

CNOT2 haploinsufficiency in a 40-year-old man with intellectual disability, autism and seizures

Journal:	American Journal of Medical Genetics: Part A
Manuscript ID	21-0170.R1
Wiley - Manuscript type:	Research Letter
Date Submitted by the Author:	n/a
Complete List of Authors:	Royer-Bertrand, Beryl; Lausanne University Hospital, Division of Genetic Medicine Cisarova, Katarina; Lausanne University Hospital, Division of Genetic Medicine Niel, Florence; Lausanne University Hospital, Division of Genetic Medicine Foletti, Giovanni; Instute of Lavigny, Neurology-Epileptology Guinchat, Vincent ; Lausanne University Hospital, Department of Psychiatry, Psychiatric Section of Mental Development Tran, Christel; Lausanne University Hospital, Division of Genetic Medicine Superti-Furga, Andrea; Universite de Lausanne, Division of Genetic Medicine Good, Jean-Marc; Lausanne University Hospital, Division of Genetic Medicine
Keywords:	<i>CNOT2</i> , chromosome 12q15, neurodevelopmental syndrome, autism, epilepsy
Search Terms:	

SCHOLARONE[™] Manuscripts

2 3 4 5 6	1	CNOT2 haploinsufficiency in a 40-year-old man with
7 8 9	2	intellectual disability, autism and seizures
10 11 12	3	Beryl Royer-Bertrand ¹ , Katarina Cisarova ¹ , Florence Niel Bütschi ¹ , Giovanni Foletti ² , Vincent
13 14 15	4	Guinchat ³ , Christel Tran ¹ , Andrea Superti-Furga ¹ , Jean-Marc Good ¹
16 17	5	
18 19 20	6	¹ Division of Genetic Medicine, Lausanne University Hospital (CHUV), Av. Pierre Decker 5,
20 21 22	7	1011 Lausanne, Switzerland
23 24	8	² Neurology-Epileptology, Insitution of Lavigny, 1175 Lavigny, Switzerland
25 26 27	9	³ Department of Psychiatry, Psychiatric Section of Mental Development, Lausanne University
28 29	10	Hospital (CHUV), 1008 Prilly-Lausanne, Switzerland
30 31 32	11	
32 33 34	12	Correspondence:
35 36 37	13	Jean-Marc Good, M.D., Ph.D
38 39	14	Division of Genetic Medicine
40 41 42	15	Lausanne University Hospital (CHUV)
42 43 44	16	Av. Pierre Decker 5, 1011 Lausanne, Switzerland
45 46	17	E-mail: jean-marc.good@chuv.ch Tel: 0041 79 556 2035
47 48 49	18	
50 51	19	Funding information:
52 53 54	20	None reported by any author
55 56	21	Key words:
57 58	22	CNOT2, chromosome 12q15, neurodevelopmental syndrome, autism, epilepsy
59 60	23	
		[Type here]

24 To the Editor:

Heterozygous microdeletions involving the 12q15 chromosomal region have been associated with a phenotype of developmental delay, nasal speech, hypothyroidism and facial dysmorphism (Lopez et al., 2012; Schluth et al., 2008; Vergult et al., 2011). Analysis of different copy number variations (CNVs) involving this locus led to the identification of a minimal overlapping region where CNOT2 is the only commonly deleted gene (Alesi et al., 2017; Uehara, Takenouchi, et al., 2019; Vergult et al., 2011). More recently, a heterozygous intragenic deletion of CNOT2 was described in a 13-year-old male with clinical features resembling those associated to 12q15 microdeletion syndrome (Alesi et al., 2019). Another report of a truncating variant in CNOT2 in 6-year-old male with characteristic facial features and developmental delay further suggested that haploinsufficiency of this gene was causative of the phenotype (Uehara, Tsuchihashi, et al., 2019).

CNOT2 protein is a structural component of the "carbon catabolite repressor 4 negative on TATA-less" (CCR4-NOT). The CCR4-NOT complex is composed of 11 subunits and is involved in the regulation of gene expression (Miller & Reese, 2012; Shirai, Suzuki, Morita, Takahashi, & Yamamoto, 2014). Its main role is to initiate the degradation of mRNA by deadenylation of the poly (A) tail (Webster et al., 2018; Yamashita et al., 2005). Interestingly, the disruption of the CNOT1 and CNOT3 genes, encoding two other subunits of the CCR4-NOT complex, has also been identified as causative of novel developmental disorders (Martin et al., 2019; Vissers et al., 2020)

Here, we document a *de novo* heterozygous deletion involving the first three exons of *CNOT2* in an adult patient who, in addition to developmental delay and facial characteristics typical of this syndrome, presented with autism spectrum disorder and epilepsy.

