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Preface

An effective pricing process is an essential component of any insurance company base strat-
egy and is an ongoing discussion issue. Actuaries are expected to determine the correct
price for a product for which the costs are uncertain and various matters beside the ex-
pected loss, like competition and profit optimization, need to be addressed and take into
consideration. Questions like “how the insurer can fix his premium in order to maximize his
expected profits?”, “how the insurer can incorporate competition into premium decision?”,
“how does the premium affects the demand of the policyholders?” are being investigated.
This thesis attends to the above questions and suggests some results on the optimization
of premium calculation and demand. It is based on three papers that have been accepted
or submitted for publication during my PhD studies.

Chapter 1 gives a survey on classical pricing methods as well as price optimization, game
theory basic concepts and its’ applications in insurance. Chapter 2 presents an extension
to a game-theoretic pricing model under competition for non-life insurance companies pre-
sented in Dutang et al. (2013). In this paper, we define an asymmetric information game
where not all the insurers have full information about their competitors and we examine the
effects on the equilibrium premium. The results support the intuitive one may have on the
effects of uncertainty on the equilibrium premiums. Chapter 3 examines the effect of dif-
ferent factors such as price, group affiliation and service level on the annual changes of the
insurers’ market shares. Through a linear model with two-sided lognormally distributed er-
rors and using a published data, we test several hypotheses concerning the main motives for
these changes in market shares. The results suggest that the premium related variables are
significant in explaining annual market share changes. In Chapter 4, we develop a demand
function for the mandatory health insurance in Switzerland based on the findings of Chap-
ter 3. We adapt the operation profit as the objective function of the insurer as presented in
Dutang et al. (2013), and develop a pricing model to optimize premiums. Unlike Dutang
et al. (2013), the new model is constructed such that the initial market share becomes
a relevant factor for the equilibrium premiums. We compare the results with the equilib-
rium premiums calculated with the model presented in Dutang et al. (2013), and we assess
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the effect of the initial market share on the equilibrium premiums through sensitivity tests.
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Chapter 1

Introduction

The appropriate pricing of an insurance contract is essential for the existence of insurance
and the premium level is a strategic decision that reflects on the objectives of the insurance
company. Before introducing a new insurance product, the insurance company often deals
with questions like: “can we set a competitive price for the product?” and “would it be
possible to find a reinsurance cover for the new product?”. For non-life insurance products,
actuaries mainly use traditional cost-based approaches to determine the technical premium
including loss models, Generalized Linear Models (GLM) and credibility theory (see e.g.
Herzog (1994), Mikosch (2006) and Ohlsson (2010)). The technical premium calculation
accumulates loadings on the expected loss, to compensate for the uncertainty related to
the data and the model. Moreover, other costs such as sales commissions, legal expenses
and administrative cost are taken in consideration. In many cases, the insurer will buy a
reinsurance cover as a protection against extreme claim events, and the related fees are
included in the premium calculation, as well. Reinsurance also allows the insurer to reduce
the reserves, to diversify his portfolio and to underwrite larger risks.

Once the technical premium has been determined, the insurer can perform a price opti-
mization in order to meet with his base directives, be it profit maximizing, market share
increase or minimizing the required reserve level. Although the practice of price optimiza-
tion is common in many industries to determine the price of a product, its implementation
in the insurance market has induced deep concerns among all stake-holders, i.e., regulators,
consumers and insurers. The main concern is the fear that such an optimization will lead
to discrimination of certain customers (CAS (2015)).

Introducing competition into insurance pricing means that the offered price is not only
reflecting the insurer’s own costs and profit objectives, but is relative to what is offered by
the competitors. A web-user customer can easily compare insurance products, their prices,
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and their fit to his needs, using search and compare applications easily found on-line. As
a result, insurance companies need to offer increasingly competitive premiums, while the
claim amounts and other related costs keep increasing (Valkenburg & Bosschaart (2018)).
Dutang et al. (2013) suggest a one-period pricing model that incorporates the competition
in premium calculations based on non-cooperative game-theory concepts.

In this chapter, we present the theoretical foundations of non-life insurance pricing, as
well as the price optimization classical model. We then describe general concepts of game
theory and some insurance pricing models based on cooperative and non-cooperative game
theory concepts. Finally, we detail the contribution of this thesis.

1.1. Theoretical foundations of insurance pricing

Various techniques and methods are developed and used to price different insurance prod-
ucts, see for instance Herzog (1994), Kaas et al. (2001), Mikosch (2006) and Parodi (2014),
on which some of the following considerations are based. The pricing process starts with
estimating the risk that the insurer underwrites, offering compensation to the policyholder
for faced damages. Exposure unit is the size of the potential loss from insuring the risk and
ratemaking is the assessment of the proper unit rate to charge for that insurance coverage.
The assessment of the potential loss in the pricing process is named will costing. Contrary
to the pricing of other products for which the actual cost is known, in case of an insurance
product the real loss of underwriting the insurance is unknown until the contract period
has expired, so building a loss model is essential for pricing. Two models are mainly applied
by actuaries to estimate the aggregate expected loss:

1. The individual risk model estimates the aggregate loss as the sum of losses from
all the individual policies issued by the insurer, i.e

S =
n∑
i=1

Xi,

where S is the aggregate loss, n is the number of policies and Xi is the cost arising
from policy i. Note that Xi equals zero for policies without claims. The individual
risk model is typically based on the assumptions that there are a finite number of
risks n, that only one claim is possible for each risk i and that loss events as well as
their severities are independent. These assumptions make the individual risk model
suitable for various applications in life insurance.

2. The collective risk model is estimating the aggregate loss as the sum of all claims
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arising from a risk during one period of time, usually one year, such that,

S =
N∑
j=1

Yj

where S is the aggregate loss, N is a random variable (r.v.) denoting the number
of claims during the period and (Yj)j≥1 are positive i.i.d random variables denoting
the amount of the jth claim with generic r.v. Y . We assume that the r.v. N

is independent of (Yj)j≥1. The expected loss E(S) is then equal to the expected
number of claims E(N) times the expected claim size E(Y ), i.e.

