C [1] 

   GC, Gene conversion. In, intron 2. UTR, untranslated region. F, forward. R, reverse  

 

1. Haberl M, Anwald B, Klein K, Weil R, Fuss C, Gepdiremen A, et al. Three haplotypes associated with 

CYP2A6 phenotypes in Caucasians. Pharmacogenet Genomics 2005; 15(9): 609-624 
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Table S4: Primers used to amplify and resequence CYP2A6*34 

Region amplified PCR-Primers Size T° 

Promoter CYP2A7->      

intron 5 CYP2A6 

F: 5‟–CCTCCGCAACAGAAGACCTC –3‟;                              

R: 5‟–TTGAATGGGCCTGTGTCATC –3‟ 
4010 bp 65°C 

Exon 1 CYP2A7->     

intron 5 CYP2A6 

F: 5‟–TCCCAAGCTAGGTGGCATTC–3‟;                              

R: 5‟–TTGAATGGGCCTGTGTCATC–3‟ 
3692 bp 65°C 

Exon 2 CYP2A7->    

intron 5 CYP2A6 

F : 5‟–GTGAAGGATCCCAGTACTTG–3‟;                              

R : 5‟–TTGAATGGGCCTGTGTCATC–3‟ 
3176 bp 65°C 

Exon 3 CYP2A7->    

intron 5 CYP2A6 

F : 5‟–TCTCTGCGCATCTCTATCTG–3‟;                               

R : 5‟–TTGAATGGGCCTGTGTCATC–3‟ 
2260 bp 65°C 

Exon 4 CYP2A7->    

intron 5 CYP2A6 

F: 5‟–CGCACGGTGAGTAAGGTTCC–3‟;                          

R:5‟–TTGAATGGGCCTGTGTCATC–3‟ 
1819 bp 65°C 

    

Region sequenced Sequencing-Primers Size T° 

Exon 1 
F: 5‟–TCCCAAGCTAGGTGGCATTC–3‟;                                

R: 5‟–CCCAGCACCGAGATGTCAAG –3‟ 
552 bp 50°C 

Exon 2 
F: 5‟–GTGAAGGATCCCAGTACTTG–3‟;                                

R: 5‟–ATGGAGAGGCCACAGTGAAG –3‟ 
407 bp 50°C 

Exon 3 
F: 5‟–TCTCTGCGCATCTCTATCTG–3‟;                                

R: 5‟–TCAGAGGTCTGAGGAGAATC–3‟ 
639 bp 50°C 

Exon 4 
F: 5‟–CGCACGGTGAGTAAGGTTCC–3‟;                                

R: 5‟–GGCTTTTGTTCAGGTGCTCAG –3‟ 
1111 bp 50°C 

Recombinant region 
F: 5‟–AGTTGCACCAGAAGCCTGTC–3‟;                                

R: 5‟–GGCTTTTGTTCAGGTGCTCAG –3‟ 
569 bp 50°C 

Exons 5 to 9 were re-sequenced with the primers shown in Supplementary Table S3. 
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Table S5: Association of CYP2A6 genotype and EFV plasma exposure  

 

 CYP2A6 alleles (n) Median log10 EFV 

AUC ( g*h/ml) 

