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The precise execution of various cellular functions relies on the maintenance

of signaling specificity from input detection to cellular outputs. However,

diverse signaling pathways share similar or identical intermediate compo-

nents. A well-conserved intermediate, the Mitogen-Activated Protein Kinase

(MAPK) cascade, participates in a myriad of signaling pathways, regulating

signal transduction from input to output. This typifies the “hourglass conun-

drum”, where a multitude of inputs and outputs all operate through a limited

number of common intermediates. Therefore, understanding how MAPK

cascades regulate a variety of outputs with specificity is a fundamental ques-

tion in biology. This review highlights four major insulating mechanisms that

improve signaling specificity: selective activation, compartmentalization,

combinatorial signaling, and cross-pathway inhibition. We focus on plant

pathways that share MAPK cascade components and compare mechanisms

with those of animals and yeast. We hope this conceptual overview will aid

future studies to better understand plant signaling specificity.

The ability to respond to external stimuli is a fundamen-

tal characteristic of all living organisms. The smallest

response unit, a cell, converts external signals into requi-

site cellular responses by activating appropriate signal-

ing pathways. The evolution of multicellularity in

eukaryotes followed by functional diversification of the

cells has drastically increased the complexity and intri-

cacy of signaling pathways. The execution of a myriad

of cellular functions thus relies on these pathways to

maintain specificity from signal input to cellular output.

These outputs range from basic growth and prolifera-

tion to highly specialized functions such as development

of xylem tissues for structural support and transport in

vascular plants, and the adaptive immune response to a

specific pathogen in mammals.

However, it is a widespread phenomenon for diverse

signaling pathways to share similar or identical inter-

mediate components. One key intermediate module,

the Mitogen-Activated Protein Kinase (MAPK) cas-

cade, is activated by a wealth of known stimuli in

plants, animals, and fungi [1–4]. This typifies the

“hourglass conundrum”, where a multitude of inputs

each need to elicit a distinct output via a limited num-

ber of common intermediates (Fig. 1A,B). The result-

ing high interconnectivity of signaling pathways raises

an important challenge to understand how output spe-

cificity is maintained, and more precisely: How do com-

mon signaling modules regulate a variety of outputs?

Relative specificity is achieved when one pathway’s

input can activate more of its own output than

another pathway’s output. Absolute specificity means

one pathway can only activate its own output and can-

not activate another pathway.

Likely as an adaptation to their sessile lifestyle, land

plants have dramatically expanded their receptor kinase

repertoire [5,6]. For example, there are over 600 Recep-

tor Like Kinase (RLK)/Pelle receptors in Arabidopsis,

dwarfing the four members of the same family in

humans [6]. Functional receptors detect exogenous sig-

nals to sense the external environment and detect endo-

genous signals to communicate with other cells [7,8].

Plants have a de-centralized organization, meaning that

they distribute decision making and signal integration

to local organs and cells. Long-distance communication
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between different plant organs often operates via mobile

ligands or hormones [9,10]. Fittingly, plant genomes

encode a staggering number of small secretory peptides

as ligands for cell-to-cell communication [11]. This,

together with fewer cell types than most metazoans, sug-

gests that any single plant cell needs to incorporate more

independent signals. Therefore, plants should have a

more pronounced hourglass problem than their

metazoan counterparts (Fig. 1A), making it important to

understand the mechanisms whereby undesirable cross-

talk is avoided and signaling specificity maintained.

The MAPK cascades are universal signaling modules

present in all eukaryotes. They serve as the nexus of

diverse signaling pathways, regulating fundamental

aspects of biology. A typical cascade comprises three

tiers of sequentially activating kinases: MAPK kinase

kinase (MKKK), MAPK kinases (MKK), and the term-

inal MAPK (Fig. 1B). Plants possess enlarged kinase

families from all three tiers compared to other eukar-

yotes, albeit to a lesser degree than the expansion of

RLK receptors [5,12]. There are 80 MKKKs, 10 MKKs,

and 20 MAPKs in Arabidopsis [13–15]. In contrast to

the more linear cascade in yeast and mammals [16,17],

plant MAPK cascades form a web-like network with

more members present at a single tier (Fig. 1C) [18]. The

expansion in plants amplifies the potential for these

kinases to form many more MPKKK-MKK-MAPK

combinations, which could enable a diversifying net-

work perfectly suited for transmitting distinct signals.

Despite their importance, only a few cascades have been

characterized with all three tiers [19–21]. Moreover, only

limited members in each tier were investigated, meaning

that we currently only have a fragmented view of the full

network. Global analyses of MKK-MAPK interaction

specificity, selective activation, and MAPK substrates

have improved our overview of the full network [22–25],
with the caveat that validation in plants is limited and

often lacks the critical cellular resolution. To date, how

specificity is controlled among these MAPK cascades in

plants is still not well understood.