The patient is a 40-year-old male. He was born to healthy unrelated parents at 8 months of gestation, with weight and length at the 10th percentile. His development was delayed (independent walking at 30 months, language acquisition at 5 years) and he received special education. From infancy, the proband presented with febrile and spontaneous generalized tonic-clonic seizures, currently well-controlled by treatment with carbamazepine. Moreover, he had focal seizures with electroencephalographic recordings suggesting of an origin in the left hemisphere. Brain MRI at age 32 revealed an irregular border of the left ventricle and a parietal loss of white matter on the same side, considered compatible with a perinatal hypoxemic-ischemic encephalopathy. Autism was suspected during childhood and the recent assessment with standardized tools including "Autism Diagnostic Interview-Revised" (ADI-R), "Vineland Adaptive Behavior Scales-II" and "Autism Diagnostic Observation Schedule-2" (ADOS-2), confirmed difficulties in social interactions and communication as well as restrictive interests, repetitive and stereotype behaviors, corroborating the diagnosis of low-functioning autism without regression. In addition, the proband exhibited challenging behaviors, including sexual offending, mood fluctuations, excessive activity and impulsivity, that significantly improved under carbamazepine. At age 15, following a streptococcal pharyngitis, acute rheumatic fever was suspected because of joint pain and aortic and mitral regurgitations. Subsequent cardiac evaluations showed stability of the valvular changes over time. Currently aged 40, the proband lives in an institution. He can express himself using short sentences but has no reading or writing skills. A recent clinical evaluation revealed distinctive

facial features including sparse lateral eyebrows, slightly upslanted palpebral fissures, strabismus, underdeveloped ala nasi with low hanging columella, smooth philtrum and absent Cupid's bow, malpositioned teeth and micrognathia (Figure 1a and Table 1). Limbs, hands and feet were normal. Laboratory testing revealed a normal thyroid function.

Chromosomal microarray was performed using an array-CGH (oligoNT arr cgh 244K, Agilent Technologies, CA) on genomic DNA extracted from leukocytes. It revealed a heterozygous deletion of approximately 243 to 281 kb spanning the 5'UTR to intron 3 region of the *CNOT2* gene (NM_01199302.1) with the genomic coordinates: chr12:70,446,678-70,689,750 (GRCh37 assembly) (Figure 1b). The same analysis on DNA of both parents gave normal results, suggesting a *de novo* origin in the proband.

Several lines of evidence suggest a pathogenic role of the CNV in our patient and of *CNOT2* haploinsufficiency in general. First, *CNOT2* was identified as the critical gene for the phenotypes of 12q15 microdeletion syndrome (Uehara, Takenouchi, et al., 2019). Second, data from the public database GnomAD indicate a strong selection against predicted loss-offunction variation in *CNOT2* (pLI=1 and LOEUF=0.14). Finally, the *de novo* occurrence of the microdeletion in our patient (as well as of other reported variants in this gene) suggests a causative role.

90 The proband's clinical features, in particular the developmental delay, the upslanted 91 palpebral fissures, the nose anomaly, the teeth misalignment and the micrognathia, 92 correspond well to the phenotype described in *CNOT2* haploinsufficiency (Table 1 and Table 93 1S). Our description of the apparently oldest patient known with *CNOT2*-related

Page 5 of 18

neurodevelopmental phenotype suggests clinical stability, notably of the cognitive deficiency, without indication of progressive degeneration over time. Behavioral and psychiatric aspects of this genetic syndrome have not been well documented so far. Autistic spectrum disorder as seen in this patient may possibly be part of the CNOT2-related phenotypes. Interestingly, the majority of patients with CNOT1 and CNOT3-related neurodevelopmental disorders have behavioural disturbances including autism (Martin et al., 2019; Vissers et al., 2020). Moreover, epilepsy has been associated neither with CNOT2-related neurodevelopmental disorder nor with 12q15 microdeletion syndrome to date. The febrile generalized tonic-clonic seizures exhibited by our patient are characteristic of a seizure disorder caused by a genetic predisposition, and therefore, possibly a consequence of CNOT2 haploinsufficiency. It is also worth mentioning that seizures have been observed in a minority of patients harbouring CNOT1 or CNOT3 pathogenic variants (Martin et al., 2019; Vissers et al., 2020). The observation of a larger number of patients carrying CNOT2 mutations will help to determine whether autism and epilepsy are common phenotypic features. The heart valvular disease is highly suggestive of acute rheumatic fever. Nevertheless, aortic insufficiency and pulmonary stenosis have been described in a single patient with a CNOT2 intragenic deletion, indicating that it could also be part of the phenotype (Alesi et al., 2019).

5 111

112 ACKNOWLEDGMENTS

113 The authors are grateful to the patient and his parents for their participation in this study.
 114 Beryl Royer-Bertrand acknowledges the support of the « Jeune Chercheur » funds 2020 of the
 115 Department of Medicine of the Lausanne University Hospital.