Range log10 EFV 

AUC ( g*h/ml) 
n 

 Ref DOF<50% DOF≥50% LOF 

C
Y

P
2

B
6

 h
et

 G
O

F 

2 - - - 1.445 1.389-1.654 8 

1 1 - - 1.590 1.456-1.611 3 

1 - 1 - 1.362 1.248-1.598 3 

1 - - 1 1.668 - 1 

- 1 1 - 1.596 - 1 

C
Y

P
2
B

6
 re

fe
re

nc
e 

2 - - - 1.590 1.188-1.919 51 

1 1 - - 1.680 1.567-2.129 10 

1 - 1 - 1.569 1.306-1.892 9 

1 - - 1 1.552 1.526-1.578 2 

- 1 1 - 1.790 1.621-1.957 3 

- - 2 - 1.673 - 1 

- - 1 1 1.769 - 1 

C
Y

P
2
B

6
 h

et
 L

O
F 

2 - - - 1.716 1.458-2.164 30 

1 1 - - 1.629 1.480-1.975 8 

1 - 1 - 1.727 1.590-1.911 8 

1 - - 1 1.666 1.632-1.783 3 

- 1 1 - 1.839 1.806-2.011 3 

- - 1 1 1.734 - 1 

C
Y

P
2
B

6
 h

om
 L

O
F 

2 - - - 2.177 1.687-2.639 12 

1 1 - - 2.264 1.850-2.317 5 

1 - 1 - 2.518 2.286-2.635 3 

- 1 1 - 2.482 - 1 

- - 2 - 2.464 - 1 

- - - 2 2.989 - 1 

Hom, homozygous. Het, heterozygous. Ref, reference. DOF, decrease-of-function. LOF, loss-of-function. 
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Table S6: Genetic profiles selected for metabolite analysis 

 

 CYP2A6 alleles (n) Individuals 

(n)  Reference DOF<50% DOF≥50% LOF 

C
Y

P
2

B
6

 re
fe

re
nc

e 
al

le
le

s 2 - - - 11 

1 1 - - 8 

1 - 1 - 3 

- 1 1 - 3 

- - 2 - 1 

- - 1 1 1 

C
Y

P
2
B

6
 h

om
 L

O
F 

2 - - - 12 

1 1 - - 5 

1 - 1 - 2 

- - 2 - 1 

- - - 2 1 

Hom, homozygous. Het, heterozygous. DOF, decrease-of-function. LOF, loss-of-function. 
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8.1.2. Lopinavir 

8.1.2.1. Original article 

ADME Pharmacogenetics – Investigation of the Pharmacokinetics of the 

Antiretroviral Agent Lopinavir 

Figure S1: Analysis of the SLCO1B1-1A2 cluster. The upper panel presents the linkage 

disequilibrium (LD) pattern (R2) for the study-wide significant SNP rs4149056. SNPs are colored 

according to the association P value in Step 1. The dbSNP rs number of the two independent signals 

are shown. The lower panel depicts the various LD blocks in the regions. The analysis indicates the 

presence of association signals independent of the study-side hit. 

 



SUPPLEMENTARY FILES – Lopinavir ADME Pharmacogenetics  151 
 

 

Figure S2: SLCO1B1 resequencing. 49 polymorphisms were identified by resequencing 

SLCO1B1 gene in 24 individuals of the discovery population. There were 3 polymorphisms in the 

promoter region (blue), 7 in the exons, three of which were synonymous (black) and 4 non-

synonymous (purple), 28 polymorphisms in the exon-intron boundaries (gray) and 11 in the 3‟UTR 

region (green). The position refers to the genomic DNA (g.). Seven of the SNPs have not been 

previously identified (new). The dbSNP rs ID for the known SNPs are described in the Supplementary 

Table S7 
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Figure S3: Analysis of the CYP3A cluster. The upper panel presents the linkage disequilibrium 

(LD) pattern (R2) for the highest significant SNP rs6945984 in the CYP3A locus. SNPs are colored 

according to the association P value in Step 1. The lower panel depicts the two LD blocks in the 

regions. The analysis do not indicates the presence of association signals independent of the 

rs6945984. 
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Figure S4: Ritonavir concentrations. Ritonavir observed concentrations (circles) in 96 patients 

with population average prediction (solid line) and 90 % prediction interval (dashed lines). 
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Figure S5: Influence of genetic variants on ritonavir and lopinavir average predicted 
clearance in the sub-set of 96 individual from the replication population (n=148). 

A. Average predicted ritonavir (RTV) clearance among the individuals with different genotypes of 

ABCC2 rs717620. The percentage and the direction of differences respect the homozygote carriers 

have been shown. 

