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Abstract

The transcriptional landscape of the mammalian genome consists of a variety of different RNAs,

such as protein-coding RNAs (mRNAs), long non-coding RNAs (lncRNAs) and microRNAs (miR-

NAs) among others. Alternative splicing further diversifies the observed landscape. However, a high

number of alternatively spliced transcripts is produced by errors during transcription and splicing

and is referred to as transcriptional noise without functional significance.

Circular RNAs (circRNAs) constitute a class of RNAs that was only recently discovered. Little

is known about their properties and functional relevance in respect to other RNAs of the transcrip-

tome. Moreover, it is unknown if - as claimed in several studies - they are beneficial to the organism

and thus have been selectively retained in the genomes of a variety of species.

By analyzing circRNAs across a set of five mammalian species representing different mammalian

lineages, I provide first evidence that circRNAs are predominantly a transcriptional by-product

caused by the integration of species-specific and recently active transposable elements (TEs).

CircRNAs are expressed at low levels. Their biogenesis is influenced by TEs in the flanking

introns of the circRNA causing the formation of a hairpin structure in the pre-mRNA that allows

backsplicing. The integration and fixation of TEs in coding genes is biased to genes that are GC low

and have a complex structure (many exons, long introns) leading to a subset of genes predisposed

to produce circRNAs. The independent targeting of structurally similar genes by TEs has led to

the independent emergence of circRNAs in orthologous genes of multiple species. The tight link

between circRNA expression and recently active, species-specific TEs suggests that many circRNAs

are transcriptional noise.
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Résumé

Le paysage transcriptionnel des génomes mammifères consiste en une variété d’ARNs différents,

tels que, entre-autres, les ARN codant pour des protéines (ARNm) et les micro-ARNs (miARN).

L’épissage alternatif diversifie encore plus le paysage observé. Pourtant, un grand nombre de tran-

scrits venant de l’épissage alternatif est dû à des erreurs pendant la transcription et l’épissage, et

sont qualifiés de bruit transcriptionnel sans signification fonctionnelle.

Les ARNs circulaires (ARNcircs) constituent une classe d’ARNs qui n’a été découverte que récem-

ment. Leurs propriétés, de même que leur pertinence fonctionnelle, sont peu connues en comparaison

des autres ARNs du transcriptôme. De plus, on ignore encore si – comme le prétendent certaines

études – ils sont bénéfiques pour l’organisme, et par conséquent ont été sélectivement conservés dans

le génome d’un certain nombre d’espèces.

Grâce à l’analyse des ARNcircs au travers d’un ensemble de cinq espèces de mammifères représentant

plusieurs lignées, je fourni les premières indications que les ARNcircs sont de manière prédominante

des sous-produits provenant de l’intégration d’éléments transposables propres à l’espèce et récem-

ment actifs.

Les ARNcircs sont faiblement exprimés. Leur biogenèse est influencée par les éléments trans-

posables dans les introns adjacents de l’ARNcirc, causant la formation d’une structure en épingle-

à-cheveux qui permet le rétro-épissage. L’intégration et la fixation des éléments transposables dans

les gènes codants sont biaisés en faveur des gènes qui ont un faible contenu en GC, et qui ont une

structure complexe (beaucoup d’exons et de longs introns), qui constituent donc un sous-ensemble

de gènes prédisposés à produire des ARNcircs. Le ciblage indépendant de gènes similaires par les

éléments transposables a amené l’émergence indépendante d’ ARNcircs dans les gènes orthologues

chez plusieurs espèces. Le lien étroit entre l’expression d’ARNcircs et les éléments transposables pro-

pres à l’espèce récemment actifs suggère que de nombreux ARNs circulaires sont des sous-produits

de bruit transcriptionnel.
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The transcriptional landscape of the mammalian genome consists of a variety of different RNAs,

such as protein-coding RNAs (mRNAs), long non-coding RNAs (lncRNAs) and microRNAs (miR-

NAs) among others. Together, they form and orchestrate various networks that are not only main-

taining every-day cell and tissue homeostasis, but are also responsible for the developmental pro-

cesses that are transforming a single-cell zygote into a complex living organism. Each transcript is

characterized by its own spatio-temporal expression profile. Some of these expression profiles are

well conserved between species, while others reflect species-specific adaptations. The rise of next-

generation sequencing approaches led to a dramatically increased number of annotated RNAs and

expression profiles, which has challenged our understanding of species complexity. However, the ex-

pression of a high number of these transcripts might only have little or no impact on the organism.

It is considered transcriptional noise, which will only experience weak selective pressure if at all.

[1]. The expression of deleterious transcript variants in contrast, is subject to purifying selection -

a process, in which deleterious variation is removed.

Circular RNAs (circRNAs) constitute a class of RNAs that was only recently described in large-

scale in mammalian genomes. Although found in the majority of analyzed genomes, little is known

about their contribution to the observed species complexity. To understand whether the expression of

circRNAs is an important and conserved feature of mammalian genomes, one needs to analyze them

in the context of the whole genome and its properties. In the introductory chapters, I will therefore

provide an overview of different processes that shape the mammalian genome, before discussing the

characteristics of circRNAs. I will start by introducing the concept of isochores to show how genomes

are globally structured. I will then continue by explaining the processes of transcription and splicing,

which result in the observed complexity of the mammalian RNA landscape. The transcription of

DNA and splicing of mRNA are stochastic processes and I will describe their robustness in light of

transposable elements. Finally, I will summarize the state of the art of the circRNA research field

and discuss some of the current working hypotheses.

1.1 Mammalian genomes and transcriptomes

1.1.1 Isochores

Avian and mammalian genomes can be divided into adjacent DNA stretches (> 300 nt) that differ

from each other in their local base composition (proportion of A, T, G and C), but are fairly

homogeneous on their own. The discovery gave rise to the term isochore and the grouping of
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Isochore pattern for human chromosome 11 and 12 Figure 1: Isochore landscape for
human chromosome 11 and 12 |
GC content is plotted along the whole
length of chromosome 11 and 12. Each
vertical bar represents an isochore. The
GC content in each isochore is color-
coded as follows: L1 < 37%, L2 = 37-
41%, H1 = 41-46%, H2 = 46-53%, H3
> 53%. Figure adapted from Figure 1
in Costantini et al. [8].

genomic regions into distinct isochores based on their GC content: L1 (< 37%), L2 (37-42%), H1

(42-47%), H2 (47-52%) and H3 (> 52%) (Figure 1, reviewed in [2]). Isochores are associated with

distinct features of gene structure, function and expression. Amit et al. showed that exons can be

separated into two groups based on their GC content and length of the flanking introns. GC-poor

exons are flanked by large introns, while GC-rich exons are flanked by short introns. Furthermore,

the GC difference between GC-poor exons and their introns is large (the GC difference between

exons and introns is also known as GC amplitude), whereas GC-rich exons are accompanied by

introns of similar GC content. In addition, Amit et al. suggested that the strong GC amplitude

observed in GC-poor exons helps the splicing machinery to recognize these exons and to position

itself correctly onto them ("exon definition mode"). In contrast, short, GC-rich exons are spliced

based on "intron definition" (see Chapter 1.1.2 for further details). In both categories, mutations

that interfere with the local GC pattern lead to mis-spliced transcripts [3]. Several studies provided

evidence that the local GC content is important for nucleosome positioning, methylation patterns

and genome structure [4–6]. Interestingly, tissue-specific genes tend to be in GC-poor isochores,

while broadly expressed genes are enriched in isochores with elevated GC levels [7]. Furthermore,

different isochores are associated with different gene ontology (GO) terms. While L1 and L2 are

overrepresented with functional gene categories related to sensory perception and processing, genes

of intermediate GC levels (L2-H2) tend to have housekeeping functions (molecular binding and

organization). GC-rich genes (H2/H3) are enriched in developmental processes and DNA-binding

GO categories [7].

The genomic isochore patterns are largely conserved between species [3]. The ancestral genome,

as proposed by Galtier et al., was GC-poor, but already possessed regions with distinct GC content.

Throughout time, GC differences became more distinct in all mammalian groups, except for rodents.

The latter present an evolved state in which the GC variability between isochores has decreased [9].
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It is still a matter of debate how and why isochores evolved. Current theories can be grouped

into two major causes: Neutral evolution and selection. Supporters of the "neutral evolution cause"

argue that isochores are merely a by-product of the mutation bias during DNA repair and GC-biased

gene conversion. In contrast, proponents of the "selection cause" argue that the high GC content of

mammalian genomes evolved as a consequence of the changes in homothermic body temperatures.

Selective pressure acted on high GC content, because GC-rich DNA is thermodynamically stable

and bendable. DNA stability and flexibility influence chromatin conformation and allow regulatory

flexibility in warm-blooded organisms. For each theory, different pro and contra arguments exist,

and it is difficult to find a common explanation (reviewed in [10]).

Besides the remaining controversies about the origin of isochores, it is evident that the local GC

content needs to be taken into account when studying gene structure, expression and splicing.

1.1.2 DNA transcription and splicing

In a classical and simplified view, a coding gene consists of a promoter, exons and introns. Exons

hold the functional information encoded by the gene, whereas introns typically contain regulatory

signals. During transcription, the DNA is transcribed by an RNA polymerase into a pre-mRNA,

which contains both exons and introns. In the next step, the different exon parts are joined to each

other creating mRNA - a reaction which is known as splicing and is catalyzed by the spliceosome.

Finally, the mRNA is translated into a protein.

DNA transcription can be divided into three major steps: Initiation, elongation and termination.

During the initiation phase, the RNA polymerase binds together with additional transcription factors

to the promoter of a gene. The DNA is unwinded and the elongation phase starts. During this

process, the polymerase traverses along the DNA strand and forms the pre-mRNA by complementary

base pairing with the DNA. Once the polymerase acquires a termination-sequence at the end of the

gene, transcription stops. The pre-mRNA is released and is now ready for splicing.

The spliceosome is a complex of small nuclear rinbonucleoproteins (snRNPs). During the splicing

reaction, the 5’-end of an intron (donor) is joined to the 3’-end of the intron (acceptor) and in a series

of subsequent reactions, the intron is removed and the two exons are connected. The spliceosome

recognizes exons and introns based on two mechanisms. In the first mode, the spliceosome uses

introns as splicing unit ("intron-defined" mode). It positions the basal splicing machinery across

introns to splice them out. In the second mode, the spliceosome identifies exons as splicing unit

("exon-defined" mode). The basal splicing machinery is now positioned on exons and they are spliced
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together. Intron-defined splicing represents the ancestral state [11]. However, the capability of the

splicing machinery to detect introns correlates negatively with the intron length. As a consequence

of increased intron length throughout mammalian evolution, the exon-defined splicing mechanism

evolved [3]. Alternative splicing describes a process in which exons of a gene are included, excluded or

shuffled, thus leading to a situation in which a single gene can produce multiple, distinct transcripts.

These transcripts differ in their base pair composition and have the potential to fulfill different tasks.

DNA transcription and splicing are biochemical reactions. Like any other biochemical reaction,

they are subject to stochasticity depending on the local concentration of proteins and temperature.

However globally, gene expression is a robust process that creates similar expression profiles across

different species. To understand how a stochastic process can be robust at the same time, one needs

to understand the different sources causing and controlling stochasticity.

1.1.3 Stochasticity during DNA transcription

RNA and protein abundance fluctuates within cells of the same tissue, because the biological mech-

anisms that are producing RNAs and proteins in a cell are stochastic in nature. The observed

differences are often referred to as noise and are part of each biological system, independent of its

scale. Stochasticity is an important factor to create heterogeneous cell populations allowing them

to react rapidly to changes in the environment. Each gene has its own characteristic source and

amplitude of noise, which is classified by its origin: Intrinsic noise can arise from any intracellular,

biochemical reaction (e.g. DNA methylation, transcription, splicing or translation), while extrinsic

noise is created by environmental changes (e.g. developmental transitions, stress) [12, 13].

The most prevalent source of intrinsic noise is mRNA transcription. In eukaryotes, transcription

occurs in bursts that can differ in frequency and amplitude from each other [14, 15]. Genes in genomic

regions with low transcriptional activity increase burst frequency to modulate their expression levels.

The overall expression in a cell population may thus be stable, but different cells can be in different

phases (before, in or after a transcriptional burst), which leads to high cell-to-cell variation. Genes

in active regions are more likely to adapt the burst amplitude in order to change their activity [14].

They look less noisy between cells of the same cell population, because of a constant expression

base line. Importantly, fluctuations decrease with the expression strength of a gene [16], meaning

that higher noise levels are usually found in genes with lower expression levels. High variability in

transcriptional levels can be buffered by translation efficiency. Therefore, proteins and their relative

frequencies fluctuate less between cells than mRNAs (Figure 2) [13].
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Figure 2: RNA and protein variability
| RNAs and their absolute frequencies vary
strongly between cells. Transcriptional differ-
ences can be buffered by translation rates and
thus protein landscapes are less noisy than the
preceding RNA landscapes between cells.

Martinez Arias et al. proposed that genes can be grouped into three distinct classes, each different

in its properties of noise and "memory": Class I genes are either active or not. They respond rapidly

to metabolic changes or stress conditions. As their task is merely to react or not, they do not require

any memory of the cellular state. Expression can thus be noisy, and noise might even help to react

differently at different points of time. Class II genes are necessary to keep systems in a stable,

long-lasting state (e.g. differentiated tissues). Genes of this class have some kind of memory of the

cell state. Their expression levels are stable and they do not allow high variation. Class III genes

are intermediates, which keep a state only for a small period of time [17].

Fluctuations in gene expression levels between cells of the same tissue can be for stochastic

reasons. In addition, transcripts with low expression levels harbor higher noise levels challenging the

assessment to what extent their expression profiles are conserved across species: Expression shifts

could either reflect adaptive changes and selection, or random shifts in the burst frequency and

amplitude. Stochasticity in DNA transcription is thus an important factor to be taken into account

when analyzing gene expression profiles and their conservation between species.

1.1.4 Stochasticity during mRNA splicing

Approximately 90% of human genes are subject to alternative splicing and the number of detected

transcripts correlates strongly with the number of exons [1]. The average gene has four exons and

thus needs to undergo three splicing reactions to form the final mRNA [18]. Based on the overlap

of splice sites from the major isoform with others, Pickrell et al. suggested that in a coding gene

an intron has a 0.7% probability to be mis-spliced. Per gene, this adds up to approximately 2% of

mis-spliced transcripts. Following this logic, genes with more exons and higher expression should

show a higher error rate in splicing. In contrast, Pickrell et al. found that genes with more exons

and higher expression are subject to fewer splicing errors. They hypothesized that these genes are
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under selection to keep fluctuations small, as an overproduction of transcripts could lead to a toxic

accumulation of them [18].

It is important to understand that the splice site availability in a gene is not merely a function

of its exon number. There are several other parameters that can determine how well or noisy

splicing proceeds. For instance, the secondary structure of the mRNA can influence its availability

for splicing [15, 19]. Furthermore, the presence of multiple, alternative splice sites can interfere

with the recognition of the correct splice site. The more splice sites, the more likely an error can

happen. Alternative splice sites can either evolve by mutation or be introduced by the integration

of a transposable element (latter reviewed in [20]). Genes with higher mutation or transposon-

integration rate are therefore more likely to produce mis-spliced transcripts. The integration of

repeats in close proximity to an exon boundary can influence the local GC content. GC-rich SINE

elements for example that integrate in close proximity to a splice site can lead to a local increase of

GC, which decreases the GC amplitude at the exon-intron boundary. Especially in GC-low genes,

this can interfere with the intron-defined mode of splicing and cause mis-splicing (see Chapter

1.1.2) [3].

Alternative transcripts may be grouped into different classes based on their presumptive purpose:

1) Transcripts that exhibit a function, 2) non-functional transcripts that merely by their presence

interfere with the total number of functional transcripts, 3) non-functional, but constantly produced

transcripts and 4) non-functional, stochastically produced transcripts [1]. All transcript types con-

tribute to the observed RNA landscape, but they are subject to different evolutionary pressure.

Melamud et al. proposed a model in which the the majority of transcripts are a product of noisy

splicing. Some genes allow for noisy splicing and will posses many alternative isoforms, while other

genes are under more constrain to keep the number of splicing errors low [1].

Stochasticity occurs at any level of biological systems as demonstrated by the examples of DNA

transcription and mRNA splicing. However, the majority of noise is not harmful. Therefore, noise

should not be seen as a source of error, but rather as "[...] a landscape of opportunities in which

novel biological activity can be explored at little cost." [1]

1.1.5 Mammalian transcriptome diversity and conservation

The transcriptome of a given species reflects the expression levels of a variety of different coding and

non-coding transcripts. Expression levels can be strong or weak, broad or tissue-specific and contin-

uous or timed. Different organs distinguish themselves from each other by the number of transcribed
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genes (coding and non-coding). The testis for instance, is characterized by a widespread expression

of many genes facilitated by permissive (open) chromatin. Many of the expressed transcripts are

poorly conserved and are likely non-functional. Liver in contrast, is characterized by a low, although

strongly expressed number of genes [21].

Each gene has its own spatio-temporal expression pattern characteristic for the development and

homeostasis of the species it is expressed in. Some of these patterns are conserved between species,

others are not. The expression levels of orthologous protein-coding genes for instance, exhibit low

variation between homologous tissues of different species. Interestingly, tissues are characterized by

different changes in gene expression rates. Neuronal tissues evolve very slowly leading to a strong

correlation of protein-coding gene expression levels between distant species. Liver, kidney and heart

evolve at moderate levels, while testis is the most rapidly evolving tissue [22]. The differences in

expression divergence rates might be explained by functional properties of the organ: The brain is

under strong constrains to maintain the organism’s integrity, whereas liver plays an important role

in metabolic control and is more likely to reflect species-specific adaptations. Testis is subject to an

intense and species-specific sex-related selective pressure, leading to its high rate of transcriptome

evolution ([21], reviewed in [23]).

In contrast to the conserved expression profiles of coding genes, alternative splicing patterns

evolve at much higher rates and are species-specific [23, 24]. As hypothesized by Melamud et al.,

the majority of alternative isoforms originates as a by-product from noisy splicing, which is in line

with the high number of species-specific alternative transcripts and their high divergence rates [1].

Transposable elements (TEs) are one source influencing alternative splicing patterns. They often

possess species-specific amplification rates, which is reflected by the complex repeat landscapes

in different organisms. In the next chapters, I will therefore discuss the properties of different

transposable elements to illustrate how they can drive the formation of new isoforms.

1.2 Transposable elements

Mammalian genomes are rich in repetitive structures, which originate either from small, sequentially

arranged DNA fragments, or from transposable elements spread throughout the genome. Depending

on the organism, repetitive structures make up 40-50% of the genome, with the majority of repeats

being derived from TEs (RepeatMasker, Feb 2017). Based on their mode of propagation, TEs are

classified into retrotransposons (class I) and DNA transposons (class II). DNA transposons amplify

via a "cut-and-paste" mechanism. They encode their own transposase, which can cut and re-integrate
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the TE into the genome (Figure 3A). Retrotransposons propagate by reverse-transcription of an

RNA intermediate, which is re-integrated into the genome. They often encode their own reverse

transcriptase (RT) and integrase, but can also use the transcription and integration machinery of

other TEs to do so. In addition, retrotransposons are divided into two subclasses: Long-terminal

repeat (LTR) retrotransposons and non-LTR retrotransposons. LTR transposons are flanked by

long, terminal repeats that bind to homologous regions in the genome and facilitate integration by

recombination (Figure 3B). Non-LTR retrotransposonsons generate small DNA breaks that trigger

reverse transcription of the RNA intermediate and subsequent integration into the genome (Figure

3C) [25].

1.2.1 Long interspersed elements

Long interspersed nuclear elements (LINEs) are non-LTR retrotransposons that resemble retro-

viruses. They constitute the largest class of transposable elements in human, but also in many other

mammalian genomes (RepeatMasker, Feb 2017). Several subgroups such as L1, L2 or L3 exist. The

L1 element is the most recent and only LINE element that is still active in the human genome. It

consists of a 5’-UTR containing an RNA polymerase II promoter, two ORFs (open reading frame)

that encode an RNA binding protein as well as an endonuclease (RNase H)/RT and a 3’-UTR har-

boring a poly(A)-tail. The full L1 element has a size of approximately 6 kilobase pairs (kb) [26]. In

the human genome, 17.5% of detected transposons belong to the L1 family. However, the majority

of L1 elements (99%) is degraded and has an average size of only 0.9 kb [27]. It is estimated that

in human, one new integration per 20-200 births occurs [26]. L1 elements are not randomly dis-

tributed in the genome. They are abundant in AT-rich, gene-poor and weakly recombining regions.

Younger L1s are closer to genes than older L1s. Additionally, they tend to occur in genes with

lower expression levels [28–30]. The consensus sequence for the L1 endonuclease is TT|AAAA - an

AT-rich motif, which might explain why L1s are more frequently found in AT-rich regions (discussed

in Chapter 1.2.3). The human genome harbors intergenic L1 integration hotspots, but until now,

no commonalities were found between them [30]. L1s can also mobilize various elements such as

other TEs (SINEs), small non-coding RNAs or mRNAs and thus play an important role in shaping

our genome (reviewed in [31]).
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Figure 3: Mechanisms of transposon mobilization | A: DNA transposons propagate by a cut-and-
paste mechanism, in which a transposon-encoded enzyme - the transposase - cuts the the transposon from
the DNA and re-integrates it into the genome. B: LTR retrotransposons use RNA intermediates that are
reverse-transcribed and re-integrated into the genome by the help of long-terminal repeats. C: Non-LTR
retrotransposons generate small DNA breaks, which trigger reverse-transcription and integration of the RNA
intermediate. Figure adapted from Figure 1 in Levin and Moran 2011 [25].

1.2.2 Small interspersed elements

Small interspersed elements (SINEs) are nonautonomous non-LTR retrotransposons. They are tran-

scribed by RNA polymerase III (Pol III) and use the reverse-transcription and integration machinery

of other TEs (mainly LINEs) to propagate throughout the genome. SINEs consist of a head, a body

and a tail spending together over 0.1-0.6 kb. The head originates from small, Pol III-transcribed

RNAs (tRNA, 7SL RNA, 5S rRNA). The SINE body shares homology with L1 elements, but it

is unclear if it originated from L1 or independently. The sequence similarities allow SINEs to use
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Table 1: Repetitive elements in different genomes | The frequency of repetitive elements in opossum,
mouse, rat, rhesus macaque and human is summarized. Indicated is the fraction of each genome composed
of repetitive elements, the fraction of each genome which is derived from a TE, frequent SINE families and
recently active SINE families (number of detected TEs in brackets). For rhesus macaque, the percentage
of the genome that is TE-derived was not found in literature. The frequency of the individual TEs was
estimated with the RepeatMasker annotation as of Feb 2017.

Species % Repetitive
elements

% TE-
derived

Frequent families Recently active Source

Opossum 56.6 52.0 RTESINE,
SINE1_Mdo,
SINE1a_Mdo

SINE1_Mdo
(530,000)

Nilsson et al. [33]
Nilson et al., [34]
Vassetzky et al., [35]

Mouse 45.0 37.0 B1, B2, B4 B1 (570,000) Kramerov et al., [32]
Vassetzky et al., [35]

Rat 42.5 40.0 B1, B2, B4 ID (190,000) Kim et al., [36]
Kim et al., [37]

Rhesus 49.3 ? Alu AluY (125,000) Rhesus consortium, [38]
Han et al., [39]

Human 52.2 45.0 Alu AluY (146,000) Lander et al., [40]

the L1 machinery for their own propagation. The SINE tail is build from small repeats, through

which SINEs can concatenate and form dimers or trimers. Because SINEs rely on the L1 proteins

for amplification, they show a similar integration bias as L1s into AT-rich regions [32] (discussed in

Chapter 1.2.3).

SINE families have occurred at least 23 times independently in placental mammals. The evolution

of a novel SINE family depends on several steps: First, an existing Pol III-transcribed RNA needs to

be pseudogenized. Pseudogenization consists of the reverse-transcription of the RNA molecule into

DNA followed by integration into the genome. Next, the pseudogenized gene needs to be transcribed

at a developmental time, in which the genome is susceptible for TEs. Furthermore, the pre-SINE

element needs to develop structures homologous to the RT of LINE elements to be recognized and

efficiently transcribed and integrated. Last, changes in the secondary structure of the new SINE

need to occur to avoid interference with the original pathway of the pseudogenized small RNA. As a

consequence, LINE and SINE elements often co-evolve and show correlated activity and integration

patterns [32]. This evolutionary trajectory often leads to species-specific SINE elements and closely

related species can exhibit different SINE activity schemes. Table 1 provides an overview of the

frequency of repetitive elements in the organisms used in this study (opossum, mouse, rat, rhesus

macaque, human). In the subsequent part, I will briefly summaries the species-specific evolution of

SINE elements in each of them.
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Opossum

With more than 530,000 copies SINE1_Mdo is the most frequent SINE element in opossum. It is

still active [33]. In contrast to other elements, SINE1_Mdo has a complex structure with a head,

core and tail domain. It uses L1 elements to propagate, but the exact integration and fixation

processes have not been studied in detail (Figure 4A) [33–35].

Mouse

B1 is the most common SINE family in mouse (570,000 copies). It originated from a 7SL RNA

and developed into a quasidimer that consists of the 7SL RNA, followed by a region of internal

duplications of 20-30 nucleotides (nt). B1 TEs use the amplification machinery of L1. They have

been very active in the mouse lineage (Figure 4B) [32, 35].

Rat

The ID family has undergone a recent and strong amplification round in the rat genome (> 190,000

copies in rat versus 64,000 in mouse, RepeatMasker as of Feb 2017). The ID family originated from

a tRNA. One of the earliest ID-elements was the BC1 RNA gene, which has controlled the amplifi-

cation of further ID elements. In rat, the formation of most ID genes has taken place in the last 3

million years (myr) (Figure 4C) [36, 37].

Rhesus macaque

Alu elements originated from a 7SL RNA shortly before the primate/rodent split. The precursor

diverged into the B1 element in mouse, and into the Alu family in primates [32]. The current Alu

element is dimeric and has a length of 280 nt. It retrotransposes via the L1 RT [35]. Alu amplifi-

cation had a peak with the AluS subfamily around 45 million years ago (mya). Amplification rates

are now declining, but several elements of the most recent AluY family that originated 25 mya are

still active in the macaque line (Figure 4D) [39].