This review highlights major insulating mechanisms

that improve signaling specificity, including selective

activation, compartmentalization, combinatorial signal-

ing, and cross-pathway inhibition. We focus on plant sig-

naling pathways that share MAPK cascade components

and compare them with those of animals and yeast upon

which specificity models were built [26]. We also discuss

various fine-tuning mechanisms and the challenge of dis-

tinguishing desirable crosstalk versus undesirable leak-

age of signaling in plants. We hope our conceptual
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Fig. 1. MAPK cascade as a nexus for signaling pathways. (A) Schematics of “Hourglass conundrum” in mammals and plants. A limited

number of signaling intermediates (mauve oval shapes) participate in diverse signaling cascades, elicited by different inputs (exemplified by

receptor complexes and ligands) and producing different outputs (blue squares). (B) A simple specificity model where two pathways share

the same MAPK cascade yet can transduce different signals to produce specific outputs. (C) Schematic representation of MAPK cascade in

mammals and plants. Boxes represent MKKKs, MKKs, MAPKs in humans (Red) and in Arabidopsis thaliana (Green) with total numbers

noted on the left. Lines connecting different tiers represent major functional interactions characterized in mammals [17] and in Arabidopsis

[18]. Note that some of these interactions are based upon in vitro experiments. Many of the MKKK-MKK connections are still unknown in

plants; here we illustrate only the ones mentioned in this review (MEKK1, YDA, ANP2, ANP3).
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overview will aid future studies to better understand sig-

naling specificity in plants.

Selective activation via docking
interactions

Binding through complementary protein regions in a

“lock-and-key” fashion is a fundamental mechanism

to provide specificity. Docking interactions between

the C-terminal Docking (CD) domain in MAPKs and

the docking sites (D-sites) in MAPK substrates and

regulators provide selectivity for signaling transmission

(Fig. 2A) [27]. The typical D-site motifs comprise two

or three basic residues, a spacer and two hydrophobic

residues separated by one other residue [27]. Positively

charged D-sites interact with complementary CD

domains in MAPKs, mostly composed of negatively

charged residues [27].

In mammals, most substrates recruit their cognate

MAPKs via well-characterized D-sites [28]. The docking

interactions are important to increase the local concen-

tration of the MAPKs and thereby the phosphorylation

efficiency of their substrates. For example, mutation or

deletion of the D-site in the substrate c-Jun significantly

reduces its phosphorylation by human JNK2MAPK [29].

Three of the four major mammalian MAPK families

(ERK1/2, p38, JNK) preferentially bind to their respec-

tive D-sites (Fig. 2B), while noncanonical docking sites

and promiscuous D-sites exist [28,30,31]. Garai et al.

[32] showed that variable residues in the D-sites mostly

contribute to the specific interaction with MAPK CD

domains, and by modulating these residues, they can

affect binding specificity. MKKs, the upstream activa-

tors of MAPKs, also contain D-sites at their N termini

[30]. Mammalian MAPKs generally bind better to the

D-sites of their cognate MKKs than to others, and

vice versa, indicating that these docking interactions

provide intrinsic selectivity at MKK-MAPK level

(Fig. 2B) [30]. For example, MEK1/2MKKs only activate

ERK1/2MAPKs from their own pathway, but do not acti-

vate JNKMAPKs or p38MAPKs [30].

Most plant MAPKs also contain a CD domain and 7

out of the 10 MKKs in Arabidopsis carry a D-site, with

the same consensus sequence as in mammals [13]. In

contrast to the high MKK-MAPK specificity in mam-

mals, protein microarrays revealed that a single plant

MKK preferentially activating multiple MAPKs is a

rule rather than an exception [23], highlighting ample

potential for cross-pathway activation of the same

MAPKs. Though some of these in vitro interactions [20]

have been confirmed in planta, many others still await

validation. Nevertheless, specificity exists at MKK-

MAPK level in plants, though the degree to which dock-

ing interactions contribute to specificity is unknown.

For example, AtMPK8 is activated by AtMKK3 but

not by AtMKK4 upon mechanical wounding [33]. Since

full AtMPK8 activation requires both AtMKK3 and

the direct binding of calcium–calmodulin proteins

(CaM) [33], other binding partners likely assist MKK-

MAPK specificity. Furthermore, strong affinity might

not be necessary for plant MKKs to activate MAPKs,

given that MAPKs are reported to be substrates of the

MKKs even when they do not physically interact in a

yeast two-hybrid assay [22]. In line with this, mutation
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Fig. 2. Selective activation via docking interactions. (A) Docking interactions between the MAPK and their substrates or with their upstream

activators (MKKs). MAPK activation relies on the upstream MKK to phosphorylate the conserved TxY motif in the MAPK kinase domain.

Solid lines represent the D-site while dotted lines represent the CD domain. On the right, docking interaction is detailed with D-site and CD

domain properties, where positively, negatively charged and hydrophobic amino acids are represented by “+”, “�”, and “H”, respectively.

The hexagon represents a 1–6 aa linker. (B) Human MAPK cascade illustrating the level of pathway specificity. See glossary “Mammalian

MAPK families” for more details. Solid lines represent the D-sites and dotted lines represent the CD-domains.
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in the CD domain of the mammalian ERK2MAPK, or

modification of the D-site in MEK2MKK does not alter

their specific interaction [27,34], indicating alternative

specificity mechanisms.