B. Average predicted lopinavir (LPV) clearance by the model including the RTV plasma levels among 

the individuals behave the different genetic score groups. The score group «-1,0,1» represents 

SLCO1B1*4 Het variant «-1» carriers, for Hom Ref allele «0» carriers in any of the four SNPs 

included, and Het variant carriers in any of the three SNPs (rs4149056, rs717620, and rs6945984), 

finally the score group «2,3» represents the carriers of 2 or 3 variant alleles in in any of SLCO1B1 

rs4149056 (SLCO1B1*5), ABCC2 rs717620 or rs6945984 in the CYP3A cluster variants. The 

percentage and the direction of differences respect the homozygote carriers have been shown. 
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Figure S6. Lopinavir population plasma concentration prediction. Prediction for the 148 

individuals in the replication study in relation to the three genetic score groups (see Figure 4). 

Population predictions of the corresponding genetic score groups were represented by black lines, 

and the 90% prediction interval is shown by gray dotted lines. The circles represent the individual 

plasma concentrations. A) Individual homozygous for rs11045819 (SLCO1B1*4) only; B) Reference 

group includes individuals with one or less variant alleles of SLCO1B1*4 and in total less than two 

variant alleles in SLCO1B1 (*5, rs4149056), ABCC2 (rs717620) and CYP3A cluster (rs6945984); C) 

individuals carrying two or more alleles associated with diminished function in SLCO1B1 (*5, 

rs4149056), ABCC2 (rs717620) and CYP3A cluster (rs6945984). 
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Table S1,Table S2 (lists of the genes and variants included in the ADME array) and Table 

S6 (list of the P-value obtained for the variants included in the array) are not presented here 

because of their size, but are available on Pharmacogenetics and Genomics website ().  

 
Table S3: commercially available TaqMan® SNP Genotyping Assays used for 
genotyping the nine variants in the replication study. 

Gene symbol dbSNP_rs# Alleles change AB Assay ID 

SLCO1B1 rs4149056 T>C(*5) C__30633906_10 

  rs4149032 C>T C___1901709_10 

  rs11045819 C>A (*4) NA * 

  rs11045891 A>C C__31106921_10 

  rs17328763 T>C C__33090767_10 

ABCC2 rs717620 C>T C___2814642_10 

CYP3A_locus rs6945984 T>C C__29879759_10 

SLCO1A2 rs10841795 A>G C__25605906_20 

SLCO2B1 rs1077858 A>G C__27163766_10 

* The rs11045819 was genotyped by direct sequencing using the same primers for SLCO1B1 exon 5 
amplification described in the Supplementary Table S4. 
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Table S4: Primers used for SLCO1B1 resequencing.  

Region Primers Size T° Ref 

Promoter part 1 F: 5‟- GTGCCAGGCATTATGTAAGG –3‟;                              
R: 5‟-GTAAGAATCTACTGGCGAGTTG –3‟ 797 bp 65°C This study 

Promoter part 2 F: 5‟- TTAACAGGCATAATCTTTGGTCTC –3‟;                              
R: 5‟- TCTTTGCTTGGTACATAAGTATGG –3‟ 817 bp 63°C This study 

Exon 1 F: 5‟- CAGGTGGTATCTCCAGTCTC -3‟;                              
R: 5‟- GAGTCTAGTGTGATCAGTCAATG -3‟ 850 bp 65°C This study 

Exon 2 F : 5‟- TGACCTAGCAGAGTGGTAAC -3‟;                              
R : 5‟- TTCCTAAATATGTCGTGATCAATCC -3‟ 580 bp 63°C This study 

Exon 3 F: 5‟- CTGGAAATGCTGCCTTTGAG -3‟;                          
R:5‟- GCAGTTATGACAACCACAAATG -3‟ 690 bp 64°C This study 

Exon 4 F: 5‟- TTCATTCCAGTATAATCCAGTCAAC -3‟;                         
R: 5‟- AATCTTATAGGCAAAGACGTACAG -3‟ 697 bp 63°C This study 