E(S) = E(N)E(Y )

and the variance of the aggregate loss then easily follows as

V ar(S) = V ar(Y )E(N) + E(Y )2V ar(N).

The collective risk model is popular in non-life insurance.

In cases where a large amount of reliable data is available, and in order to better measure the
individual risk of a policyholder, the insurance company assigns a personal rate according
to individual characteristics like age, profession, education and residential area rather than
in a one-size-fits-all approach. Once the risk profile is determined, the insurer uses rating
factors that are measurable proxies of the risk factors to fix the premium. The most popular
technique to select rating factors is the Generalized Linear Models, see e.g. de Jong & Heller
(2008), although in recent years advanced techniques, like neural networks are being used
as well (Spedicato et al. (2018)).

1.1.1. Loading and methods to calculate the technical premium

The pure premium is the amount equal to the insurer’s expected loss under the risk, and
risk costing is an essential part of insurance pricing. Nevertheless, other factors need to
be included in the calculation of the premium charged from the insureds. The technical
premium is defined as the amount that will cover costs and expenses and achieve the
profit target without taking into account commercial considerations on competition and
marketing. Anderson et al. (1994) summarize the five approaches to calculate the technical
premium described by The General Insurance Rating Issues Working Party (GRIP):

• Tariff, where a rating agency like the regulator decides the rates or approves them.
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• Qualitative, when data is insufficient so that statistical estimation needs to be
combined with a subjective analysis.

• Cost plus is the most popular method for cases where there is enough information.
Cost plus is based on data analysis for a quantitative assessment plus loadings.

• Distribution is used mainly in personal line insurance. In this method, the esti-
mated demand is combined in the insurer’s objective function in order to obtain a
price optimization.

• Industrial is used by big insurers and aims to optimize the operational efficiency and
enjoy the scale with the industrialisation of the pricing process over several classes
of business.

The most popular method to estimate the technical premium is the cost plus and according
to this approach, the technical premium is a compound of five elements:

1. The expected loss, which is the mean of the aggregate loss distribution.

2. Loading for uncertainty: to compensate for the uncertainty arising from poor or
limited data and model uncertainty. The sum of the expected loss and the loading
is considered as the risk premium .

3. Other costs like commissions to agents and claim expenses. The claim expenses
might include allocated loss expenses for cases where these fees are not included in
the claim amount (e.g. lawyer fees and claim management fees) and unallocated loss
adjustment expenses like administration, accounting and IT.

4. Investment income that represents the return on investment the insurer earns between
the premium payment and claim payment. As the premium is usually paid at the
beginning of the insurance period while claim payments occur later in time, the
insurer can invest the money under some investment restrictions imposed by the
regulation authorities.

5. Profit is the return on capital that the shareholders expect to have on their capital
investment. The insurance company is obliged to hold a certain level of reserves to
limit its ruin probability. The capital raised from the shareholders of the insurance
company comes with a cost, the Cost of Capital (CoC). Insurers add the CoC to the
insurance pricing in order to ensure that the shareholders receive the expected return
on their capital investment.
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1.1.2. Principles of premium calculation

The pure risk premium is insufficient as in the long run ruin is unavoidable even in the
case of considerable (though finite) initial reserves. Actuaries use various principles as risk
measures to calculate premiums and add a loading on the pure premium to compensate
the uncertainty risk and avoid ruin with high probability. In the following section, we
denote the premium calculated for risk X by ΠX . Among discussed desirable properties
for premium calculation principles are:

• Non-negative loading to ensure that the premium will not be less than the expected
claims, ΠX ≥ E(X),

• Additivity requires that, for independent risks, the combined premium to insure the
risks will be equal to the sum of premiums to insure the risks individually, ΠX1+X2 =

ΠX1 + ΠX2 . For Subadditivity property, ΠX1+X2 ≤ ΠX1 + ΠX2 .

• Scale invariance: If Z = aX is a scaled version of a risk X with scaling factor a > 0,

the premium for Z should be, ΠZ = aΠX . This property is also known by positive
homogeneity.

• Translation invariance: For Z = X + b, where b is a real constant, ΠZ = ΠX + b

• Monotonicity: For two risks, X1 and X2, if FX1(x) ≤ FX2(x), the premium for risk
X1 should be greater or equal to the premium for risk X2, ΠX1 ≥ ΠX2 , for all x.

• No ripoff requires that the premium should be smaller or equal to the maximum
possible claim amount Xmax such that ΠX ≤ Xmax.

Various principles are suggested for premium calculations (see e.g Gerber (1974), Kaas
et al. (2001), Dickson (2005) and Albrecher et al. (2017) for surveys). Each of the princi-
ples fulfils part or all the properties and in general, the insurer decides which properties
are more relevant for each risk and uses the appropriate one to calculate the premiums.
The most popular principles include:

The pure premium principle is defined as ΠX = E(X).

The expected value principle where

ΠX = (1 + Θ)E(X),

for some Θ > 0. This is a popular and simple way to add a risk loading. However, it
assigns the same loading for every risk with equal expected loss without accounting for the



Chapter 1. Introduction 6

volatility of the risk X. It is preferred in cases where the insurer has a limited reliable
information to estimate higher moments of the risk.

The variance principle

ΠX = E(X) + αvV ar(X)

and the standard deviation principle

ΠX = E(X) + αs
√
V ar(X)

account for the volatility where αv > 0 and αc > 0 are chosen constants. The two principles
differ in their properties and they are widely used, depending on the context.

The zero utility principle is based on the idea of equating the expected utility of the
insurer with and without accepting the risk X. For a utility function u, one gets

E(u(W )) = E(u(W + ΠX −X)),

where W is the initial surplus of the insurer which itself can be random or deterministic.
The utility function is usually non-decreasing and concave, meaning that a larger risk is
compensated by a higher premium and it reflects the risk aversion of the insurer.
In case the insurer has an exponential utility function u(x) = −e−βx and the initial capital
is deterministic, one can determine the premium to be

ΠX = β−1 logE[exp(βX)],

which does not depend on the capital level of the insurer. Here β > 0 denotes the risk
aversion coefficient.