Typical D-sites as in mammalian MAPK substrates

have rarely been found in plants. Given that MAPKs

are known to simultaneously influence a variety of cel-

lular processes, it seems unlikely that diverse MAPK

substrates use the same motif to convey interaction

specificity. In addition, the entire subgroup D of plant

MAPKs lack a CD domain; therefore, an alternative

mechanism must assist interactions with their sub-

strates. Putarjunan et al. [35] found that AtMPK6

requires both a D-site and a unique KRAAM motif to

bind to its target (SCRM), but AtMPK3 only requires

the KRAAM motif and not the D-site. These exam-

ples demonstrate that interactions via canonical dock-

ing sites are not sufficient to explain the specificities in

plant MAPK signaling. There is potential to find

unique modes of action for different plant MAPKs.

Selective activation via scaffold
proteins

Scaffold proteins assemble consecutive signaling com-

ponents into a complex to accelerate the rate of reac-

tion and thus enhance activation [26]. By tethering

selected components of one pathway while excluding

others, lowering or preventing their activation, scaf-

folds can increase the specificity for pathways that

share components (Fig. 3A). For example, the yeast

scaffold protein Ste5 is specifically recruited upon mat-

ing pheromone perception to bind to all three tiers of

the cascade: Ste11MKKK, Ste7MKK, and Fus3MAPK

(Fig. 3B) [36–38]. The resulting specific activation of

Fus3MAPK ensures mating outputs, which is insulated

from the Ste11MKKK-Ste7MKK-Kss1MAPK cascade acti-

vated during filamentous invasive growth (Fig. 3B)

[37,38]. Mammalian scaffold KSR1 directly interacts

with Raf-1MKKK, MEK1/2MKK, and ERKMAPK to

facilitate activation of the ERK pathway, important

for transmitting various developmental signals [39].

Scaffolding mechanisms are widely used in yeast and

mammals, yet very few plant scaffolds have been iden-

tified that sequester all three tiers of the MAPK cas-

cade, and no homologs of Ste5 have been found in

plants [18,40]. The first example of a plant scaffold is

Arabidopsis RACK1 that interacts with heterotrimeric

G-protein subunit Gb as well as all members of the

MEKK1MKKK-MKK4/5-MPK3/6 cascade upon per-

ception of the pathogen Pseudomonas aeruginosa to

activate immune response [41] (Fig. 3C). As MEKK1

can also activate the MKK1/2-MPK4 cascade in

negative regulation of plant immunity [42], RACK1

could be important to direct MEKK1 signaling

towards MKK4/5 and prevent it from activating

MKK1/2 (Fig. 3C). The structure of Arabidopsis

RACK1 reveals surfaces for multiple simultaneous

protein–protein interactions, indicating its potential to

mediate diverse signaling [43]. RACK1’s function as a

multi-signaling scaffold protein is conserved in many

eukaryotes. It is considered a Gb subunit homolog,

containing the WD40 repeat domain that facilitates

interactions with various proteins [43]. This domain

allows the plant Gb (AGB1) itself to interact with all

5 components of the YDAMKKK-MKK4/5-MPK3/6

cascade for embryo development [44]. As a scaffold,

AGB1 assembles a specific signaling complex near the

plasma membrane, potentially preventing “leakage” of

YDA into other MAPK pathways [45,46]. AGB1 can

promote kinase activity, as was shown for ZAR1

(Zygotic arrest 1) [47], so it could also promote kinase

activity throughout the cascade.

Substrates themselves may function as scaffolds. For

example, the Arabidopsis protein BASL is a substrate of

MPK3/6, and phosphorylated BASL recruits YDAMKKK

and MPK3/6 to the cell cortex, spatially concentrating

signaling activity asymmetrically to create polarity [48].

In turn, the activated MPK3/6 further phosphorylates

BASL, forming a positive feedback loop that eventually

establishes asymmetric cell fate of the stomatal lineage

[48]. MYB44 is also an MPK3 substrate in Arabidopsis

that can directly interact with both MPK3 and MKK4 in

the nucleus [49]. MYB44 is an early stress-responsive

gene that is transcriptionally regulated by a MPK3-

targeted transcription factor VIP1 [50]. Though the nat-

ure of the MYB44 scaffolding benefit is unclear, we could

speculate that it increases MKK4-MPK3 signaling to

promote MYB44 activation. The role of scaffolds in fine-

tuning signal transmission will be discussed later.

Compartmentalization (tissue and
subcellular localization)

Compartmentalization provides signal insulation to

pathways with shared signaling components by restrict-

ing the accessibility of component(s) to specific tissues

or subcellular localizations (Fig. 4A). For both plants

and animals, the majority of MAPKs localize to the

nucleus and/or cytosol, consistent with their targets

being predominantly transcription factors [40,51].

Nuclear translocation of MAPKs upon activation has

been well documented in animals, especially for the

mammalian ERKMAPK family [52,53]. The regulation of

nuclear translocation could determine whether a fresh

active pool of MAPKs is in the same compartment as
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their substrates, thus control signaling outputs [52].

How dynamic nucleocytoplasmic shuttling contributes

to signaling specificity has been reviewed in plants

[40,54] and is not elaborated here.