57 116

⁵⁹₆₀ 117 **CONFLICT OF INTEREST**

2		
3	118	The authors declared that they have no conflict of interest.
4 5		
5 6	119	
7		
8	120	REFERENCES
9		
10	121	Alesi, V., Loddo, S., Cali, F., Orlando, V., Genovese, S., Ferretti, D., Novelli, A. (2019). A
11 12	122	heterozygous, intragenic deletion of CNOT2 recapitulates the phenotype of 12q15
12	122	deletion syndrome. Am J Med Genet A, 179(8), 1615-1621.
14		
15	124	doi:10.1002/ajmg.a.61217
16	125	Alesi, V., Loddo, S., Grispo, M., Riccio, S., Montella, A. C., Dallapiccola, B., Novelli, A.
17	126	(2017). Reassessment of the 12q15 deletion syndrome critical region. <i>Eur J Med</i>
18	127	Genet, 60(4), 220-223. doi:10.1016/j.ejmg.2017.01.009
19 20	128	Lopez, E., Callier, P., Cormier-Daire, V., Lacombe, D., Moncla, A., Bottani, A., Faivre, L.
20 21	129	(2012). Search for a gene responsible for Floating-Harbor syndrome on chromosome
22	130	12q15q21.1. Am J Med Genet A, 158A(2), 333-339. doi:10.1002/ajmg.a.34401
23	131	Martin, R., Splitt, M., Genevieve, D., Aten, E., Collins, A., de Bie, C. I., van Haeringen, A.
24	132	(2019). De novo variants in CNOT3 cause a variable neurodevelopmental disorder.
25	133	<i>Eur J Hum Genet, 27</i> (11), 1677-1682. doi:10.1038/s41431-019-0413-6
26 27	134	Miller, J. E., & Reese, J. C. (2012). Ccr4-Not complex: the control freak of eukaryotic cells.
27	135	Crit Rev Biochem Mol Biol, 47(4), 315-333. doi:10.3109/10409238.2012.667214
29	136	Schluth, C., Gesny, R., Borck, G., Redon, R., Abadie, V., Kleinfinger, P., Colleaux, L. (2008).
30	137	New case of interstitial deletion 12(q15-q21.2) in a girl with facial dysmorphism and
31	138	mental retardation. <i>Am J Med Genet A, 146A</i> (1), 93-96. doi:10.1002/ajmg.a.31869
32	139	Shirai, Y. T., Suzuki, T., Morita, M., Takahashi, A., & Yamamoto, T. (2014). Multifunctional
33 34	140	roles of the mammalian CCR4-NOT complex in physiological phenomena. <i>Front</i>
34 35	141	<i>Genet, 5</i> , 286. doi:10.3389/fgene.2014.00286
36	142	Uehara, T., Takenouchi, T., Yamaguchi, Y., Daimon, Y., Suzuki, H., Sakaguchi, Y., & Kosaki, K.
37	142	
38		(2019). CNOT2 as the critical gene for phenotypes of 12q15 microdeletion syndrome.
39	144	Am J Med Genet A, 179(4), 659-662. doi:10.1002/ajmg.a.61068
40 41	145	Uehara, T., Tsuchihashi, T., Yamada, M., Suzuki, H., Takenouchi, T., & Kosaki, K. (2019).
41 42	146	CNOT2 haploinsufficiency causes a neurodevelopmental disorder with characteristic
43	147	facial features. Am J Med Genet A, 179(12), 2506-2509. doi:10.1002/ajmg.a.61356
44	148	Vergult, S., Krgovic, D., Loeys, B., Lyonnet, S., Lieden, A., Anderlid, B. M., Menten, B.
45	149	(2011). Nasal speech and hypothyroidism are common hallmarks of 12q15
46	150	microdeletions. <i>Eur J Hum Genet, 19</i> (10), 1032-1037. doi:10.1038/ejhg.2011.67
47 48	151	Vissers, L., Kalvakuri, S., de Boer, E., Geuer, S., Oud, M., van Outersterp, I., de Brouwer,
40 49	152	A. P. M. (2020). De Novo Variants in CNOT1, a Central Component of the CCR4-NOT
50	153	Complex Involved in Gene Expression and RNA and Protein Stability, Cause
51	154	Neurodevelopmental Delay. Am J Hum Genet, 107(1), 164-172.
52	155	doi:10.1016/j.ajhg.2020.05.017
53	156	Webster, M. W., Chen, Y. H., Stowell, J. A. W., Alhusaini, N., Sweet, T., Graveley, B. R.,
54 55	157	Passmore, L. A. (2018). mRNA Deadenylation Is Coupled to Translation Rates by the
55 56	158	Differential Activities of Ccr4-Not Nucleases. <i>Mol Cell, 70</i> (6), 1089-1100 e1088.
57	159	doi:10.1016/j.molcel.2018.05.033
58	_00	
59		
60		

Yamashita, A., Chang, T. C., Yamashita, Y., Zhu, W., Zhong, Z., Chen, C. Y., & Shyu, A. B.
(2005). Concerted action of poly(A) nucleases and decapping enzyme in mammalian
mRNA turnover. *Nat Struct Mol Biol, 12*(12), 1054-1063. doi:10.1038/nsmb1016

FIGURE1 Clinical features of the proband and reported variants in *CNOT2*.