The Esscher principle is defined as

ΠX =
E[XehX ]

E[ehX ]

for some chosen h > 0. The Esscher transform can be viewed as the pure premium for
a risk X̃ with density g which is an expected weighted version of the density f of the
original risk X. This transform means that the pure premium of the scaled risk X̃ includes
a loading on the pure premium of the original risk X.
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The risk adjusted premium principle scales the risk X such that the expected value
of the scaled risk X̃, is higher than the original risk as in the Esscher principle. Using
proportional hazards (PH) transform, it is defined as,

ΠX =

∫ ∞
0

[Pr(X > x)]1/ρdx =

∫ ∞
0

[1− F (x)]1/ρdx,

where ρ is called the (risk-averse) index. In contrast to the Esscher principle, it is also
applicable for heavy-tailed risks. Since it is additive when a risk is split into layers, one
can use it for insurance layer pricing and determine an optimal reinsurance plan. The
concavity of g ensures the coherence of this principle.

A more general form of this principle is the distortion principle, where g is a concave,
non-decreasing function with g(0) = 0 and g(1) = 1. The distortion principle is deter-
mined by

ΠX =

∫ ∞
0

g(1− FX(y))dy,

where g(1−F (x)) is a risk-adjusted survival function such that it assigns higher probabil-
ities than the observed ones to larger values of loss. Wang (2000) suggested a distortion
operator, known as the Wang transform, i.e.,

g(u)α = Φ(Φ−1(u) + α),

where α is the market price of risk. The gα is concave for positive α and convex for nega-
tive α. The corresponding risk-adjusted premium excluding expenses is calculated as the
mean under the distorted probability function. The Wang transform can be applied to
any probability distribution of the risk. For instance, if risk X has a normal distribution
N(µ, σ2), the distorted risk X∗ is normally distributed with N(µ+ ασ, σ2).

The value at risk (V aR) and the expected shortfall (ES) are both risk measures that can in
fact be seen as distortion function measures. The V aRα is defined as the smallest number
l for which the probability that the loss L exceeds l, is smaller or equal to (1− α), i.e.

V aRα(L) = inf{l ∈ R : P (L > l) ≤ 1− α}.

The ESα is defined as the expected value of the loss given it is greater than the V aRα, i.e.

ESα =
1

1− α

∫ 1

α

V aRu(L)du.
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Note that for the same level of confidence α < 1, ESα > V aRα.

The distortion function defining the V aRα is

g(u) =

0 if 0 ≤ u ≤ 1− α,

1 if (1− α) < u ≤ 1.

The distortion function defining the ESα is

g(u) =

u / (1-α) if 0 ≤ u ≤ 1− α,

1 if (1− α) < u ≤ 1.

A risk measure is defined as a coherent risk measure when it satisfies the properties of
monotonicity, subadditivity, positive homogeneity, and translational invariance (Artzner
et al. (1999)). While the V aR does not fulfil the subadditivity property of a coherent risk
measure, the ES is coherent and satisfies all the four properties.

1.1.3. Credibility theory

The mentioned premium principles are all based on the past claim experience of the insurer
in order to calculate the expected loss E(X). If the insurer has insufficient data, credibility
theory combines the individual claims experience with the experience of other related
portfolios. The credibility premium (CPj) is defined as a weighted average of the client j’s
risk premium Xj and the collective risk premium X:

CPj = zjXj + (1− zj)X

where zj ∈ [0, 1] is the credibility factor. The credibility factor zj indicates the ’credibility’
level of the portfolio’s own claim history. A credibility factor close to one is usually selected
when the insurer has an extensive experience in the portfolio and this experience displays a
small level of variation. When this experience is large enough and the likelihood of having
a specific relative error in the individual mean loss is smaller than a certain threshold,
the insurer assigns a credibility factor of one, meaning full credibility. The other extreme
position, where zj = 0, means that the insurer fixes the same risk premium X to everyone.
This decision is reasonable when the portfolio is homogeneous and all the groups have the
same expected claim size. Otherwise, "good" risks will be overcharged and may leave,
while "bad" risks will be undercharged.
Different methods are suggested to manage credibility and the way to calculate the credi-
bility factor. Bühlmann (1967) developed one of the most popular respective models. See
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Bühlmann & Gisler (2005) for many extensions of the classical model.

Let us denote Xj,t as the loss of client j in year t where j = (1, 2, . . . , J) and t =

(1, 2, . . . , T ). The average loss of client j is determined by

Xj =
1

T

T∑
t=1

Xj,t,

and the average loss for the entire portfolio is

X =
1

JT

J∑
j=1

T∑
t=1

Xj,t.

We then set the following assumptions:

(i) For each risk j, there exists a parameter Θj related to the risk j that indicates the
random deviation of Xj,t from the overall mean loss m. The parameters Θj are i.i.d.

(ii) For each risk j and time t, there exists a parameter Θj,t related to the risk j at
time t, that indicates the random deviation of Xj,t from the average loss Xj. The
parameters Θj,t are i.i.d.

The loss Xj,t can then be divided such that

Xj,t = m+ Θj + Θj,t

with E(Θj) = E(Θj,t) = 0, V ar(Θj,t) = s2 and V ar(Θj) = a. The parameter a > 0 reflects
the heterogeneity level of the portfolio and s2 is a measure for the homogeneity within
group j.
The Bühlmann model determines the credibility factor by minimizing the mean-squared
error (MSE) of the best unbiased predictor of Xj,T+1. With the credibility premium equal
to zj ·Xj + (1− zj) ·X, the Bühlmann credibility factor for all the clients is defined by

z =
aT

aT + s2
.

This credibility factor has some asymptotic properties such that:

• If the portfolio is homogeneous such that the expected claim amounts of the entire
portfolio are i.i.d, the parameter a → 0 and then z → 0. In this case, X is optimal
to estimate the risk premium.
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• If the parameter a→∞, then z → 1. In this case, the claim experience of the other
risks in the portfolio does not give information about the risk j.