With immobile cells and well-defined tissue organiza-

tion in plants, substrate compartmentalization in different

tissues could contribute to signaling specificity. The same

Arabidopsis MKK4/5-MPK3/6 cascade can regulate dis-

tinct biological processes by phosphorylating different

MAPK substrates in different tissues [15]. Many MAPK

substrates are WRKY proteins [23], a large family of

plant-specific transcription factors regulating numerous

processes [55,56]. MKK4/5-MPK3/6 activates WRKY34

and possibly WRKY2 for pollen development and viabi-

lity [57], but activates WRKY33 for immune response

upon detection of pathogens [58]. WRKY34 is strongly

expressed in the pollen [59], where it activates the expres-

sion of GPT1, a gene important for lipid body accumula-

tion during pollen development [60]. WRKY33 is mainly

expressed in vegetative tissues and is necessary for the bio-

synthesis of the defense compound camalexin [58,61]. Dif-

ferential tissue availabilities of WRKY34 and WRKY33

allow the MKK4/5-MPK3/6 cascade to activate different

outputs in different tissues (Fig. 4B). However, WRKY2
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components. These kinases are prevented to be activated by another cascade which does not activate the scaffold as long as their

movement on and off the scaffold is limited. (B) The yeast Ste5 scaffold protein enhances specificity of filamentation and mating signaling.

Ste5 is specifically recruited during mating pheromone perception and is not recruited during filamentation. Though the two pathways share

the same Ste11MKKK and Ste7MKK, Fus3MAPK activation requires Ste5, while the Kss1MAPK does not. Brown ovals represent the G protein
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MKK1-MKK4/5-MPK3/6 cascade components, thereby activating defense gene expression. In the absence of RACK1 activation, MKKK1 may

favor activating MKK1/2-MPK4 to suppress immunity.

1181FEBS Open Bio 13 (2023) 1177–1192 � 2023 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

Y. Ma, and J. Nicolet Specificity models in MAPK cascade signaling



is also expressed in the embryo, where it is phosphory-

lated by YDAMKKK-MKK4/5-MPK3 to upregulate genes

important for embryogenesis [62–64]. This means that

WRKY2 has disparate functions in embryo and pollen,

albeit being regulated by the same MAPK cascade mem-

bers. Mechanisms other than tissue compartmentalization

may help to ensure differential outputs from the same

WRKY2 activation pathways (Fig. 4B).

Clustering of plant MAPK cascade genes from all tiers

by expression similarities broadly reflects tissue-specific

patterns [65]. These “co-expressions maps” provide us

clues where different components of the cascade could

work together in a network. Nevertheless, tissue specifi-

city of plant MAPKs is rare as the majority are broadly

expressed throughout the plant [66]. Some MKKs and

MKKKs are known to display preferential tissue expres-

sion. For example, AtMKK6 transcript level is higher in

shoot apices and flowers where more cell division occurs,

compared to mature leaves [67]. MKK6 is part of the

ANP2/3MKKK-MKK6-MPK4 cascade that controls

cytokinesis in Arabidopsis [67,68]. This localization pat-

tern of MKK6 ensures higher activity of this MAPK cas-

cade in the dividing zones where regulation of cytokinesis

is most important.

Different subcellular localization of MAPK pathway

elements can provide specificity. As the example above,

both MKK6 and its downstream MPK4 and MPK6

accumulate at the equatorial plane of the phragmoplast

—a microtubule structure formed between the two

daughter cells before division [68,69]. So, this specific

subcellular localization may enhance specificity by lower-

ing irrelevant activations of MPK4 or MPK6 by other

MAPK cascades members usually localized to nucleocy-

toplasmic compartments. Similarly, MKK7/9 and

MKK4/5 are both activated by upstream YDAMKKK,

and they activate MPK3/6, but show distinct activities

during different stomatal development stages. Subcellular

localization of autoactive MKK7/9, but not MKK4/5, to

the mitochondria determines the former’s ability to pro-

mote stomatal clustering during the FAMA stage [70].

Interestingly, the D-sites of these MKKs strongly influ-

ence their ability to localize to mitochondria, as demon-

strated by experiments removing/swapping the D-sites

[70,71]. Recently, opposing cascade regulation by BSL

phosphatases in separate compartments (YDAMKKK

activation at plasma membrane, MPK6 deactivation in

the nucleus) was shown to control stomatal fate [72].

Furthermore, plant receptor complexes are recruited

to distinctive microdomains that could compartmenta-

lize signals near the plasma membrane [73]. This

resembles phase separation of human T cell receptor

signaling which clusters molecules together upon acti-

vation and protects downstream kinases from phos-

phatase activities [74].
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development, embryo development, and defense response. Differential expressions of the MAPK substrates, the WRKY transcription fac-

tors, may explain some of these specificities. However, as WRKY2 is expressed in both embryo and pollen, other mechanisms may contri-

bute to these different outputs.
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Combinatorial signaling

Combinatorial signaling occurs when the concomitant

action of two or more independent signals are required

to evoke a particular output, which effectively acts as a

“molecular AND gate” [26] (Fig. 5A). Even if the two

pathways activate a shared component, the co-signaling

with a unique component branching from one of the

pathways would enhance specificity with such combina-

torial signaling. Mammalian ERKMAPK is a shared

component central to signaling pathways that determine

cell migration, division, and survival. To evoke the spe-

cific output of epithelial cell survival, ERK requires the

combined inputs from growth factor signaling and cell

adhesion [75]. The epidermal growth factor (EGF)

ligands bind to its cell surface receptor to initiate intra-

cellular RafMKKK-MEKMKK-ERKMAPK cascade, while

the cell adhesion elicits regulators that could modulate

cascade activation and nuclear translocation of ERK

[75,76].