166 (a) Left and central panels show facial characteristics of the patient at age 39 including sparse

167 lateral eyebrows, slightly upslanted palpebral fissures, strabismus, hypoplastic alae nasi, low

168 hanging columella, smooth philtrum, absent Cupid's bow, misaligned teeth, micrognathia.

169 The right panel shows the back (upper part) and the palm (lower part) of his hand, considered

170 normal. (b) The upper part is a schematic representation of the CNOT2 gene and the lower

171 part shows the localisation of the presently reported deletion compared to the previously

172 described CNOT2 pathogenic variants.

CNOT2 haploinsufficiency in a 40-year-old man with intellectual disability, autism and seizures Beryl Royer-Bertrand¹, Katarina Cisarova¹, Florence Niel Bütschi¹, Giovanni Foletti², Vincent Guinchat³, Christel Tran¹, Andrea Superti-Furga¹, Jean-Marc Good¹ ¹Division of Genetic Medicine, Lausanne University Hospital (CHUV), Av. Pierre Decker 5, 1011 Lausanne, Switzerland ² Neurology-Epileptology, Insitution of Lavigny, 1175 Lavigny, Switzerland ³Department of Psychiatry, Psychiatric Section of Mental Development, Lausanne University Hospital (CHUV), 1008 Prilly-Lausanne, Switzerland perier Correspondence: Jean-Marc Good, M.D., Ph.D **Division of Genetic Medicine** Lausanne University Hospital (CHUV) Av. Pierre Decker 5, 1011 Lausanne, Switzerland E-mail: jean-marc.good@chuv.ch Tel: 0041 79 556 2035 Funding information: None reported by any author Key words: CNOT2, chromosome 12q15, neurodevelopmental syndrome, autism, epilepsy [Type here]

24	To the Editor:	
----	----------------	--

Heterozygous microdeletions involving the 12q15 chromosomal region have been associated with a phenotype of developmental delay, nasal speech, hypothyroidism and facial dysmorphism (Lopez et al., 2012; Schluth et al., 2008; Vergult et al., 2011). Analysis of different copy number variations (CNVs) involving this locus led to the identification of a minimal overlapping region where CNOT2 is the only commonly deleted gene (Alesi et al., 2017; Uehara, Takenouchi, et al., 2019; Vergult et al., 2011). More recently, a heterozygous intragenic deletion of CNOT2 was described in a 13-year-old male with clinical features resembling those associated to 12q15 microdeletion syndrome (Alesi et al., 2019). Another report of a truncating variant in CNOT2 in 6-year-old male with characteristic facial features and developmental delay further suggested that haploinsufficiency of this gene was causative of the phenotype (Uehara, Tsuchihashi, et al., 2019).

CNOT2 protein is a structural component of the "carbon catabolite repressor 4 negative on TATA-less" (CCR4-NOT). The CCR4-NOT complex is composed of 11 subunits and is involved in the regulation of gene expression (Miller & Reese, 2012; Shirai, Suzuki, Morita, Takahashi, & Yamamoto, 2014). Its main role is to initiate the degradation of mRNA by deadenylation of the poly (A) tail (Webster et al., 2018; Yamashita et al., 2005). Interestingly, the disruption of the CNOT1 and CNOT3 genes, encoding two other subunits of the CCR4-NOT complex, has also been identified as causative of novel developmental disorders (Martin et al., 2019; Vissers et al., 2020)

Here, we document a *de novo* heterozygous deletion involving the first three exons of *CNOT2*in an adult patient who, in addition to developmental delay and facial characteristics typical
of this syndrome, presented with autism spectrum disorder and epilepsy.

The patient is a 40-year-old male. He was born to healthy unrelated parents at 8 months of gestation, with weight and length at the 10th percentile. His development was delayed (independent walking at 30 months, language acquisition at 5 years) and he received special education. From infancy, the proband presented with febrile and spontaneous generalized tonic-clonic seizures, currently well-controlled by treatment with carbamazepine. Moreover, he had focal seizures with electroencephalographic recordings suggesting of an origin in the left hemisphere. Brain MRI at age 32 revealed an irregular border of the left ventricle and a parietal loss of white matter on the same side, considered compatible with a perinatal hypoxemic-ischemic encephalopathy. Autism was suspected during childhood and the recent assessment with standardized tools including "Autism Diagnostic Interview-Revised" (ADI-R), "Vineland Adaptive Behavior Scales-II" and "Autism Diagnostic Observation Schedule-2" (ADOS-2), confirmed difficulties in social interactions and communication as well as restrictive interests, repetitive and stereotype behaviors, corroborating the diagnosis of low-functioning autism without regression. In addition, the proband exhibited challenging behaviors, including sexual offending, mood fluctuations, excessive activity and impulsivity, that significantly improved under carbamazepine. At age 15, following a streptococcal pharyngitis, acute rheumatic fever was suspected because of joint pain and aortic and mitral regurgitations. Subsequent cardiac evaluations showed stability of the valvular changes over time. Currently aged 40, the proband lives in an institution. He can express himself using short sentences but has no reading or writing skills. A recent clinical evaluation revealed distinctive