Exon 5 F: 5‟- TATCTTTCTTGCTGGACACTTC -3‟;                            
R: 5‟- GGCAGGTTTATCATCCAGTTC -3‟ 564 bp 65°C This study 

Exons 6-7 F: 5‟- GGACTAATACACCATATTGTCAAAG -3‟;                         
R: 5‟- ATTAAGCAAAGGACTATTGAAAGAG -3‟ 718 bp 61°C F: Morimoto 

R: This study 

Exon 8 F: 5‟- GGCAATGACAACAATATCATGAC -3‟;                        
R: 5‟- ACCAGGGCATAGTACAGTTC -3‟ 847 bp 64°C This study 

Exon 9 F: 5‟- GGTATTGCAGGCTATTCTCAC -3‟;                             
R: 5‟- TTGTAAGTAACTGAGTCTTGATTTC -3‟ 679 bp 61°C This study 

Exon 10 F: 5‟- TGTATGTAACAAACATGCACATTC -3‟;                          
R: 5‟- CCCACTACTAATTGTAAGTACCAC -3‟ 619 bp 63°C This study 

Exon 11 F: 5‟- CCCTCTTTCTCTGCTTTCAC-3‟;                                    
R: 5‟- TCACAATAACAGATAATACTGGAAAC-3‟ 407 bp 61°C This study 

Exon 12 F: 5‟- GTTCTAGGCACTAATTTCTTTGTTTC-3‟;                          
R: 5‟- ATTATTAATTACAGCCTTGAGAGTTC-3‟ 626 bp 61°C This study 

Exon 13 F: 5‟- ATAAAGTCTGTTCTAACCACTTCC-3‟;                          
R: 5‟- GAATTCTCCTTTAGGTCCATCAC-3‟ 592 bp 63°C This study 

Exon 14 F: 5‟- GTCAATGACATTACTACATGATTTGG-3‟;                          
R: 5‟- AATGAGATACGAGATTGCTTGATAC-3‟ 474 bp 63°C This study 

Exon 15 F: 5‟- CAGAGGCAACTAGAGTATAGTTTC-3‟;                          
R: 5‟- AGTTCATAGGCTTATTTATACTTCCAC-3‟ 572 bp 64°C This study 

3‟UTR part 1 
F: 5‟- AAACAGCATTGCATTGATTCAG-3‟;                              
R: 5‟- GACTAAGAGACGTGGGAAAG-3‟ 836 bp 64°C This study 

3‟UTR part 2 F: 5‟-TAGCCACTCTCATACTTATCTTAGC -3‟;                            
R: 5‟-GCATCAAACAAGTCTATTGACATC -3‟ 860 bp 65°C This study 

UTR, untranslated region. F, forward. R, reverse  

Ref: Morimoto et al. Drug Metab Pharmacokinet 2004; 19(6): 453-455 [PMID: 15681900]. 
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Table S5: Concomitant drugs in the discovery and replication populations. 

Concomitant 
drugs 

Discovery Replication 

Total 
(n=638) 

Cases 
(n=121) 

Controls 
(n=92) 

Total 
(n=148) 

RTV 
(n=96)* 

n (%) n (%) n (%) n (%) n (%) 

Anti-HIV drugs      

PIs      

 Atazanavir 97 (15.20) 22 (18.18) 10 (10.87) 13 (8.78) 9 (9.38) 

 Saquinavir 49 (7.68) 8 (6.61) 10 (10.87) 5 (3.38) 4 (4.17) 

 Amprenavir 48 (7.52) 7 (5.79) 8 (8.70) 3 (2.03) 2 (2.08) 

 Nelfinavir 11 (1.72) 3 (2.48) 0 (0.00) 0 (0.00) 0 (0.00) 

 Indinavir 6 (0.94) 3 (2.48) 1 (1.09) 0 (0.00) 0 (0.00) 