In Arabidopsis, the induction of the defensin gene

PDF1.2 requires simultaneous activation of jasmonic

acid (JA) and ethylene (ET) pathways [77,78]. JA plays

an important role in wounding response and defense

against herbivory, while ET is a stress hormone highly

responsive to various biotic/abiotic stimuli [79,80].

PDF1.2 expression thus serves as the “AND gate” that

integrates two separate inputs from JA and ET: lacking

either pathway would abolish the output (Fig. 5B).

PDF1.2 defensin contributes to broad spectrum disease

resistance and can be activated by fungal pathogen but

not by wounding alone [81]. The shared component

MPK6 is activated by both JA and ET signaling [78,82],

whereas the pathway-specific component MPK4 is

required for ET-induced PDF1.2 activation but is not

activated by JA [78,83]; and these two branches con-

verge for PDF1.2 induction (Fig. 5B).

It was recently reported that JA signaling activates

MKK3-MPK1/2/7 with slow kinetics, which is indepen-

dent from the rapid activation of MKK4/5-MPK3/6

after wounding [84]. These findings contradict the

MKK3-MPK6 module activated by JA [78], we there-

fore add an additional branch of MPK1/2/7 under JA

without eliminating MPK6 (Fig. 5B). This branch is

important for JA-induced defense against herbivory, as

mkk3 mutant shows enhanced susceptibility to a lepi-

dopteran herbivore [84]. MPK4 is not required for all

ET outputs, as upon treatment of ET precursor ACC,

mpk4 still exhibits the “triple response” in dark-grown

seedlings [83] typical of ET response [85,86]. EIN3, a

key transcription factor regulating ET-induced genes, is

indispensable for the triple response, and its stability

controls ET outputs. EIN3 is phosphorylated by

MPK6, which lead to increased stability [87,88]. This

model shows how combining the inputs from MPK4

and MPK6 downstream of ET and JA respectively pro-

vide specificity for a range of pathway outputs.

Cross-pathway inhibition

When a downstream component of pathway A inhibits

a downstream component of pathway B, it could

diverge pathway outputs even with shared compo-

nents: Input A only produces output A, as it prevents

output B; and input B activates output B only when

input A is absent (Fig. 6A). An example of this is the

cross-pathway inhibition between the mating pathway

JA ET

AND
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Disease
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Fig. 5. Combinatorial signaling. (A) When an output is specified by the combination of two independent signaling pathways, and activation

of only one cannot lead to the output, such “AND” gate mechanism is called combinatorial signaling. (B) In Arabidopsis, ET (ethylene) and

JA (Jasmonic acid) pathways demonstrate how combining signals from MPK4 and MPK6 may provide output specificity. Different

combinations of common and unique MAPKs activated by ET and JA could contribute to both common and pathway-specific outputs.
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(Fus3MAPK) versus the invasive growth pathway

(Kss1MAPK) in yeast. Though the mating pheromone

could activate both Fus3 and Kss1, the mating specific

Fus3 prevents Kss1 from activating Tec1 (a transcrip-

tion regulator for invasive growth) by suppressing

Kss1 activity [89] and by phosphorylating Tec1 to pro-

mote its degradation [90,91] (Fig. 6B). Mutual insula-

tion requires additional mechanisms (such as

scaffolding) to help prevent invasive growth signaling

from leaking into the mating pathway [16].

Bilateral inhibition of two pathways could improve

mutual insulation. In Arabidopsis, downstream of ET

signaling, MKK9-MPK6 activates ERF1 [82], a tran-

scription factor that promotes defense-related genes

such as PDF1.2 and inhibits wounding responsive

genes such as VSP2 [92,93]. Conversely, JA signaling

activates MYC2, which promotes wounding responsive

genes (e.g., VSP2) and inhibits defense-related genes

(e.g., PDF1.2) [78,92]. This mutual inhibition improves

ET/JA pathway insulation: with ET signaling via

ERF1 upregulates defense-related genes and JA

induced-MYC2 activates wounding responsive genes

(Fig. 6C). But JA pathway also includes a feedback

regulation with MPK6 suppressing MYC2 transcrip-

tion [78]. In effect, although MPK6 is involved in both

JA and ET signaling pathways, it plays a positive

role for ET related-defense gene activation but inhibits

wounding responses via suppressing MYC2 (Fig. 6C).

Mutual inhibition between MPK4 and MEKK2 leads

to feedback loops [94,95]. Disruption of MEKK1-

MKK1/2-MPK4 releases the negative regulation

on MEKK2, and activation of MEKK2 leads to

SUMM2-mediated immune response [96,97]. This

immune response further induces MEKK2 expression,

which suppresses MPK4 activity thus further amplify-

ing SUMM2 signaling [95].

Fine-tuning

Signaling networks often employ more than one insu-

lating mechanism to improve specificity. Fine-tuning

of signaling activity at different levels could also con-

tribute to specificity: modulation of the amplitude and/

or duration of cascade inputs, regulation of activation

and deactivation kinetics, positive and negative feed-

back loops.

Input modulation occurs at multiple levels such as

ligand processing/diffusion and receptor complex

assembly/stability. Recent findings show that mechani-

cal signals modulate input intensity via regulating

receptor expression in both plants and animals. Plant

tissue damage increases pathogen-pattern recognition

receptor FLS2 expression to enable perception of

damage-inducing invaders [98], while soft media

reduces EGF receptor expression and ligand binding

dynamics in mammary epithelial cells [99].