Human

The human Alu element is structurally close to the rhesus Alu element. As in rhesus, they are the

most common SINE. Members of the AluY family are still active, although activity has declined

more than 100x relative to primates 40-50 mya (Figure 4E) [32]. Nevertheless, with one new inte-

gration per 20 newborns, Alu elements belong to the most active TEs in the human genome [26].
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A: SINE1_Mdo phylogeny in opossum
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Figure 4: Phylogeny and structure of recently active SINE elements | A: SINE1_Mdo phylogeny
in opossum. SINE1_Mdo and SINE1a_Mdo are the most recent, L1-mobilized TEs in opossum. Their
structure is complex consisting of a head, core and tail domain. B: B1 phylogeny in mouse. The B1 element
originated from the 7SL RNA. The family has undergone a strong diversification leading to the most recent
B1_Mus* elements. B1 elements have a small region with internal duplications and are therefore classified as
quasidimer. C: ID phylogeny in rat. The ID element originated from a tRNA. The non-coding BC1 gene is an
ID element, which has played an important role in the amplification of the most recent ID TEs in the last 1-5
mry. D: Alu phylogeny in rhesus. Alu TEs originated from the 7SL RNA and are dimeric. The AluY family
has undergone rhesus-specific amplifications. E: Alu phylogeny in human. As all primate Alu elements, Alu
elements in human originated from a 7SL RNA, are dimeric and have developed human-specific elements For
all species, only selected SINE elements are presented in the phylogeny. The * indicates that a family consists
of several TE members. The branch length does not reflect the phylogenetic distance. Structures are adapted
from SINEbase [35].

Active TE transposition can have negative effects on the host genome. New integration events

that for instance interfere strongly with the structure or expression profile of a gene might reduce

the fitness of the host. As a consequence, the host might have a reproductive disadvantage and the

integration event will not be fixed in the genome. Nevertheless, mammalian genomes are repeat-rich

and have allowed the integration and fixation of TEs. In the next chapter, I will therefore discuss

the different forces that can influence integration and fixation of a TE in more detail.
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1.2.3 Integration and fixation success of transposable elements

The distribution of transposable elements in the genome is shaped by a combinatory effect of in-

tegration and fixation biases. Integration describes merely the integration of a TE in a genomic

region. Depending on the integration locus (e.g. in or outside a gene), the integration event can

have different effects on the host, which influences whether the integration event remains and thus

will be fixed, or not. It is still under debate whether LINE and SINE elements show integration

biases, but it is widely accepted that they follow different fixation trends. Pavlicek et al. demon-

strated that young LINEs and Alu elements are preferentially found in GC-poor genomic regions.

In contrast, old Alu elements are enriched in GC-rich genomic regions, while old L1s accumulate in

GC-low and gene-poor regions of the genome [30]. Levy et al. postulated that young TEs integrate

more or less randomly [28]. This finding is supported by Ovchinnikov et al. who showed that young

L1s are randomly distributed despite their AT-rich integration motif [29].

L1 elements are GC-poor. The human L1 consensus sequence has a GC content of 43.22%.

The low GC content might explain why L1 elements are preferentially found in AT-rich regions in

which they are less likely to disturb the local GC content. In addition, full-length L1s are large and

integration in or close to a gene might easily lead to the disruption of the gene or some of its regulatory

elements. As a consequence, L1s are fixed in gene-poor regions in which they are less harmful. SINE

elements in contrast are GC-rich (e.g. AluY consensus: 63.12% GC, B1_Mus1 consensus: 57.82%

GC). Despite their potential integration preference into GC-poor regions, they are more likely to

be fixed in GC-rich regions corresponding to their own GC content. Close integration of two Alu

elements in reverse-complement order is usually avoided as this might lead to local deletions or DNA

recombination [41]. TEs can insert into each other, which allows the reconstruction of integration

trajectories based on the assumption that evolutionary young elements will always integrate into

evolutionary older elements [42]. Levy et al. could show that TE integration hotspots exist within

the human genome. Alu elements for example, can integrate into the poly(A)-tail of already existing

Alu elements. Importantly, old SINEs (MIRb, MIR3, AluJb, AluJo) seem to resist this integration.

AluSx shows an in-sense integration bias into L1 elements. Interestingly, integration hotspots are

more frequently found in gene proximity. A possible explanation is the low number of optimal (non-

disturbing) integration sites in these regions, which forces TEs to integrate into the same locus [28].

Despite the fact that integration of a TE into a gene might be harmful, more than 90% of RefSeq

genes contain TEs in their introns [43]. TEs, which integrated into introns, are underrepresented
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close to the exon-intron boundary. Furthermore, SINE elements in mouse have an integration bias

in antisense orientation to the gene, while human SINE elements are more likely to integrate in sense

orientation. Alu elements possess a cryptic splice-site on their antisense strand, which might explain

selection against antisense integration of Alus into human introns [43].

Mammalian genomes are rich in transposable elements, indicating that most of the observed TEs

in our genome have little or no effect - either because the integration locus allowed for it, or because

the genome developed defense mechanisms to reduce deleterious effects of TE integration. Although

not harmful, the integration of a TE in close proximity or within a gene can contribute to the local

noise levels of transcription and splicing.

1.2.4 Contribution of SINEs to transcriptional noise

Although some TEs can have positive influences on transcription and splicing by providing cis-

regulatory elements, novel exons or epigenetic signals, the integration of most TEs is either neutral

or deleterious. Approximately 5% of human alternatively spliced exons are derived from Alu elements

[44]. Alu elements harbor cryptic donor and acceptor splice sites on their antisense strand [45]. If

the Alu element integrates in antisense orientation to the gene, the spliceosome can recognize these

cryptic splice sites, which leads to the exonization of the Alu element (Figure 5A). Because Alu

elements are GC-rich, their integration can interfere strongly with the local intronic GC content.

The spliceosome recognizes the GC amplitude between introns and exons, but integration of GC-rich

SINE elements can disturb the pattern and lead to exon skipping (Figure 5B) [46]. Athanasiadis

et al. provided evidence that two Alu elements that incorporate in reverse-complement order to

each other in a gene, lead to back-looping of the pre-mRNA (Figure 5C). Interestingly, these

backfolds (also called hairpin structures) are subject to RNA editing. The distance and divergence

of backfolding Alu elements correlates negatively with the A-to-I editing frequency. However, editing

does not interfere with the formation of backfolds, but instead increases the frequency of GC pairs

that can be subject to methylation [47]. Gene body methylation is associated with increased gene

expression, splicing enhancement and reduction of noise. Methylation of the Alu may thus be a

counter mechanism to keep the gene active despite disruption by Alu integration (Figure 5D) [16,

48, 49].

DNA transcription and splicing are stochastic processes that can lead to a large variety of tran-

scripts and expression profiles. Integration and fixation of transposable elements further contribute

to this variety. Furthermore, stochastic influences are large if expression is low and when the gene
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Sources of transcriptional noise by Alu elements

A: Alu exonization by cryptic splice sites B: Exon skipping by amplitude reduction

?
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C: Changes in mRNA folding
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D: Changes in methylation patterns
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Figure 5: Transcriptional noise and Alu elements | A: Alu exonization. Alu elements harbor cryptic
splice sites, which can lead to exonization of the Alu elements upon antisense integration into a gene. B:
Exon skipping. Alu elements are GC-rich and their integration disturbs the local GC content leading to exon
skipping [46]. C: mRNA folding. Integration can lead to mis-folding of the pre-mRNA/mRNA structure,
which can interfere with splicing by hiding splice sites and other signals [47]. D: Methylation changes. Alu
elements are subject to methylation, which can be enhanced by RNA editing. This leads to an increase in
gene body methylation, which might enhance gene expression. Abbreviations: ss = splice site.

structure allows for many splicing reactions. Circular RNAs have been associated with all of the

previously described properties of transcription and splicing: Low expression, alternative splicing

and transposable elements. In order to understand whether they are functional elements of the mam-

malian RNA landscape, one therefore needs to understand their expression and splicing properties

in the light of stochasticity.

1.3 CircRNAs

1.3.1 The re-discovery of circRNAs

Circular RNAs (circRNAs) were first described more than two decades ago, but the recent devel-

opments in large-scale sequencing technologies have thrown new attention on their properties and

functions. CircRNAs are small and putative non-coding RNAs (100-1000 nt), in which the 3’-end

and 5’-end of an RNA are covalently spliced to form a circular structure. They are known in at

least four of the major kingdoms (Archaea, Bacteria, Plantae, Animalia). Their role is unknown,

although functional cases in viral defense mechanisms (plants), miRNA binding and transcriptional
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control have been described [50–52].

1.3.2 CircRNA biogenesis

The biogenesis of circRNAs is influenced by different factors in cis and trans [53]. Genes that are

producing circRNAs (parental genes) are mainly protein-coding and are transcribed by RNA Pol II

[54]. Promoters of parental genes are associated with higher levels of H3K27Ac (histone 3 acetylation

at 27th lysine residue; used as a marker for active promoters) and a decrease in DNA methylation

[55]. CircRNAs often overlap with linear transcripts of their parental gene and splicing is guided

by the canonical splicing machinery [54, 56, 57]. Decrease of Pol II elongation capacity increases

co-transcriptional splicing efficiency of linear transcripts [58]. In agreement with this finding, Ashwal-

Fluss et al. observed that fruit flies carrying a slow-elongation mutation in Pol II had decreased

levels of circRNAs. Furthermore, they could show that the increased length of circRNA flanking

introns leads to a decrease in linear splicing efficiency [57]. Kramer et al. proposed that the length of

circRNA flanking introns determines whether backsplicing occurs co- or post-transcriptionally. They

further identified circRNAs, whose biogenesis is regulated by the combination of different hnRNPs

(heterogeneous nuclear ribonucleoprotein) and SR (serine-arginine) family proteins (Figure 6A)

[53]. The formation of circRNAs seems to rely on the presence of the canonical donor GT and

acceptor AG splicing motif [54]. This finding is supported by Ashwal-Fluss et al., who found a

decrease of circularization in the fly mbl gene upon mutation of the canonical 5’ splice site from GU

to CA [57].

Interestingly, many research groups have observed an increased number of (small) repetitive

elements that are in reverse-complement orientation (antisense) to each other in both circRNA-

flanking introns. These elements facilitate backsplicing by the formation of hairpin structures that

bring the circularizing exons close to each other (Figure 6B) [60–63]. In human for instance, many

of the repetitive structures overlap with Alu elements [61, 64, 65]. Interference with the pairing

capability by targeted mutagenesis of the Alu element or by RNA editing decreases circRNA levels

[62, 66]. A similar enrichment of repetitive elements was also observed in mouse, pig and C. elegans

[64, 67]. However, repetitive structures are absent in the flanking introns of Drosophila circRNAs,

suggesting the existence of a repeat-independent mechanism for circRNA formation in this species

[68]. Several groups have tried to analyze the repeat landscape of flanking introns in more detail, but

have reached opposite conclusions. Veno et al. for instance found a positive correlation between the

distance of a repeat to the backsplice site and the intron length. Consequently, they hypothesized
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that repeats support backlooping only in small introns [67]. In contrast, Ivanov et al. reported

a strong enrichment of repeats in the 1500 nt upstream and downstream of the circRNA splice

site. Furthermore, they could show the repeat frequency can be used to predict circRNAs on a

genome-wide level in human and C. elegans [64].

1.3.3 Alternative splicing of circRNAs

Certain loci produce multiple circRNAs that overlap partially with each other. These loci are

called "hotspots" (Figure 6C). It is unknown why some genes have a higher potential of producing

multiple circRNAs than others. The majority of hotspots was computationally predicted, but only a

few groups have tried to validate circRNAs from the predicted loci [64, 67, 69]. Like linear transcripts,

circRNAs can also be subject to alternative splicing. Exons are included or excluded and the acceptor

and donor splice site can vary. These patterns of circRNA alternative splicing are tissue-specific and

developmental stage-specific [70]. Zhang et al. showed that circRNAs contain novel exons. These

exons were previously unknown, because of their low coverage in other studies, which were primarily

Figure 6: CircRNA biogenesis | A: CircRNAs are generated by a backsplicing mechanism, which is
catalyzed by the spliceosome. With the potential help of hnRNPs, a 5’-donor site is joined to an upstream
3’-acceptor site. B: Repetitive sequences in the flanking introns can enhance circularization. C: A gene
can produce several circRNAs. It remains unclear how these alternative circularization events are regulated.
Figure was adapted from Figure 1 in Chen et al. [59].
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looking at strongly expressed linear isoforms [71]. As part of their study Zhang et al. developed

CIRCpedia - a database to collect alternative splicing patterns of circRNAs. However, it remains

unclear how alternative splicing of circRNAs is regulated in the observed spatio-temporal manner.

1.3.4 CircRNAs - functional newcomers or by-product?

Little is known about how and to what extent circRNAs are part of the functional transcriptome.

Based on a few characterized examples, following hypotheses for circRNA functions were proposed:

• Competing endogenous RNAs (ceRNAs).

• Alteration of gene expression by influencing transcription rates and alternative splicing.

• Molecular scaffolding to bind proteins.

• Transport of molecules to different cell compartments.

• Translation.

Competing endogenous RNAs

Currently, the best-described circRNA is ciRS-7 (also known as CDR1-as) from the Cdr1 gene lo-

cus. ciRS-7 is highly abundant in mouse and human brain. It is strongly enriched (> 70 sites)

for binding sites of the miRNA miR-7. Both transcripts, ciRS-7 and miR-7, are co-expressed in

murine neocortical and hippocampal neurons and ciRS-7 can efficiently bind and suppress miR-7

activity in-vivo. Ectopic expression of ciRS-7 in zebrafish, which has lost the cdr1 locus, leads to

a decrease of the conserved miR-7 and malformations in the developing, embryonic fish brain [72].

SNP density in potential miRNA binding sites is decreased in circRNA exons arguing for the idea

that some circRNAs can be functional ceRNAs [73]. However, several studies were unable to find

a strong correlation between predicted circRNAs and enrichment of miRNA binding sites [54, 74].

It is important to note that although circRNAs may function as ceRNAs, the majority may exhibit

different or no function.

Alteration of gene expression

The drosophila gene muscleblind, a well-characterized splicing factor, produces a circRNA from its

second exon. CircMbl is abundant in fly heads and MBL binding sites are enriched in the flanking

introns of circMbl [57]. Binding of MBL promotes circularization at the cost of linear mbl (decrease
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in production of mbl), an effect that was also observed with the linear and circular transcripts of the

human MBNL1 gene in HEK293 cells. Ashwal-Fluss et al. hypothesized that many circRNAs may,

similarly to mbl, compete with a linear transcript for splice sites and thus enhance or interfere with

transcriptional levels of linear mRNAs [57]. Quaking (QKI) is an RNA binding protein (RBP) and al-

ternative splicing factor that acts as a homodimer. Knockdown of QKI by siRNA in mesHMLE cells

leads to a decrease in abundance of more than 100 circRNAs (min. decrease 2-fold). QKI binding

sites are enriched in the flanking introns of these circRNAs, and it is thought that binding of QKI to

both flanking introns will bring them in close proximity by the formation of the QKI homodimer [75].

Molecular scaffolding

The Foxo3 gene is a classical tumor suppressor. Du et al. showed that circFoxo3, a circular transcript

of Foxo3, forms a ternary complex with the Ser/Thr protein kinase CDK2 and the cyclin-dependent

kinase inhibitor p21. In the absence of p21, CDK2 activates cyclin E and promotes cell cycle pro-

gression. CircFoxo3 can bind p21 and CDK2. Du et al. suggested that the binding enhances the

inhibitory potential of p21 on CDK2 by holding the two proteins in close proximity, thus inhibiting

cell cycle progression [76].

Translation

Since the discovery of circRNAs, their role as a translational template for the synthesis of proteins

has been debated. Several studies have shown that in in-vitro systems, circRNA expression plasmids

have the potential to be translated [77, 78]. Yang et al. showed that circRNAs are associated with

N6-methyladenosine (m6A), an RNA base modification that supports mRNA translation. Based on

the enrichment of m6A next to a circRNA, they identified 19 unique peptides likely originating from

circRNAs [79]. The observation of translatable circRNA is supported by two additional studies:

Pamudurti et al. found a small set of ribosome-associated circRNAs in different Drosophila cell

lines. The peptide of circMbl was confirmed by northern blotting in the fly head [80]. Legnini et

al. provided evidence for a peptide in human myoblasts originating from a circRNA in the ZNF609

gene [81]. Nevertheless, the findings of these studies should be carefully evaluated as the number

of detected peptides is small and functional evidence is missing. Similar to the circRNA transcript,

the peptides could merely be a translational by-product.
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Until now, only a handful of circRNAs is studied in detail. A slightly larger fraction is differ-

entially expressed in human diseases, but the molecular link is unknown (see Chapter 1.3.6). It

remains thus unknown, which fraction of circRNAs is truly functional or merely a by-product of

stochasticity during transcription, splicing and translation of the parental gene.

1.3.5 Conservation of circRNAs

CircRNAs are frequently found in orthologous genes across different species. The observed overlap

is used to support the hypothesis that circRNAs are functionally relevant. Veno et al. for instance,

compared circRNAs between pig, mouse and human. Using the liftOver tool of the UCSC genome

browser, they found that 88% of porcine circRNAs could also be detected in mouse. 20.4% of

the splice sites used in mouse (fetal head) were identical to those used in pig [67]. In another

study conducted by Rybak-Wolf et al., approximately 28.5% of circRNAs shared the same splice

site between human and mouse (allowing a 2 nt setoff) [66]. Contrarily, Zhang et al. proposed

that circRNA landscapes are not conserved and undergo rapid evolutionary changes. Zhang et al.

analyzed the conservation of repetitive elements in the flanking introns of several human circRNAs,

but were unable to detect similar repetitive elements in species such as gorilla, rhesus macaque and

mouse [61]. Until now, it remains a matter of debate whether circRNAs are conserved or subject to

rapid turnover.

1.3.6 Biomedical relevance of circRNAs

The high number of different circRNAs has inspired researchers to investigate their involvement in

human diseases. Several groups have shown that circRNAs are mis-regulated in different cancer

types, such as pancreatic, colon or lung cancer [82, 83]. Interestingly, circRNAs tend to be down-

regulated in cancerous tissues, which is associating them with tumor-suppressing roles. A handful of

circRNAs is mis-regulated in Alzheimer disease [84], cardiovascular disorders [85] and osteoarthritis

[86]. The exact contribution of circRNAs to these disease phenotypes still needs to be determined.

In a first attempt to collect disease-related circRNAs to facilitate research, several groups have cre-

ated databases for circRNA interactions with normal and disease-associated miRNAs, lncRNAs and

proteins (Circ2Traits [87], CircInteractome [88], SomamiR 2.0 [89]). These databases will be helpful

to filter the large quantity of predicted circRNAs for functionally relevant examples. CircRNAs

have a very stable secondary structure. Recent studies have shown that circRNAs are detectable

in human blood and serum samples and can be used as biomarkers for various diseases [86, 90,
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91]. In addition, several groups have started to design circRNAs with sponge features to inhibit

mis-regulated miRNAs [86]. Although associated with many human diseases, a direct molecular

link between a circRNA and the observed disease phenotye is still missing. It is unclear whether

the oberserved changes in gene expression and molecular phenotypes are due to the impact of the

circRNA, its parental gene or a third source.

1.3.7 Detection and quantification of circRNAs by next-generation sequencing ap-

proaches

Detection of circRNAs

Identification of circRNAs relies currently on the identification of backsplice junctions (BSJs). The

vast majority of the standard mapping tools is unable to detect these non-linear reads. Consequently,

BSJ reads are discarded and labeled as "unmapped". In addition, circRNAs lack a poly(A)-tail and

are therefore mainly present in rRNA-depleted (ribo-minus) total RNA pools. As a consequence,

special remapping strategies are required to recycle BSJ reads at a significant level. In the general

identification procedure, the n terminal 3’- and 5’-nucleotides of a sequencing read (referred to as

anchors) are taken and are remapped independently on to the reference genome. Anchor pairs that

map in a non-linear order on the same chromosome and strand are used as an indication for a BSJ

if the extension procedure was successful (Figure 7).

The definition of successful depends on the detection tool and is influenced by the number of

mismatches, the number of event-supporting reads and the presence of canonical splice sites. The

number of read-supporting events is generally low (1-2 reads in 10 million reads), impeding the

discrimination between noise and signal. The identification success of BSJ reads is additionally

impaired by the number of multi-mapped reads due to low complexity DNA, (local) duplications,
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Table 2: Performance of different circRNA identification tools | A: Tool structure and dependencies.
For each tool, its language, mapper and dependencies are listed. B: Approximation of tool performance.
Performance of each tool was categorized based on Hansen et al. [92], Gao et al. [96] and my own experience
(marked with an asterisk *).

A: Tool de-novo Language Mapper Dependencies
CIRCexplorer2* no Python Bowtie1/2 TopHat, bedtools, pysam, docopt
CIRI* yes Perl BWA none
circRNA_finder yes Perl Star samtools
find_circ* yes Python Bowtie2 pysam, samtools, bedtools
KNIFE no Perl, R, python Bowtie1/2 samtools, numpy, scypy, data.table
MapSplice* no Python/C++ Bowtie1 samtools
segemehl yes C, C per se samtools
UROBORUS no Perl Bowtie1/2 TopHat, samtools

B: Tool Run time Memory FDR Sensitivity
CIRCexplorer2* medium medium low high
CIRI* slow high high high
circRNA_finder fast medium medium low
find_circ* fast low medium medium
KNIFE medium high medium medium
MapSplice* slow medium low high
segemehl medium high high high
UROBORUS slow low low low

rearrangements and paralogous genes in the reference genome. Since 2013, several groups have

published strategies and algorithms to identify circRNAs from RNA-sequencing (RNA-seq) data.

The first generation of tools relied merely on the identification of the BSJs, which was accompagnied

by a high false-discovery rate (FDR), low sensitivity and little overlap between the different tools [92].

A comparison of five circRNA detection tools (find_circ [93], CIRCexplorer [61], circRNA_finder

[68] CIRI [94], MapSplice [95]) by Hansen et al. showed only a moderate overlap of 16.8% between

circRNAs identified by each of the five analyzed tools. To get an estimate for the false-positive

discovery rate (FDR) of each algorithm, Hansen et al. ran each tool on normal and RNase R-

treated RNA-seq data and calculated the number of predicted, but degraded circRNAs afterwards.

Run time, memory requirements, FDR and sensitivity varied dramatically between the analyzed

tools. Additionally, large differences were observed in the genomic distance between backsplice sites

and the number of small circRNAs (< 500 bp), which are probably false-positives. Hansen et al.

concluded that a minimum of two detection tools is required to reduce the FDR to an acceptable

level and to provide a solid data set for further work [92]. A summary of the different algorithms

and their characteristics can be found in Table 2.

As circRNAs attract more and more attention, a second generation of tools is now under devel-

opment, in which more statistical measurements are incorporated to discriminate between true and

false BSJs. Gao et al. recently published a new version of CIRI (CIRI2), in which they incorporate
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likelihood measures based on seed matching to judge the quality of BSJ reads. According to the

authors, this change in the algorithm makes CIRI2 more reliable and faster than any of the other

tools [96].

Szabo and Salzmann provide a comprehensive overview about the challenges of circRNA identi-

fication. They point out that criteria for circRNA assessment such as library types and preparation,

count-based-expression quantification and cut-offs as well as RNase R enrichment scores are in need

of common, more statistically based approaches to avoid large discrepancies between the findings of

different studies [97].

Reconstruction of circRNA transcripts

All circRNA identification tools call circRNAs based on their unique BSJ, but they do not recon-

struct the true exon-intron structure. CircExplorer2 circumvents the problem by making use of

existing transcriptome annotations. It uses each annotated exon found between the backsplice sites

to define the circRNA transcript [71]. It is evident that this assumption is not appropriate in many

cases. For instance, Gao et al. showed that splicing patterns of circRNAs are as diverse as for linear

RNAs. To reconstruct the circRNA structure, they used the differential enrichment of circRNA-

contained junctions after RNase R treatment [70]. Metge et al. developed a reconstruction tool,

which is based on long reads (> 150 nt) from paired-end sequencing that map on the BSJ. Because

of their length, long reads can provide information on the exon usage within the circRNA boundary

[98]. However, while the approach of Gao et al. extracts additional information from the RNase R

treated samples, the tool of Metge et al. is limited by the low number of usable reads.

Quantification of circRNAs

Currently, circRNA expression levels are determined by a simple, count-based approach (Counts per

Million = CPM). However, count-based approaches are the least accurate approaches and accuracy

generally drops for weakly expressed transcripts [99]. Most circRNAs are identified based on a

minimum number of 1-2 reads and statistical analysis needs to be perfomed carefully in the light

of technical errors and transcriptional background [97]. In addition, proper normalization methods

within and across libraries as well as replicates are underused in the circRNA research field. This can

lead to strong under-estimations or over-estimations in circRNA abundances [97]. The importance of

a circRNA is often judged by comparing the ratio of BSJ reads and linear reads at the BSJ. However,

the ratio is influenced by the quantification method used and may bias results if transcripts of the
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parental gene do not contain exons from the circRNA. Li et al. were the first who developed a tool

for the parallel quantification of circRNAs and linear transcripts. In their pipeline, circRNAs are

linearized and added to the total number of observed transcripts. Quantification is then performed

with a modified version of sailfish (sailfish-cir). Interestingly, they were able to show that both the

mis-quantification of circRNAs and the ignorance of its presence lead to mis-quantifications in the

expression levels of parental genes [100].

Expression levels of circRNAs are low, therefore making it challenging to distinguish them from

the transcriptional noise. Technical noise added by different detection and quantification pipelines

further complicates this distinction and should be avoided by the usage of replicates and statistical

methods [97].

1.4 Aim and focus of the thesis

CircRNAs constitute a newly discovered class of RNAs in the mammalian transcriptional landscape.

They often exhibit low expression levels, have a stable secondary structure and their biogenesis is

associated with repetitive structures in the flanking introns. Although the field of circRNA research

has dramatically advanced in the last years, many questions remain to be (re)-addressed. For

instance, it is still unclear how the combination of different transposable elements in the circRNA

flanking introns influences their expression. Furthermore, it is debated to what extent circRNAs are

conserved across different species.

Here, I am presenting a comprehensive data set of RNA-seq data for three organs of five species

(opossum, mouse, rat, rhesus macaque, human) representing three mammalian lineages (marsupials,

rodents, primates) to re-evaluate previously discussed questions and findings of circRNA character-

istics. The number of circRNAs varies highly between detection pipelines and, as a consequence,

many conclusions on circRNA size, expression levels, tissue specificity and conservation are different

between datasets.