facial features including sparse lateral eyebrows, slightly upslanted palpebral fissures,
strabismus, underdeveloped ala nasi with low hanging columella, smooth philtrum and
absent Cupid's bow, malpositioned teeth and micrognathia (Figure 1a and Table 1). Limbs,
hands and feet were normal. Laboratory testing revealed a normal thyroid function.

Chromosomal microarray was performed using an array-CGH (oligoNT arr cgh 244K, Agilent Technologies, CA) on genomic DNA extracted from leukocytes. It revealed a heterozygous deletion of approximately 243 to 281 kb spanning the 5'UTR to intron 3 region of the *CNOT2* gene (NM_01199302.1) with the genomic coordinates: chr12:70,446,678-70,689,750 (GRCh37 assembly) (Figure 1b). The same analysis on DNA of both parents gave normal results, suggesting a *de novo* origin in the proband.

Several lines of evidence suggest a pathogenic role of the CNV in our patient and of *CNOT2* haploinsufficiency in general. First, *CNOT2* was identified as the critical gene for the phenotypes of 12q15 microdeletion syndrome (Uehara, Takenouchi, et al., 2019). Second, data from the public database GnomAD indicate a strong selection against predicted loss-offunction variation in *CNOT2* (pLI=1 and LOEUF=0.14). Finally, the *de novo* occurrence of the microdeletion in our patient (as well as of other reported variants in this gene) suggests a causative role.

The proband's clinical features, in particular the developmental delay, the upslanted palpebral fissures, the nose anomaly, the teeth misalignment and the micrognathia, correspond well to the phenotype described in *CNOT2* haploinsufficiency (Table 1 and Table **1S**). Our description of the apparently oldest patient known with *CNOT2*-related

neurodevelopmental phenotype suggests clinical stability, notably of the cognitive deficiency,

without indication of progressive degeneration over time. Behavioral and psychiatric aspects

of this genetic syndrome have not been well documented so far. Autistic spectrum disorder

as seen in this patient may possibly be part of the CNOT2-related phenotypes. Interestingly,

the majority of patients with CNOT1 and CNOT3-related neurodevelopmental disorders have

behavioural disturbances including autism (Martin et al., 2019; Vissers et al., 2020).

Moreover, epilepsy has been associated neither with CNOT2-related neurodevelopmental

disorder nor with 12q15 microdeletion syndrome to date. The febrile generalized tonic-clonic

seizures exhibited by our patient are characteristic of a seizure disorder caused by a genetic

predisposition, and therefore, possibly a consequence of CNOT2 haploinsufficiency. It is also

worth mentioning that seizures have been observed in a minority of patients harbouring

CNOT1 or CNOT3 pathogenic variants (Martin et al., 2019; Vissers et al., 2020). The

observation of a larger number of patients carrying CNOT2 mutations will help to determine

whether autism and epilepsy are common phenotypic features. The heart valvular disease is

highly suggestive of acute rheumatic fever. Nevertheless, aortic insufficiency and pulmonary

stenosis have been described in a single patient with a CNOT2 intragenic deletion, indicating

The authors are grateful to the patient and his parents for their participation in this study.

Beryl Royer-Bertrand acknowledges the support of the « Jeune Chercheur » funds 2020 of the

that it could also be part of the phenotype (Alesi et al., 2019).

Department of Medicine of the Lausanne University Hospital.