• If T → ∞, the insurer has an extensive experience with risk j and the credibility
factor is then z → 1.

• If s2 → ∞, the variability of the individual risk j is extremely high and the insurer
can not rely on the individual claim experience in calculating the risk premium. In
that case, z → 0.

In order to apply the model, one needs to estimate the parameters m, s2 and a with
unbiased estimators. For the overall mean m, the natural estimator is the sample average
m̂ = X. The parameter s2 can be estimated with the unbiased

ŝ2 =
1

J(T − 1)

J∑
j=1

T∑
t=1

(Xj,t −Xj)
2,

and for a, the unbiased estimator

â =
1

J − 1

J∑
j=1

(Xj − m̂)2 − ŝ2

T
.

Credibility theory is mainly applied in collective insurance contracts. Client j might repre-
sent, for example, a company that buys insurance for its employees. The Bühlmann-Straub
model is an extension that incorporates an additional parameter, Pj,t, to represent the vol-
ume of the risk of client j in year t. We define

Pj =
T∑
t=1

Pj,t and P =
J∑
j=1

Pj

as the total volume of risk for client j and the overall volume of risk, respectively. The
credibility factor for client j is

zj =
aPj

aPj + s2
.

The estimated credibility premium is set by

P̂j,T+1(zj
1

Pj

J∑
j=1

Xj,t + (1− zj)m),

where P̂j,T+1 is the estimated volume of risk for client j at time T + 1.
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The limited-fluctuation credibility approach is another method to calculate the credibility
premium. Let M denote the manual premium, a preconceived estimate of the predicted
loss that is determined by some past experience and underwriting expertise, µ as the mean
of the loss and D as the observed value of the loss based on the experience with a certain
risk group. The credibility premium is calculated with,

CP = zD + (1− z)M,

where z ∈ [0, 1] is the credibility factor. According to the limited-fluctuation credibility
approach, when the insurer has a required minimum of the experience data, it will be
given full credibility, meaning z = 1. The minimum required data for full credibility is
called the standard for full credibility. It can be computed for different loss measures such
as the claim frequency, the claim severity and the aggregate loss. For given values of k and
α, when the probability of observing the loss measure is within 100k% of the mean is at
least 1− α, full credibility is achieved and the insurer can set the credibility factor z = 1.
When the risk group is not sufficiently large, the standard for full credibility is cannot be
achieved, and the value of z < 1 needs to be determined. For a loss measure W with
mean µW , the basic assumption for calculating z, is that the probability of zW within the
interval [zµW − kµW , zµW + kµW ] is equal 1− α.
Other credibility models are used by actuaries. More details can be found in e.g., Kaas
et al. (2001) and Schmidli (2017).

1.1.4. Other considerations in pricing

Commercial considerations

The actual premium set by the insurer is a strategic decision and accounts for consider-
ations like regulatory constraints, competition and the relationship with other products
sold by the insurer. For example, according to the Swiss law, insurers who offer mandatory
health insurance cannot charge premiums above the level that covers their costs. These
insurers usually offer a complementary plan on which they can make a profit. When these
insurers determine the premium level for the mandatory plan, they might consider the
profits they can gain from the complementary plan.

Capital considerations

To ensure that the insurer is able to fulfil his commitments to the policyholders and to
remain solvent with high probability (usually 99.5%), the regulator imposes a minimum
level of capital on the insurer, the Solvency capital requirement (SCR). In general,
insurers hold higher levels of capital than the required regulatory one in order to protect
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themselves from insolvency, to attain a high rating from credit-rating agencies and to
attract investors and clients. The investors require a minimum return level that will be
considerably higher than the risk-free rate. Accordingly, the insurer incorporates the need
for a certain level of profitability towards an additional loading on the premium. The V aR
and the ES measures are being used to calculate solvency capital requirements (SCR)
according to regulations set by the law. The European Solvency II framework uses the
V aR with α = 0.995, and the Swiss Solvency Test (SST) defines the SCR as the ES with
α = 0.99. For typical risks, the SCR under the SST corresponds to approximately V aR at
level 99.6% to 99.8%, depending on the underlying distribution (see FOPI (2006)).

1.2. Price optimization

When the insurer has sufficient reliable data, he may consider a price optimization and
setting the premium at a level that will maximize the expected profits under certain con-
straints such as regulation price rules, market share change constraints and maximum
difference from competitors’ prices. The goal is to determine which contract to offer to
which client and at what price in order for a company to maximize its profit besides achiev-
ing other strategic objectives, like to increase its market share, to maintain a certain reserve
level and to avoid ruin. The following price optimization approach (see Parodi (2014)) is
simplified and gives a general idea of this concept. For an insurance product being sold
for the same premium P to all customers as is the case in the Swiss mandatory health
insurance, according to the basic price theory, the profit per unit π(P ) is a linear function
of the premium (see Figure 1.1a). The demand function, D(P ) is a decreasing function of
the premium, for instance like the one defined in Figure 1.1b and the total expected profit
(TEP ) is then determined by TEP (P ) = π(P ) ·D(P ). Usually, the TEP is maximized for
a price P ?, as illustrated in Figure 1.1c. Note that in this case, we assume a homogeneous
portfolio of policyholders with similar price elasticity parameter.
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Figure 1.1: Premium versus profit and demand
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Krikler et al. (2004) describe a price optimization process for a car insurance portfolio. They
used a price test method to estimate the price elasticity of policyholders and to calculate
the demand. The price optimization process in their study resulted in 10% growth in the
insurance profits.
Harshova et al. (2018) develop a model of price optimization for renewal policies. They
define the objective as maximization of the expected future premium income from renewal
policies. For a portfolio of N policies, where each policyholder i ∈ (1, . . . , N) pays a
current premium Pi and his corresponding percentage of premium increase is δi, the renewal
probability is defined by Ψi(Pi, δi). The premium volume in case of complete renewal is
then

V ? =
N∑
i=1

P ?
i =

N∑
i=1

Pi(1 + δi).