Sustained versus transient signals of ERKMAPK are

sufficient to dictate the outcomes of differentiation ver-

sus proliferation in mammalian PC12 cells [100]. S€ozen

et al. [84] suggested that differential transcriptional

regulation of the MKKK genes in Arabidopsis could

confer signaling specificity. The authors showed that

Cross-pathway inhibition (B)

Output A Output B

Target A Target B

Input A Input B

(A)

Kss1
Ste7
Ste11

Mating 
Pheromone

Fus3

Ste11
Ste7

Ste5

Ste12 Tec1

Mating Filamentation

C

MPK6

Wounding
response

Disease
resistance

JA ET

VSP2 PDF1.2 

MYC2 ERF1

Fig. 6. Cross-pathway inhibition. (A) Cross-pathway inhibition can improve output specificity even when two pathways share signaling com-

ponents. The target of pathway A inhibits the target of pathway B. So, input A could prevent the activation of output B, ensuring a more

specific output for pathway A. (B) In yeast, the mating specific Fus3MAPK enhances mating output by suppressing Kss1MAPK and the

Kss1MAPK target Tec1, which is required for filamentation. This improves output specificity even when Fus3MAPK and Kss1MAPK are both acti-

vated by Ste11MKKK and Ste7MKK. (C) Bilateral inhibition of JA and ET pathways in Arabidopsis is shown by the opposing regulation of

MYC2 and ERF1 on wounding and defense genes. Though MYC2 is mainly activated by JA signaling, MPK6 downstream of JA also sup-

presses MYC2 transcription.
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wounding and JA transcriptionally activates the fast-

responding MKKK14 (15–30 min), whereas

MKKK17, 18, 19, 20 are induced by wounding much

later (1–2 h) and to a lesser extent. Though the exact

output difference is unclear (as they share MKKs-

MAPKs), the different MKKK induction patterns

may exert strong and transient versus weak and sus-

tained signals to fine-tune outputs [84].

Activation versus deactivation rates of kinases con-

trol signal amplitude and duration. Many of the insu-

lating mechanisms described here are conditioned by

these rates. For example, compartmentalization can be

further tuned by differential activation/deactivation

rates in distinct compartments. ERK1/2MAPKs are

deactivated faster in the nucleus than the cytoplasm,

thus requiring continuous shuttling of activated pro-

teins into the nucleus. Indeed, the slower nuclear traf-

ficking of ERK1 compared to ERK2 reduces its

capacity to produce signaling output [52]. MAPK

deactivation occurs rapidly and efficiently via depho-

sphorylation by phosphatases [40]. MAPK transcrip-

tion and protein turnover must also contribute to their

activation/deactivation kinetics, yet examples are

scarce. Interestingly, MAPK phosphatases are often

regulated by the MAPKs they dephosphorylate, form-

ing a feedback mechanism [40].

Positive and negative feedback mechanisms are com-

mon in MAPK cascades to amplify or tightly control

outputs. For example, the yeast scaffold Ste5 contains

binding domains for both activation and downregula-

tion of the target Fus3MAPK [38], and activated Fus3

in turn phosphorylates Ste5 to negatively regulate sig-

naling outputs in a feedback loop [101]. These data

show that scaffolds could precisely tune the quantita-

tive outputs of a pathway. In Arabidopsis, JA exerts

both positive and negative regulation to fine-tune the

expression and activity of MYC2 (Fig. 6C) [78,93,102],

possibly because it is central to JA’s crosstalk with

other hormonal pathways. An example of a positive

feedback loop includes the MKKK3/5-MKK4/5-

MPK3/6 cascade activated by bacterial flagellin pep-

tide flg22: the activated MPK6 phosphorylates

MKKK5 to further enhance the cascade signal [103].

The positive feedback loop formed between BASL and

MPK3/6 in concert with the scaffolding activity of

BASL establishes polarity in the cell cortex [48].

Future perspectives for plant MAPK
signaling

Plant MAPK cascade signaling shows more complexity

compared to yeast and mammals, likely as an adapta-

tion to the enormous expansion at receptor/ligand

input level. The animal/yeast models appear more

clearcut due to two reasons: (a) less crosstalk, (b) dis-

tinct/unambiguous readouts for outputs. In plants,

many crosstalks are perhaps desirable. This is evident

by the well-known extensive interconnections among

plant hormonal pathways [79] and large transcriptomic

overlaps observed in both biotic and abiotic stress

responses [104–106]. Reusing similar cellular signaling

modules in multiple scenarios may be an efficient way

to adapt to the fast-changing environment.

The frequent crosstalks raise the challenge to distin-

guish common from unique outputs when assessing

pathway specificity. Current readouts for pathway out-

puts in the plant field rely heavily on fast and highly

responsive gene/protein markers and sometimes

include signatures that are common among multiple

pathways (e.g., ROS production, activation of MAPKs

etc). It is often not known (not tested) if a particular

pathway’s marker could be as responsive if not more

responsive to other inputs. Given the nature of com-

plex signaling crosstalk in plants, many of these path-

way markers are likely to respond to inputs other than

the authentic ones. Furthermore, output assessments

using collective functional traits (e.g., “triple response”

in ET signaling [85], resistance/susceptibility to patho-

gens in defense signaling) may also need re-evaluation,

because these functional readouts might not represent

the pure outcome of a specific input, but rather a com-

bination of several associated pathways. This is espe-

cially true if the input is a phytohormone. The lack of

cellular resolution additionally confounds the issue, as

the “outputs” could be altered or simply coming from

another pathway in a cell type different from the

inputs. Recent advancement in methods such as single-

cell RNAseq could help improve this for the future.