My first goal is therefore the development of a circRNA detection pipeline that 1) can success-

fully differentiate circRNAs from technical and biological artifacts and 2) can be used across different

mammalian species and tissues. Chapters 2.1-2.3 will provide details on the study design, the

generation of the dataset for RNA sequencing and the different parts of the detection and quantifi-

cation pipeline developed. The annotation of the exact exon-intron structure is challenging and I

will show how I have used samples enriched in circRNAs to develop splicing graphs that can predict

the circRNA structure.
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I will then continue in Chapter 2.4 to describe the structural properties of circRNAs across

different species. Furthermore, I will introduce the concept of circRNA hotspots. I will demonstrate

that they harbor important information that helps us understand how and why circRNAs are pro-

duced (Chapter 2.4.3 and 2.8). Following in Chapter 2.5, I will classify circRNAs based on their

overlap between species. The here-presented dataset covers different mammalian lineages, which

allows me to address the question if shared circRNAs evolved from a common ancestral circRNA or

independently of each other.

By using linear regression models, I will assess several structural and functional properties of

parental genes to provide evidence that circRNAs are preferentially found in a common genomic con-

text created by low GC content, long introns and a high number of transposable elements (Chapter

2.6). In Chapter 2.7, I will show that transposable elements found in flanking introns are species-

specific and still active suggesting that circRNAs did not evolve from a common ancestral circRNA,

but developed independently in different species. I will show that the expression levels of a circRNA

correlate positively with the abundance and amplification rates of TEs in their flanking introns,

which further supports the idea of independent processes leading to shared circRNAs (Chapter

2.8).

Finally, I will discuss all results in light of current developments in the circRNA research field

and argue for the hypothesis that circRNAs are a by-product of stochastic transcription, splicing

and TE integration that is restricted to a specific genomic context (Chapter 3).
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2 Results
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2.1 Study design

In this PhD project, I analyzed the biogenesis and the evolutionary history of circRNAs. To interpret

the latter correctly, I focussed on the following five mammals: Monodelphis domestica (opossum),

Mus musculus (mouse), Rattus norvegicus (rat), Macaca mulatta (rhesus macaque) and Homo sapi-

ens (human). Human and rhesus macaque are representatives for the primate lineage, mouse and

rat represent the rodent lineage and opossum was chosen as outgroup to represent the marsupials.

Primates and rodents are eutherian (placental) mammals, while opossum belongs to the metathe-

rian (non-placental) clade of mammals. The split between the eutherian and metatherian lineage

occurred 180 mya. Primates and rodents separated 90 mya, the common ancestor of mouse and

rat lived 12-25 mya and the common ancestor of the rhesus macaque and human was found 25

mya (Figure 8A) [38, 101, 102]. The selection of these fives species allowed me to study not only

species-specific circRNAs, but also the occurrence of lineage-specific (primate, rodent) and shared

circRNAs (eutherian, therian). To capture different evolutionary dynamics, liver, cerebellum and

testis were chosen as study organs. Samples from real tissues have the advantage that they reflect

the in-vivo situation in greater detail than cell lines and cell line-specific batch effects are avoided.

For each organ and species, I analyzed three distinct individuals with approximately the same age

and sex (males only) to reduce the sample-specific signals as much as possible. An overview of the

different samples is provided in Supplementary Table 1.

CircRNAs are characterized by low expression levels. However, they can be enriched by treatment

with RNase R - an exoribonuclease that degrades linear transcripts, but is unable to act on transcripts

with circular structure [103]. CircRNA identification relies strongly on the identification of BSJs. To

gain sufficient information on the area around the BSJ, we therefore generated paired-end RNA-seq

data for ribosome-depleted, total RNA of untreated and RNase R treated samples.

2.2 Library preparation and sequencing

*Division of tasks: All libraries were prepared with the help of Peggy Janich in the laboratory of

David Gatfield at the Center of Integrative Genomics of the University of Lausanne.

RNA-seq data was generated (median of ∼ 63 Mio single Illumina HiSeq reads per species) for

total RNA from liver, cerebellum and testis for all five species (three males per tissue and species

with exception of human liver). To biochemically enrich for circRNAs, a second data set was gen-
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Figure 8: Overview of the dataset and the reconstruction pipeline | A: Dataset. CircRNAs
were identified in five mammalian species (opossum, mouse, rat, rhesus, human) and three organs (liver,
cerebellum, testis). For each sample, rRNA-depleted (ribominus) next-generation sequencing libraries were
generated from untreated and RNase R treated total RNA. B: CircRNA identification and transcript re-
construction. Unmapped reads from RNA-seq data were remapped and analyzed with a custom pipeline.
The reconstruction of circRNA transcripts was based on the junction enrichment after RNase R treatment.
Further details on the pipeline are provided in Chapter 4.3.

erated for the same samples treated with RNase R prior to the library preparation (median of ∼ 58

Mio single Illumina HiSeq reads per species) (Figure 8A). RNase R treated libraries are different

from the untreated libraries in the following characteristics: 1) The number of unmapped reads is

higher in RNase R treated samples, 2) there is a 4.4-fold enrichment of multi-mapped reads upon

RNase R treatment and 3) the number of BSJ reads in RNase R treated samples is 7.6-fold higher

than the number of junctions reads in the untreated libraries. (Supplementary Figure 1). All

observations are consistent with RNase R treated libraries being enriched in transcripts protected

from degradation and transcribed, repetitive structures that can complicate the mapping process.
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2.3 Identification and quantification of circRNAs

2.3.1 Development of a circRNA detection pipeline

I created a custom pipeline for the detection of circRNAs. The available detection tools in 2013/2014

(find_circ [93], MapSplice [95]) did not incorporate paired-end sequencing information, although the

additional information given by the mapping coordinates of both read fragments decreases the FDR

for circRNAs and other transcripts. In addition, MapSplice relied on the presence of an annotation

file and find_circ only detected BSJs with canonical splice site motifs. Previous studies suggested

that circRNA biogenesis is coupled to the presence of canonical splice sites, but I did not want to

put a bias towards this hypothesis [54, 56, 57]. In short, the custom pipeline takes unmapped reads

in bam-format to create a fastq-file with the 20 terminal nucleotides from the 5’- and 3’- end of

each read (anchor pairs). Anchor pairs are independently mapped to the reference genome. In the

next step, anchor pairs are filtered for being mapped on the same chromosome, the same strand and

within a maximum distance of 100 kb to each other. Anchor pairs with a successful seed extension

are then used to build a backsplice index for remapping of all unmapped reads. The remapping of

reads allows to recover reads that span the BSJ with less than 20 bp and thus, to increase the read

coverage per BSJ. The final candidate list is received after remapping and filtering for paired-end

read pairs (Figure 8B).

In a collaborative project with Serghei Mangul (Eskin laboratory, UC Los Angeles), the custom

pipeline was further adapted to detect fusion transcripts of genes lying on the same chromosome

and trans-splicing events between different chromosomes. It was named ncSplice (non-co-linear

splicing). All parts of ncSplice that were used for this project are available on GitHub (https:

//github.com/Frenzchen/ncSplice_circRNAdetection). A detailed description of the pipeline is

provided in Chapter 4.3.

2.3.2 Detection of circRNAs with ncSplice

I detected a total of 76,739 possible BSJs in opossum untreated samples, 67,249 in mouse, 72,855 in

rat, 100,270 in rhesus macaque and 68,400 in human. Of those, 79-85% are unique to only one repli-

cate and therefore, are likely to represent technical or biological artifacts (Supplementary Table

2). To filter the putative BSJs from noise, I compared untreated and treated libraries for BSJs that

are present in both conditions and are enriched upon RNase R treatment (Figure 8B). I normalized

the number of reads per junction (coverage) based on counts per million (CPM) and kept only those
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candidates with a CPM of at least 0.05 (corresponding to ∼ 1 BSJ read per 20 million reads). Some

of the BSJs cluster around the same genomic locus with just a couple of base pairs difference in the

start and stop coordinates. After manual inspection, it was evident that these reads are probably

explained by mapping difficulties due to repetitiveness of the underlying genomic locus and were

omitted. Upon these filtering steps, I received a final candidate list consisting of 1535 circRNAs in

opossum, 1484 in mouse, 2038 in rat, 3300 in rhesus macaque and 4491 circRNAs in human (Figure

9A; Supplementary Table 3). In human, the number of circRNAs is overestimated due to the

lack of two biological replicates for liver. In opossum, the total number of circRNAs in cerebellum

is underestimated due to the low sequencing depth.

In human, rhesus and mouse, cerebellum possesses the highest number of circRNAs, followed by

testis and liver (Figure 9A). However, the raw numbers are difficult to compare between species

and tissues, because they strongly depend on the library depth and the mapping success. Therefore,

I used the Shannon diversity index (H ) to normalize circRNA numbers within each species and

tissue. In ecology, the Shannon diversity index is often used for the quantification of the species

diversity in a habitat [104]. The number of different species and their relative abundance within

the population are used to calculate richness and evenness of the observed population. H is not

only a good measure for the species composition of a population, but can also assess the diversity

(richness) and the relative expression levels (evenness) of a transcriptome [105]. In the here-discussed

case, all circRNAs in a given tissue (habitat) belong to one population. Individual circRNAs are
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Figure 9: CircRNA frequencies | A: Total number of circRNAs. The total number of detected circRNAs
is plotted for each species in liver (brown), cerebellum (green) and testis (blue). B: Shannon diversity index.
H for circRNAs in different tissues and species is plotted. C: Shannon’s equitability. EH for circRNAs in
different tissues and species is plotted. Abbreviations: md = opossum, mm = mouse, rn = rat, rm = rhesus
macaque, hs = human.
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treated as individual species from the population that can be common (high expression) or rare

(low expression). To understand if the expression profiles of the detected circRNAs are different

when compared to each other or evenly distributed, I calculated H for each circRNA population in

a given tissue. Cerebellum is the tissue with the highest H, followed by testis and liver. The low

H in opossum cerebellum is likely due to the low library depth of this tissue (Figure 9B). EH -

Shannon’s equitability - can assess the evenness of expression levels in the transcriptome. It takes a

value between 0 and 1, with values equal to 1 meaning that frequencies are evenly distributed. For

transcriptome data, a value of 1 corresponds to equal expression levels of all observed transcripts.

For circRNAs, EH is close to 1 for most of the tissues indicating that many circRNAs have similar

(low) expression levels. Cerebellum and liver have a lower EH, pointing to some circRNAs that

occur more frequently than other circRNAs in these tissues (Figure 9C).

In summary, the total number of annotated circRNAs is highest in cerebellum, followed by testis

and liver. However, the population structure is similar in all three tissues: There are many weakly

expressed circRNAs and only a few more highly expressed transcripts.

2.3.3 Annotation of circRNAs

The detection of a BSJ provides only little, although important information on a circRNA. CircRNAs

have low expression levels and it is difficult to assess to what extent exons in between the BSJ

belong to the circRNA or to an overlapping, often more highly expressed linear transcript. To

reconstruct the exon-intron structure of the circRNA isoform, I used the RNase R treated libraries,

because exonic junctions, which are part of the circRNA should also be increased after RNase R

treatment. They can be used to represent the circRNA transcript structure (Figure 10A). I took all

junction reads that are either outside (outer junctions) or inside (inner junctions) the BSJ in a given

gene. In RNase R treated samples, outer junctions are expected to have low coverage due to the

treatment. Therefore reads from these junctions were taken to reconstruct a background distribution

for the coverage decrease. I then compared the coverage of each inner junction to the background

distribution and defined inner junctions, for which the coverage was outside of the 90%-confidence

interval (CI) of the background distribution, as circRNA transcript junction. Observed differences

in coverage between inner junctions of the same gene, might be due to 1) the presence of several

circRNA isoforms or 2) overlapping circRNA transcripts. To identify the most strongly expressed

isoform and to distinguish between different circRNA transcripts, I constructed a circRNA splicing

graph for each gene and calculated the most abundant isoform based on the mean junction coverage
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Figure 10: CircRNA transcript reconstruction | A: CPMs for inner and outer junctions. Reads from
all libraries of a given species were pooled and significance assessed with a one-tailed Student’s t-Test (for
all comparisons, p-value < 0.001). B: Reconstruction of circRNA isoforms. CircRNAs can have different
transcript structures (I). To reconstruct structures, junctions were grouped into inner and outer junctions
based on their position to the circRNA (II). The most likely transcript was calculated using splicing graphs
(III). For panel A, outliers were removed for plotting.

(Figure 10B).
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2.4 CircRNA properties

2.4.1 General properties of circRNAs

CircRNAs differ in several features from other non-coding RNAs: They are small (median genomic

length 11,000 bp, transcript size between 400-800 bp, median exon number 3) (Figure 11A-C). In

addition, circRNAs overlap mainly with protein-coding genes and they are tissue-specific (Figure

11D-E).
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Figure 11: General properties of circRNAs | A: Genomic size. The genomic size (bp) of circRNAs is
plotted for all species. B: Transcript size. The transcript size (nt) of circRNAs is plotted for all species. C:
Exons per transcript. The number of exons in circRNAs is plotted for all species. D: Biotypes of parental
genes. For each species, the frequency (%) of different biotypes in the circRNA parental genes was assessed
using the ensembl annotation. CircRNA loci that were not found in the ensembl annotation were marked as
"unknown". E: Presence in multiple tissues. For each species, the frequency (%) of circRNAs detected in
one, two or three tissues is plotted. For panel A-C, outliers are not plotted. Abbreviations: md = opossum,
mm = mouse, rn = rat, rm = rhesus macaque, hs = human.

2.4.2 Validations

*Division of tasks: qPCRs were performed under supervision of Peggy Janich in the laboratory of

David Gatfield at the Center of Integrative Genomics of the University of Lausanne.

We confirmed a small subset of circRNAs for mouse, rat and human in liver, cerebellum and testis
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Figure 12: Genomic locus and validation of circCdyl | A: UCSC genome browser view for Cdyl.
Depicted are the circRNA reconstructions (purple) and the ensembl reference transcripts (red) for the Cdyl
locus in the mouse genome. B: qPCR for Cdyl. Mean ∆Ct for Cdyl and circCdyl in liver, cerebellum and
testis. Values were normalized to the housekeeping gene GusB. C: Enrichment of Cdyl. The log2-ratio of ∆Ct
values between circCdyl and Cdyl in different tissues is plotted. Abbreviations: lv = liver, ce = cerebellum,
ts = testis

via quantitative real-time PCR (qPCR) with primer specific for the BSJ. We selected circRNAs

based on 1) strong expression in a given tissue, 2) strong differences in expression between tissues

and 3) presence in several species. 23 murine circRNAs were tested in liver, three in cerebellum

and two in testis of which we were able to confirm 93% (26/28) (Supplementary Table 4). The

Cdyl gene (chromodomain protein Y-Like) produces a circRNA from its 7th exon (circCdyl). My

analysis predicted circCdyl expression to be high in cerebellum, low in liver and absent in testis.

It also predicted a strong tissue specificity for Cdyl in testis and low expression in cerebellum and

liver. The qPCR results agreed with all predictions that were made for the expression profiles of

circCdyl and Cdyl (Figure 12).

2.4.3 CircRNA hotspots

Parental genes can give rise to multiple often overlapping circRNAs. These genes are known as

circRNA hotspots, but the frequency of and the mechanism behind this phenomenon has not been

studied. I decided to analyze circRNA hotspots in more detail, as the presence of a hotspot might
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indicate the presence of a strong and therefore detectable signal leading to the biogenesis of circRNAs.

In the subsequent chapters, I am defining a circRNA hotspot as any parental gene that produces at

least two genomically overlapping circRNAs independent of their expression levels or the tissue they

are found in. To understand the properties of circRNA hotspots in more detail, I used different CPM

thresholds (0.01-0.1 CPM) to analyze the changes in the total number of detected circRNAs and the

number of circRNAs per gene in respect to different CPM thresholds. With a decreasing CPM, the

number of circRNAs varies between 6292-17,281 at 0.01 CPM and 682-2187 at 0.1 CPM. While at

0.1 CPM only 33-48% of circRNAs are in a hotspot, the number increases to 59-76% at 0.01 CPM

(Figure 13A). The exact numbers for each species are provided in Table 3. The median number

of circRNAs in a hotspots increases from 2-3 circRNAs at 0.1 CPM to 5-6 circRNAs at 0.01 CPM

(Figure 13B). Hotspots are furthermore characterized by the presence of a dominant isoform that

in average exhibits at least 50% of the summed expression levels in a hotspot. Transcripts within

a hotspot overlap more often in their middle-exons than with the first or last exon. A hotspot can

produce different circRNAs in multiple tissues (Figure 13C-F). Figure 13F provides an example

for a circRNA hotspot in the Crebrf gene. The gene produces nine different circRNAs with different

structure, tissue preference and expression levels. mmCircRNA-366 is the dominant circRNA in this

hotspot contributing 33.5% to the observed summed expression.

Table 3: CircRNA frequency as function of CPM threshold | Table provides an overview of the
total number of circRNAs that were detected in a given hotspot at 0.1 and 0.01 CPM (column 2 and 4,
corresponding percentages are indicated in brackets behind the total number of circRNAs) and the total
number of hotspots (column 3 and 5) at 0.1 and 0.01 CPM in each species.

Species #CircRNAs at 0.1 (%) #Hotspots at 0.1 #CircRNAs at 0.01 (%) #Hotspots at 0.01
Opossum 682 (33) 87 6292 (59) 1184
Mouse 707 (36) 96 6660 (65) 1232
Rat 1016 (47) 151 7711 (67) 1457
Rhesus 1607 (44) 273 14,029 (73) 2804
Human 2187 (48) 408 17,281 (76) 3353
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2.5 CircRNA overlap between species

2.5.1 Frequency of shared circRNAs

Many studies have identified circRNAs that were produced from orthologous genes and subsequently,

claimed that circRNAs are highly conserved [66, 67]. However, none of the studies was primarily

designed to gain insights into the circRNA structure and abundance across different species and

therefore, a suitable dataset to support this claim is missing. The here-presented dataset of circRNAs

across different mammalian species and lineages allows to gain deeper insight into the subset of

species-specific circRNAs. Furthermore, potentially orthologous circRNAs can be defined and their

evolutionary history investigated. For the following analyses, I distinguished shared circRNAs based

on five groups:

• Therian circRNAs: The circRNA is present in opossum and in at least three out of four

species.

• Eutherian circRNAs: The circRNA is not present in opossum, but in at least three out of four

species.

• Rodent circRNAs: The circRNA is present in mouse and rat (referred to as lineage-specific).

• Primate circRNAs: The circRNA is present in rhesus macaque and human (referred to as

lineage-specific).

• Species-specific circRNAs: The circRNA is present in only one out of five species, or can not

be grouped in any of the other four groups.

Furthermore, I decided to define the structural overlap between circRNAs based on three different

levels (Figure 14A):

1. Overlap based on common parental genes (referred to as level 1).

2. Overlap based on common loci within parental genes (referred to as level 2).

3. Overlap based on the first and last exon of the circRNA (referred to as level 3).

The level-1 classification defines two circRNAs as overlapping as soon as they have orthologous

parental genes. Under this assumption, 4681 distinct clusters, of which 5% (236) are shared between
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Table 4: Expected and observed frequencies of parental gene clusters | The expected value was
calculated as N ∗

∑
p(i) with p(i) representing the probability of an individual event (e.g. having an one-to-

one ortholog in the set of opossum parental genes) and N is the number of trials (observed number of events
in the different groups).

Group Therian Eutherian Rodents Primates
Expected 50 117 250 652
Observed 236 299 304 790

all five species, were identified. 80.0% of clusters are species-specific (opossum: 14.7%, mouse: 10.6%,

rat: 12.0%, rhesus: 16.7%, human: 26.7%). The identified number of clusters in the individual groups

(therian, eutherian, rodents, primates) is significantly larger than the expected overlap (Pearson’s

chi-squared test, p-value < 0.001). For instance, based on the one-to-one orthology of parental

genes from the five species used, one would expect to find 50 therian clusters if they were randomly

sampled. However, 236 clusters exist between the five species (Table 4, Table 5).

In the level-2 classification, circRNA coordinates within each gene are collapsed to identify

the maximal locus from which circRNAs can be produced. Collapsed loci are synonymous to the

previously described hotspots. By applying this criterion, a total of 5429 distinct clusters were

found. Similar to level-1, 4.8% of clusters are annotated as therian and 75.5% are species-specific.

Level-3 classification defines overlapping circRNAs based on the usage of the same first and last

exons in different species. 10,064 distinct clusters were identified in total, of which only 1% represent

therian and 85.6% species-specific clusters (Table 5, Figure 14B). The number of identified clusters

increases with the classification stringency. However, the proportion of different orthology groups

is similar between the level-1 and level-2 classification. In contrast, level-3 is characterized by an

increase in species-specific circRNAs. The stringency increases strongly from the level-1/level-2

classification to level-3 explaining the increase of species-specific circRNAs.

Table 5: Overview of detected clusters under different classifications | Table summarizes the
frequency (%) of different clusters based on the circRNA locus classification and overlap between species.
The total number of detected clusters in each group is indicated in brackets.

Group Level-1 % Level-2 Level-3
Therian 5.0 (236) 4.8 (260) 1.0 (104)
Eutherian 6.4 (299) 6.8 (369) 2.6 (263)
Rodents 0.9 (43) 1.9 (102) 1.9 (192)
Primates 7.6 (356) 10.9 (594) 8.9 (893)
Opossum 14.7 (688) 15.9 (862) 14.2 (1418)
Mouse 10.6 (498) 8.1 (438) 9.9 (989)
Rat 12.0 (563) 12.5 (681) 14.4 (1438)
Rhesus 16.7 (782) 15.3 (833) 18.3 (1835)
Human 26.1 (1226) 23.7 (1289) 28.8 (2887)
Total 4691 cluster 5428 cluster 10,064 cluster

42



level 1- parental genes
species A

species B

1226

782

563

498

688

356

43

299

236

*% conserved *% species-specific

species A

species B

level 2 - circRNA locus

1289

833

681

438

862

594

102

369

260

*% conserved *% species-specific

species A

species B

level 3 - start/stop exon

2887

1835

1483

989

1418

893

192

263

104

*% conserved *% species-specific

A: Schematic representation of different overlap classifications

B: Identified clusters for each classification

level 1- parental genes
(ncluster = 4681)

level 2 - circRNA locus
(ncluster = 5428)

level 3 - start/stop exon
(ncluster = 10064)

Figure 14: CircRNA overlap between species | A: Schematic representation of different overlap
classifications. The overlap can be defined on the gene level, based on the locus within the gene or the
same first and last exons. B: Identified clusters for each classification. The differences in the total number
of identified clusters are caused by the different classification criteria. The occurrence of "0" in the level-1
classification is probably caused by the usage of 1:1-orthologous genes that had to be present in all five species
analyzed. If not a 1:1-ortholog in the five species, they were automatically classified as species-specific.

I decided to continue with shared circRNAs from the level-2 classification for the subsequent

analyses, because it is less stringent than level-3, but provides a better resolution for circRNAs that

are shared between eutherians, rodents and primates. In addition, level-2 reflects the previously

defined hotspots. Shared hotspots may indicate the presence of a strong signal for the production

of circRNAs, which itself might be lost if shared circRNAs are analyzed based on the parental gene

(level 1) or the exact first and last exon (level 3).

2.5.2 Level 2 circRNAs and their properties

PhastCons scores are conservation scores based on multiple alignments and known phylogenies that

describe the conservation levels of a given base pair [106]. Increased conservation scores for any

genomic element (e.g. an exon, UTR, regulatory sequence) can indicate that the element itself is

functional and therefore, has been kept without large changes in the genome. To understand whether
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circRNA exons distinguish themselves via higher conservation scores from the remaining exons of

the parental gene, I calculated the conservation scores separately for each exon in the parental gene

and compared the different exon types with each other (exons inside and outside the circRNA).

PhastCons scores were available from the UCSC genome browser server for mouse, rat and human.

Interestingly, the ratio of phastCons scores between exons that are inside and outside the circRNA

was significantly larger than expected (one-tailed Wilcoxon rank sum test with log2-transformed

ratios and an expected value µ=0, for all comparisons: p < 0.001) (Figure 15A).

Species-specific genes and transcripts can exhibit lower expression levels than genes and tran-

scripts that are shared between multiple species. Therefore, I decided to compare expression levels

between therian circRNAs and species-specific circRNAs. To allow comparison between the different

species without relying on the CPM values, I calculated the ratio between BSJ reads and spliced

reads that were covering the direct flanking introns (circ-ratio). If the locus contained several circR-

NAs, I first calculated the ratio for individual circRNAs and then, summed the ratio of circRNAs

within one locus for further comparison. For all species, the circ-ratio is larger for therian than for

species-specific circRNAs (Figure 15B). However, the effect is less distinct (but still significant) for

the mean and median circ-ratios (data not shown). The observed differences in using the summed,

mean or median circ-ratio may indicate that the number of circRNAs is higher in shared circRNA loci

than in species-specific circRNA loci and is thus driving the observed differences. Shared circRNA

loci are therefore more often circRNA hotspots.

The expression levels of protein-coding genes are well conserved across homologous tissues of

different species. LncRNAs in contrast, exhibit a species-specific clustering with low correlation

between expression levels [22, 23]. If circRNAs were a conserved property of the genome, then

circ-ratios should be similar across tissues and species. To investigate this hypothesis, I calculated

pairwise rank-correlations (Spearmann’s rho) between the circ-ratio for all tissues and species. Inde-

pendently of whether the summed, mean or median circ-ratio is used, circRNA clustering is driven

by a mixture of tissue-specific and lineage-specific signals: They cluster first by lineage (rodents,

primates), but within each lineage, homologous tissues are closer. In contrast, parental genes cluster

mainly by species (Figure 15C). This might be surprising, however, clustering was performed with

a small subset of genes representing a specific subset of genes (therian circRNA parental genes).
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Figure 15: Properties of level 2 circRNAs | A: PhastCons scores. PhastCons scores were calculated
for each exon using the conservation files provided from ensembl. For each gene, the mean phastCons scores
for exons inside the circRNA were compared to the mean phastCons scores for exons outside the circRNA.
The distribution of the obtained ratios is plotted. Significance was assessed by a one-tailed Wilcoxon rank
sum test using log2-transformed ratios and an expected value of µ=0 (for all comparisons: p < 0.001) B:
Circ-ratio. Circ-ratio was calculated with BSJ reads and spliced reads that were covering the direct flanking
introns. Significance was assessed by a one-tailed Mann-Whitney U test using the summed circ-ratio of shared
(blue) and species-specific (red) circRNAs. C. Expression clustering. Hierarchical clustering of circ-ratio for
therian circRNAs (n=260) and FPKMs (fragments per million mapped reads) for parental genes of therian
circRNAs (n=251). Heatmap presents Spearman’s rank correlation coefficients between pairs of samples.
Sample clustering is further depicted by squares on the left of each plot representing the different organs
(liver = brown, cerebellum = green, testis = blue). Abbreviations: md = opossum, mm = mouse, rn = rat,
rm = rhesus macaque, hs = human.