The random number of renewed policies NR can be calculated with

NR =
N∑
i=1

Ii,

where I1, . . . , IN are independent Bernoulli random variables with

P{Ii = 1} = Ψi(Pi, δi), 1 ≤ i ≤ N.

The premium volume at renewal is defined by

VR =
N∑
i=1

IiPi(1 + δi),

and the objective function by

E(VR) =
N∑
i=1

Pi(1 + δi)E(Ii) =
N∑
i=1

Pi(1 + δi)Ψi(Pi, δi).

As the P1 . . . PN are known, the optimization is done only with respect to δi’s. The model
includes two additional objectives:
(i) Minimization of the variance of the renewal premium volume

V ar(VR) =
N∑
i=1

(Pi(1 + δi))
2Ψi(Pi, δi)(1−Ψi(Pi, δi)).
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(ii) Maximization of the expected premium difference

τ =
N∑
i=1

PiδiΨi(Pi, δi).

The optimization is performed under a constraint on the minimum renewal rate and a min-
max constraint on the renewal premium P ?

i . Through some numerical examples, Harshova
et al. (2018) illustrate the complexity and the importance of the price optimization process.
The model ignores the effects of competition on the premium volume and assumes that
the competitors’ prices do not affect the renewal rate.
Other contributions on price optimization are mainly focused on some ethical issues like
price discrimination and the regulations on this practice, see e.g. CAS (2015) and Schwartz
& Harrington (2015).

Demand function

In general, the demand is a function of the price and is measured in quantity. However,
in insurance price optimization, the demand function reflects the tendency of a client
to purchase the insurance cover by the probability to select a specific contract from a
set of possible alternatives. Discrete choice models are linked with utility maximization
(McFadden (1973)) and set a framework to calculate the probability to select a particular
alternative as a function of observed factors that relate to the set of choices and to the
preferences of the decision maker. One of the models presented in McFadden (1973), is a
multinomial logit probability choice model. Assuming all decision makers have the same
preferences, the probability to choose alternative i from a set of I possible choices is

Pi =
eβiZ

1 +
I−1∑
j=1

eβjZ

,

where βi are a set of coefficients corresponding to alternative i and Z is a set of explanatory
variables.

Dutang et al. (2013) adapt the model to calculate the lapse probability, pkj , as the probabil-
ity of a policyholder to switch from insurer j to k. Given the price vector x = (x1, . . . , xI)

denoting the prices offered by each of I insurers in the market, they define pkj by the
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multinomial logit model

pj→k(x) = lgkj (x) =



1

1+

∑
j 6=l

efj(xj ,xl)
if j = k,

efj(xj,xl)

1+

∑
j 6=l

efj(xj ,xl)
if j 6= k,

where the summation is over the I insurers and fj is a price sensitivity function of insurer
j.
Let the random variable Nj(x) represent the number of policies issued by insurer j in the
next period. It equals the sum of the renewed policies and the new policyholders coming
from other insurers. The expected number of policies for insurer j is then given by

E (Nj(x)) = nj × lgjj (x) +
∑
j 6=l

nl × lglj(x) = nj × pj→j(x) +
∑
l 6=l

nl × pj→k(x).

The demand in the model, Dj(x), is an approximation to the expected market share
E (Nj(x))/n such that

Dj(x) =
nj
n

(1− βj(
xj

mj(x)
− 1)),

where βj is the price elasticity coefficient and

mj(x) =
1

I − 1

∑
j 6=l

xk

is the average price of the competitors.

In Daily-Amir et al. (2019), we develop a demand function in terms of market share based
on a linear function. They calibrate the price elasticity coefficients performing a linear
regression using a published dataset on the Swiss mandatory health insurance market. Let
MSj,t−1 be the initial market share of insurer j, βj > 0 the price elasticity coefficient,
mj(x) the average premium of the competitors, then the demand function is calculated by

Dj(x) = MSj,t−1 − βj · (
xj

mj(x)
− 1).

This demand function is a sum of the initial market share and the change resulting from
the relative difference between the insurer’s premium and the market premium. As βj > 0,
if insurer j sets a premium higher than the market premium, he will lose market share and
vice versa.
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1.3. Life insurance pricing concepts

Health and life insurance aims to cover the policyholder in case of illness, accident or death.
Different policies include a cover in case of partial or total, permanent or non-permanent
income loss, expenses related to hospitalization, medical care and surgery and a payment
(lump-sum or annuity) to the survivor of the insured person. There are various types of
life insurance policies, including:

• the pure endowment policy in which the insured person receives the payment of the
face amount in case he is alive at maturity,

• the endowment policy includes a payment in both cases when the insured is alive at
the end of the contract, or for premature death,

• the term insurance policy that grants the payment of the face amount in case of
death during the duration of the policy,

• a whole life cover that guaranties the payment of the face amount at death and lasts
until the death of the insured,

• the annuity (deferred or not-deferred), where the policyholder transfers a single pre-
mium to the insurer in the time of the inception of the policy, and receives periodical
payments for a fixed number of years or as long as he lives.

The pure premium (Px) calculation of the life insurance cover is based on the equivalence
principle such that at the time of inception, the present value of future premiums should
be equal to the present value of future benefits. Define:

• x as the age of the insured at inception of the policy,

• n as the policy duration,

• k as the duration of the premium payments,

• v as a financial discount factor,

• qx as the probability of death between age x and x+ 1,

• lx as the number of lives at age x,

• dx as the number of death between age x and x+ 1,

• [T ]x as the death benefits at age x,

• [L ]as the benefits in case of survival at maturity.
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One can determine the probability of surviving at least n years for a person age x by

npx = lx+n/lx, and the actuarial discount factor by nEx = vnnpx. The equivalence principle
implies

k−1∑
t=0

vtlx+tPx+t =
n−1∑
t=0

vt−1dx+t[T ]x + vnlx+n[L ].