Functional studies in plants need to compare pathways

in cell-type-specific manner and to isolate common

from specific readouts. We believe that the establish-

ment of unambiguous, single cell readouts is a crucial

step toward understanding pathway crosstalk and spe-

cificity. For example, upon activation, a cell-type-

specific transcription factor that is sufficient to mimic

input stimulation of a pathway represents a clear

readout.

Studying MAPK cascade signaling in plants has relied

on functional analysis, typically gain or loss of function

analyses. Given these multifunctional kinases often have

discrete functions in different cell types, the major limita-

tion is that constitutive global perturbation of these

widely expressed, multifunctional proteins often lead to

pleiotropic phenotypes (e.g., yda mutant), which can mis-

lead functional interpretation. Furthermore, some mem-

bers of MAPK cascade signaling are known to be
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guarded by the plant immune system, and thus perturba-

tion of their function (e.g., mpk4, mkk1/mkk2, mekk1

mutants) leads to autoimmune phenotypes (dwarfism or

lethality) that mask their function in other processes

[94,107,108]. Tissue-specific manipulation of MAPK cas-

cades signaling elements will help dissect their complex

roles. For example, utilizing the constitutively active

MKKs in stomatal cell lineages has helped the spatial–
temporal dissection of cascade function during stomatal

development [70,71,109]. With the emerging tool of

tissue-specific inducible CRISPR, it should be possible to

obtain functional knock outs of MAPK cascade elements

with cellular precision [110].

Furthermore, genetic redundancy observed for many

MAPK cascades calls for a thorough investigation of

all the members. For example, loss of function muta-

tions of all MKK1/2/3/7/9 are required for a defective

phenotype in stigma receptivity [111]. The puzzling re-

occurrence of the same MAPKs (e.g., MPK3 and 6)

downstream of many pathways while contributing dif-

ferent outputs may indicate extensive combinatorial

signaling within the network. As many independent

routes (MKKK-MKK-MAPK) can activate both the

same MAPKs but also other distinct MAPKs, MPK3

and 6 in combination with different MAPKs could

produce an array of different outputs. In addition, dif-

ferent routes may impose subtle differences such as in

interacting partners, subcellular localization, and enzy-

matic activity to finetune the outputs. The involvement

of the “other MAPKs” are often not known because

of the total number of MAPKs and limitations in our

current experimental systems to detect all their activ-

ities. Different rates of MAPK activation also contri-

bute to this bias, as clade A MPK3 and 6 are fast

responding compared to the slow responding clade C

MPKs (1/2/7/14) that are less studied [84]. Live track-

ing of MAPK activity using FRET sensors [112] and

development of single cell proteomics [113] may help

us study specificity with a fuller network in mind.

Plant networks often employ more than one insulating

mechanism assisted by various fine-tuning regulations.

This in turn creates many interlocking connections and

nonlinear relationships that are difficult to understand

intuitively. Mathematical modeling helps to simplify and

better dissect such complex systems, as has been successful

for Ca2+ wave decoding in plant communication with

symbionts during root nodulation [114,115], and to pro-

vide network prediction in complex developmental pro-

grams such as flowering decision and the spatial

establishment of the shoot apical meristem [116–118]. The
specificity models [26] reviewed here are general mechan-

isms that could theoretically apply to all other shared sig-

naling elements such as Ca2+, ROS, and CDPKs, thus

having broad implications on signaling specificity in

plants. Modeling will become more powerful with the

development of unambiguous pathway readouts with cel-

lular precision. Together with tools to investigate the net-

work on a global scale, we can make big steps in our

understanding of plant signaling specificity.

Glossary

ACC: 1-Aminocyclopropane-1-Carboxylic acid is

an ethylene precursor.

AGB1: The G-Protein b subunit (AGB1) belongs

to the heterotrimeric G proteins complex in Arabi-

dopsis, which comprise one Ga (GPA1), one Gb
(AGB1), and three Gc subunits (AGG1, AGG2

and AGG3).

ANPs: Arabidopsis Nucleus and Phragmoplast

localized protein kinases (including ANP1,2,3)

belong to the MKKK family.

At + Gene name: Genes or proteins from Arabi-

dopsis thaliana (At).

BASL: Breaking of Asymmetry in the Stomatal Line-

age (BASL) is a polarity protein leading to the asym-

metric division during stomatal formation.

BSL phosphatases: The BSU1 (bri1 suppressor 1)-

Like (BSL) phosphatase family play key roles in

stomatal development. Three BSL phosphatases

(BSL1, BSL2, BLS3) directly interact with BASL

to enable asymmetric cell division. At the plasma

membrane, all four members of BSL contribute to

positive regulation of YDA to promote stomatal

differentiation, whereas in the nucleus, BSL2,

BSL3 and BSU1 impose negative regulation on

MPK6 that suppresses stomatal cell fate.