2.5.3 Divergent and parallel evolution

The phylogenetic relationship between different species is reconstructed by combining phenotypic

and genomic traits. If the traits originated in a common ancestor, they are defined as homologous

between species (Figure 16A). Starting from the common ancestor, they can evolve in different

directions - a process, which is also known as divergent evolution. However, similar environmental

conditions can lead to the parallel evolution of analogous traits between species without common

origin (Figure 16B). One famous example of parallel evolution for instance, is the evolution of
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Figure 16: Schematic representation of the concepts of divergent and parallel evolution | A:
Divergent evolution. The circRNA was present in the common ancestor of species A and B. B: Parallel
evolution. The observed circRNAs in species A and B developed independently due to common genomic
constrains. Turnover over of circRNAs (e.g. change of the backsplice site) with time is possible.

a camera-type eye in cephalopodes and vertebrates. In both groups, the need of seeing led to

the development of the same eye structure [107]. The emergence of similar coloration patterns in

different animals is a second example in which the need of interacting with the environment (e.g.

mating display, communication with other individuals, protection from predators) has created similar

coloration patters in different species (reviewed in [108]). The presence of a similar trait across species

does therefore not always imply homology, and common ancestry can be a misleading assumption.

In the previous chapters, I showed that circRNAs are shared between species. This overlap can be

due to a common ancestral circRNA or instead, be based on structural or functional constrains,

which are shared by their parental genes. In the latter, circRNAs, which are shared between species

are not conserved and did not originate from a common ancestor. Instead, they evolved in parallel

driven by a similar genomic environment provided by parental genes. To investigate this hypothesis,

I analyzed different genomic components to understand if any of them are shared between circRNA

parental genes.
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2.6 CircRNA parental genes

2.6.1 Genomic and functional characteristics

To investigate whether the presence of a circRNA in multiple species is explained by divergent or

by parallel evolution, I analyzed the different properties of parental and non-parental genes. I col-

lected information on the genomic length, GC content and the number of exons and transcripts of

each gene to approximate its structure. Furthermore, I scored its splicing properties based on the

splice site amplitude (difference between intron and exon GC content at splice site) and incorporated

functional aspects such as the expression levels of a gene, its phastCons scores and GO annotations.

Last, I analyzed the repeat landscape in each gene. Previous research in human and mouse has

shown that repetitive structures as well as DNA-binding proteins, which are present in the flanking

introns of circRNAs, can support their biogenesis [64]. In human, these repetitive structures overlap

often with Alu repeats [65, 75]. In species different than human, it is yet unknown whether there

are specific repeat families that influence circRNA biogenesis.

GC content

To facilitate the classification of parental genes, I divided coding genes into distinct groups based

on the GC content of the five isochores: L1 with < 37%, L2 with 37-42%, H1 with 42-47%, H2

with 47-52% and H3 with > 52%. In agreement with previous studies, coding genes in human and

rhesus macaque have a bimodal GC distribution (gene enrichment in L2 and H3). Mouse and rat as

representatives of the murideae are characterized by a uniform distribution with a gene peak in H1.

In opossum, genes are enriched in GC-low isochores (L1-L2) [9]. After calculating the percentage

of parental genes in each isochore, I found that parental genes are strongly enriched in GC-low iso-

chores (Figure 17). In opossum, 94% of parental genes are found in L1 and L2. In mouse and rat,

parental genes are mainly in L2 and H1 (89 and 82% respectively). In rhesus and human, parental

genes peak in L2 followed by L1 and H1 (92% and 93%). Thus, low GC content is associated with

the presence of a parental gene.

Exon and intron structure

For all coding genes, I categorized introns and exons according to the presence of a circRNA and

their relative position to the circRNA. Exons were divided into 1) non-parental, 2) parental, but

outside of the circRNA and 3) parental and inside the circRNA. Similar to exons, introns were
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Figure 17: GC content of parental genes | Coding genes were classified into L1-H3 based on their GC
content (grey). The percentage of parental genes was then calculated in each group (purple). The percentage
of parental genes in L1-L2 (opossum, mouse, rat) and L1-H1 (human, rhesus macaque) is indicated above
the respective graph (purple writing).

grouped into 1) non-parental introns, 2) parental, but outside of the circRNA, 3) parental and

flanking to the circRNA and 4) parental and inside the circRNA. For each category, I calculated

the median length and GC content. Exons that are contained in the circRNA have a significantly

smaller GC content than other exons from the same parental genes (one-tailed and paired Mann-

Whitney U test, p-values mostly < 0.001) (Supplementary Table 5). The exon length does not

differ. CircRNA flanking introns are significantly larger than other introns inside and outside of

the circRNA independent of the GC content (one-tailed Mann-Whitney U test, p-values < 0.001)

(Figure 18A and D). The difference is more pronounced between circRNA flanking introns and

non-parental introns (6.7-9.9x longer) than between circRNA-flanking introns and parental-outside

introns (4.9-6.4x longer). Exon and intron structure are depending on the isochore, in which the

gene is located [3, 109]. The observed differences between the analyzed intron and exon types are

in agreement with the enrichment of parental genes in GC-low isochores.

Next, I calculated the GC amplitude at each exon boundary, which I defined as the difference

between the GC content of the last 250 intronic bp and the first 50 exonic bp of each splice site.

Amit et al. described a strong correlation between GC amplitude at the exon boundary and nucle-

osome occupancy in the exon creating a strong signal for the splicing machinery. In contrast, a low

amplitude was correlated with exon skipping [3]. Consistently in all species, I detected an increased

amplitude at splice sites of circRNA exons in comparison to parental-outside exons and non-parental

exons (one-tailed Mann-Whitney U test, p-values < 0.001) (Figure 18B, D). The correlations are

stronger for introns, which suggests that the amplitude increase is driven by a reduced GC content
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in the intron (Figure 18C-D, Supplementary Table 6). In summary, circRNA flanking introns

are long and GC-poor, circRNA exons have lower GC content and the GC amplitude at circRNA

splice sites is larger than at other splice sites (Figure 18D).

Complementarity and repeats

I analyzed the complementarity and repeat structure of coding genes. Similar to Ivanov et al., I

used megaBLAST to align all annotated coding genes with themselves to identify regions of comple-

mentarity in sense and antisense orientation of the gene [64, 110]. In general, self-complementarity

correlates negatively with GC content (Figure 19A). Parental genes show a stronger level of self-

complementarity in sense and antisense than non-parental genes from the same isochore. Further-

more, at least 2/3 of circRNAs and hotspots have at least one complement or reverse-complement

alignment in their flanking intron. Next, I intersected introns of all genes with the RepeatMasker an-

notation. RepeatMasker provides information on the exact coordinates, repeat family and similarity

to the consensus sequence of individual members of a TE family in a given species. For this analysis,

I counted the number of repeats in each intron. I did not normalize counts by intron length, because

it is unknown whether the overall frequency in an intron or the repeat enrichment at a specific posi-

tion is of importance. In the latter, division by the intron length can complicate the interpretation

of the results. However, I performed a similar analysis, in which I focused on length-matched introns

instead of parental genes. This analysis is discussed in Chapter 2.7. Across all species, parental

genes are 6.9-9.0x enriched in repeats (sense and antisense) than non-parental genes (Figure 19B).

The enrichment frequency is similar for both orientations, but the total number of repeats is higher

for antisense integrations. The high number of annotated repeats in the parental genes explains the

higher level of self-complementarity.

Replication time, gene expression steady-state levels and haploinsufficiency

For human, I additionally analyzed functional data from three independent studies to assess parental

genes for their replication time [111], the steady-state levels of gene expression [112] and haploin-

sufficiency scores [113]. The replication time refers to the order, in which chromosomal segments

are duplicated during cell division. The replication time for instance correlates with evolutionary

divergence and SNP density and can thus provide interesting information about the chromosomal

locus [114, 115]. For coding genes, GC content correlates negatively with the replication time of a

gene. Interestingly, parental genes are among the early replicating genes in each isochore (Figure
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Figure 18: Properties of circRNA introns and exons | A: Length of different intron types. Distribution
of median intron length (log10-transformed) is plotted for different intron types in each gene. B: Splice site
amplitude. Distribution of median GC amplitude (log2-transformed) is plotted for different exon types. Red
vertical bar indicates value at which exon and intron GC content would be equal. C: Amplitude correlations.
Plotted is the correlation (Spearman’s rho) between the amplitude and GC content of introns (light brown)
and exons (dark brown). D: Schematic representation of exon and intron properties. Abbreviations: np =
non-parental, po = parental-outside of circRNA, pf = parental-flanking of circRNA, pi = parental-inside of
circRNA.
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Figure 19: Complementarity and repeats | A: Complementarity in coding genes. Each coding gene was
aligned to itself in sense and antisense orientation using megaBLAST. The proportion of each gene involved
in an alignment was calculated and plotted according to its isochore. B: Repeat frequency in coding genes.
The total number of repeats was counted in coding genes using the RepeatMasker annotation. Significance
was calculated using a one-tailed Mann-Whitney U test. For all comparisons, the p-value is smaller than
0.001. Outliers for panel B were removed prior plotting.

20A).

The steady-state levels of gene expression are the results of mRNA transcription and mRNA

decay. Pai et al. used microarrays to measure mRNA decay and steady-state expression levels

across a time course of four hours in lymphoblastoid cell lines [112]. Based on their data, the mean

steady-state expression level for parental genes is higher than for the remaining genes from the same

isochore (Figure 20B). The decay rates for non-parental and parental genes do not differ strongly

(data not shown), which suggests that the observed differences are mainly driven by enhanced

transcription.

Haploinsufficiency describes the phenomenon, in which a diploid organism has only one functional

allele of a gene, because the second allele is impaired by mutation(s). As a consequence, gene

expression levels are reduced causing an altered phenotype. Haploinsufficiency is therefore a good

measure to assess the dominance of an allele. Recently, Steinberg et al. developed a genome-

wide haploinsufficiency score (GHIS) based on co-expression networks, dN/dS and single nucleotide

polymorphisms (SNPs) for a large set of coding genes [113]. The GHIS of parental genes in human
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Figure 20: Functional properties of human parental genes | A: Replication time. Values for the repli-
cation time were used as provided in Koren et al. [111]. They are normalized to a mean of 0 and a standard
deviation of 1. Difference between non-parental genes (ntotal=18,134) and parental genes (ntotal=2058) was
assessed by a one-tailed Mann-Whitney U test. B: Gene expression steady-state levels. Mean steady-state ex-
pression levels were used as provided in Pai et al. [112]. Difference between non-parental genes (ntotal=14,414)
and parental genes (ntotal=2058) was assessed by a one-tailed Mann-Whitney U test. C: GHIS. GHIS was
used as provided in Steinberg et al. [113]. Difference between non-parental genes (ntotal=17,438) and parental
genes (ntotal=1995) was assessed by a one-tailed Mann-Whitney U test. Outliers for all panels were removed
prior plotting. Significance levels: ’***’ < 0.001, ’**’ < 0.01, ’*’ < 0.05, ’ns’ >= 0.05.

is higher than for other genes from the same isochore, indicating that the organism could be more

sensitive to changes in the expression levels of parental genes (Figure 20C).

In summary, parental genes in human are early replicating in their GC environment, they have

higher steady-state expression levels and a higher GHIS, suggesting that their transcriptional activ-

ity is important for the organism.

Gene ontology

I analyzed gene ontology (GO) annotations for parental genes in mouse, rat and human against a

background dataset of expressed genes from isochores L1, L2 and H1 (GO annotations for rhesus

macaque and human were not available). The background dataset was restricted to genes from

these isochores, because they account for more than 90% of the observed circRNAs. The GO

process category is enriched in terms directly connected to the tissue’s function (metabolic processed

for liver, neuronal process in cerebellum and spermatogenesis in testis). Interestingly, in all three

tissues and species, functional categories are enriched in GO terms connected to binding, modification
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and transferase- and kinase-activity. No consistent enrichment was found for the GO category of

components genes are expressed in (data not shown).

2.6.2 Linear regression models to analyze parental genes

In the previous analyses, I showed that parental genes differ in structural (e.g. GC content, intron

length, amplitude, repeat structure) and functional traits from non-parental genes (e.g. replication

time, steady-state expression levels, GHIS). However, it is unclear which of the traits affect the

presence of a circRNA most. In order to understand the relationship between the different traits

and their influence on the presence of a circRNA, I developed several models using linear regression.

Linear regression can be used to describe the association between one measurement (the response

variable) and a set of other measurements (predictors).

For all annotated coding genes in each species, I collected data on their GC content, length

(first to last exon), splicing potential (number of transcripts and exons), phastCons scores, ex-

pression levels and tissue-specificity. Furthermore, I counted the number of repeats in sense and

antisense orientation (normalized by gene length) and used the previously calculated values for self-

complementarity in sense and antisense orientation (Chapter 2.6.1) (Table 6). I then fitted a

generalized linear model (GLM) to the data to describe the probability (p) of a coding gene to

produce a circRNA (response variable). The previously listed structural and functional traits served

as predictors for the model:

p(parental Gene) ∼ GC content+ gene length+ ....+ phastCons scores

with : family = logit(binomial)

Some of the predictors such as the GC content and gene length correlate with each other (known

as multicollinearity), which can lead to a biased estimation of the effect size of individual predictors.

To avoid this problem, I calculated the variance inflation factor (VIF) for each predictor. If the

VIF indicated strong multicollinearity, only the predictor with the strongest effect was used for the

final model. A detailed description of how this and the subsequent GLMs were fitted is provided in

Chapter 4.8.

Consistently across all species, coding genes, which are located in genomic regions of low GC content,

that span large genomic distances, which have a higher number of annotated exons and transcripts, a
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Table 6: Structural and functional predictors for the GLM | The table provides an overview of the
different structural and functional predictors that were used to construct the linear model. Data was taken
from the indicated sources.

Predictor Type Source
Genomic length (bp) Structural Calculated
Number of exons Structural Ensembl
Number of transcripts Structural Ensembl
GC content Structural BioMart
Number of repeats in sense orientation to gene Structural Calculated
Number of repeats in antisense orientation to gene Structural Calculated
Self-complementarity in sense (%) Structural Calculated
Self-complementarity in antisense (%) Structural Calculated
PhastCons scores Functional Calculated
Expression levels (median FPKM across five tissues) Functional Brawand et al., 2011 [22]
Tissue specificity (TSI) Functional Brawand et al., 2011 [22]

high number of repeats in sense and antisense orientation and higher phastCons scores, are the most

likely genes to produce circRNAs (Table 7, Supplementary Table 7, Figure 22). Interestingly,

the influence of expression levels and tissue specificity of the parental gene is only mildly or not

significant. In the following, I will discuss the significant predictors in more detail.

GC content and genomic length

In each species, low GC content is the strongest driver for the presence of a circRNA. The log odds

ratios of scaled values range from -1.9 (opossum) to -0.8 in (rat). This is accompanied by an in-

creased genomic length (log odds ratios from 0.3-0.5).

PhastCons scores

For mouse, rat and human, a high PhastCons score is the second strongest predictor for the presence

Table 7: GLM summary for parental genes | A generalized linear model was fitted to predict the prob-
ability of coding genes to be a parental gene (nopossum=18,807, nmouse=22,015, nrat=11,654, nrhesus=21,891,
nhuman=21,744). Predictors are sorted by their log odds ratio and only shown, if they were significant in at
least two species or within primates/rodents. A summary of all log odds ratios and their p-values is provided
in Supplementary Table 7. Abbreviations: md = opossum, mm = mouse, rn = rat, rm = rhesus macaque,
hs = human. Significance levels: ’***’ < 0.001, ’**’ < 0.01, ’*’ < 0.05, ’ns’ >= 0.5.

Response Predictor Log odds range Significance Species
Parental gene GC content -1.9 to -0.8 *** md|mm|rn|rm|hs
Parental gene PhastCons scores 0.6-0.9 *** mm|rn|hs
Parental gene Genomic length 0.3-0.5 *** md|mm|rn|rm|hs
Parental gene Self-complementarity in antisense 0.2-0.6 *** md|mm|rn|rm|hs
Parental gene Exon and/or transcript count 0.2-0.4 *** md|mm|rn|rm|hs
Parental gene Self-complementarity in sense 0.1-0.3 *** md|mm|rn|hs
Parental gene Expression 0.1 ** md|rn
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of a parental gene (log odds ratios from 0.6-0.9). PhastCons scores belong to the functional group

of predictors indicating that parental genes are under evolutionary constrains.

Repetitive structures

I approximated the number of repetitive structures in two different ways. First, I calculated for each

gene the percentage of nucleotides that were inloved in self-complementarity. Second, I counted

the number of repeats in a gene normalized by its genomic length (first to last exon). The re-

peat annotation might be biased by the quality of the genome, and therefore, approach one can

be more precise when approach two does not work. In all five species, the number of repeats and

self-complementarity correlate positively with the presence of a circRNA. The correlation for self-

complementarity in antisense orientation (0.2-0.6) is higher than for self-complementarity in sense

orientation (0.1-0.3).

Transcript and exon count

In all species, the number of annotated exons and transcripts is positively correlated with the pres-

ence of a parental gene. Values for the log odds ratio range from 0.2-0.4.

A small number of circRNAs has been associated with a specific function. In human, 16 of them are

found in coding genes and according to the GLM, are associated with high probabilities to produce

circRNAs (Supplementary Figure 2). Coding genes with a high probability score in the GLM,

may thus not only be likely to produce circRNAs, but those circRNAs could also be prioritized in

functional studies.

2.6.3 GLMs for parental hotspots and shared circRNA loci

Next, I used the same approach to fit a model for parental genes to predict which parental genes

are circRNA hotspots. For this model, I included also information on the presence of the circRNA

locus in other species. The presence in multiple species is based on the previously defined level-2

classification of circRNA overlap in multiple species (Chapter 2.5.1). A therian circRNA locus for

example, occurs in opossum and three other species, while a species-specific hotspot occurs in only

one species. Interestingly, the overlap between species is the strongest predictor for the presence

of a hotspot (log odds ratios from -2.0 to -0.8 for species-specificity). The correlation is negative,
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indicating that genes, which are parental in only one species, have a lower probability of being

a hotspot gene. In contrast, parental genes that occur in many species are more likely to be a

hotspot (Table 8, Figure 21A). The GC content of the parental gene influences the presence of a

hotspot. However, the effect is milder than in the previous model that was fitted for parental genes

(log odds ratios from -0.6 to -0.2) (Table 8, Figure 21B). The presence of repeats seems to be

less important. Self-complementarity in sense orientation is only significant in three species, and

self-complementarity in antisense is only significant in mouse. A summary for all log odds ratios

is provided in Supplementary Table 8. In this analysis the presence of a hotspot was predicted

based on features from the parental gene. In Chapter 2.8, I will repeat a similar analysis, but

instead on properties of the circRNA locus itself.
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Figure 21: GLM for hotspots | A: Hotspot probability ∼ multiple species. The probability of parental
genes to be a hotspot is plotted against the hotspots’ overlap with 1 (species-specific), 2 (group), 3/4 (eu-
therian) or 5 (therian) species. B: GC content of parental hotspot genes. The GC content of the parental
gene in different species is plotted depending on whether it is a hotspot (purple) or not (grey). Outliers for
panel B were removed for plotting

Last, I analyzed parental genes for components that could influence the presence of a circRNA

locus in multiple species. The only shared predictors between all species are low GC content and

genomic length, although the effect is milder than for other responses (log odds ratios from -0.6

to -0.3 and from 0.2-0.3 respectively). Species-specific circRNA loci in contrast, are characterized

by higher GC content (log odds ratios from 0.2-0.6), lower phastCons scores, fewer transcripts and

shorter genomic length (Table 8, Supplementary Table 9). None of the predictors for species

specificity is present in all five species, and in general, correlations are opposite to the previous trends

detected. A more refined analysis, which is trying to answer the question of circRNA presence in

multiple species, will be discussed in Chapter 2.8.
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Table 8: GLM summary for parental hotspot genes | A generalized linear model was fitted to predict
the probability of parental genes to be a hotspot (nopossum=884, nmouse=858, nrat=983, nrhesus=1704,
nhuman=2058). For each response, predictors are sorted by their log odds ratio and only shown, if they were
significant in at least two species or within primates/rodents. A summary of all log odds ratios and their
p-values is provided in Supplementary Table 8 and 9. Abbreviations: md = opossum, mm = mouse, rn =
rat, rm = rhesus macaque, hs = human. Significance levels: ’***’ < 0.001, ’**’ < 0.01, ’*’ < 0.05, ’ns’ >=
0.5.

Response Predictor Log odds range Significance Species
Hotspot gene Number of species -2 to -0.8 *** md|mm|rn|rm|hs
Hotspot gene GC content -0.6 to -0.2 *** md|rn|rm|hs
Shared circRNA locus GC content -0.6 to -0.3 *** md|mm|rn|rm|hs
Shared circRNA locus Genomic length 0.2-0.3 ** rn|rm
Species-specific circRNA locus GC content 0.2-0.6 *** md|rn|rm|hs
Species-specific circRNA locus PhastCons scores -0.4 to -0.3 *** mm|rn|hs
Species-specific circRNA locus Transcript count -0.3 to -0.2 ** mm|rm|hs
Species-specific circRNA locus Genomic length -0.4 to -0.1 ** md|rn|rm

2.6.4 Summary for all linear models

The use of linear models to incorporate the different structural and functional measurements asso-

ciated with circRNA parental genes has provided strong evidence that the presence of a circRNA is

correlated with several structural properties of the parental gene. Parental genes are GC-low, large,

have high splicing potential and are enriched in repeats. Interestingly, a high phastCons score is a

strong positive predictor for the presence of parental gene suggesting that parental genes could be

under evolutionary constrains. The previously listed structural components determine also which

genes among all parental genes are circRNA hotspots. More importantly, the presence of a hotspot

is strongly associated with the number of species in which a gene produces a circRNA. If the gene

is a parental gene in many species, it is more likely to be a hotspot gene. Last, the linear models

suggest that parental genes of shared circRNA loci are not shared due to higher expression levels or

high conservation levels of the parental gene, but mainly due to low GC content. Species-specific

circRNA loci in contrast are found in parental genes with opposite features. They possess higher

GC content, are short, give rise to fewer transcripts and are associated with lower phastCons scores

suggesting that they are located in the lower tail of the probability distribution for parental genes

(Figure 22). The here-presented results support the hypothesis that certain genomic properties fa-

cilitate the biogenesis of circRNAs. Orthologous genes are more likely to possess a similar structure,

which could lead to the presence of similar circRNAs across species.
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Figure 22: Graphical overview of the different GLMs | The probability distribution for parental
genes (I), hotspot genes (II) and shared/species-specific circRNA loci (III) is outlined. An increase in color
intensity reflects higher probabilities for the occurrence of the event (white -> red) or higher values of the
different predictors used to fit the linear model (white -> black). Errors indicate where in a distribution
the different events are found. All predictors (GC content etc.) are sorted according to importance for the
event. In summary, circRNA parental genes are GC-low, have high splicing potential and are long. They are
enriched in repeats and have high phastCons scores (I). Parental hotspot genes have low GC content and are
present in multiple species (II). Shared circRNA loci are found in GC-low parental genes. Species-specific
circRNA loci are produced by short parental genes, with fewer exons and lower phastCons scores (III).
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2.7 CircRNAs and repeats

2.7.1 Enriched repeat families in flanking introns and RVCs

As shown in the previous chapter, the likelihood of a coding gene to produce a circRNA depends

on its GC content and the surrounding repeat frequency. Furthermore, the presence of a circRNA

in multiple species is explained neither by high phastCons scores nor high expression levels of the

parental gene, but instead by structural commonalities between the parental genes. At this point, it

remains unclear whether shared circRNAs emerged independently from each other, or whether there

was an ancestral circRNA in all species. Driven by changes in the repeat environment, latter may

have changed the backsplice sites throughout time (turnover), which could explain the low number

of circRNAs sharing the same first and last exon (Figure 16). To further investigate the two

scenarios of common or independent circRNA origin, I decided to analyze the repeat environment

of parental genes in more detail. In case of an ancestral circRNA, the flanking introns of shared

circRNAs should contain transposable elements common between species. In addition, one could

expect that the dominant circRNA in each hotspot represents the most ancestral circRNA. Because

the circRNA has been present over a long period of time, expression levels stabilized since its

emergence leading to the observed dominance. In case of independent emergence, the presence of

species-specific integration events between orthologous parental genes would independently create a

repetitive genomic environment and support the hypothesis of a parallel circRNA origin. Dominance

is now explained by recent integration, because repeat pairing is strong due to a lack of degradation

and insufficient defense mechanisms of the host genome.

To be able to connect the observed repeat elements directly with the circRNA and to distinguish

the two hypotheses (common or independent circRNA origin) from each other, I focused on the

flanking introns only. I generated a control dataset of approximately the same number of introns

that was matched for intron length. For the interpretation of results, I assumed that in order to

influence the presence of a circRNA, repeats should fulfill the following criteria: They need to be

upstream and downstream of the circRNA (1) and should come from the same repeat family (2) to

form stable dimers (3) by reverse-complement base pairing (4) (Figure 23).

In comparison to the background dataset, flanking introns are enriched in repeats in sense-

and antisense-orientation to the gene (sense: 2.0-2.9x, antisense: 2.1-3.2x) (Figure 24A). If the

background data set is additionally corrected for GC content, the enrichment of repeats in the

flanking introns is less pronounced, but still significant (data not shown).
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Figure 23: Repeat properties in-
fluencing circRNA occurrence | To
influence the presence of a circRNA, re-
peats should be upstream and down-
stream of the circRNA (I), from the
same repeat family (II) and form sta-
ble dimers (III) by reverse-complement
base pairing (IV). It is unknown to
what extent condition II and IV are
true. In this scheme, grey boxes rep-
resent the circRNA body, while striped
boxes indicate a repetitive element.

Several studies have shown that circRNA flanking introns are enriched in repeats belonging to

the SINE family [64, 65, 67]. Therefore, I decided to investigate the abundance and enrichment

of SINE elements in the flanking introns of all species. Rodents have five major SINE families:

B1 (in RepeatMasker annotated as Alu), B2, B4, ID and MIR. In primates, there are two major

SINE families: Alu and MIR. Based on their age, I divided the Alu family into three subgroups

(AluJ, AluS, AluY). For opossum, I only distinguished between MIR-related and MIR-unrelated

SINE elements. In all five species, MIR elements can be abundant, but are only lowly enriched.