For each type of contract, the actuary adapts the different components of the equivalence
equation and determines the pure premium.

Health insurance pricing combines methods from both the life and non-life insurance pricing
models. The life insurance aspects include, e.g., disability annuities and long term care
cover and survivor modelling. The non-life insurance methods are used in the estimation
of the claim frequency and claim severity.

1.4. Game theory and equilibrium concepts

Game theory deals with strategic relations between decision makers called players. Each
player has an objective function that represents his preferences among multiple choice
alternatives and the constraints related to this set of optional choices. Players are assumed
to take rational decisions and to optimize (maximize or minimize) their objective function.
A non-trivial situation is one where each of the objective functions depends on a set of the
players’ decisions and not only on one player’s action. A good overview of different games
can be found in Osborne & Rubinstein (2006), on which parts of this section are based.

1.4.1. History of game theory

The concept of game theory dates back to at least the book Cournot (1838), written by
the French mathematician A. Cournot. He presents a duopoly market competition, as
each competitor has to decide his production levels simultaneously, estimating the other
producer’s decision. The total production level affects the market price of the product.
The basic assumptions of the model include:

(i) there are at least two producers,

(ii) all producers have the same marginal costs and produce exactly the same product,

(iii) the producers do not cooperate and decide simultaneously on the production levels.

The book presents a conceptual solution that is a version of the Nash equilibrium (see
below). In 1883, J. Bertrand, another French mathematician, puts Cournot’s model in
doubt, claiming that it is not a real equilibrium, since "whatever the common price adopted,
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if one of the owners, alone, reduces his price, he will, ignoring any minor exceptions, attract
all of the buyers, and thus double his revenue if his rival lets him do so" (Bertrand (1883)).
The resulting Bertrand model is based on the assumptions that

(i) the clients will always choose the lowest price, and the firm that offers the lower price
will gain the entire market,

(ii) if more than one firm offers the lowest price, then the customers will randomly choose
one or the other,

(iii) the firms do not cooperate and they set their prices simultaneously, and

(iv) all firms have the same marginal costs.

This behaviour of the market will result in all firms offering the same price which is equal
to the marginal cost. The model’s result is known as the Bertrand Paradox which shows
that already with two competitors, the equilibrium price will become the marginal price.
In contrast to the paradox, in real life situations it is expected that only in a market with
a large number of competitors, the product price will be close to the marginal cost.
Between 1921 - 1927, Emile Borel published a series of papers where he developed the first
modern model of a mixed strategy and the minimax solution for duo games with three or
five available strategies. Hotelling (1929) expanded the Bertrand model by presenting dif-
ferentiated products in a duopoly. His model introduced the concept that the consumers
will choose the product not just because of its price but also considering qualities such
as product design, customer service and brand name. This model resolves the Bertrand
Paradox to some extent.

Game theory research as we know it today, started with the publication of the ’Theory of
Games and Economic Behaviour’ by John von Neumann and Oskar Morgenstern (1944)
and the introduction of the utility function concept. Since then, many researchers con-
tributed to the development of the field. Game theory is increasingly applied in different
scientific and real life situations, including insurance, economics, business, political science,
computer science, auction theory, biology and psychology. Its importance is demonstrated
by researchers of game theory, who received the Nobel Memorial Prize, including Paul A.
Samuelson in 1970, Nash, Selten and Harsanyi in 1994, Thomas Schelling and Robert Au-
mann on 2005, Leonid Hurwicz, Eric Maskin and Roger Myerson in 2007, Alvin E. Roth
and Lloyd S. Shapley in 2012 and Jean Tirole in 2014.

1.4.2. Type of games

The following types of games are proposed to describe various circumstances:
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• A finite game is one where each player has a finite number of options to choose from;
if the set of options is infinite, it is called an infinite game.

• A repeated game, is one that includes a long period of interaction, and is played
repeatedly. In such a game the players include in their decision process the effect
of their action on the other players’ future behaviour. It is possible in such a game
to encounter phenomena such as cooperation, threats and revenge. The game can
be played a finite or infinite number of iterations and equilibrium results for the two
types of repeated game can be very different. While in an infinitely repeated game,
the optimal action is to cooperate and play a more ’social’ game strategy, in the finite
repeated game, with a defined number of moves, the solution is a repeated action of
a single game.

• A complete information game is the case where the players have all the information
about each other including their identities, the available actions and their objective
functions. They do not know, however, which actions each of the other players will
take. In situations where at least one player does not have the full information about
the other players, the game is defined as an asymmetric information game, also known
as Bayesian Game.

• In an imperfect information game players may have a full information of the other
players, but they cannot see the actions chosen by them. A game where all play-
ers have full information about each other’s options and actions is called a perfect
information game.

1.4.3. Cooperative game theory and solution concepts

Cooperative game theory describes games where the players can cooperate and take deci-
sions with full trust and collaboration. Cooperative games with transferable payoff include:

• Players: N = {1, 2, . . . , n} is finite and fixed set of players with individual payoff
function φ = {φ1, . . . , φn}.

• Coalitions: C ⊆ N, where ρ is a coalition partition ρ = {C1, . . . , Ck}. Note that ∅ is
an empty coalition, N is the grand coalition and the set of all coalitions is 2N .

• Characteristic function: ν(C) assigns a value/payoff to each coalition which can be
shared by the i members of the coalition, with no restrictions on the members’ share.

The main solution concept of cooperative game is the Core (Gillies (1959)). According
to this concept, the Core includes all the outcomes where the grand coalition and the
equilibrium payoffs set φ? are:
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1. Pareto-efficient:
∑
i∈N

φ?i = ν(N) meaning that a player i can increase his payoff only

at the expense of another player j.

2. Superadditivity: the grand coalition is efficient, i.e.
∑
C∈ρ

ν(C) ≤ ν(N).

3. Individual rationality: all players receive a payoff which is not less than the individual
payoff, i.e. ν(i) ≤ φ?i for all i.

4. Coalition rationality: the sum of the individual payoffs φ?i within a coalition C, is
equal or larger than the coalition payoff ν(C), i.e

∑
i∈C

φ?i ≥ ν(C) for all C.