 Tipranavir 11 (1.72) 0 (0.00) 4 (4.35) 0 (0.00) 0 (0.00) 

 Duranavir 5 (0.78) 1 (0.83) 0 (0.00) 0 (0.00) 0 (0.00) 

NNRTIs      

 Efavirenz 119 (18.65) 19 (15.70) 22 (23.91) 22 (14.86) 15 (15.63) 

 Nevirapina 44 (6.90) 7 (5.79) 6 (6.52) 10 (6.76) 5 (5.21) 

 Etravirine 1 (0.16) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 

NRTIs      

 Lamivudine 377 (59.09) 71 (60.68) 50 (55.56) 76 (51.35) 43 (44.79) 

 Abacavir 134 (21.00) 20 (17.09) 30 (33.33) 0 (0.00) 0 (0.00) 

 Stavudine 42 (6.58) 7 (5.98) 7 (7.78) 6 (4.05) 1 (1.04) 

 Zidovudine 229 (35.89) 35 (29.91) 32 (35.56) 48 (32.43) 25 (26.04) 

 Tenofovir 239 (37.46) 55 (47.01) 29 (32.22) 76 (51.35) 59 (61.46) 

 Emtricitabine 29 (4.55) 6 (5.13) 2 (2.22) 36 (24.32) 32 (33.33 

 Zalcitabine 1 (0.16) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 

 Didanosine 120 (18.81) 24 (20.51) 17 (18.89) 22 (14.86) 12 (12.50) 

EIs      

 Enfuvirtide 28 (4.39) 9 (7.69) 6 (6.67) 0 (0.00) 0 (0.00) 

 Maraviroc 1 (0.16) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 

IIs      

 Raltegravir 1 (0.16) 0 (0.00) 0 (0.00) 3 (2.03) 1 (1.04) 

CYP interacting 
drugs** 

     

 CYP inhibitors 22 (3.45) 6 (4.96) 5 (5.43) 3 (2.03) 5 (5.21) 

 CYP inducers 4 (0.63) 0 (0.00) 1 (1.09) 0 (0.00) 0 (0.00) 

 CYP inhibitors + 
  inducers 

6 (0.94) 1 (0.83) 1 (1.09) 2 (1.35) 2 (2.08) 

 

CYP, cytocrome P450 enzymes; EIs, entry inhibitors; IIs, Integrase inhibitors; NNRTIs, 

nonnucleoside reverse transcriptase inhibitors; NRTIs, nucleoside reverse transcriptase 

inhibitors; PIs, protease inhibitors. 

* Individuals with lopinavir and ritonavir plasma levels available. 

** Non-antiretroviral CYP interacting drugs. 
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Table S7: Polymorphisms identified by SLCO1B1 resequencing. 

Location SNP position* Amino acid 
Change dbSNP rs # 

promoter g.-12099A>G  rs4149013 
 g.-11939T>C  rs17328763 
 g.-11187G>A  rs4149015 
intron 1 g.-10192insCATAG  NEW 
intron 2 g.30839G>A  rs7295464 
intron 3 g.31306T>A  rs2291073 
 g.32812T(9)>T(10)  rs4149094 
intron 4 g.33232C>A  rs4149036 
exon 5 c.388A>G N130D rs2306283 
 c.411G>A S137S rs11045818 
 c.463C>A P155T rs11045819 
intron 5 g.35483C>T  rs11045820 
 g.35488A>T  rs4149044 
 g.35512G>A  rs4149045 
 g.35514G>A  rs4149046 
 g.36887delTACTTG  rs61760243 
exon 6 c.521T>C V174A rs4149056 
 c.571T>C L191L rs41149057 
 c.597C>T F199F rs2291075 
intron 7 g.37479C>T  rs2291076 
intron 8 g.55888T>C  rs7957274 
intron 9 g.59364A>G  rs4149066 
 g.59403C>G  rs4149067 
intron 11 g.75375C>G   rs4149070 
 g.75456T>C   rs4149071 
 g.75470delA   rs4149100 
 g.75477G>A   rs4149072 
intron 12 g.75858T>C  NEW 
 g.75876T>A  NEW 
 g.80553T>A   rs11045873 
 g.80555G>C   rs11045874 
intron 13 g.80799A>G  NEW 
 g.80855C>T   rs4149077 
 g.80857C>T   NEW 
 g.82989C>A  rs12814646 
 g.83051G>C  rs4149080 
intron 14 g.97310T>C   rs12815795 
 g.97341A>G  NEW 
exon 15 c.1929A>C  L643F rs34671512 
3'UTR g.98054T>G   rs4149087 
 g.98064A>C   rs11045891 
 g.98078 A>G  rs4149088 
 g.98286A>G   rs11045892 
 g.98311T>C   rs11045893 
 g.98510T>G   rs12372157 
 g.98837delTAAGGTTATTA  NEW 
 g.98911G>T  NEW 
 g.98971C>T  NEW 
 g.99078G>A  rs12370842 
 g.99143A>C   rs11045896 