There are no strong differences in enrichment between the remaining TE families (Figure 24B’

and C’, Supplementary Figure 3A’, B’ and C’). To understand if specific repeats drive the

formation of circRNAs, I compared the abundance and the enrichment of individual members of each

SINE family in the flanking and background introns. In all species, the abundance of TEs correlates

with their reported activity. In opossum, SINE1_Mdo - a recent and (still) active TE is the most

abundant and enriched (Supplementary Figure 3A). In mouse, the most abundant and enriched

TEs are B3, B4, B1_Mus1 and B1_Mus2 (Figure 24B”). In rat, B3 and B4 are similarly abundant,

however B1 family members do not occur often. Instead, recently active ID family members are more

frequently found and enriched (Supplementary Figure 3B”). In primates, the most frequent and

enriched TEs in the flanking introns are AluJ and AluS. Both elements are characterized by high

amplification rates in respect to AluY (AluJ: 20,000 copies/myr, AluS: 2000 copies/myr, AluY:

100-500 copies/myr) (Figure 24C”, Supplementary Figure 3C) [116].

To assess which repeats are forming dimers, I annotated the detected reverse-complementary and

complementary alignments identified by megaBLAST with RepeatMasker. To be sure of the repeat

presence, repeats had to overlap with at least 50% of their length with the megaBlast alignment. In

opossum, the most prevalent repeat pair is the SINE1_Mdo dimer. In mouse, several dimers within
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the B1 family (B1_Mus1, B1_Mus2, B1_Mm) and the B2 family (B2_Mm2) are found. Rat is

characterized by dimers of the ID family (ID_Rn1, ID_Rn2). In rhesus macaque and human, pairs

between Alu elements are frequently found. While in rhesus the prevalent pairs consist of AluSx

and others, in human the most common pairs are between AluSx1 and AluSx (Figure 25A). A

similar trend is also present in sense orientation (Supplementary Figure 4). Interestingly, all

enriched repeats are not only species-specific or lineage-specific, but have undergone recent amplifi-

cation rounds and are thus young. Young repeats had less time to degrade and may thus be those

that can base pair and loop the most efficiently. Because the DNA sequence varies less from the

consensus, they are easier to annotate, which could partially drive the observation. In addition,

several alignments did not overlap with annotated repeats under the chosen thresholds (in antisense

13.9% in opossum, 7.5% in mouse, 7.0% in rat, 3.0% in rhesus and 3.3% in human). They might

either be strongly degraded and therefore, they are not annotated, overlap with less than 50% with

the alignment, or present simple DNA repeats.

Next, I analyzed the pairing capability within sense and antisense dimers of all TEs to confirm

that recent TEs are more likely to pair with each other than older TEs. For each TE, I received the

consensus sequence from Repbase and used RNAcofold from the ViennaRNA package to fold TEs

on each other [117, 118]. RNAcofold calculates the minimal free energy (MFE, unit in kcal/mol)

for the secondary structure of RNA and DNA dimers. The MFE can be used as characteristic value

to describe the dimer stability - the lower the value the more stable. In all species, the secondary

structure of antisense dimers is more stable than in sense dimers (Figure 25B). Furthermore,

the most stable structures are found in dimers composed of the same TE. However, TEs can also

form stable structures with other TEs from the same family or with TEs from another family

(SupplementaryTable 10). This is of particular interest for mouse, rhesus and human, because

for these species some of the TE families are very large (B1 family: 10 TE members, Alu family in

human: > 15 TE members). Therefore, dimer formation, which is important to form the backloop

during circRNA biogenesis, can occur across a broad spectrum of TEs.

The binding landscape is complex and different TE dimers can be created between different TEs

belonging to different families. In general, antisense-binding is preferred, but sense-binding might

also be of importance. With RNAcofold, I approximated dimer stability in-silico using consensus

sequences. However, the high abundance of TEs in close proximity to each in the circRNA flank-

ing introns might favor different dimers. In addition, the local DNA structure and environment

(e.g. modifications, chromatin structure) may influence the binding probability and strength and
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could create spatio-temporal binding preferences. In summary, analyses on TE dimer frequency and

stability suggest that young TEs are influencing circRNA formation and therefore, new integration

events may influence which circRNA will be produced in a hotspot. In the next chapter, I will

therefore analyze and compare the repeat landscape of circRNAs depending on their overlap with

other species and their dominance in a hotspot.
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Figure 24: Repeat frequency in flanking and background introns | A:Mean repeat frequency. Figure
shows the total number of repeats in flanking (purple) and background introns (grey). The enrichment of
repeats in flanking introns was calculated for each species in sense and antisense orientation. B’: Mouse
SINE families. Plotted is the log2-enrichment for different repeat families in antisense and sense orientation.
Increase in color intensity reflects the mean number of repeats detected in all flanking introns. Significance
was estimated with a one-tailed Mann-Whitney U test. B”: Mouse SINE family elements. Plotted is the
log2-enrichment for individual SINE family members in antisense and sense orientation. Increase in color
intensity reflects the mean number of repeats detected in all flanking introns. Significance was estimated
with a one-tailed Mann Whitney U test. Family members that were not significant in sense and antisense
orientation were removed from plot. C’: Human SINE families. Plot was generated as described in B’. C”:
Human SINE family elements. Plot was generated as described in B”. Abbreviations: as = antisense, ss =
sense. Significance levels: ’***’ < 0.001, ’**’ < 0.01, ’*’ < 0.05, ’ns’ >= 0.5.
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Figure 25: Reverse-complement repeat enrichment | A: Repeat dimers in antisense to each other.
Frequencies of the Top 10 repeat dimers found in flanking introns of each species. Red line was set at
position 1 to indicate which repeats occur less or more often than once in the flanking introns. "0" in a
dimer name corresponds to alignments for which no overlapping repeat was found after the intersection with
the RepeatMasker annotation. B: Minimal free energy of Top 5 dimers. MFE (kcal/mol) of the secondary
structure of the Top 5 dimers was calculated with the RNAcofold function from the VienneRNA package.
MFE was assessed for sense-pairing (yellow) and antisense-pairing. As approximation of the TE sequence, the
consensus sequence from Repbase was used. "0|0" dimers were not assessed, because no consensus sequence
exists. Abbreviations: as = antisense, ss = sense.
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2.8 Hotspots

2.8.1 Linear regression models for hotspot presence and depth

Given the high abundance and enrichment of TEs in the flanking introns of circRNAs, I asked

whether TEs could also explain how many circRNAs are found in a hotspot (depth) and which

circRNA will be dominant (most highly expressed) in a hotspot. Similar to the previous analyses in

Chapter 2.6.2, I again used linear regression to adress these questions. In addition to the repeat

frequencies, I incorporated information on the splicing strength of each circRNA. To approximate

the splicing strength, I calculated the intron and exons GC content (last intronic 250 nt, first exonic

50 nt), the amplitude and ∆G at the backsplice site. ∆G was calculated for the first 100, 250 and

500 nt at each splice site. I also incorporated information on the hotspot and circRNA presence in

other species as calculated in Chapter 2.5.1. All predictors are listed in Table 9.

In Chapter 2.6.2, I estimated the presence of a hotspot within parental genes from structural

components describing the parental gene. To be more precise, I focussed now on properties that are

more specific to the circRNA locus itself such as the length of the locus or the quality of the splicing

signals. The linear model was run as follows:

p(presence of hotspot) ∼ GC content + length + ... + ∆G

with : family = logit(binomial)

Table 9: GLM predictors for hotspots presence, depth and circRNA dominance | All predictors
were calculated using BioMart or the sequence information itself. They could influence either looping of the
mRNA or the splicing of the circRNA.

Predictor Potential influence on: Response
GC content Looping Hotspot presence, depth
Genomic length of hotspot Looping, splicing Hotspot presence, depth
Total number of repeats in flanking introns Looping Hotspot presence, depth
Median ∆G of splice sites Splicing Hotspot presence, depth
Intron GC content Splicing Dominance
Exon GC content Splicing Dominance
Acceptor amplitude Splicing Dominance
Donor amplitude Splicing Dominance
Length of transcript Splicing Dominance
Number of exons Splicing Dominance
Number of repeats in flanking introns Splicing Dominance
Mean distance of repeat pair to splice site Splicing Dominance
∆G of splice site (100, 250, 500 nt) Splicing Dominance
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Table 10: GLM summary for hotspot presence and depth | A generalized linear model was fit-
ted to predict the probability of hotspot presence between all circRNA loci (nopossum=1049, nmouse=1024,
nrat=1285, nrhesus=2169, nhuman=2759) and the depth of a hotspot (nopossum=203, nmouse=234, nrat=305,
nrhesus=605, nhuman=846). For each response, predictors are sorted by their log odds ratio and only shown,
if they were significant in at least two species. A summary of all log odds ratios and p-values is provided
in Supplementary Table 11. Species abbreviations: md = opossum, mm = mouse, rn = rat, rm = rhesus
macaque, hs = human. Significance levels: ’***’ < 0.001, ’**’ < 0.01, ’*’ < 0.05, ’ns’ >= 0.5.

Response Predictor Log odds range Significance Species
Hotspot Number of repeats 1.9-3.5 *** md|mm|rn|rm|hs
Hotspot Genomic length 1.0-1.3 *** md|mm|rn|rm|hs
Hotspot Multiple species 0.7-1.3 *** mm|rn|rm|hs
Hotspot GC content -1.1 to -0.2 *** md|rn|rm|hs
Hotspot ∆G 0.1-0.2 ** md|rn|rm
Hotspot depth Number of repeats 0.1-0.2 *** md|mm|rn|rm|hs
Hotspot depth Hotspot length 0.1-0.2 *** md|mm|rn|rm|hs

In agreement with the GLM for hotspots in Chapter 2.6.2, the presence of a hotspot among all

parental genes correlates with low GC content (log odds ratios from -1.1 to -0.2) and its presence in

multiple species (log odds ratios from 0.7-1.3). However, the strongest positive predictor is now the

frequency of TEs (log-odds ratios from 1.9-3.5). In addition, the genomic length of a circRNA locus

correlates positively with the hotspot presence: If circRNAs cover a large part of the parental gene,

this area is more likely to produce several circRNAs (log odds ratios from 1.0-1.3). Furthermore,

in opossum, mouse and rhesus, a high median ∆G at splice sites correlates positvely, although only

mildly, with the presence of a hotspot (log odds ratios from 0.1-0.2).

The depth of a hotspot was analyzed for all hotspots that produce between two and five circRNAs.

Hotspots with a higher number of circRNAs were not incorporated to avoid biases. The following

model was used:

p(number of circRNAs/hotspot) ∼ GC content + amplitude + ... + ∆G

with : family = logit(poisson)

There are no strong predictors associated with the depth of a hotspot. The depth is mildly

influenced by a higher number of repeats (logg odds range from 0.1-0.2) and increased hotspots

length (logg odds range from 0.1-0.2) (Table 10, Supplementary Table 11). However, the

number of available loci to analyze is low due to the restriction for the number of circRNAs in a

hotspot (between two and five), which could limit the power of this analysis.

66



2.8.2 Properties of the dominant circRNA in each hotspot

The previous models indicated that the presence of a hotspot is strongly influenced by the number

of repeats. Therefore, I asked whether the number of individual repeats in the flanking introns

correlates with the dominance of a circRNA in the hotspot. To assess dominance, I sorted circRNAs

according to their expression levels in each hotspot and analyzed their rank (most highly expressed

circRNA = rank 1, second most highly = rank 2, etc.). The reciprocal rank (1/rank) was used

to create a positive correlation between rank and expression levels. In contrast to the previous

analyses, I decided to use a linear mixed model (LMM) for this analysis. Different hotspots have

different genomic backgrounds and therefore, contribute different noise levels for which the LMM

can account:

p(1/(rank of circRNA)) ∼ repeats + genomic length + ... + age

with : background effect = hotspot

The linear mixed model suggests only a weak link between circRNA dominance and two compo-

nents: Presence of the circRNA in other species and genomic length. Dominant circRNAs are more

often found in multiple species and span a smaller genomic distance. However, the effect is small and

interpretation should be done carefully (log odds ratio between -0.1 to -0.02 for both predictors).

Interestingly, the LMM does not indicate a correlation between the strength of a splicing signal (e.g.

GC amplitude or ∆G) and the rank of a circRNA (Table 11, Supplementary Table 12).

Given the low effect size of circRNA presence in multiple species on circRNA dominance, I

decided to confirm this result independently. I compared the expected and observed overlap between

species of the dominant circRNA and other circRNAs from the same hotspot (overlap ratio). The

dominant circRNA can be present in more species (group 1), the same number of species (group

Table 11: LLM summary for circRNA dominance | A linear mixed model was fitted to predict
circRNA dominance in a hotspot (nopossum=203, nmouse=234, nrat=305, nrhesus=605, nhuman=846). In
each hotspot, circRNAs were ranked by the expression levels (rank 1 = highest expression, rank 2 = second
highest expression etc.). Analysis was restricted to hotspots with two to five circRNAs. For each response,
predictors are sorted by their log odds ratio and only shown, if they were significant in at least two species.
A summary of all log odds ratios and p-values is provided in Supplementary Table 12. Species abbreviations:
md = opossum, mm = mouse, rn = rat, rm = rhesus macaque, hs = human. Significance levels: ’***’ <
0.001, ’**’ < 0.01, ’*’ < 0.05, ’ns’ >= 0.5.

Response Predictor Log odds range Significance Species
Dominance circRNA age 0.13 *** mm|rn|rm|hs
Dominance circRNA genomic length -0.02 to -0.04 *** md|mm|rm|hs
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Figure 26: Observed and expected overlap of dominant and sampled circRNA | Expected overlap
ratio (light grey) was estimated by sampling two circRNAs from each hotspot and comparing their overlap
with each other. Observed values (dark grey) were calculated by comparing the dominant circRNA with a
second circRNA sampled from the same hotspot. The ratio can be divided into three groups: In group 1
the dominant circRNA occurs in more species than the sampled circRNA, in group 2 they occur in the same
number of species and in group three, the dominant circRNA occurs in fewer species. The difference between
expected and observed overlap ratios was estimated with a one-tailed and paired Mann-Whitney U test, all
p-values were smaller than 0.001. Abbreviations: exp = expected, obs = observed

2) or in fewer species (group 3) when compared to a second circRNA from the same hotspot. To

estimate the expected overlap ratio, I sampled two circRNAs from each hotspot and compared the

number of species in which the first circRNA occurred with the number of species, in which the

second circRNA occurred. The observed ratio was calculated using the dominant circRNA and a

sampled circRNA from the same hotspot. The analysis was restricted to primates and rodents,

because based on the overlap definition of Chapter 2.5.1, opossum circRNAs can only be shared

in all species or be opossum-specific, which might create a bias in the calculations. For all rodents

and primates, the overlap ratio is significantly higher than expected, suggesting that the dominant

isoform is more often shared across multiple species (one-tailed and paired Mann-Whitney U test,

p < 0.001) (Figure 26).

Dominant circRNAs overlap in more species than non-dominant circRNAs from the same hotspot.

In addition, the depth of a hotspot is influenced by a high number of TEs, and young TEs from

the SINE family are enriched in reverse-complementary regions in the flanking introns (Chapter

2.7). To understand if there is a correlation between young repeats and the dominant circRNA, I

decided to analyze the repeat environment (repeat abundance, repeat family and age) for dominant

and non-dominant circRNAs in more detail. For each circRNA, I counted the number of individual

SINE family members. I then compared their abundance in the flanking introns of the dominant

isoform and a randomly sampled circRNA from the same hotpot.

The results of this analysis are less clear than for previous analyses. In mouse for instance,
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Figure 27: TE environment of dominant circRNAs | A: Mouse. The frequency of different TEs in
flanking introns of dominant and randomly sampled circRNAs from the same hotspot was assessed. Sampling
was repeated 1000 times for each dominant circRNA. The mean species overlap of the sampled circRNA was
used to calculate the enrichment. Plotted is the log2-enrichment for different repeat families. An increase
in color intensity reflects the mean number of TEs detected in the flanking introns of dominant circRNAs.
Significance was estimated with a one-tailed and paired Fisher’s t test. B: Rat. C: Human. Significance
levels: ’***’ < 0.001, ’**’ < 0.01, ’*’ < 0.05, ’ns’ >= 0.5.

B2_Mm2, B2_Mm1t, B1_Mm and B1_Mus2 are enriched (Figure 27A). The enrichment is small,

but significant. However, in rat the ID family members do not occur more frequently (Figure 27B).

In human, members of the AluSx family are also not enriched. In contrast AluJo and AluJb are

found more often (Figure 27C). In opossum and rhesus macaque, none of the TEs are significantly

enriched (Supplementary Figure 5). In summary, there might be a tendency for younger repeats

to be enriched in the flanking introns, but it is weak. In addition, the use of linear regression may

not be the right choice due to a low sample size.
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2.9 A biological model for the production of circRNAs

The leading assumption in the circRNA field is that circRNAs are a conserved, putative functionally

important class of RNAs. The presence of circRNAs in multiple species is one of the most frequently

arguments to support their importance. However, the underlying assumptions for this argument were

not sufficiently tested. Based on the here-presented analyses, following observations were made:

1. CircRNA parental genes present a specific subgroup of coding genes: They are GC poor, long

and have a high potential for alternative splicing. In addition, they are highly enriched in

repeats.

2. Repeats, which are enriched in parental genes, belong to species-specific SINE families.

3. The formation of the loop required for circRNA biogenesis is supported by recently active

repeats. Because they were recently active, these repeats might be the least degraded and

form the strongest loops.

4. In circRNA hotspots, the dominant circRNA is in average more often shared between species

than randomly sampled non-dominant circRNAs from the same hotspot.

5. In addition, dominant circRNAs might be flanked by more and younger repeats than non-

dominant repeats.

Based on these observations, I propose the following model for circRNA biogenesis and overlap

between species: Coding genes that are GC-low and large are predisposed for the integration of TEs

in their introns. Because of the increased intron size, integrated TEs are neutral or only mildly

deleterious for the gene. The presence of a TE can lead to the formation of an integration hotspot as

described for intergenic regions by Levy et al. [28]. The combination of low-GC, long introns, higher

splicing capability and many TEs creates a genomic context in which the production of circRNAs

is facilitated. The presence of multiple repeats supports looping and can lead to the formation of

circRNAs via backsplicing. CircRNAs for which the loop formation is strong will be dominant in a

hotspot. Strong loops are formed by young repeats, which are the least degraded.

Furthermore, shared circRNAs are found in orthologous parental genes that possess similar

structure and thus provide independently from each other a similar genomic context for circRNA

production. Because circRNAs depend on recently integrated and species-specific TEs, most shared

circRNAs emerged in parallel and not from a common ancestral circRNA.
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Thus, most circRNAs are not conserved. They present a shared side-product, which is driven by

the recent integration of species-specific TEs into structurally predisposed orthologous coding genes.
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3 Discussion

73





3.1 Improvements and drawbacks in the circRNA detection pipeline

CircRNAs are characterized by their low expression levels. It requires several filtering steps and

careful analysis to distinguish them from the technical (and biological) noise generated by RNA-seq

protocols. In a standard read mapping protocol, about 10% of reads are unmapped due to differences

between the sample and the reference genome, repetitive regions in the genome, sequencing errors or

non-canonical splicing behavior (as observed for circRNAs) [119]. Hence, reads that are indicative

for circRNAs, need to be recycled from the unmapped fraction of reads. Normally, this is done by

the remapping of anchors generated from the terminal 3’- and 5’-end of a read. If the left and right

anchor map in a non-linear order, are within a certain distance to each other and are extendable to

the full read length, then the read may come from a backsplice site [120]. In a very naive approach,

every read that fulfills these criteria could be a backsplice candidate. Many studies have reported

very high numbers of circRNAs, without adequate filtering and validations steps and it is likely that

these datasets contain high numbers of false-positives. Consequently, many findings might be biased

[92, 97]. It is important to be aware of the technical problems and variables that can influence the

detection of BSJ reads. Therefore, I will briefly discuss these problems in the next paragraphs and

describe, how I have tried to minimize them.

Many circRNA studies use cell lines, only two replicates and avoid the generation of RNase R

treated samples due to higher sequencing costs [97]. CircRNAs are expressed at levels close to the

detection limit. Hence, it is important to avoid experimental designs with high noise levels (e.g.

cell lines, few replicates). In the here-presented dataset, I therefore used real tissues from individual

animals of approximately the same age, worked with triplicates (three individuals per condition)

and made use of RNase R treatment to distinguish circRNAs from noise. In addition, paired-end

sequencing data was used to increase the information content around the splice site by the mate

mapping information.

I have chosen an anchor length of 20 bp, which is a compromise between the mapping precision

(that decreases, the smaller the read) and the identification of an event (data not shown). An

increase in length will lead to an increase in the mapping quality, but on the expense of loosing

candidates for which the read covers a junction with less than the x chosen base pairs. If the anchor

maps equally well to several regions in the genome, many mappers will randomly choose one of the

mapping positions and report only this one if not indicated differently. As a consequence, many

true events are missed, because the mapper picked the incorrect position. Analyzing all possible
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mappings requires more time and a more careful statistical analysis of the different mapping events.

I did not incorporate this step at the time of the pipeline development, because the main focus of

my thesis was not the development of an highly accurate identification pipeline, but the downstream

analysis of predicted circRNA candidates.

I have set the distance between the mapped ends of an anchor pair to 100 kb, which reflects the

average gene length. Increasing the distance to 500 kb can help to identify further candidates. After

500 kb, the number of detected backsplice sites remains relatively stable (data not shown). The

genomic region upstream and downstream of the backsplice site is often repetitive, which increases

the problem of finding the exact breakpoint of the read. To overcome this problem, several detection

tools trim the BSJ read to the next canonical splice site. However, it has been acknowledged that

circRNAs can also use non-canonical splicing motifs and therefore, I trimmed overlapping reads to

known canonical and non-canonical splicing motifs [54, 57]. Reads that did not pass this filter were

discarded. More than 95% of the final BSJs are flanked by canonical splice sites (data not shown).

I used an enrichment approach to discard putative BSJs for which the read coverage did not

increase after RNase R treatment. In my pipeline, I used the same enrichment threshold for all

coverage levels. However, Szabo et al. showed recently that the confidence interval for RNase

R enrichment changes as a function of the read count. The confidence interval for the RNase R

enrichment in samples with low read coverage is broader than for deeply sequenced samples. BSJs

could thus look like they were depleted if one compares a lowly sequenced RNase R treated and

a deeply sequenced untreated sample with each other [97]. RNase R treated libraries are more

difficult to sequence and are biased due to the high number of multi-mapped reads. Therefore, their

true sequencing depth is difficult to estimate. By choosing a fixed cut-off, I may have lost several

candidates.

Finally, I implemented a second remapping step to increase the coverage on the backsplice site,

which might partially overcome the enrichment bias. However, some BSJs may not have been

discovered due to the initial 20 bp threshold for mapping.

I reconstructed potential circRNA isoforms by creating splicing graphs based on the enrichment

and decrease of splice sites within and outside the BSJ after RNase R treatment. The reconstruc-

tion is imprecise for circRNA transcripts close and below 0.05 CPMs. For these expression levels,

there are on average only 1-4 reads per BSJ (if at all) and it is impossible to deduce the transcript

structure [97].
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In summary, I have tried to be careful with the definition of a real BSJ, the quantification and

transcript reconstruction, although several steps could be improved throughout the pipeline. Nev-

ertheless, the pipeline is robust enough to detect high-confident circRNA candidates, which can be

used for subsequent analyses.

3.2 Current controversies over circRNA function and conservation

Because circRNAs are found in orthologous genes across many species, it is widely assumed that they

are a conserved and thus functionally important property of the genome. However, the presence of a

feature in multiple species does not automatically imply functionality. The observed overlap could,

for instance, simply be an overlap of transcriptional noise. Each gene has its own characteristic

source and level of noise. Orthologous genes are often similar in their structure and expression

profiles causing similar noise patterns. It is possible to speak of "orthologous noise" in this case,

but claims on functionality should not be drawn without adequate biological experiments.

The dataset I presented in this study allows to address the question of circRNA functionality

and conservation levels in greater detail. In the following, I would like to argue against some of the

most frequent claims made in the circRNA research field by using the results of my own analyses.

3.2.1 Controversy 1 - CircRNAs are frequent and therefore important

The number of reported circRNAs in a given tissue ranges from about 100 to almost 40,000 (e.g.

103 circRNAs in human embryonic stem cells [121] versus 38,983 circRNAs in human frontal cortex

[66]). The frequency varies dramatically between cell types, tissues and organisms without any

obvious underlying pattern (Table 12). Based on these numbers, many studies have suggested that

circRNAs are not only an abundant, but also important feature of the mammalian RNA landscape.

Based on my analyses, I hypothesize instead that the high number of genes producing circRNAs

is explained by the properties parental genes exhibit. These properties are low GC content, long

introns, a higher splicing capacity and a high number of repetitive elements, which is characteristic

for genes in the isochores L1, L2 and H1, with L2-genes incorporating most of them. In human,

approximately 53% of coding genes are found in these three isochores. L2 itself contains 25% of

coding genes. The distribution is similar across the here-analyzed rodents and primates, while

opossum coding genes occur mainly in the GC-low isochores L1 and L2 (Table 13).

Low GC content and long introns can allow for the integration, but also fixation of TEs. Levy et

al. showed that TE integration hotspots exist in intergenic regions and that very often, TEs integrate
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into already existing TEs [28, 42]. The fixation of a TE in a specific genomic locus suggests that first,

the host genome is not strongly affected by the integration of the TE in this locus, and second that

the TE has found a stable area, from which it can continue to amplify. Because of these advantages,

other TEs are likely to be fixed in the same locus. The process of repetitive integration may finally

lead to a TE hotspot. Genes with long introns may allow the formation of TE hotspots. Detrimental

effects on transcription and splicing could be neglectable, if the integration event is located distantly

enough from any regulatory signal. Zhang et al. indeed found that intronic repeats are under-

represented in proximity to exon boundaries, but exhibit random integration patterns in distal areas

[43]. L1 elements have a fixation bias for genomic regions with low GC content and in human, many

Alu elements integrate into already existing L1 elements. Therefore, the integration bias of SINE

elements into L1 elements, which are fixed in GC-poor regions, can cause an integration bias of

SINEs into GC-poor regions [28]. The emergency of an intronic TE hotspot is thus a function of

low GC content, large introns and the SINE-integration/LINE-fixation biases. The most likely gene

candidates allowing for TE hotspots should thus be found in L1 and L2 isochores (Figure 28A-B).