Generally, a cooperative game is suitable for situations in which the payoff of the coop-
eration is larger than the sum of groups/individuals payoffs. Shapley (1953) defines some
properties for an acceptable allocation and suggests a ’fair’ solution how to split the pay-
off gain from the cooperation between the players and to allocate each player his average
marginal contribution to the payoff gain. The Shapley value is Pareto-efficient, it assigns
the same payoff to any two symmetric players, and it satisfies monotonicity and assigns
zero payoff to dummy players.

In cooperative games without transferable payoff, the coalition is assigned a payoff and
there may be restrictions on the split between the members of the group (see e.g. Shapley
& Shubik (1953)). Other references for cooperative games and solutions can be found in
e.g. Aumann (1989) and Luce & Raiffa (1957).

1.4.4. Non-cooperative game theory and equilibrium concepts

In many situations, the players cannot, or do not want to, cooperate. In this case, each
player will make his own decision without collaborating with the other players. These games
belong to non-cooperative game theory in which we consider two structures of games:

• A static game includes three identified elements; the players, available strategies for
each player, and the subsequent payoffs. Each of the players will take decisions based
on available strategies and payoffs. The players have only a priori information and
they take decisions simultaneously, without knowing the other players’ actions. These
types of games can be represented with a multidimensional payoff table, in which each
combination of the player decisions gives a different payoff to all the players.

• A dynamic game in which each player can take a decision in different time frames and
not only in the beginning of the game. This type of game is represented by a decision
tree, which includes the different decisions at each stage for each player and their



Chapter 1. Introduction 21

resulting payoffs. It is used to model complex, repeated games with a challenging
mathematical optimization process.

Two main solution and equilibrium concepts are:

Nash Equilibrium

In 1950, John Nash presented the static game solution concept in his paper ’Non-Cooperative
Games’ Nash (1950), that later came to be known as the Nash Equilibrium. The Nash
Equilibrium is a solution to a game, where the decisions of the players are taken simultane-
ously. Every player tries to predict his competitors’ decisions, and an equilibrium point is
achieved where no player has an incentive to change his decision, given the other players’
decisions. In other words, each player maximizes his utility given the other players choices.
In his book, Nash also proved that such an equilibrium exists in a finite game with a finite
number of players. Applying the solution in practice gives rise to some complexities, like
the existence of more than one equilibrium point to a game, or the strong assumption that
all players are completely aware of other participants‘ options and priorities (i.e complete
information game). Selten (1965) suggested the existence of the sub-game perfect Nash
equilibrium. He proved that any game that can be split into sub-games, like a repeated
game, will have a sub-game perfect Nash equilibrium. In Harsanyi (1966), Harsanyi gave
a definition to distinguish between cooperative and non-cooperative games. During the
years 1967-1968, Harsanyi (1968) extended the Nash equilibrium concept to incomplete
information games for situations that include uncertainty on the other players’ payoffs. In
order to model these type of games, Harsanyi used a Bayesian prior distribution.

Stackelberg Equilibrium

Another game solution can be found when dealing with non-simultaneous decisions. Von Stack-
elberg (1934) presented an equilibrium concept in a duopoly game, where one of the players,
the leader, makes a decision first, and then the other player (the follower) reacts. In an
oligopoly market, the model assumes that the leader chooses a price and the followers then
react with a Nash equilibrium, given the leader’s choice.

Many other game solution concepts, mostly Nash equilibrium refinements, have been de-
veloped in the last decades, e.g. coalition-proof Nash equilibrium (Bernheim et al. (1987))
and correlated equilibrium (Aumann (1974)). The mathematical formulation of Nash and
Stackelberg equilibriums is given in Chapters 2 and 4.
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1.4.5. Status quo and insurance

According to the classical model of decision making, agents are expected to behave ratio-
nally and choose the alternative with best outcome on the basis of well-defined preferences
(von Neumann & Morgenstern (1944)). Friedman (1948) analyzed choices involving risk
and proposed a utility function composed with both concave and convex segments to ex-
plain both risk-averse and risk-loving behaviour of the decision makers. However, much
evidence on a systematic breach from this concept has challenged the validity of the utility
theory model (Thaler (1980)). Kahneman & Tversky (1979) develop an alternative model,
the prospect theory, in which instead of evaluating the final state of wealth, a value is given
to earnings and losses and probabilities are weighted. They suggest a value function that is
convex and steep for losses and concave for gains. As humans tend to assess probabilities
with some distortion, the model corrects these distortions by weighted probabilities that
are, for most cases, lower than their true value. For the range of low probabilities, humans
tend to overestimate the true probabilities. This distortion may support the attractiveness
of insurance and the willingness of policyholders to pay premiums higher than the expected
loss.

One of the most common deviations from the expected rational behaviour, is the high
preference for the status quo choice. Insurance is one of many markets in which decision
makers tend to avoid change and stay with the same insurance contract. Many researchers
study status quo in insurance. Samuelson & Zeckhauser (1988) find evidence for a signifi-
cant level of status quo in health plan choice and were the first to refer to this phenomenon
as the "status quo bias". See as well Strombom et al. (2002) for status quo in health plan
decisions. Johnson et al. (1993) performed a series of tests to examine biases in proba-
bility valuation and perceptions of loss and the effect they might have on policyholders’
insurance choice. The results of the study show that the clients have a false perception of
risk and distorted premiums and benefit evaluations. Frank & Lamiraud (2009) study the
Swiss health insurance market and find that status quo preference is higher when more
options are available to the policyholder and the longer a policyholder stayed with the
same insurer. Sinaikoa & Hirth (2011) study employee health plan choices in case where
the set of possible plans offered by their employer includes a dominated plan. They find
evidence for a status quo bias where a significant number of employees chose to stay with
their current plan although it is dominated by the other available options. For further
research on status quo in health insurance, see e.g. Krieger & Felder (2013) and Marquis
& Holmer (1996). These studies on the status quo bias support the findings of low price
elasticity coefficients in the Swiss health insurance market (see Chapter 4).
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1.5. Applications of game theory in insurance pricing

Game theory deals with situations where the expected utility of the players is a function
not only of their decision but the decision of their competitors. Insurance is considered
as a competitive market, and clients that look into reducing the premium payments, com-
pare the offered insurance contracts. An insurer that does not consider his competitors’
premiums in his premium decision, might set such a high price that he will lose market
share and find himself out of the business. Game theory seems then a natural choice for
modelling the insurance pricing process. Borch (1962) suggests a model for the automobile
insurance based on cooperative game theory ideas and proved that groups of policyhold-
ers with different risk profiles can benefit from reduced prices, if they cooperate. He
suggests a model to calculate the "fair" premium of each risk group. Other contributions
for applications of cooperative game theory to insurance include e.g. Lemaire (1980, 1991).