* Position numbering refers to genomic DNA (indicated as g.) according to NT_009714.17 or to coding DNA (indicated as c.) according to 
NM_006446.3; base pair +1 = A of ATG start codon of SLCO1B1 gene.
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8.2. Pharmacogenetics and Clearance of Hepatitis C Virus 

8.2.1. Original article 

Genetic Variation in IL28B is Associated with Chronic Hepatitis C and 

Treatment Failure: A Genome-Wide Association Study 

Figure S1: IL28 locus recombination pattern 

A. Association of SNPs with chronic (versus spontaneously resolved) HCV infection in the IL28B/A 

and IL-29 locus. The lowest P values are located within a low recombination rate region that 

encompasses the IL28B gene. The area is separated from the IL28A gene by a high recombination 

peak. This suggests that the association targets a haplotype block containing IL28B. Thus, IL28B is 

more likely to be associated with spontaneous clearance than IL28A. Measured SNPs, as opposed to 

inferred SNPs, are indicated by a X. 

B. The association with treatment failure shows the same pattern as for chronic HCV infection and 

further supports an association with IL28B. 
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Figure S2: Pair-wise LD (r2) pattern of the IL28 region 
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8.2.2. Original article 

Estimating the Net Contribution of IL28B Variation to Spontaneous Hepatitis C 

Virus Clearance 

Supplementary Figure S1: IL28B copy number investigation and artifact.  

A. An approach consisting of a forward primer (in green) located downstream a reverse primer (in 

blue) was performed in order to identify potential gene duplication.  

B. The presence of repetitive and complementary region (AluJo) in IL28B 3‟UTR resulted in the 

artificial formation of chimeras by template switching. 
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Annealing
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Supplementary Table S1: Demographics  
 SHCS Single Source Cohort# 

Characteristics  
 

Spontaneous 
clearance 

Chronic 
infection 

Spontaneous 
clearance 

Chronic 
infection 

N 200 189 27 44 
Age (median, IQR) 39 (35-43) 39 (34-42) 29 (25-31) 28 (26-33) 
Female sex, n (%) 95 (47) 60 (31)* 27 (100) 44 (100) 
HBs positive, n(%) 20 (10) 7 (4)** 0 (0) 0 (0) 
HCV genotypes     

1 

unknown 

75 (40) 27 (100) 44 (100) 
2 5 (3)   
3 56 (30)   
4 21 (11)   

Other / unknown 72 (17)   
Log HCV RNA 
(median, IQR) $ 0 (0) 6.0 (5.7-6.8)   

NA: Not applicable. *P=0.02, **P=0.002 
$ HCV RNA at set point 
# All HIV negative 
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Supplementary Table S2: Primers and Probes for IL28B genotyping.  