CDPKs: Calcium-Dependent Protein Kinases play

important roles including growth, development,

stress responses and hormonal signalling in plants.

Crosstalk: Originally defined as unwanted signals in a

communication channel caused by leakage from

another circuit. In this review, it refers to the interfer-

ences between the pathways (signalling of one path-

way can activate or suppress the signalling of

another), it can be either desirable or undesirable.

ERF1: Ethylene response factor 1 is a bZIP tran-

scription factor. Its promoter is targeted by the

EIN3 (Ethylene insensitive 3) transcription factor.

FAMA stage: Three sequential stages of stomatal dif-

ferentiation are defined by three different bHLH tran-

scription factors: the SPCH stage initiates the

transition of a cell to start division and stomatal line-

age, the MUTE stage specifies guard mother cell,
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which will give rise to the guard cells, and the FAMA

stage starts the final differentiation of the guard cells

[119].

Fus3: Cell Fusion 3 is a yeast MAPK involved in

mating decision. It is only activated during the mat-

ing pathway and remains inactive in other situa-

tions.

GPT1: Gluocose-6-Phosphate Translocator 1 is a

gene important for lipid body accumulation during

pollen development.

Heterotrimeric G proteins: Transmit diverse extra-

cellular cues by coupling with the plasma

membrane-localized receptors and different signal-

ling proteins inside the cells. It consists of three

subunits: Ga, Gb and Gc.
KSR1: Kinase Suppressor of Ras-1 is a mamma-

lian scaffold protein. The Ras protein family

belongs to the small GTPases.

Kss1: Kinase suppressor of Sst2 mutations-1 is a

yeast MAPK homologous to Fus3. It regulates

filamentation and invasive growth.

Mammalian MAPK families (see also Fig 2B):

ERK1/2 (Extracellular-signal Regulated Kinase)

pathways, also known as Ras-RafMKKK-MEKMKK-

ERKMAPK, are involved in cell division and prolif-

eration; p38 MAPKs, including p38a, p38b, p38c
and p38d, are involved cell differentiation and apop-

tosis in response to stress stimuli; JNK (c-Jun N-

terminal kinase) including JNK1/2/3, are also

involved in stress responses, T cell differentiation

and inflammation; ERK5 is specifically activated by

MEK5MKK, and is involved in endothelial cell func-

tion.

MAPK (or MPK): Mitogen-Activated Protein

Kinase. MPK is used when a specific MPK in

plants is mentioned.

MAPK cascade: Commonly refers to the sequen-

tial phosphorylating cascades of MKKK-MKK-

MAPK. This review does not mention MAP4Ks

that act upstream of MKKKs. For easy recogni-

tion of cascade elements with noncanonical names,

superscripts of MAPK, MKK or MKKK are

used.

MKK (or MAPKK, MAP2K, MEK): Mitogen-

activated protein Kinase Kinase.

MKKK (or MAPKKK, MAP3K, MEKK):

Mitogen-activated protein Kinase Kinase Kinase.

MYC2: A bHLH transcription factor that acts as

a master regulator of JA signalled plant immune

responses.

PDF1.2: Plant Defensin 1.2 contributes to broad

spectrum disease resistance and is ET and JA

responsive.

RACK1: Receptor for Activated C-Kinase 1 is a

member of the WD40 repeat family of b-propeller

proteins. It was discovered through its ability to

function as a scaffold protein, stabilizing signalling

complexes involving protein kinase C.

RLK/Pelle: The plant Receptor Like Kinase with

its kinase domain sharing homology to a cytoplas-

mic protein kinase (Pelle) that establishes dorsoven-

tral polarity in Drosophila embryos. Pelle genes are

also involved in immune response. Due to kinase

homology, RLK/Pelle is also sometimes called

IRAK (interleukin-1 receptor-associated kinase)

which plays a central role in inflammatory

responses in mammalian immune cells.

ROS production: Reactive Oxygen Species is a nor-

mal product of plant cellular metabolism and

increased production is triggered by various envir-

onmental stresses.

SCRM: SCREAM is a basic helix-loop-helix

(bHLH) transcription factor important for stoma-

tal development. SCRM functions as a scaffold to

bring MPK3/6 in proximity with SPEECHLESS

(SPCH), thereby allowing SPCH phosphorylation

and downregulation to inhibit stomatal cell fate.

Ste5: Sterility 5 is a yeast MAPK scaffold protein.

It is recruited to the membrane upon induction of

mating by appropriate mating pheromones.

SUMM2: A nucleotide-binding leucine-rich repeat

(NLR) protein that guards the MKKK1-MKK1/

2-MPK4 cascade, which triggers cell death when

the cascade activity is disrupted.

Triple response: Typical ethylene response pheno-

types observed in dark grown seedlings: shortening

and thickening of hypocotyls and roots and exag-

gerated apical hook curvature.

VIP1: VirE2-interacting protein 1 is a bZIP tran-

scription factor.

YDA: YODA is a MKKK that functions for sto-

matal development, embryo development and

immune responses.

ZAR1: Zygotic arrest 1 is a leucine-rich repeat

receptor-like kinase that controls zygote elonga-

tion and asymmetric division via the ZAR1-YDA-

MKK4/5-MPK3/6 cascade.
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