TEs are important for the formation of circRNAs. L1 and L2 genes are enriched in circRNA

parental genes, which is in line with the previous assumption of the TE integration bias into GC-low

isochores. In human for instance, 20% of L1 and L2 coding genes produce a circRNA, while in

contrast only 3.4% of coding genes in H2 are parental genes (Table 13). Intronic TEs facilitate the

formation of hairpin structures in the mRNA [47]. The effect might be amplified in TE hotspots

increasing the likelihood of circRNA occurrence. Finally, the enrichment of recently active SINE

elements in long introns of GC-low genes (as seen in the flanking introns of circRNA parental genes)

may be explained by the SINE-in-LINE integration bias and further supports the idea of a TE

Table 12: Highest and lowest circRNA frequencies reported | The Top 5 samples with the highest
and lowest number of circRNAs reported are shown. Frequencies were taken from circBase as of Apr 2017,
[122]

Organism Sample #circRNAs Study
Human Frontal cortex 38,983 Ashwal-Fluss et al., 2014 [57]
Human Occipital lobe 31,085 Ashwal-Fluss et al., 2014 [57]
Human K562 27,307 Salzman et al., 2.013 [69]
Human Diencephalon 24,632 Ashwal-Fluss et al., 2014 [57]
Human Parietal lobe 23,303 Ashwal-Fluss et al., 2014 [57]
Mouse Adult brain 537 Memczak et al., 2013 [93]
Human CD34+ 528 Memczak et al., 2013 [93]
Human Neutrophil 417 Memczak et al., 2013 [93]
Human HEK293 239 Memczak et al., 2013 [93]
Human H9 103 Zhang et al., 2013 [121]
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Table 13: Fraction of coding and parental genes in isochores | Table provides an overview of the
fraction (%) of coding and parental genes found in the different isochores.

Species L1 L2 H1 H2 H3 type
Opossum 23.90 33.71 19.34 10.85 12.20 Coding gene
Mouse 3.66 23.41 31.71 24.32 16.90 Coding gene
Rat 2.74 20.46 30.08 27.2 19.52 Coding gene
Rhesus 8.05 24.91 20.62 17.43 28.99 Coding gene
Human 7.12 25.09 20.98 19.32 27.49 Coding gene
Opossum 11.49 3.81 1.07 0.48 0.23 Parental gene
Mouse 5.07 8.95 3.95 1.32 0.35 Parental gene
Rat 8.17 9.97 4.97 1.63 0.83 Parental gene
Rhesus 18.66 15.44 8.13 3.15 0.90 Parental gene
Human 20.82 20.46 9.54 3.40 1.11 Parental gene

hotspot, in which young TEs integrate into already existing TEs.

In summary, the high number of parental genes might be explained by the high number of coding

genes that based on their structure (GC-low, long introns, many TEs) create a genomic context, in

which the formation of circRNAs is facilitated. Consequently, circRNAs should rather be seen as a

TE-driven stochastic property of a subgroup of genes than an actively maintained product.

3.2.2 Controversy 2 - CircRNAs can be highly expressed and must therefore be im-

portant

The majority of circRNAs is characterized by low expression levels. Standard RNA-seq experiments

produce libraries with more than 40,000,000 reads of which in average 2-10 reads map on a single BSJ.

To filter important circRNAs, several studies have calculated the linear-to-circular ratio (circ-ratio)

and prioritized their analyses on circRNAs with high circ-ratios.

However, taking simply the ratio leads to a loss of information on the real expression levels. For

instance, Guo et al. used 39 samples from different human cell lines and tissues to identify 7112

circRNAs, of which each circRNA was supported by at least two reads. In addition, the circRNA

had to have in at least two samples a circ-ratio of >=0.1. However, when they inferred FPKMs,

60% of circRNAs had FPKMs below 1. To calculate the circ-ratio, they considered each transcript

with an FPKM of at least 0.1. In a normal RNA-seq experiment, it is common practice to remove

transcripts with less than 1 FPKM, because it is difficult to calculate correct expression levels for

weakly expressed genes due to the high level of biological and technical noise. In addition, 29 out

of 39 samples in the analysis of Guo et al. are from different cell lines and tissues, many of them

without replicates. As discussed in Chapter 1.1.3, the stochastic effect is large in lowly expressed

genes and even larger if one compares gene expression across a high number of different biological
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samples. If expression levels are calculated for weakly expressed transcripts, it is important to have a

high number of replicates. The circRNA candidates provided by Guo et al. based on high circ-ratios,

are likely influenced by strong noise levels as the expression levels of the analyzed transcripts are

low and have different biological backgrounds. One should therefore be careful when interpreting

their results.

Unfortunately, Guo et al. is one of the most highly cited studies in the context of "strongly

expressed circRNAs". Other studies have reported much lower numbers of circRNAs with a circ-ratio

of >=0.1 (e.g. less than 10% of detected circRNAs in [65] and [69]). In my own data for instance,

the median CPM for circRNAs in cerebellum ranges from 0.09-0.1 CPM, which corresponds roughly

to one read per 10,000,000 reads. Shannon’s equitability as calculated in Chapter 2.3.2 suggests

that circRNA expression levels in cerebellum are evenly distributed arguing that the majority of

circRNAs have low read counts. When discussing circRNA abundance, one therefore needs to

provide the circ-ratio together with the number of detected BSJ reads.

The low expression levels of circRNAs support the hypothesis that circRNAs are merely a by-

product of TE integration and are driven by stochastic processes.

3.2.3 Controversy 3 - CircRNAs are abundant in neuronal tissues and are therefore

important

CircRNAs are abundant and are differentially expressed between neuronal tissues and developmental

stages of the brain [66, 67, 97, 123]. You et al. showed that in the murine brain, circRNAs are

frequently found in genes with synaptic functions. In agreement with this, circRNAs are enriched in

the neuropil - a region of the brain that consists of unmyelinated axons, dendrites and glial cells [123].

Similar findings were made by Veno et al. in the porcine brain [67], by Rybak-Wolf et al. in human

brain tissues [66] and by Westholm et al. in the Drosophila brain [68]. Due to the high number of

different circRNAs that were detected, all studies hypothesized that circRNAs play important roles

in brain development and homeostasis. However, there are other possibilities that could explain the

accumulation of circRNAs in neuronal tissues.

CircRNAs are very stable and until now, it is unknown if and how circRNA abundance is

regulated in the cell. In cells with slow division rates, they might therefore accumulate throughout

time. Starvation of fission yeast (Schizosaccharomyces pombe) for instance, leads to a decrease in

cell proliferation and an increase in circRNA abundance [124]. In addition, Bachmayr-Heyda et

al. described a negative correlation between the proliferation index of a cell and the frequency of
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circRNAs: The number of circRNAs decreases in many tumor types when compared to the same

normal tissue, and changes in expression profiles are more dynamic between cancer cells than for

normal tissues [82]. Westholm et al. detected a positive correlation between the age of fruit flys

and the number of circRNAs detected in their brains. They proposed that circRNAs could be used

as a biomarker for aging [68]. Interestingly, aging has been associated with increased noise in gene

expression [125]. Many cells in the adult brain are in a non-proliferative stage and together with the

higher age of the adult brain, it might explain the enrichment of circRNAs in this organ. Further

support for this hypothesis comes from the research field of somatic mosaicism.

Somatic mosaic mutations are defined as mutations that occur in only some cells of the soma

in a single individual leading to a mixture of cells, which are distinguished by their DNA. Somatic

mutations accumulate in postmitotic cells such as neurons and have mainly been associated with

neurological diseases and aging. Interestingly, neuronal somatic mutations reflect damage that oc-

curred during DNA transcription: Genes that are strongly expressed in a neuron accumulate more

mutations [126]. Similar to somatic mutations, circRNAs may thus reflect the transcriptional state

of a gene in postmitotic tissues.

The idea that circRNAs accumulate in postmitotic tissues can also explain why the number

of identified circRNAs is lower in testis than in cerebellum. High transcriptome complexity is

characteristic for testis, however, the tissue is characterized by a constant renewal of the spermatozoal

repertoire. Thus, circRNAs do not have a lot of time to accumulate in a cell and in addition, the

abundance of circRNAs likely depends on when it was measured during the spermatogenic cycle [21,

127].

The term structural plasticity describes the brain’s ability to change its physical structure as a

result of learning [128]. In a broader sense, each learning process could be seen as an environmental

adaptation. However, to learn and to adapt efficiently, neurons need to be flexible. As discussed in

Chapter 1.1.3, stochasticity is an important factor present in many cell populations and stochas-

ticity allows for a robust response in changing environments [13]. Every day, neurons are exposed

to different kinds of known and unknown information. Higher stochasticity in neuronal cells may

thus be advantageous by increasing the chance that a neuron processes the information correctly.

In such a case, increased stochasticity in transcription and splicing may correlate with the high

number of different circRNAs in the brain. To my knowledge, there is currently no study, which has

investigated a possible connection between structural plasticity and stochasticity in gene expression

and splicing in the brain.
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The enrichment of circRNAs in the brain could be explained by a combination of 1) low prolifer-

ation rates, which lead to the accumulation of circRNAs during aging and 2) heterogeneous neuronal

cell populations that allow structural plasticity. In that case, the high abundance of circRNAs in

neuronal tissues does not provide a strong argument for importance and functionality.

3.2.4 Controversy 4 - CircRNAs exhibit strong splicing signals and high phastCons

scores and are therefore functional

CircRNA exons and splice sites have been associated with elevated conservation scores. Memczak

et al. compared the phyloP scores at the third nucleotide position of 223 circRNAs present in

human and mouse against a set of randomly selected control exons that were matched for the level

of conservation observed in the first and second codon position. PhylopP scores were significantly

larger at the third codon position of circRNAs than in the control exons [93]. Guo et al. used a

similar approach and could confirm these findings. However, when they compared phyloP scores at

the third codon position between circRNA exons and flanking exons, they did not find any significant

difference [54]. You et al. compared phastCons scores between BSJs and linear junctions of the same

gene and found significantly higher phastCons scores at BSJs [123]. In all three studies, elevated

conservation scores were interpreted as a sign of functional relevance.

In my own data, circRNA exons have significantly higher phastCons scores than the remaining

exons from the same gene. However, the effect is milder when the first and last exons are excluded

(data not shown). In addition, I also found a stronger GC amplitude at circRNA exons when

compared to other exons from the same gene (Chapter 2.6.1). At this point, I hypothesized

that the elevated phastCons scores and amplitude may not be due to a conservation signal from

the circRNA, but rather because circRNA exons are constitutive (included in all transcripts) and

because the parental gene needs to adapt the splice site amplitude due to the repetitive landscape in

the flanking introns. Selection may favor mutations that increase the amplitude to differentiate the

exon from the intron, because GC-rich repeats can mask the GC amplitude at the exon boundary

[3]. To analyze whether circRNA exons are constitutive, I compared the presence of circRNA exons

to the presence of non-circRNA exons from the same gene in different transcripts expressed in liver,

cerebellum and testis. CircRNA exons are more frequently used in multiple tissues when compared

to the background dataset (data not shown). The inclusion level is not at 100%, which would define a

constitutive exon. However, it is higher than expected suggesting that circRNA exons are frequently

used in transcripts. I have tried to incorporate the ensembl annotation for constitutive exons. Yet,
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the annotation quality varies a lot between opossum, mouse, rat, rhesus macaque and human and

results are biased by the annotation quality. A more detailed analysis of exon inclusion frequencies

across multiple species and tissues remains to be done.

Based on the obtained results, I would nevertheless argue that circRNA exons differ from their

flanking exons, because they are frequently used in transcripts and need to be spliced correctly

besides an increased number of TEs in the flanking introns. Therefore, elevated conservation scores

are not driven by the functional importance of the circRNA, but by the importance of the exon in

the linear counter-part.

3.2.5 Controversy 5 - CircRNAs are conserved between species and therefore, are

likely functional

CircRNAs are frequently found in orthologous genes across different species. The observed overlap

was used to propose the functional relevance of circRNAs [64, 66, 67].

In contrast to previous studies, the here-presented data indicates that the observed overlap of

circRNAs between species is not caused by divergent evolution from a common ancestral circRNA,

but instead by the independent occurrence of circRNAs in common genomic niches that are provided

by the parental gene. The genomic niche is composed of a low GC content and long introns that

allow for integration of transposable elements (discussed in Chapter 3.2.1). In addition, expression

levels of the circRNAs are driven by the integration of recently active and species-specific SINE ele-

ments. In the subsequent, I would like to discuss several of my findings addressing the TE landscape

and the overlap of circRNAs and hotspots between species to elucidate this point.

The overlap of circRNA hotspots across species

I classified circRNA loci as species-specific, lineage-specific, eutherian or therian depending on the

number of species they occurred in (Chapter 2.5.1). CircRNA hotspots describe parental genes

that produce at least two overlapping circRNAs. Interestingly, hotspots were often annotated as

eutherian or therian, which means that they occur in the majority of species analyzed. In addition,

parental genes of circRNA hotspots are found in the upper tail of the probability distribution that

describes parental genes, indicating that the presence of a hotspot is correlated with a high probabil-

ity of circRNA occurence (Chapter 2.6.1). Gene structure is often conserved between orthologous

genes, which could explain why the same parental genes produce circRNAs in different species and

why hotspots are often found in multiple species.
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The overlap of circRNAs across species

In contrast to circRNA hotspots, circRNAs that share the same first and last exon are less fre-

quently found across different species. CircRNAs are associated with species-specific and recently

active TEs. The integration and fixation dynamics of TEs are specific for a species and can therefore

explain why only a few circRNAs possess the same structure across different species despite the same

parental gene.

The influence of species-specific SINE elements

The evolution of many SINE elements is closely connected to the evolution of the TE used for

amplification and the host’s defense mechanisms. Subsequently, many SINE elements exhibit species-

specific amplification rates and patterns [32]. SINE elements are frequently found in introns of human

and murine genes, and their presence is known to influence the splicing behavior and secondary

mRNA structure of a gene [43, 47]. CircRNA flanking introns are enriched in repetitive elements. In

human, many of these elements overlap with Alu elements and have been implicated in the hairpin

formation that facilitates backsplicing [61, 64, 65]. A similar enrichment of SINE elements is also

found in murine and porcine circRNA flanking introns [64, 67]. However, the exact distribution of

different SINE families in flanking introns and their binding stability has not been studied.

I annotated reverse-complement alignments, which flank circRNAs, to describe the relative abun-

dance of each TE and to identify preferential TE dimers. In all species, recently active TEs are

enriched in flanking introns and in TE dimers. Furthermore, dominant circRNAs in a hotspot are

enriched in recently active TEs suggesting that the presence of a circRNA is driven by active and

species-specific SINE elements. Stable dimerization is more likely to occur between young SINE

elements, because complementary is still high. With time, dimerization is less likely due to the

degradation of the SINE element. CircRNA production is a dynamic process, in which the integra-

tion locus, the distance to the splice site and other SINE elements and the stability of the TE dimer

play important roles. Because degradation and integration rates vary between species, this will lead

to very species-specific circRNA landscapes.

TE integration and fixation dynamics could also explain the presence and depth of a circRNA

hotspot. Whether a gene has the capability to produce a circRNA or not, depends on its structure.

Hotspots can serve as an estimate for this capability. If it is high, the gene can produce many cir-

cRNAs (deep hotspot). In addition, gene structure is similar between orthologous genes causing the
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I Normal parental gene

II Integration of TE in reverse-complement orientation

A: CircRNA formation from genomic niche B: Formation of TE and circRNA hotspot

different dimer stability

old TE median age TE young TE

C: Mechanisms leading to different expression profiles of circRNAs

III Formation of circRNA

I TE degradation 
(downregulation of circRNA expression)

II TE methylation 
(downregulation of circRNA expression)

III RNA editing 
(downregulation of circRNA expression)

A-to-I

A-to-I

Figure 28: Co-evolution of circRNAs and TEs | A: CircRNA origin. The reverse-complement integra-
tion of TEs in introns can lead to the formation of a circRNA. B: Hotspot origin. Repetitive integration of
TEs into each other can lead to the formation of an integration hotspot. This may facilitate the evolution of
a circRNA hotspot with multiple circRNAs, depending on the different repeat dimers and hairpins that are
formed. C: Differential circRNA expression. Degradation of the TE sequence (I), methylation by the host
genome (II) or RNA editing (III) can lead to a decrease in circRNA production.

occurrence of hotspots in many species. Within each hotspot however, circRNA dynamics depend

on the species-specific integration and fixation rates of TEs leading to a species-specific circRNA

landscape. It is important to understand that it is the orthologous genomic region that leads to the

independent occurrence of circRNAs across species. CircRNAs themselves are not conserved, only

the underlying genomic locus is.

CircRNA expression profiles in light of SINE element dynamics

CircRNAs exhibit tissue-specific and species-specific expression profiles. It is likely that the observed

differences are not explained by circRNA-specific regulatory mechanisms, but by the integration and
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fixation dynamics connected to SINE elements. Recently integrated SINE elements can form stable

dimers, which leads to stable hairpins and may cause an increase in circRNA abundance. With the

degradation of the TE, dimer stability decreases leading to lower circRNA expression levels.

The secondary structure of the DNA or the mRNA influences the stability of a TE dimer. RNA-

editing for instance, evolved as a mechanism to suppress TE amplification. A-to-I RNA editing

is associated with intronic Alu elements to inhibit Alu dimers [46, 47]. In agreement with this

observation, circRNA flanking introns are enriched in A-to-I editing and knockdown of the editing

machinery leads to an increase of circRNA levels. Rybak-Wolf et al. suggested that A-to-I editing

is a mechanism to control circRNA production [64]. However, changes in circRNA frequency are a

secondary effect caused by the primary purpose of A-to-I editing during the inhibition of Alu am-

plification. Alu elements can be subject to other modification such as methylation, which interferes

with amplification of the TE [129]. Similar to RNA editing, methylation can occur dynamically

and in a tissue-specific manner causing the different spatio-temporal expression profiles pbserved

for many circRNAs (Figure 28C). Recently, Aktas et al. provided evidence that the nuclear RNA

helicase DHX9 can bind to inverted Alu elements, which are transcribed as part of the gene. Inter-

estingly, the loss of DHX9 leads to an increase of circRNA abundance in parental genes. Aktas et al.

suggested that DHX9 resolves TE-mediated secondary structures of the mRNA to avoid interference

with post-transcriptional processes [130].

Dominant circRNAs are more often shared between species and in at least some cases, dominance

is associated with a higher number of recently active repeats in the flanking introns. The formation

of a strong TE hotspot takes time, which can explain why dominant circRNAs are more often shared.

In a gene, there are probably only a few regions that allow for the formation of a TE hotspot. Given

a similar structure of orthologous genes, this region will be present in all of them. There is only little

flexibility of where in a gene the TE hotspot occurs leading to the formation of shared circRNAs from

orthologous loci. Over time, circRNAs become dominant, because the TE hotspot becomes stronger

with each new TE integration counter-acting the degradation of previous, underlying repeats.

Integration of a SINE element can lead to increased noise levels during transcription and splicing

by interfering with regulatory elements. It is therefore likely, that circRNAs are a stochastic by-

product of SINE integration into a gene. The observed dynamics in circRNA expression profiles

reflect the co-evolution of TE amplification rates and TE silencing by the host genome.
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3.3 The evolution of functional circRNAs

A small subset of circRNAs has been linked to a molecular function. But if as argued before,

circRNAs are a by-product of stochastic gene expression and the presence of transposable elements,

how can they then evolve a function?

The majority of transcriptional noise is probably neutral, but neutrality can be conditional.

Conditionality in an organism refers to different cell types, stress situations or developmental tran-

sitions. Stochastic variations that are neutral in one cell type might be beneficial or deleterious

in another. Dimitrii Polev developed the idea of an "in-service" mechanism of gene evolution, in

which stochastic gene expression creates a broad landscape of transcriptional variation on which

selection can act. For him, noisy gene expression is a compromise between the evolution of long-

term benefits for an organism and its current needs. Because noise occurs broadly in every gene

and tissue, the "in-service" mechanism can easily assess the quality of a novel variation in different

cellular environments. If the variation interferes with fitness, selection will act on it [131]. An ubiq-

uitously expressed gene for instance that produces a novel splicing variant, will allow the variant to

be tested in many cellular environments and conditions. Because of its initial low abundance, the

transcript’s interactions with different cellular processes can be tested at little risk. The expression

profile of a circRNA is linked to the parental gene by its transcription, splicing and the influence

of the TE landscape. The interaction of these components creates a diverse circRNA landscape, in

which circRNAs are exposed at different expression strength to different cellular environments.

CircRNAs can evolve a function, but the process is long and influenced by many components. In

a first step, the circRNA needs to reach a critical threshold at which it can influence the organism’s

fitness. Reaching the threshold is for instance influenced by the mitotic status of the cell it is

expressed in. Because highly proliferative cells dilute the circRNA concentration, the threshold

might only be reached in postmitotic cells such as neurons (Figure 29).

Novel transcripts can evolve by a process known as exaptation, in which a novel genomic feature

is not build by natural selection as adaptation for its current function, but is coopted from an already

existing structure that performs a different function (e.g. feathers were initially thermoregulatory,

but later coopted for flight) [132]. The concept has widely been accepted to explain the development

of novel exons from repetitive elements or the evolution of miRNAs from introns. Exaptation can

accelerate evolution, because certain sequence structures and regulatory elements are already in

place. More importantly, they can lead to the parallel evolution of similar features in the same
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evolution
of functional

circRNA

complex expression of parental gene
many conditions at which circRNA

might be adaptive

underlying coding sequence
non-random coding DNA that might
already contain regulatory motifs 

fast degradation of the TE
decrease of expression by loss

of hairpin structure

defense mechanism of host against TE
decrease of expression by loss

of hairpin structure

similar circRNAs from genomic locus
pre-testing of circRNA structure

low expression
critical to reach threshold levels at

which function can be fulfilled

Figure 29: Factors influencing the evolution of a functional circRNA | Different factors can influence
the evolution of a functional circRNA. Parental genes that are broadly expressed increase the chance of the
circRNA being present at a beneficial condition. The underlying coding sequence might already contain
regulatory motifs due to its coding nature, and circRNAs with similar structure might have been pre-tested
by the locus. The degradation of the TE and defense mechanisms of the host genome may reduce the
likelihood of a hairpin structure and thus the formation of a circRNA. The low expression levels of a circRNA
make it difficult to reach a threshold at which the functional influence is strong.

genomic context. Several miRNAs for instance, evolved independently from each other in the same

relative genomic position to the hox8 gene. The parallel evolution is explained by a strong selective

pressure for the evolution of a miRNA in this region to regulate the posttranscriptional control

of the hox8 gene [133]. Two enhancer of the proopiomelanocortin gene (POMC ) provide another

example of exaptation. POMC is expressed in a group of neurons in the hypothalamus. Expression

is regulated by two enhancer that evolved independently from an LTR and a SINE element into

neuronal-specific enhancer [134]. The sequence composition of a circRNA is not random, because it

is derived from coding DNA. Different DNA motifs may already exist, which can be adapted for a

novel function independent of the coding sequence they are coming from. Similar to the previously

described miRNAs, functional circRNAs may evolve by exaptation in the same genomic context of

different species (Figure 29).

The evolution of a circRNA is a dynamic process, in which the integration of new TEs, their

complementarity and proximity to each other and the next splice site determine which circRNA

will be produced. These dynamics are reflected in circRNA hotspots, in which multiple circRNAs

with distinct, but overlapping structure and expression co-exist. CircRNAs from a hotspot provide

therefore a set of structurally similar RNAs, from which evolution can chose the most promising.

However, the degradation of TEs and defense mechanisms of the host genome will interfere with

circRNA production. In many cases, circRNAs may only occur at low levels and for a short period

of time, which will make it unlikely for them to evolve functionality (Figure 29).

I have described several processes, which can influence the evolution of a functional circRNA.
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However, all of them take place in a single individual. In the next steps, processes such as random

genetic drift and different selective pressures will act on the frequency of a circRNA allele in a

population and determine whether the circRNA allele remains in the population and eventually

becomes fixed.

In summary, there are many processes that can either accelerate or inhibit the evolution of a

functional circRNA. Because they are frequent and occur in many cell types and developmental time

points of an organism, it is not impossible that some beneficial variants may evolve. However, the

evolution of a function takes time and is a complex process, during which the majority of circRNA

variants will not succeed.

Given a set of predicted circRNAs, how can one prioritize the list for further experiments? If cir-

cRNA expression is stochastic, then functional circRNAs should be the least stochastic. If enough

replicates are provided, it should be possible to look at the variation across replicates and to select

candidates with a low variance. Genes with higher noise levels are more likely to produce circRNAs

as a stochastic side-product. Low-variation circRNAs produced by genes with robust expression

profiles and reduced noise levels could therefore be the most likely candidates for follow-up studies.

Expression levels of the circRNA may help to decide, but should be interpreted in light of the mitotic

state of the tissue. Is it still proliferating and high circRNA abundance is therefore unexpected, or is

the tissue postmitotic and may simply have accumulated circRNAs through time? When analyzing

circRNA candidates for a function in cell homeostasis or disease, it is therefore important to keep

the different mechanisms that can create dynamic circRNA expression profiles in mind.

3.4 CircRNAs as disease biomarkers

CircRNAs are very stable and their potential to act as biomarker for human diseases was quickly

discovered [90, 91]. The assumption that circRNAs are mainly transcriptional noise does not in-

fluence this finding. Disturbance of the local noise level might be an important factor for many

diseases. The analysis of circRNAs in this context could link the phenotype to potential problems in

the transcriptional or splicing control of the parental gene, novel TE integrations or problems with

the RNA editing or methylation machinery. A careful analysis of circRNAs that are upregulated or

downregulated in a disease phenotype might thus help to detect the disease cause.

Furthermore, the high stability of circRNAs could help to detect diseases already at early onset,

because disturbances of the local noise level might be the first symptomes that can be observed.
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Often, patient samples are subject to fast RNA degradation rates, which can impair and weaken

subsequent analyses. CircRNAs in contrast are more stable, and may thus not only facilitate sample

analysis, but maybe lead to higher quality results.

3.5 Final summary and outlook

Throughout this thesis, I have tried to reason for the stochastic nature of circRNAs. The main

arguments I have made can be summarized as follows:

1. Parental genes exhibit a similar structure: They are GC-poor, have large introns, a high

splicing capability and are characterized by a high TE integration rate. The co-occurrence of

these components creates a genomic niche that predisposes parental genes for the production

of circRNAs.

2. Genomic niches are similar between orthologous genes, because they often have a conserved

structure and genomic location. CircRNA hotspots that occur in orthologous parental genes

indicate the conservation of this niche.

3. Genomic niches are subject to the integration of species-specific transposable elements. Inde-

pendent TE integration events have led to the parallel emergence of circRNAs across species.

CircRNAs that are shared between species did not derive from a common ancestral circRNA.

4. The emergence of novel circRNAs is a dynamic process in which circRNA expression levels and

structures are a function of the number of integrated TEs, their pairing stability and distance

to each other. CircRNAs that are dominant in a hotspot are connected to recent integration

events.

I have provided first evidence for the stochastic nature of circRNAs. But to support this hy-

pothesis several additional analyses should be done, either as part of this project or independently.