Rs number position Primers Probe  Size Ref 
      

IL28B      

Preamplification step 
F: 5‟-GAGCAGGTGGAATCCTCTTG-3‟;                        

R: 5‟- AGCAGGCACCTTGAAATGTC–3‟ 
- 3308 bp This study 

rs8099917 g.-7558A>G Assay on demand from Applied Biosystems: C__11710096_10 unknown AB 

rs12979860 g.-3180G>A 
F: 5‟-GCGCGGAGTGCAATTCAAC-3‟;                        

R: 5‟- GCCTGTCGTGTACTGAACCA–3‟ 

VIC 5„-TGGTTCGCGCCTTC-3„- MGBNFQ               

6FAM 5„-CTGGTTCACGCCTTC-3„- MGBNFQ 
66 bp [1] 

rs4803219 g.-312G>A 
F: 5‟- AGGCTGTGTTTTCACTTTTCCTACA-3‟;                        

R: 5‟- GTAATTCCTGCCTGAGCTCCAT–3‟ 

VIC 5„-TCTGTCAGGGATAAAA-3„- MGBNFQ               

6FAM 5„-TTCTGTCAGAGATAAAA-3„- MGBNFQ 
88 bp AB (custom assay) 

rs28416813 g.-37G>C 
F: 5‟- CAGCCCCTGCCCTCAG-3‟;                              

R: 5‟- TGTCACAGAGAGAAAGGGAGCT–3‟ 

VIC 5„-TGGGCAGCCTCTGCAT-3„- MGBNFQ               

6FAM 5„-TGGGCAGCCTCTCCAT-3„- MGBNFQ 
60 bp AB (custom assay) 

rs8103142 g.502A>G 
F: 5‟- CTAACCTGTGCCTTTGCTGTCTA-3‟;                              

R: 5‟- GCCTCAGGTCCCAGGTC–3‟ 

VIC 5„-AGCGGCACTTGCAG-3„- MGBNFQ               

6FAM 5„-AGCGGCACCTGCAG-3„- MGBNFQ 
94 bp AB (custom assay) 

rs4803217 g.1388G>T 
F: 5‟- GCCAGTCATGCAACCTGAGATTTTA-3‟;                              

R: 5‟- AAATACATAAATAGCGACTGGGTGACA–3‟ 

VIC 5„-TAGCCACTTGGCTTAAT-3„- MGBNFQ               

6FAM 5„-TTAGCCACTTGTCTTAAT-3„- MGBNFQ 
82 bp AB (custom assay) 

CNV exon5-3‟UTR 
F: 5‟- CCTGAATTGTGTTGCCAGC-3‟;                              

R: 5‟- CATAAATAGCGACTGGGTGAC–3‟ 
6FAM-5‟- ACCCTTCCGCCAGTCATGC-3‟ MGBNFQ 121bp This study 

      

HMBS (encoding PBGD) 

*1 CNV 
F : 5‟-AAGGGATTCACTCAGGCTCTTTC-3‟;                     

R : 5‟-GGCATGTTCAAGCTCCTTGG-3‟ 

VIC-5‟-CCGGCAGATTGGAGAGAAAAGCCTGT-3‟- 

MGBNFQ 
75 bp [2] 

SNP, single nucleotide polymorphism. AB, Applied Biosystems. CNV, copy number variations. Position numbering of the SNPs refers to genomic (g.) DNA 

(bp1=A of ATG) in the sense of the gene (opposite the sense of the genome, as IL28B is encoded in the negative strand). F, forward. R, reverse (according to 
the gene and not the genome) 

1. Ge, D., et al., Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature, 2009. 461(7262): p. 399-401. 

2. Konig, R., et al., Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell, 2008. 135(1): p. 49-60. 
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9.1. Original letter (Pharmacotherapy. 2008; 28(9): 215e-216e) 
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9.2. Original article [Antimicrobial Agents and Chemotherapy. 2010 Nov; 54(11):4619-25] 
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9.3. Original article [Hepatology. 2011 Feb;53(2):396-405] 
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