117 CONFLICT OF INTE	REST
----------------------	------

ACKNOWLEDGMENTS

2		
3 4	118	The authors declared that they have no conflict of interest.
5	_	
6	119	
7		
8	120	REFERENCES
9		
10 11	121	Alesi, V., Loddo, S., Cali, F., Orlando, V., Genovese, S., Ferretti, D., Novelli, A. (2019). A
12	122	heterozygous, intragenic deletion of CNOT2 recapitulates the phenotype of 12q15
13	123	deletion syndrome. <i>Am J Med Genet A, 179</i> (8), 1615-1621.
14	124	doi:10.1002/ajmg.a.61217
15	125	Alesi, V., Loddo, S., Grispo, M., Riccio, S., Montella, A. C., Dallapiccola, B., Novelli, A.
16		
17	126	(2017). Reassessment of the 12q15 deletion syndrome critical region. <i>Eur J Med</i>
18	127	Genet, 60(4), 220-223. doi:10.1016/j.ejmg.2017.01.009
19 20	128	Lopez, E., Callier, P., Cormier-Daire, V., Lacombe, D., Moncla, A., Bottani, A., Faivre, L.
20 21	129	(2012). Search for a gene responsible for Floating-Harbor syndrome on chromosome
22	130	12q15q21.1. Am J Med Genet A, 158A(2), 333-339. doi:10.1002/ajmg.a.34401
23	131	Martin, R., Splitt, M., Genevieve, D., Aten, E., Collins, A., de Bie, C. I., van Haeringen, A.
24	132	(2019). De novo variants in CNOT3 cause a variable neurodevelopmental disorder.
25	133	Eur J Hum Genet, 27(11), 1677-1682. doi:10.1038/s41431-019-0413-6
26	134	Miller, J. E., & Reese, J. C. (2012). Ccr4-Not complex: the control freak of eukaryotic cells.
27	135	<i>Crit Rev Biochem Mol Biol, 47</i> (4), 315-333. doi:10.3109/10409238.2012.667214
28 29	136	Schluth, C., Gesny, R., Borck, G., Redon, R., Abadie, V., Kleinfinger, P., Colleaux, L. (2008).
30	130	
31		New case of interstitial deletion 12(q15-q21.2) in a girl with facial dysmorphism and
32	138	mental retardation. Am J Med Genet A, 146A(1), 93-96. doi:10.1002/ajmg.a.31869
33	139	Shirai, Y. T., Suzuki, T., Morita, M., Takahashi, A., & Yamamoto, T. (2014). Multifunctional
34	140	roles of the mammalian CCR4-NOT complex in physiological phenomena. Front
35	141	<i>Genet, 5</i> , 286. doi:10.3389/fgene.2014.00286
36 37	142	Uehara, T., Takenouchi, T., Yamaguchi, Y., Daimon, Y., Suzuki, H., Sakaguchi, Y., & Kosaki, K.
38	143	(2019). CNOT2 as the critical gene for phenotypes of 12q15 microdeletion syndrome.
39	144	<i>Am J Med Genet A, 179</i> (4), 659-662. doi:10.1002/ajmg.a.61068
40	145	Uehara, T., Tsuchihashi, T., Yamada, M., Suzuki, H., Takenouchi, T., & Kosaki, K. (2019).
41	146	CNOT2 haploinsufficiency causes a neurodevelopmental disorder with characteristic
42	147	facial features. Am J Med Genet A, 179(12), 2506-2509. doi:10.1002/ajmg.a.61356
43	148	Vergult, S., Krgovic, D., Loeys, B., Lyonnet, S., Lieden, A., Anderlid, B. M., Menten, B.
44 45	149	(2011). Nasal speech and hypothyroidism are common hallmarks of 12q15
45 46	150	microdeletions. <i>Eur J Hum Genet, 19</i> (10), 1032-1037. doi:10.1038/ejhg.2011.67
47		
48	151	Vissers, L., Kalvakuri, S., de Boer, E., Geuer, S., Oud, M., van Outersterp, I., de Brouwer,
49	152	A. P. M. (2020). De Novo Variants in CNOT1, a Central Component of the CCR4-NOT
50	153	Complex Involved in Gene Expression and RNA and Protein Stability, Cause
51	154	Neurodevelopmental Delay. Am J Hum Genet, 107(1), 164-172.
52	155	doi:10.1016/j.ajhg.2020.05.017
53 54	156	Webster, M. W., Chen, Y. H., Stowell, J. A. W., Alhusaini, N., Sweet, T., Graveley, B. R.,
54 55	157	Passmore, L. A. (2018). mRNA Deadenylation Is Coupled to Translation Rates by the
56	158	Differential Activities of Ccr4-Not Nucleases. Mol Cell, 70(6), 1089-1100 e1088.
57	159	doi:10.1016/j.molcel.2018.05.033
58		
59		
60		

Yamashita, A., Chang, T. C., Yamashita, Y., Zhu, W., Zhong, Z., Chen, C. Y., & Shyu, A. B. (2005). Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat Struct Mol Biol, 12(12), 1054-1063. doi:10.1038/nsmb1016 FIGURE1 Clinical features of the proband and reported variants in CNOT2. (a) Left and central panels show facial characteristics of the patient at age 39 including sparse lateral eyebrows, slightly upslanted palpebral fissures, strabismus, hypoplastic alae nasi, low hanging columella, smooth philtrum, absent Cupid's bow, misaligned teeth, micrognathia. The right panel shows the back (upper part) and the palm (lower part) of his hand, considered normal. (b) The upper part is a schematic representation of the CNOT2 gene and the lower part shows the localisation of the presently reported deletion compared to the previously described CNOT2 pathogenic variants. ie perez

John Wiley & Sons, Inc.