Evolutionary contrasts

If the presence of a circRNA relies on the genomic context, then orthologous genes that differ in their

structure from each other could further differentiate the importance of the different components such

as the GC content or repeat landscape. Given for example a circRNA that occurs in four out of

five species, can the lack of the circRNA in the fifth species be explained by a higher GC content,

smaller introns or a lack of transposable elements in the orthologous gene?

90



Stochasticity and structure of the parental gene

If the stochasticity of the parental gene in transcription and splicing and its structure are connected

to the presence of a circRNA, then it should be possible to develop a scoring system to assess the

probability of a gene to produce circRNAs. Such a scoring system could be used to predict the

likelihood of a parental gene without the need of doing RNA-seq experiments.

Improvement of linear models and alternatives

I have used multiple linear regression to model my circRNA data based on a combination of different

structural and functional predictors. In the here-presented results, I have fitted the models on the

whole dataset without separating the data into training and prediction datasets, something that

should be improved. Furthermore, I have used a set containing all coding genes, while the circRNA

detection was restricted to three tissues. Reducing the set of coding genes further to genes that

are expressed in these three tissues might improve the model. Furthermore, the linear model could

be trained on liver, cerebellum and testis genes and subsequently be used to predict circRNAs in

additional tissues.

In multiple linear regression the response variable is modeled as a linear combination of different

predictive variables. But linear models risk to fail or to give low prediction accuracy if sample size

is small and if different predictors are correlated with each other. In my analyses, many of the

predictors are correlated with each other (GC content, gene length, number of TEs, etc.). Although

the tests, which were performed to assess collinearity between the predictors suggested that the

observed interactions can be neglected, it might be better to use methods based on machine learning

approaches.

Interaction between TE integration and circRNA expression

Transposable elements play an important role in the production of a circRNA. To approximate their

influence, I have looked at the relative abundance of TEs in different contexts (e.g. parental genes

vs. non-parental genes, flanking introns vs. background introns or dominant vs. non-dominant cir-

cRNAs). The approximation could be improved by reconstructing the composition of TE hotspots

in the flanking introns (which TEs, size, distance to splice site) and by understanding its evolution

(which TEs integrated into which TE, how strong are the degradation rates). The strategy used by

Levy et al. to reconstruct intergenic TE hotspots could be used here [28].
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Furthermore, it would be of great interest to understand how the interaction between recent TE

integrations, circRNAs and host defense mechanisms evolves. Different mechanisms that are asso-

ciated with TE silencing such as RNA-editing or methylation should be further investigated in this

light.

The role of stochasticity in the evolution of tissues

Independent of circRNAs, it might be from great interest to investigate transcriptional noise levels

between tissues to understand potential correlations between the evolution and function of a tissue

in light of its stochastic properties.

Finally, this study could also be seen as a gentle reminder that it is important to analyze one’s

data carefully in the context of different evolutionary and genetic concepts. These concepts need

to be well understood before applying them to large datasets and novel research directions to avoid

misinterpretations and oversimplification. Unfortunately, in a world of ever-larger research projects,

interdisciplinarity, high-publishing pressure and a teach-it-yourself attitude, scientists often struggle

to develop and to phrase their research hypotheses correctly. Active and open participation in differ-

ent conferences and courses is therefore key to broaden their understanding and the interpretation

of their own data!
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4 Methods
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4.1 Programs and working environments

Table 14: Overview of external programs

Program Version
Blast 2.2.29+
BEDTools 2.17.0
Bowtie2 2.1.0
Cufflinks 2.1.1
FastQC 0.10.1
Latex MacTEX-2013 installation package
Mcl 14.137
R 3.0 and 3.1
Ruby 2.0 and 2.1
SAMTools 0.1.19
TopHat2 2.0.11
ViennaRNA 2.1.8

4.2 Library preparation and sequencing

*Division of tasks: Libraries were performed under supervision of Peggy Janich in the laboratory of

David Gatfield at the Center of Integrative Genomics of the University of Lausanne.

We used 6 µg of RNA/tissue for the library preparation. Of these 6 µg, 5 µg were treated with

RNase R for 1 h at 37°C to degrade linear RNAs prior library preparation. Libraries were prepared

with the Illumina TruSeq Stranded Total RNA with Ribo-Zero Gold according to the protocol with

the following exceptions to select larger DNA fragments: 1) Instead of the recommended 8 min at

68°C for fragmentation, we incubated samples for only 4 min at 68°C to increase the fragment size.

2) In the final PCR clean-up after enrichment of the DNA fragments, we changed the 1:1 ratio of

DNA to AMPure XP Beads to a 0.7:1 ratio to select for binding of larger fragments. Libraries were

analyzed on the fragment analyzer for their quality and sequenced with the Illumina HiSeq 2500

platform.

Table 15: RNase R treatment | Samples were treated for 1 h at 37°C according to the presented master
mix. RNA was purified with the Zymo RNA purification research kit and RNA recovered in 10 µl of water.

Component Concentration
RNA 5 µg
RNase R reaction buffer (10x) 2 µl
RNase R 1 µl
Water up to final volume of 20 µl
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4.3 Identification and quantification of circRNAs

4.3.1 Mapping of RNA-seq data

I downloaded the ensembl annotations for opossum (monDom5), mouse (mm10), rat (rn5), rhe-

sus macaque (rheMac2) and human (hg38) from http://www.ensembl.org/info/data/ftp/index.

html to build transcriptome indexes for mapping with TopHat2. TopHat2 was run with default set-

tings and the –mate-inner-dist and –mate-std-dev options set to 50 and 200 respectively. The

mate-inner-distance parameter was estimated based on the fragment analyzer report.

Table 16: Ensembl genome versions and annotation files for each species

Species Genome Annotation
Opossum monDom5 ensembl release 75, feb 2014
Mouse mm10 ensembl release 75, feb 2014
Rat rn5 ensembl release 75, feb 2014
Rhesus macaque rheMac2 ensembl release 77, oct 2014
Human hg38 ensembl release 77, oct 2014

4.3.2 Analysis of unmapped reads

I developed a custom pipeline to detect circRNAs, which performs the following steps: Unmapped

reads with a phred quality value of at least 25 are used to generate 20 bp anchor pairs from the

terminal 3’ and 5’-ends of the read. Anchors are remapped with bowtie2 on the reference genome.

Mapped anchor pairs are filtered for 1) being on the same chromosome, 2) being on the same strand

and 3) for having a genomic mapping distance to each other of a maximum of 100 kb. Next, anchors

are extended upstream and downstream of their mapping locus. They are kept if pairs are extendable

to the full read length. During this procedure a maximum of two mismatches is allowed. Next, all

unpaired reads are selected from the accepted_hits.bam file generated by TopHat2 (singletons) and

assessed for whether the mate read (second read of a paired-end sequencing read) of the anchor pair

mapped between the backsplice coordinates. All anchor pairs for which 1) the mate did not map

between the genomic backsplice coordinates, 2) the mate mapped to another backsplice junction or

3) the extension procedure could not reveal a clear breakpoint are removed. Based on the remaining

candidates, a backsplice index is build with bowtie2 and all reads are remapped on this index to

increase the read coverage by detecting reads that cover the BSJ with less than 20 bp, but at least

8 bp. Candidate reads that were used to build the backsplice index and now mapped to another

backsplice junction are removed. Upon this procedure, the pipeline provides a first list of backsplice
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junctions.

The set of scripts, which performs the identification of putative BSJs, as well as a short de-

scription of how to run the pipeline are reposited at GitHub: https://github.com/Frenzchen/

ncSplice_circRNAdetection.

4.3.3 Trimming of overlapping reads

Due to the small DNA repeats, some reads are extendable to more than the original read length.

Therefore, overlapping reads were trimmed based on a set of canonical and non-canonical splice

sites. For the donor site GT, GC, AT, CT were used and for the acceptor splice site AG and

AC. The trimming is part of previously described custom pipeline and the step will be performed

automatically if the scripts are run.

4.3.4 Calculation of CPM value

CPM (counts per million) values for BSJs were calculated for each tissue as follows:

counts = mean(countsrep1, countsrep2, countsrep3)

mappedReads = mean(mappedReadsrep1,mappedReadsrep2, totalMappedReadsrep3)

CPM = counts ∗ 106/totalMappedReads

4.3.5 Filtering of candidates based on CPM enrichment

To distinguish putative BSJs from the technical and biological noise background, the enrichment of

the previously defined junctions in RNase R treated samples was calculated. The enrichment was

defined as CPM increase in RNase R treated versus untreated samples:

enrichment = CPMRNaseR/CPMuntreated

Candidates with a log2-enrichment of smaller 1.5 were removed.

4.3.6 Manual filtering steps

I observed a couple of genomic loci, which were highly enriched in reads for putative BSJs. Manual

inspection in the UCSC genome browser indicated that these loci are highly repetitive. The detected

BSJs from these regions do probably not reflect BSJs, but instead issues in the mapping procedure.
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I removed these candidates manually. All following analyses were conducted with the circRNA

candidates that remained until now.

4.3.7 Calculation of Shannon diversity index and Shannon’s equitability

The Shannon diversity index H and Shannon’s equitability EH were calculated for circRNAs in each

tissue and species. CPM values served as approximation for the abundance of individual circRNAs,

p reflects the probability of a circRNA to occur in a given tissue and species and n equals the total

number of circRNAs.

p = CPMcircRNA/CPMtotal

H = −
∑

p ∗ log2(p)

EH = H/log2(n)

4.3.8 Reconstruction of circRNA isoforms

To reconstruct the exon structure of circRNA transcripts in each tissue, I made use of the junction

enrichment in RNase R treated samples. To normalize junction reads across libraries, I calculated

size factors based on the geometric mean of common junctions in untreated and treated samples,

geometric mean = product(x)1/length(x)

size factor = median(x/geom.mean)

with x being a vector containing the number of reads per junction. I then compared read coverage for

junctions outside and inside the BSJ for each gene. I used the log2-change of junctions outside the

backsplice junction to construct the expected background distribution of change in junction coverage

upon RNase R treatment. I then compared the observed coverage change of junctions inside the

backsplice to the expected change in the background distribution and assigned junctions with a log2-

change outside the 90% confidence interval as circRNA junction. I decided to choose a loose cut-off

here, because involved junctions can show a decrease in coverage if their linear isoform was present

at high levels before (degradation levels of linear isoforms do not correlate with the enrichment levels

of circRNAs). Next, I reconstructed a splicing graph for each circRNA candidate, in which network

nodes are exons connected by splice junctions (edges). Connections between nodes are weighted by
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the coverage in the RNase R treated samples. The resulting network graph is directed (because of

the known circRNA start and stop coordinates), acyclic (because splicing always proceeds in one

direction), weighted and relatively small. I used a simple breadth-first-search algorithm to traverse

the graph and to define the strength for each possible isoform by its mean coverage. For the further

analyses, I considered only the strongest isoform.

4.4 Reconstruction and expression quantification of linear mRNAs

I reconstructed linear isoforms based on the pipeline provided by Trapnell et al. (Cufflinks +

Cuffcompare + Cuffnorm) [135]. Expression levels were quantified based on fragments per million

mapped reads (FPKM). Cufflinks was run per tissue and annotation files were merged across tissues

with Cuffcompare. Expression was quantified with Cuffnorm based on the merged annotation file.

All programs were run with default settings. FPKM values were normalized across species and

tissues using a median scaling approach as described in [22].

4.5 In-vitro validation of candidates

*Division of tasks: qPCRs were performed under supervision of Peggy Janich in the laboratory of

David Gatfield at the Center of Integrative Genomics of the University of Lausanne.

4.5.1 cDNA synthesis

We prepared cDNA for total RNA (primer: random hexamer, reaction 1), poly(A)-selected RNA

(primer: Oligo(dT), reaction 2) and RNase R treated total RNA (primer: random hexamer, reaction

3). As input we used 10 µg of RNase R treated RNA and 2 µg of total RNA. Primer were added

according toTable 17 in addition with dNTPs to a total volume of 12 µl. The mixture was incubated

for 5 min at 65°C. To each mix, we added 4.5 µl 5x first-strand buffer, 2 µl 0.1M DTT and 1 µl Rnase

inhibitor (promega). Oligo(dT) reactions were incubated for 2 min at 42°C and random-hexamer

reactions for 2 min at 25°C. 1 µl of SuperscriptII reverse transcriptase was added. Transcription was

performed with following programs:

• Oligo(dT): 60 min @ 42°C, 15 min @ 70°C, cooling to 4°C

• Random hexamer: 10 min @ 25°C, 50 min @ 42°C, 15 min at 70°C, cooling to 4°C

For the real-time (RT) PCR and qPCR, all samples were diluted to a final concentration of 5 ng/µl.
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Table 17: cDNA synthesis

Component Concentration Reaction
Total RNA 2 µl + 0.5 µl random hexamers 1
Total RNA 2 µl + 1 µl Oligo(dT) 2
RNase R treated RNA 10 µl + 0.5 µl random hexamers 3
dNTPs 1 µl 1,2,3
water up to 12 µl 1,2,3
RT 1 µl 1,2,3

4.5.2 Primer validation and qPCR

To validate the circRNA candidates, we designed divergent primer pairs with one primer falling on

the backsplice junction itself and the second primer mapping to a downstream exon. We tested all

primer pairs on cDNA from total RNA (reaction 1), poly(A)-selected RNA (reaction 2) and RNase

R treated RNA (reaction 3) according to following qPCR protocols:

Table 18: qPCR master mix

Component Concentration
cDNA 5 ng/µl
fwd primer 0.3 µl
rev primer 0.3 µl
SYBR green Master Mix 10 µl

Table 19: qPCR program At cycle 42, a melting curve for values between 45-90.1°C is generated by
reading the plate at steps of 1°C (each step 5 sec).

Cycle number Denaturing Annealing Extension Read plate?
1 95°C, 15 min - - no
2-40 95°C, 15 sec 57°C, 15 sec 72°C, 15 sec yes
41 - - 72°C, 7 min yes
42 melting curve
43 10°C, 20 sec, end

4.6 CircRNA overlap between species

4.6.1 Identification of shared circRNA

Shared circRNAs were defined on three different levels depending on whether the parental gene, the

circRNA locus in the gene or the start/stop-exons overlapped between species. One-to-one (1:1)

therian orthologous genes were defined between opossum, mouse, rat, rhesus macaque and human

using the ensembl orthology annotation (confidence intervals 0 and 1, restricted to clear one-to-

one orthologs). The same procedure was performed to receive the 1:1 orthologous genes for the
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eutherians (mouse, rat, rhesus macaque, human), for rodents (mouse, rat) and primates (rhesus

macaque, human). To calculate the expected value of parental gene overlap based on 1:1 orthologs,

the probability p of having an event i (e.g. a 1:1 ortholog in opossum, mouse, rat, rhesus and human

parental genes) was calculated and multiplied with the number of trials (N ), latter corresponding

to the observed frequency of the event.

expected value = N ∗
∑

p(i)

The circRNA overlap between species was assessed by counting the number of 1:1-orthologous

parental genes between the five species. The analysis was restricted to protein-coding genes. To

identify shared circRNA loci, all circRNA exon coordinates from a given gene were collapsed into a

single transcript using the bedtools merge option from the BEDTools toolset with default options.

Next, I used liftOver to compare exons from the collapsed transcript between species. The minimal

ratio of bases that need to overlap for each exon was set to 0.5 (-minMatch=0.5 ). I defined collapsed

transcripts as overlapping between different species if they shared at least one exon independent of

the exon length. To identify circRNAs that overlapped with the same first and last exon, I lifted

their coordinates between species (liftOver, -minMatch=0.5 ). CircRNAs were defined as overlapping

if both exons were found as first and last exons in a circRNA of another species.

4.6.2 Identification of circRNA clusters for species overlap

I categorized overlapping circRNAs in the following groups: Species-specific, rodent, primate, eu-

therian and therian circRNAs. To be part of the rodent or primate lineage, the circRNA has to

be expressed in both species of the lineage. To be part of the eutherian lineage, the circRNA has

to be expressed in three out of mouse, rat, rhesus macaque and human. To be part of the therian

lineage, the circRNA needs to be expressed in opossum and in three out of the four other species.

Species-specific circRNAs are either present in one species or do not match any of the other four

categories. To define the different groups, I used the cluster algorithm MCL [136, 137]. MCL is fre-

quently used to reconstruct orthology clusters based on blast results. It requires input in abc format,

in which a corresponds to event a, b to event b and a numeric value c that provides information on

the connection strength between event a and b (e.g. blast p-value). If no p-values are available as

in my analyses, the connection strength can be set to 1. MCL was run with a cluster granularity of

2 (option -I ).
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$ mcxload -abc species.abc –stream-mirror -o species.mci -write-tab species.tab

$ mcl species.mci -I 2

$ mcxdump -icl out.species.mci.I20 -tabr species.tab -o dump.species.mci.I20

4.6.3 PhastCons scores

PhastCons scores for exons of parental genes were calculated using the conservation scores pro-

vided by the UCSC genome browser (mouse: phastCons scores based on alignment for 60 placental

genomes, rat: phastCons scores based on alignment for 13 vertebrate genomes, human: phastCons

scores based on alignment for 99 vertebrate genomes). Mean phastCons scores were calculated for

each exon in a coding gene. Next, the grand mean of circRNA-contained exons was divided by the

grand mean of circRNA-outside exons on a gene-wise level (phastcons-ratio). A one-tailed Wilcoxon

rank sum test was used to compare the log2-transformed phastcons-ratio to the expected value µ=0.

4.6.4 Expression clustering of circRNA and parental gene expression

To cluster therian circRNAs, I calculated the circular-to-linear ratio based on CPMs for BSJ reads

and spliced linear reads covering the first and last exon of each circRNA. Based on the ratio,

I calculated Spearman’s-rank correlation coefficients between pairs of samples for all species and

tissues. I then calculated the euclidian distance between samples with the default functions provided

in the R environment (cor() and heatmap.2() from the gplots library). A similar approach was used

to cluster expression levels of parental genes. However, FPKM values as calculated in Chapter 4.4

were used instead of CPM-ratios.

4.7 Parental gene analysis

4.7.1 GC content of exons and intron

The ensembl annotation for each species was used to receive the different known transcripts in each

coding gene. Transcripts were collapsed per-gene to define the exonic and intronic parts. Introns

and exons were distinguished by their relative position to the circRNA (flanking, inside or outside).

The GC content was calculated based on the genomic DNA sequence. On a per-gene level, the

median GC content for each exon and intron type was used for the further analyses. Differences
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between the GC content were assessed with a one-tailed Mann-Whitney U test.

4.7.2 GC amplitude

The ensembl annotation for each species was used to receive the different known transcripts in each

coding gene. For each splice site, the GC amplitude was calculated using the last 250 intronic bp

and the first 50 exonic bp. Splice sites were distinguished by their relative position to the circRNA

(flanking, inside or outside). A one-tailed and paired Mann-Whitney U test was used to assess the

difference in GC amplitude between circRNA-related splice sites and others.

4.7.3 Gene self-complementarity

The genomic sequence of each coding gene (first to last exon) was aligned against itself in sense and

antisense orientation using megaBLAST with the following call:

$ blastn -query seq.fa -subject seq.fa -task dc-megablast -word_size 12 -outfmt "6 qseqid qstart qend

sseqid sstart send sstrand length pident nident mismatch bitscore evalue" > blast.out

The resulting alignments were filtered for being purely intronic (no overlap with any exon). The

fraction of self-complementarity was calculated as summed length of all alignments in a gene divided

by its length (first to last exon).

4.7.4 Frequency of transposable elements

The RepeatMasker annotation was used to identify the total number of intronic repeats in each

coding gene. Repeat coordinates were intersected with all introns using BEDTools. A repeat was

counted if its complete sequence was found in the intron (bedtools merge -f 1 ).

4.7.5 GO annotation

GO enrichment analysis was performed with GOrilla using parental genes against a background

dataset of expressed coding genes in L1, L2 and H1 [138]. GO terms that were identified for mouse,

rat and human were merged to identify common terms.
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4.7.6 Integration of external studies

Replication time

Values for the replication time were used as provided in Koren et al. [111]. Coordinates of the

different replication domains were intersected with the coordinates of coding genes using BEDtools

(bedtools merge -f 1 ). The mean replictaion time of each gene was used for subsequent analyses.

Gene expression steady-state levels

Gene expression steady-state levels and decay rates were used as provided in Table S1 of Pai et al.

[112].

GHIS

Genome-wide haploinsufficiency scores for each gene were used as provided by Steinberg et al. in

Supplementary Table S2 [113].

4.8 Linear regression

4.8.1 Generalized linear models

All linear models were developed in the R environment. The different predictors used for each

model are listed in Table 6 and Table 9. The presence of multicollineraity between predictors was

assessed using the vif() function from the R package car to calculate the variance inflation factor

(VIF). Predictors were removed from the model if the VIF was greater than 5. Predictors that

correlated with each, but still explained independent parts of the data were allowed to interact in

the model. Predictors were scaled to be able to compare them with each other using the scale()

function as provided in the R environment.

Each model was fitted on the complete dataset using all predictors. By using a step-down

approach, individual predictors were removed manually starting from the least significant. The

distribution of residuals for the final model was assessed for normality using the R function qqnorm()

and the function residualPlots() from the package statmod. The final model was compared to the null

model using the pchisq() function from R. Confidence intervals for each predictor were calculated

using the confint() function.

To assess the presence and absence of parental genes, hotspot genes and the overlap between

species (shared or species-specific), a binomial model was chosen, because it can reflect the presence
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or absence of the response variable (0 probability for absence and 1 probability for presence). To

address the depth of each hotspot, the poisson family of models was used, because the depth can be

assessed on a count base. The initial model calls are listed in the following:

Presence or absence of parental gene, parental hotspot genes, shared and species-specific circRNA

loci:

glm(data, response ∼ scale(GC content) ∗ scale(genomic length)

+ scale(transcript count)

+ scale(ss.repeats/genomic length)

+ scale(as.repeats/genomic length)

+ scale(gene FPKM)

+ scale(tsi)

+ scale(phastcons)

+ factor(circRNA overlap), family = ”binomial”)

Depth of the hotspot:

glm(data, depth ∼ scale(GC content)

+ scale(hotspot length)

+ scale(number of repeats)

+ scale(∆G)

+ factor(circRNA overlap), family = ”poisson”)

4.8.2 Mixed linear models

Mixed linear models were fitted using the lmer() function from the package lme4. P-values were

calculated by loading the package lmerTest in parallel. In general, models were fitted following the

same procedure as described in the previous chapter. However, to address which circRNA is the

dominant circRNA in each hotspot, the hotspot itself was added as background effect. The analysis

was restricted to hotspots with 2-5 circRNAs. The dominance of each circRNA was approximated

by rank-transforming its expression (rank 1 = most highly expressed, rank 2 = second highest ex-
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pression etc.). Rank-transforming only leads to a situation in which the strongest circRNA has the

lowest rank. Therefore, the reciprocal of each rank (1/rank 1, 1/rank 2 etc.) was used to keep the

positive relationship between rank and increased probability.

CircRNA dominance in hotspot:

lmer(data, 1/rank ∼ scale(genomic length)

+ scale(number of repeats)

+ scale(acceptor amplitude)

+ scale(donor amplitude)

+ scale(mean.distance repeat to splice site)

+ scale(GC content intron)

+ factor(overlap circRNA)

+ (1|hotspot)) #background effect

4.9 Repeat analyses

4.9.1 Generation of length- and GC-matched background dataset

Flanking introns were grouped into a matrix of i columns and j rows representing different genomic

lengths and GC content. i and j were calculated in the following way:

i = seq(from = quantile(GCcontent, 0.05), to = quantile(GCcontent, 0.95), by = 0.01)

j = seq(from = quantile(length, 0.05), to = quantile(length, 0.95), by = 1000)

Flanking introns were sorted into the matrix based on their GC content and length. A second

matrix with the same properties was created containing all introns of coding genes. From the latter,

a submatrix was sampled with the same length and GC distribution as the matrix for flanking

introns. The length distribution and GC distribution of the sampled introns reflect the distributions

for the flanking introns as assessed by a Fisher’s t Test that was non-significant.
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4.9.2 Repeat enrichment in flanking introns

The total number of individual transposable elements was determined by intersection of the flanking

and background introns with the RepeatMasker annotation (bedtools merge -f 1 ). The enrichment

of flanking introns was assessed by a one-tailed Mann-Whitney U test.

4.9.3 Identification of repeat dimers and their binding stability

The complementary regions that were defined with megaBLAST as previously described were inter-

sected with the coordinates of individual repeats from the RepeatMasker annotation. To be counted,

a repeat had to overlap with at least 50% of its length with the region of complementarity (bedtools

merge -f 0.5 ).

The free energy of the secondary structure of individual TE dimers was calculated with the RNA-

cofold function from the ViennaRNA Package:

$ RNAcofold -a -d2 < dimerSequence.fa
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Supplementary Table 1: Sample overview | For each sample, information on the organism, internal
ID, tissue, age and sex are summarized. Last row shows the RNA Quality Number (RQN) for the extracted
RNA.