	Our patient	Uehara <i>et al.</i> (2019)	Alesi <i>et al.</i> (2019)
Type of variant	Partial deletion of CNOT2	Nonsense variant in CNOT2	Partial deletion of CNOT2
Genomic Location (GRCh37)	chr12:70,446,678-70,689,750	chr12:70,732,268:A>T	chr12:70,672,317-70,757,341
Location (NM_001199302.1)	5'UTR - Intron 3-4	c.946A>T,p.(Lys316Ter), Exon 11	Intron 3-4 – 3'UTR
Size of the variant	243-281 kb	1 b	85 kb
Inheritance	De novo	De novo	De novo
Origin	Swiss-French	Japan	Romania
Gender	M	Μ	M
Age at last evaluation	40 y	6 y	13 y
Delivery	Preterm	Term	Term
Birth weight (kg)	1.580 (P10)	2.798 (-0.7 SD)	2.4 (P3, -1.2 SD)
Birth length (cm)	42 (P10)	49 (mean)	49 (P32)
Birth OFC (cm)	NR	33 (-1.3 <i>SD</i>)	NR
Weight at last evaluation (kg)	59 (P11, -1.2 <i>SD</i>)	24 (+0.5 SD)	34.2 (P<3)
Height at last evaluation (cm)	167 (P9, -1.34 SD)	115.9 (mean)	146.5 (P3-25)
OFC at last evaluation (cm)	55.5 (P61, +0.27 SD)	54 (+3.0 SD)	54 (P25-50)
Hypotonia	NR	-	+
Feeding difficulties	NR	+	+
Developmental delay	+, walked at 30 m, language acquisition at 5 y	+, walked at 20 m, first words at 24 m	+
Nasal speech	-	-	+
Epilepsy	+	NR	NR
Behavior disturbance	Autism	NR	NR
Upper face	Sparse lateral eyebrows, slightly upslanted palpebral fissures, strabismus	Bushy eyebrows, synophris, long eyelashes, upslanted palpebral fissures	Deep-set eyes, upslanted palpebral fissures, hypotelorism
Midface	Hypoplastic alae nasi, low hanging columella	Anteverted nares	Triangular nose, anteverted nostrils
Lower face and mouth	Smooth philtrum, absent Cupid's bow, misaligned teeth, micrognathia	Thin upper lip, micrognathia	Long philtrum, underbite, high-arched palate
Other craniofacial anomalies	-	low-set ears	Elongated, slightly asymetric face
Hirsutism	-	+	-
Skeletal /extremities anomalies	-	Short 5 th fingers with clinodactyly, broad halluces	Stubby fingers with fleshy pads, flat feet with short 2 nd - 5 th toes, kyphosis and scoliosis
Hypothyroidism	-	NR	-
Heart disease	Aortic and mitral insufficiency (acute rheumatic fever suspected)	NR	Valvular and supravalvular pulmonary stenosis mild aortic insufficiency
Miscellaneous	Brain MRI: irregular border of the ventricle, left parietal loss of white matter (perinatal hypoxemic encephalopathy suspected)	NR	Pseudo-hypertrophy of calf muscles, supernumerary nipple, renal dysplasia, chroni renal failure

TABLE 1 Clinical features of patients with predicted loss-of-function variants in CNOT2

Abbreviations: b, base pair; kb, kilobase pair; F, female; M, male; -, absent; +, present; NR, not reported; OFC, occipitofrontal head circumference; P, percentile; SD, standard deviation; m, months; y, years

TABLE S1 Clinical features of patients harboring 12q15 heterozygous deletions involving CNOT2 and other genes