Species Internal ID Tissue Age Sex RQN
Opossum OPO 1270 cerebellum Cerebellum 21 months male 7.3
Opossum OPO 1272 cerebellum Cerebellum 19.5 months male 8.9
Opossum OPO 1359 cerebellum Cerebellum 15.5 months male 6.8
Opossum OPO 1359 liver Liver 15.5 months male 9.3
Opossum OPO 1270 liver Liver 21 months male 8.6
Opossum OPO 1298 liver Liver 13 months male 9
Opossum OPO 1270 testis Testis 21 months male 8.9
Opossum OPO 1298 testis Testis 13 months male 8.5
Opossum OPO 1359 testis Testis 15.5 months male 8.9
Mouse MOU 9W M1 020713 Cr Cerebellum 9 weeks male 7.1
Mouse MOU 9W M3 020713 Cr Cerebellum 9 weeks male 7.4
Mouse MOU 9W M4 020713 Cr Cerebellum 9 weeks male 7
Mouse MOU 9W M1 020713 Lv Liver 9 weeks male 7.9
Mouse MOU 9W M3 020713 Lv Liver 9 weeks male 7.6
Mouse MOU 9W M4 020713 Lv Liver 9 weeks male 8.5
Mouse MOU 9W M1 020713 GT Testis 9 weeks male 8.4
Mouse MOU 9W M3 020713 GT Testis 9 weeks male 8.2
Mouse MOU 9W M4 020713 GT Testis 9 weeks male 8.4
Rat RAT 16W M3 161013 Cr Cerebellum 16 weeks male 7.2
Rat RAT 16W M2 161013 Cr Cerebellum 17 weeks male 7.5
Rat RAT 16W M1 161013 Cr Cerebellum 18 weeks male 7.7
Rat RAT 16W M3 161013 Lv Liver 19 weeks male 7.2
Rat RAT 16W M2 161013 Lv Liver 20 weeks male 7.9
Rat RAT 16W M1 161013 Lv Liver 21 weeks male 7.8
Rat RAT 16W M3 161013 GT Testis 22 weeks male 7.7
Rat RAT 16W M2 161013 GT Testis 23 weeks male 8.8
Rat RAT 16W M1 161013 GT Testis 24 weeks male 7.8
Rhesus MAC 99057 M1 180414 Br Cerebellum 8 years male 8.5
Rhesus MAC 98073 M3 180414 Br Cerebellum 9 years male 7.7
Rhesus MAC 99057 M1 180414 Lv Liver 8 years male 8.6
Rhesus MAC 98145 M2 180414 Lv Liver 9 years male 8.2
Rhesus MAC 98073 M3 180414 Lv Liver 9 years male 8.6
Rhesus MAC 99057 M1 180414 GT Testis 8 years male 9.5
Rhesus MAC 98145 M2 180414 GT Testis 9 years male 9.1
Rhesus MAC 99057 M1 180414 GT Testis 8 years male 8.8
Human virtual HUM 361 M Liver 64 years male 7.5
Human HUM 1502 M4 180414 Br Cerebellum 29 years male 8.2
Human HUM 1134 M6 180414 Br Cerebellum 41 years male 8.6
Human HUM 605 M8 180414 Br Cerebellum 25 years male 8.3
Human HUM 1403 M5 180414 GT Testis 21 years male 7.8
Human HUM 1134 M6 180414 GT Testis 41 years male 6.9
Human HUM 1027 M7 180414 GT Testis 22 years male 6.9
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Supplementary Figure 1: Mapping summary | Plots show the percentage of mapped, unmapped,
multi-mapped and BSJ reads across all libraries in untreated and RNase R treated conditions.

122



Supplementary Table 2: Detected BSJs across samples | Table summarizes the total number of
detected BSJs after filtering in each species. The percentage of BSJs that are unique to one, two, three or
more than three samples is shown.

Species Total BSJs 1 replicate 2 replicates 3 replicates >= 4 replicates
Opossum 76,739 84.74 8.05 4.28 2.93
Mouse 67,249 83.45 9.23 4.73 2.59
Rat 72,855 85.43 7.73 3.88 2.96
Rhesus macaque 100,270 79.29 9.79 4.83 6.09
Human 68,400 79.86 10.71 6.54 2.9
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Supplementary Table 3: Total number of circRNAs in different species and tissues | Indicated
is the total number of different circRNAs that were annotated in each of the tissues across all species.

Species Liver Cerebellum Testis
Opossum 129 417 1229
Mouse 87 1054 523
Rat 114 996 1192
Rhesus macaque 601 2132 1367
Human 765 2994 1761
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Supplementary Table 4: CircRNAs confirmed by qPCR | CircRNAs validated by qPCR for different
species and tissues. Candidates were selected based on high expression in a given tissue.

Gene name Species Tissue Validated
Adk Mouse Liver Yes
Adk Mouse Liver Yes
Ankib1 Mouse Liver Yes
Apoa2 Mouse Liver No
Arhgap5 Mouse Liver No
Asph Mouse Liver Yes
Cdyl Mouse Cerebellum Yes
Dtnb Mouse Liver Yes
Dnah7a Mouse Testis Yes
Evi5 Mouse Liver Yes
Gigyf2 Mouse Liver Yes
Gm21992/Rbm4 Mouse Liver Yes
Homer1 Mouse Liver Yes
Med13l Mouse Cerebellum Yes
Nfix Mouse Liver Yes
Nr1h4 Mouse Liver Yes
Prox1 Mouse Liver Yes
Rabep1 Mouse Liver Yes
Rad52 Mouse Liver Yes
Rbm33 Mouse Liver Yes
Rere Mouse Cerebellum Yes
Rmdn2 Mouse Liver Yes
Rnf169 Mouse Liver Yes
Scaper Mouse Liver Yes
Strn3 Mouse Liver Yes
Tasp1 Mouse Testis Yes
Tmem56 Mouse Liver Yes
Ube2k Mouse Liver Yes
Rere Rat Cerebellum Yes
Rere Human Cerebellum Yes
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Supplementary Table 5: Median GC content of different exon types | Grand median GC content
for exons inside and outside the circRNA for each isochore and species (1 corresponding to 100%). The
difference between circRNA-contained and circRNA-outside exons was assessed with a one-tailed and paired
Mann-Whitney U test, p-values are indicated. Significance levels: ’***’ < 0.001, ’**’ < 0.01, ’*’ < 0.05,
’ns’ >= 0.5.

Species Isochore GC in circRNA-
contained exons

GC in circRNA-
outside exons

p-value

Opossum L1 0.41 0.42 0.00063
Opossum L2 0.44 0.46 0.00003
Opossum H1 0.50 0.51 0.02331
Opossum H2 0.51 0.60 0.00977
Opossum H3 0.57 0.64 0.25000
Mouse L1 0.43 0.43 0.38241
Mouse L2 0.44 0.46 0.00000
Mouse H1 0.49 0.51 0.00002
Mouse H2 0.54 0.56 0.00206
Mouse H3 0.56 0.59 0.01636
Rat L1 0.41 0.42 0.13878
Rat L2 0.44 0.46 0.00000
Rat H1 0.49 0.50 0.02392
Rat H2 0.54 0.55 0.00658
Rat H3 0.59 0.58 0.59608
Rhesus macaque L1 0.41 0.41 0.55077
Rhesus macaque L2 0.43 0.44 0.00002
Rhesus macaque H1 0.47 0.50 0.00000
Rhesus macaque H2 0.54 0.56 0.01153
Rhesus macaque H3 0.58 0.61 0.00011
Human L1 0.41 0.42 0.01364
Human L2 0.43 0.44 0.00000
Human H1 0.47 0.50 0.00000
Human H2 0.54 0.56 0.00000
Human H3 0.58 0.61 0.00008
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Supplementary Table 6: Mean amplitude correlations | Spearman’s rank correlation for the GC
amplitude and GC content of introns and exons were calculated for each isochore and species. The mean
correlation between the GC amplitude and GC content of introns and exons for different splice sites relative
to the circRNA is shown.

Position Amplitude ∼ Intron Amplitude ∼ Exon
Non-parental -0.42 0.31
Outside circRNA -0.44 0.16
Inside circRNA -0.48 0.40
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Supplementary Table 7: GLM summary for presence of a parental gene | A GLM was fitted on all
coding genes incorporating the different predictors described in Table 6 (nopossum=18,807, nmouse=22,015,
nrat=11,654, nrhesus=21,891, nhuman=21,744). Table provides information on the effect size of each predictor,
its confidence intervals (lower and upper CI) and the significance. Significance levels: ’***’ < 0.001, ’**’ <
0.01, ’*’ < 0.05, ’ns’ >= 0.5.

Species Predictor Odds ratio Upper CI Lower CI p-value
opossum as.rvc 0.2124 0.1395 0.2868 0.0
opossum exon_count 0.31 0.2587 0.3613 0.0
opossum genomic_length 0.2554 0.1485 0.367 0.0
opossum median_brawand 0.0808 0.0107 0.1215 0.0001
opossum percentage_gc_content -1.8545 -2.0544 -1.6622 0.0
opossum percentage_gc_content:genomic_length 0.2063 0.0908 0.3277 0.0006
opossum ss.rvc 0.1109 0.0171 0.1949 0.0143
mouse as.repeats/genomic_length 0.3553 0.2535 0.4553 0.0
mouse exon_count 0.3087 0.2452 0.3714 0.0
mouse genomic_length 0.4852 0.4008 0.5698 0.0
mouse percentage_gc_content -0.9959 -1.111 -0.8834 0.0
mouse percentage_gc_content:genomic_length 0.3001 0.2301 0.3712 0.0
mouse phastcons 0.8546 0.7407 0.9731 0.0
mouse ss.repeats/genomic_length 0.1136 0.0232 0.203 0.0132
mouse transcript_count 0.3388 0.2538 0.4246 0.0
mouse transcript_count:exon_count -0.087 -0.118 -0.059 0.0
rat as.rvc 0.2626 0.1493 0.3752 0.0
rat as.rvc:ss.rvc -0.0673 -0.109 -0.033 0.0006
rat exon_count 0.1605 0.1025 0.2179 0.0
rat genomic_length 0.4332 0.3558 0.5105 0.0
rat mean_cpm 0.0682 0.016 0.1236 0.0082
rat percentage_gc_content -0.7951 -0.9209 -0.6717 0.0
rat percentage_gc_content:genomic_length 0.2868 0.2157 0.36 0.0
rat phastcons 0.6542 0.5132 0.8033 0.0
rat ss.rvc 0.1735 0.0783 0.262 0.0002
rat transcript_count 0.0668 0.0174 0.1145 0.0069
rhesus as.rvc 0.6424 0.5888 0.6962 0.0
rhesus exon_count 0.3556 0.3039 0.4074 0.0
rhesus genomic_length 0.3367 0.2539 0.4192 0.0
rhesus percentage_gc_content -1.2782 -1.3788 -1.1802 0.0
rhesus percentage_gc_content:genomic_length 0.1672 0.0912 0.2427 0.0
rhesus transcript_count 0.055 0.0058 0.1035 0.0273
rhesus tsi -0.0649 -0.1249 -0.005 0.034
human as.rvc 0.3624 0.2449 0.4838 0.0
human exon_count 0.2917 0.233 0.3505 0.0
human genomic_length 0.4297 0.3469 0.513 0.0
human percentage_gc_content -1.2136 -1.3074 -1.1221 0.0
human percentage_gc_content:genomic_length 0.2981 0.2287 0.3681 0.0
human phastcons 0.6003 0.5327 0.6689 0.0
human ss.rvc 0.2877 0.1637 0.4066 0.0
human transcript_count 0.3491 0.2804 0.4174 0.0
human transcript_count:exon_count -0.0898 -0.1154 -0.0653 0.0
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Supplementary Table 8: GLM summary for presence of a parental hotspot gene | A GLM was
fitted on all parental hotspot genes incorporating the different predictors described in Table 6 (nopossum=884,
nmouse=858, nrat=983, nrhesus=1704, nhuman=2058). Table provides information on the effect size of each
predictor, its confidence intervals (lower and upper CI) and the significance. Significance levels: ’***’ <
0.001, ’**’ < 0.01, ’*’ < 0.05, ’ns’ >= 0.5.

Species Predictor Odds ratio Upper CI Lower CI p-value
opossum ageopossum -0.8453 -1.2057 -0.4839 0.0
opossum percentage_gc_content -0.5566 -0.8418 -0.2969 0.0001
opossum tsi 0.1909 0.0188 0.3622 0.029
mouse ageeutherian -0.5059 -0.9408 -0.0716 0.0224
mouse agemouse -1.9525 -2.4477 -1.4702 0.0
mouse agerodents -1.0478 -1.7001 -0.4274 0.0012
mouse as.rvc -0.6425 -0.9873 -0.3201 0.0001
mouse phastcons 0.2301 0.0326 0.4426 0.0274
mouse ss.rvc 0.8193 0.4986 1.1688 0.0
mouse transcript_count 0.2543 0.0956 0.4163 0.0018
rat ageeutherian -0.8431 -1.2831 -0.4092 0.0002
rat agerat -1.9521 -2.3869 -1.5258 0.0
rat agerodents -1.3726 -2.0288 -0.7489 0.0
rat percentage_gc_content -0.2806 -0.4602 -0.1077 0.0018
rat ss.rvc 0.1937 0.0474 0.3395 0.009
rhesus ageeutherian 0.0639 -0.2902 0.4182 0.7235
rhesus ageprimates -0.485 -0.8093 -0.1615 0.0033
rhesus agerhesus -1.4125 -1.742 -1.0854 0.0
rhesus percentage_gc_content -0.1872 -0.306 -0.0717 0.0017
human ageeutherian -0.6614 -1.0267 -0.3015 0.0003
human agehuman -1.806 -2.131 -1.489 0.0
human ageprimates -0.8923 -1.2341 -0.5572 0.0
human median_brawand 0.1075 0.004 0.2093 0.039
human percentage_gc_content -0.486 -0.6125 -0.364 0.0
human ss.rvc 0.2348 0.1346 0.3357 0.0
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Supplementary Table 9: GLM summary for shared and species-specific circRNA loci | A:
Presence of a shared circRNA locus. A GLM was fitted on all parental genes incorporating the different
predictors described in Table 6 (nopossum=884, nmouse=858, nrat=983, nrhesus=1704, nhuman=2058). Table
provides information on the effect size of each predictor, its confidence intervals (lower and upper CI) and
the significance. B: Presence of a species-specific circRNA locus. Significance levels: ’***’ < 0.001, ’**’ <
0.01, ’*’ < 0.05, ’ns’ >= 0.5.

A: Species Predictor Odds ratio Upper CI Lower CI p-value
opossum genomic_length 0.2851 0.1393 0.434 0.0001
opossum percentage_gc_content -0.5597 -0.801 -0.3368 0.0
opossum tsi -0.3208 -0.4878 -0.1589 0.0001
mouse percentage_gc_content -0.3892 -0.6087 -0.1822 0.0003
mouse transcript_count 0.2244 0.0585 0.3883 0.0071
rat genomic_length 0.175 0.0086 0.3328 0.0333
rat percentage_gc_content -0.3132 -0.5354 -0.1023 0.0045
rat phastcons 0.2887 0.0494 0.5759 0.0301
rhesus genomic_length 0.2367 0.0867 0.3821 0.0014
rhesus percentage_gc_content -0.355 -0.5426 -0.1776 0.0001
rhesus percentage_gc_content:genomic_length 0.1546 -0.0004 0.3133 0.0473
rhesus transcript_count 0.1353 -0.0007 0.2657 0.046
human percentage_gc_content -0.427 -0.6156 -0.2494 0.0
human phastcons 0.3763 0.2041 0.5613 0.0
human transcript_count 0.2147 0.0924 0.3348 0.0005

B: Species Predictor Odds ratio Upper CI Lower CI p-value
opossum genomic_length -0.4046 -0.5809 -0.2365 0.0
opossum percentage_gc_content 0.5716 0.3505 0.8106 0.0
opossum ss.rvc 0.3519 0.1247 0.5957 0.0034
opossum tsi 0.2953 0.1308 0.4648 0.0005
mouse exon_count 0.2134 0.057 0.3735 0.008
mouse percentage_gc_content 0.3023 0.1605 0.447 0.0
mouse phastcons -0.3279 -0.4779 -0.1823 0.0
mouse transcript_count -0.3117 -0.4854 -0.1471 0.0003
rat genomic_length -0.2435 -0.3874 -0.1062 0.0007
rat percentage_gc_content 0.233 0.0993 0.3694 0.0007
rat phastcons -0.3823 -0.541 -0.2344 0.0
rhesus as.rvc -0.1462 -0.2484 -0.0449 0.0049
rhesus genomic_length -0.1148 -0.2335 -0.0037 0.0495
rhesus percentage_gc_content 0.2832 0.1792 0.3891 0.0
rhesus transcript_count -0.158 -0.2651 -0.0536 0.0034
rhesus tsi 0.1928 0.0935 0.2926 0.0001
human percentage_gc_content 0.2283 0.1368 0.3213 0.0
human phastcons -0.2783 -0.3714 -0.1865 0.0
human transcript_count -0.2492 -0.3463 -0.1549 0.0

130



parental hotspot shared species−specific

0.00

0.25

0.50

0.75

0 1 0 1 0 1 0 1
prediction

pr
ob

ab
ili

ty

Functional circRNA probabilities

Supplementary Figure 2: GLM probabilities of functional circRNAs | Functional circRNAs pro-
duced by human coding genes were selected from literature (WDR37, NFATC3, ITCH, APEX1, PVRL1,
MYL12B, SIL1, GRSF1, PDPK1, PIK3AP1, ZNF524, RAB40A, PRNT, NR2C2AP, FAM110C, FAM78B).
The probability of their parental gene to be parental, a hotspot, shared or species-specific is plotted in respect
to the probability of all genes assessed (grey boxplot).
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Supplementary Figure 3: Repeat frequency in flanking and background introns | A’: Opossum
SINE families. Plotted is the log2-enrichment for different repeat families in antisense and sense orientation.
Increase in color intensity reflects the mean number of repeats detected in all flanking introns. Significance
was estimated with a one-tailed Mann-Whitney U test. A”: Opossum SINE family elements. Plotted is the
log2-enrichment for individual SINE family members in antisense and sense orientation. Increase in color
intensity reflects the mean number of repeats detected in all flanking introns. Significance was estimated
with a one-tailed Mann-Whitney U test. Family members that were not significant in sense and antisense
orientation were removed from plot. B’: Rat SINE families. B”: Rat SINE family elements. C’: Rhesus
SINE families. C”: Rhesus SINE family elements. Abbreviations: as = antisense, ss = sense. Significance
levels: ’***’ < 0.001, ’**’ < 0.01, ’*’ < 0.05, ’ns’ >= 0.5.
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Supplementary Figure 4: Repeat dimers in sense to each other | Frequencies of the Top 10 repeat
dimers found in flanking introns of each species. Red line was set at position 1 to indicate which repeats
occur less or more often than once in the flanking introns. "0" in a dimer name corresponds to alignments
for which no overlapping repeat was found after the intersection with the RepeatMasker annotation.

133



Supplementary Table 10: Minimal free energy for TE dimers | MFE (kcal/mol) of the secondary
structure of the SINE TE dimers was calculated with the RNAcofold function from the VienneRNA package.
The reference TE was chosen based on its frequency in the dimer formation.

Species Reference TE Target TE MFE
opossum SINE1_Mdo SINE1_Mdo -453.30
opossum SINE1_Mdo MAR1_MD -274.40
opossum SINE1_Mdo MAR1 -251.50
opossum SINE1_Mdo MIR3_MarsB -230.20
opossum SINE1_Mdo MIR3_MarsA -218.80
opossum SINE1_Mdo THER1_MD -258.30
mouse B1_Mus1 B1_Mus1 -333.20
mouse B1_Mus1 B1_Mus2 -327.30
mouse B1_Mus1 B1_Mm -318.50
mouse B1_Mus1 B1 -307.00
mouse B1_Mus1 B1_Mur4 -320.80
mouse B1_Mus1 B1_Mur3 -319.50
mouse B1_Mus1 B1_Mur2 -297.80
mouse B1_Mus1 B1_Mur1 -292.70
mouse B1_Mus1 B1F2 -281.30
mouse B1_Mus1 B1F1 -268.30
mouse B1_Mus1 B1F -245.00
mouse B1_Mus1 B1-dID -211.80
mouse B1_Mus1 B4 -273.90
mouse B1_Mus1 B4A -264.50
mouse B1_Mus1 ID_B1 -253.80
rat ID_Rn1 ID_Rn1 -204.40
rat ID_Rn1 ID_Rn2 -178.50
rat ID_Rn1 BC1_Rn -173.80
rat ID_Rn1 BC1 -145.10
rat ID_Rn1 ID_B1 -191.60
rhesus AluSx AluMacYb4 -567.20
rhesus AluSx AluMacYb2 -580.20
rhesus AluSx AluMacYa3 -587.90
rhesus AluSx AluY -618.50
rhesus AluSx AluSc -633.90
rhesus AluSx AluSg -664.40
rhesus AluSx AluSq -654.50
rhesus AluSx AluSx -674.70
rhesus AluSx AluSz -668.10
rhesus AluSx AluJb -611.60
rhesus AluSx AluJo -584.60
rhesus AluSx AluJr -582.50
human AluSx AluY -618.50
human AluSx AluSc -633.90
human AluSx AluSg -664.40
human AluSx AluSq2 -656.00
human AluSx AluSq -654.50
human AluSx AluSx1 -668.40
human AluSx AluSx -674.70
human AluSx AluSz -668.10
human AluSx AluJb -611.60
human AluSx AluJo -584.60
human AluSx AluJr -582.50
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Supplementary Table 11: GLM summary for hotspot presence and depth | A: Presence of a
hotspot. A GLM was fitted on all circRNA loci incorporating the different predictors described in Table 8
(nopossum=1049, nmouse=1024, nrat=1285, nrhesus=2169, nhuman=2759). Table provides information on the
effect size of each predictor, its confidence intervals (lower and upper CI) and the significance. B: Depth
of hotspot. GLM analysis was restricted to hostpots with a maximum of five circRNAs (nopossum=203,
nmouse=234, nrat=305, nrhesus=605, nhuman=846). Significance levels: ’***’ < 0.001, ’**’ < 0.01, ’*’ <
0.05, ’ns’ >= 0.5.

A: Species Predictor Odds ratio Lower CI Upper CI p-value
opossum gc -0.849 -1.1469 -0.5713 0.0
opossum total.repeats 2.2674 1.9177 2.6452 0.0
opossum length 1.0351 0.8517 1.2273 0.0
opossum dG.500 0.2354 0.0147 0.482 0.0324
mouse gc -0.1988 -0.4317 0.0282 0.0898
mouse total.repeats 1.8983 1.5735 2.2498 0.0
mouse length 1.2752 1.0703 1.4944 0.0
mouse age.rodents 1.527 0.8745 2.1745 0.0
mouse age.eutherian 1.0059 0.5274 1.4945 0.0
mouse age.therian 0.9069 0.3096 1.5017 0.0028
rat gc -0.1928 -0.3875 -0.0022 0.0496
rat total.repeats 1.6646 1.4018 1.9462 0.0
rat length 1.2499 1.0628 1.4483 0.0
rat dG.500 0.16 0.011 0.2795 0.0098
rat age.rodents 1.0551 0.4447 1.6438 0.0005
rat age.eutherian 0.6386 0.2355 1.039 0.0018
rat age.therian 1.3411 0.854 1.8276 0.0
rhesus gc -0.8067 -1.0056 -0.6166 0.0
rhesus total.repeats 3.0288 2.713 3.3635 0.0
rhesus length 1.0546 0.9108 1.2042 0.0
rhesus dG.250 0.1481 -0.0033 0.2508 0.0059
rhesus age.primates 0.6659 0.3446 0.9881 0.0
rhesus age.eutherian 0.7696 0.3819 1.1548 0.0001
rhesus age.therian 0.6726 0.2435 1.0966 0.002
human gc -1.0955 -1.2861 -0.9134 0.0
human total.repeats 3.5266 3.2022 3.8693 0.0
human length 0.9933 0.8626 1.1287 0.0
human age.primates 0.6479 0.3616 0.9331 0.0
human age.eutherian 0.7718 0.4413 1.1003 0.0
human age.therian 0.9017 0.4929 1.3091 0.0

B: Species predictor Odds ratio Lower CI Upper CI p-value
opossum total.repeats 0.1166 0.037 0.1913 0.003
opossum length 0.1564 0.0719 0.2396 0.0003
mouse total.repeats 0.147 0.0726 0.2184 0.0001
mouse length 0.1249 0.0459 0.2021 0.0017
rat total.repeats 0.1178 0.0506 0.1827 0.0005
rat length 0.0963 0.0259 0.1654 0.0068
rhesus gc -0.0904 -0.1509 -0.0316 0.003
rhesus total.repeats 0.1686 0.1229 0.2128 0.0
rhesus length 0.0997 0.0491 0.1497 0.0001
human gc -0.0585 -0.1095 -0.0085 0.0232
human total.repeats 0.1746 0.1323 0.2162 0.0
human length 0.1111 0.0685 0.1532 0.0
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Supplementary Table 12: LMM for circRNA dominance | A linear mixed model was fitted on
all hotspots with a maximum of five circRNAs incorporating the different predictors described in Table 8
(nopossum=203, nmouse=234, nrat=305, nrhesus=605, nhuman=846). Table provides information on the effect
size of each predictor, its confidence intervals (lower and upper CI) and the significance.

Species Predictor Odds ratio Lower CI Upper CI p-value
opossum genomic.length -0.0411 -0.0659 -0.0659 0.0012
mouse genomic.length -0.0305 -0.0534 -0.0075 0.0098
mouse mean.dist 0.0279 0.0049 0.0508 0.0181
mouse circ.age.rodents 0.0849 0.0191 0.1508 0.012
mouse circ.age.eutherian 0.1136 0.0504 0.1768 0.0005
mouse circ.age.therian 0.1169 -0.0039 0.2378 0.0593
rat genomic.length -0.0205 -0.0407 -0.0003 0.0479
rat circ.age.rodents 0.0501 -0.0127 0.1128 0.1191
rat circ.age.eutherian 0.0799 0.0223 0.1375 0.0068
rat circ.age.therian 0.0929 -0.0156 0.2014 0.0945
rhesus genomic.length -0.0389 -0.0531 -0.0248 0.0
rhesus circ.age.primates 0.0376 0.0069 0.0684 0.0166
rhesus circ.age.eutherian 0.1464 0.0927 0.2 0.0
rhesus circ.age.therian 0.033 -0.0514 0.1174 0.4439
rhesus dG.500 -0.0144 -0.0286 -0.0003 0.0459
human genomic.length -0.0332 -0.0453 -0.0212 0.0
human circ.age.primates 0.0546 0.0265 0.0828 0.0001
human circ.age.eutherian 0.0812 0.0334 0.129 0.0009
human circ.age.therian 0.0727 -0.0023 0.1478 0.0579

136



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

MdoRep1

WALLSI4_Mar

MAR1a_Mdo

MAR1b_Mdo

MAR1c_Mdo

MIR_Mars

MIR3

MIR3_MarsA

MIR3_MarsB

MIR

MIRb

MIRc

SINE1_Mdo

SINE1a_Mdo

THER1_MD

0.0 0.1 0.2 0.3 0.4 0.5

dominant/other
[ log2(mean) ]

500

1000

counts

A: opossum

●

●

●

●

●

●

●

●

●

●

●

●

AluJo

AluJb

AluSx

AluSq

AluSg

AluSg.x

AluSc

AluY

AluMacYa3

MIR

MIRb

MIR3

0.1 0.2 0.3

dominant/other
[ log2(mean) ]

1000

2000

3000

counts

B: rhesus

Supplementary Figure 5: TE environment of dominant circRNAs | A: Opossum. The frequency of
different TEs in flanking introns of dominant and randomly sampled circRNAs from the same hotspot was
assessed. Sampling was repeated 1000 times for each dominant circRNA. The mean species overlap of the
sampled circRNA was used to calculate the enrichment. Plotted is the log2-enrichment for different repeat
families. An increase in color intensity reflects the mean number of TEs detected in the flanking introns of
dominant circRNAs. Significance was estimated with a one-tailed and paired Fisher’s t test. B: Rhesus.
Significance levels: ’***’ < 0.001, ’**’ < 0.01, ’*’ < 0.05, ’ns’ >= 0.5.
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