	Schluth <i>et al.</i> (2008)	Vergult <i>et al.</i> (2011) (1)	Vergult <i>et al.</i> (2011) (2)	Vergult <i>et al.</i> (2011) (3)	Lopez <i>et al.</i> (2012)	Alesi <i>et al.</i> (2017)	Uehara <i>et al.</i> (2019)
Genomic location (GRCh37)	chr12:68,582,752 -78,553,987	chr12:69,354,696- 71,853,018	chr12:70,496,651 -73,086,047	chr12:70,515,973- 73,086,047	chr12:70,178,509- 74,883,975	chr12:70,232,655- 70,974,979	chr12:69,433,936 70,758,925
Cytogenetic position	12q15q21.2	12q15q21.1	12q15q21.1	12q15q21.1	12q15q21.1	12q15	12q15
Size of the variant	10.21 Mb	2.50 Mb	2.59 Mb	2.57 Mb	4.71 Mb	0.74 Mb	1.32 Mb
Inheritance	De novo	De novo	De novo	De novo	De novo	De novo	De novo
Origin	NR	Belgium	United Kingdom	Sweden	NR	NR	Japan
Gender	F	M	F	F	F	M	F
Age at last evaluation	5 y	16 y	11 y	21 y	4 y	29 y	12 y
Delivery	Term	Preterm	NR	NR	Term	Term	Term
Birth weight (kg)	2.1 (P3)	2.63 (P25–50)	2.85 (P10)	3.5 (P50)	3.51	3.27	3.15 (+0.8 SD)
Birth length (cm)	45 (P3)	49 (P90)	NR	NR	49.5	51	51 (+1.2 SD)
Birth OFC (cm)	32	33 (P75)	NR	NR	37.5	34	35 (+1.3 SD)
Weight at last evaluation (kg)	NR	56.8 (P10-25)	NR	NR	-2.5 SD	NR	59.5 (+1.5 SD)
Height at last evaluation (cm)	NR	175 (P25–50)	P9	NR	-2.5 SD	NR	162 (+1.5 SD)
OFC at last evaluation (cm)	NR	54 (P25)	56.5 (>P98)	NR	+1.5 SD	NR	56.3 (+1.0 SD)
Hypotonia	+	+	_	-	NR	+	-
Feeding difficulties	+, GER, enteral nutrition	+, with vomiting	00	-	+, severe GER, hiatal hernia, enteral nutrition	+, recurrent vomiting	-
Developmental delay	+, walked at 3 y, delayed speech	+, walked at 23 m	+, Dyspraxia, dyslexia	+	+, walked at 2 y, first words at 4 y	+, mild	+, walked at 2 y, first words at 2 y
Nasal speech	NR	+	+	+	+	+	+
Epilepsy	NR	NR	NR	NR	NR	NR	NR
Behavior disturbance	NR	NR	NR	NR	Frustration intolerance	NR	NR
Forehead anomalies	High/large forehead	High forehead with bitemporal narrowing	High forehead	High forehead	-	High forehead	-
Upper face	Arched eyebrows, hypertelorism, crescent-shaped eyes, upslanted palpebral fissures, strabismus	Straight eyebrows, mild synophrys, hypotelorism, small horizontal palpebral fissures	Straight eyebrows	Straight eyebrows	Deep-set eyes, long eyelashes	Straight eyebrows, hypotelorism, small eyes	Upslanted and short palpebral fissures
Midface	Anteverted nostrils, linear nose with long columella	Flat face	Midfacial hypoplasia	Flat face/midface hypoplasia	Bulbous nose, broad nasal bridge, wide columella	Midface hypoplasia, high nasal bridge, small columella	-

Lower face and mouth	Long philtrum, large mouth with thin lips, micrognathia	Long philtrum, small mouth, narrow and highly arched palate, small chin	-	-	Wide mouth, thin upper lip vermillion, prognathism	Long and smooth philtrum, oligodontia, posterior open bite, micrognathia	Submucosal cleft palate, malaligned teeth, micrognathia
Other cranio-facial anomalies	Low-set ears	Large anterior fontanel, large ears	Low-set ears, dorsally rotated auricles	Small low-set ears	Triangular-shaped face, short neck, large anterior fontanel	Large anterior fontanel, long expressionless face, small anteriorly rotated ears	Low-set ears, hypoplastic antihelix
Hirsutism	Sacrococcygeal tuft of hair	NR	NR	NR	+ (mild)	NR	-
Skeletal /extremities anomalies	Hands brachydactyly, syndactyly of toes 2-3, mild pectus excavatum, delayed bone age	Straight back, mild scoliosis, cubitus valgus, long and slender hands and fingers, 5 th fingers held in flexion, mild legs asymmetry, S-shaped configuration of tibias, thin legs and feet with hallux valgus, hammer toes	Hammer toes, hypoplastic 5 th toenails	Slender built, normal growth	Delayed bone age, slightly shortened clavicles, clinodactyly of 5 th fingers, large thorax with widely spaced nipples	Slender built, narrow shoulders, asymmetry of pelvis and lower limbs, scoliosis, flat feet, and right valgus knee	Short 5 th fingers, restricted range of supination at her right elbow joint, 2-3 toe syndactyly
Hypothyroidism	-	+ (14 y)	+ (9 y)	+ (during pregnancy)	-	-	-
Heart disease	VSD	NR	NR	NR	-	NR	-
Miscellaneous	IUGR, hypercalcemia	Prone to upper airways infections, surgery for phimosis, removal of tonsils and adenoids, and repair of the right eardrum	Refractive error, lymphoblastoid leukemia (3 y), cutis marmorata	Anorexia nervosa (late teens), refractive error, recurrent upper airwarys and middle ear infections	2	Neurosensorial hearing loss, left megaureter primary obstruction, upper limbs postural tremor, hyperelastic skin, mild ligaments laxity, recurrent inner ears infections, median retrocerebellar arachnoid cyst, cryptorchidism	Нурегоріа

Abbreviations: b, base pair; kb kilobase pair; Mb, megabase pair; F, female; M, male; –, absent; +, present; NR, not reported; OFC, occipitofrontal head circumference; P, percentile; SD, standard deviation; m, months; y, years; GER, gastroesophageal reflux; IUGR, intrauterine growth retardation; VSD ventricular septal defect