Various models based on non-cooperative game theory were suggested as insurance pricing
models. Taylor (1986) investigates the insurance cycle in Australia and develops a pricing
model under competition to calculate a premium strategy for J periods. He defines the
total expected profit for the Jth period, E, as the objective function to maximize, such
that

E =
J∑
j=1

vj−1/2qj(pj − πj),

where v is the discount factor, qj is the level of exposure insured by the insurer in year
j, pj is the premium per unit of exposure in year j, and πj is the break-even premium.
The level of exposure, qj, is defined as a demand function related to the insurer’s previous
year’s exposure, qj−1, the insurer’s premium pj and the market premium pj:

qj = qj−1f(pj, pj).

The optimal pricing strategy for the insurer, is the premium vector (p1, . . . , pJ) that max-
imizes E. Taylor (1986) sets certain restrictive assumptions on the demand function:

(i) the demand function is stationary over the insurance periods,

(ii) the demand in period j is proportional to the previous period demand,

(iii) the market premium is not sensitive to the insurer’s premium.

The last assumption restricts the model to a market with no leaders but a group of smaller
insurers. Taylor (1986) presents an exponential and constant elasticity demand function
and calculates the resulting premium that will maximize the insurer’s expected profit. The
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results deviate from what might be considered as obvious choice and does not support
following the competition when premium levels are low. The optimal premium strategy
depends on the price elasticity of demand and the return rate the shareholders expect to
receive for their investment. When insurance prices drop and insurers underwrite contracts
incurring loss, the expected time until the prices will increase above the break-even point
affect the optimal decision as well. Taylor concludes that, generally, underwriting insurance
with loss is rarely an optimal alternative that will benefit the longer term profitability of
the insurer.

Emms & Haberman (2005) extend the model of Taylor (1986) and develop a continuous
form model based on deterministic and stochastic optimal control theory to calculate the
premium which maximizes the expected wealth of the insurer at time T . As in Taylor’s
model, the market premium does not change by the insurer’s price decision. An important
assumption of this model is that all policyholders are charged the current premium rate p.
For insurer i set:
w as the wealth,
α the rate of return to the shareholders for the capital investment,
q as the exposure level at time t,
p as the premium per unit of exposure,
π is the break-even premium,
p as the market average premium per unit of exposure,

The state equations are
dq = q log g(p/p)dt

for the exposure process where g is the demand function and,

dw = −αwdt+ q(p− π)dt

for the wealth process. The market premium p is assumed to be a random process with
finite mean and the distribution of the claim size, represented by the break-even premium,
π, is left un-defined. The objective function to maximize is the expected wealth at the end
of time T given a state S(0) at time t = 0,

V = (E(w(T )) | S(0)).

Emms & Haberman (2005) calculate the optimum premium p?i for various demand func-
tions. They find that optimal strategies vary and depend on the demand function. A
withdrawal from the market, setting a premium above break-even or loss-leading can all
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turn out to be optimal. With a linear demand function when the loss ratio πi/p is suf-
ficiently small or the mean contract length is sufficiently large, a loss-leading premium
strategy arises as optimal.
Extensions for this model can be found in Emms et al. (2007), Emms & Haberman (2009)
and Emms (2007, 2011).
In the above-mentioned models, a basic assumption is that the insurer plays a game with
a virtual player, the market, as his decision does not affect the market premium. In recent
years, some studies suggested models in which the market premium is influenced by the
insurer’s premium decision such that insurers consider their competitors premium decisions
for their own premium decision. Emms (2012) adapts the control theory ideas presented in
previous models and suggests a model with the market premium as the average premium
of insurer i’s competitors. Each insurer aims at maximizing his own terminal wealth. A
result of a two player game in a finite market suggests that the actuarial premium cycle is a
result of the competition with limited demand and entry of new players to the market. The
suggested model is complex and one needs to solve multiple coupled optimization problems
in order to determine the Nash equilibrium premium. Other models based on the same
methods of control theory, e.g. Wu & Pantelous (2017) and Boonen et al. (2018) suggest
variations to the pricing model of Emms (2012).
Another model that extends the Taylor’s insurer against market setup to a game where
the market premium depends on the insurer’s competition premium decisions is presented
in Dutang et al. (2013). They use non-cooperative game theory concepts to develop a
one-period pricing model under competition in non-life insurance markets. Albrecher &
Daily-Amir (2017) extend the model to an asymmetric information game setting where
not all insurers share information about their parameters with their competitors. Battulga
et al. (2018) develop the one-period pricing model into a repeated game by adding a tran-
sition probability matrix that describes insureds’ switching probabilities between insurers
and reflects economic factors. The model considers a set of I insurers and an uninsured
state as the available strategies for the policyholders, such that

Pi,j(k) =



p1,1(k) p1,2(k) · · · p1,I+1(k)

p2,1(k) p2,2(k) · · · p2,I+1(k)

...
...

. . .
...

pI,1(k) pI,2(k) · · · pI,I+1(k)

pI+1,1(k) pI+1,2(k) · · · pI+1,I+1(k)


where pi,j(k) is the probability to switch from insurer i to insurer j in period k. The
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portfolio size of insurer i in period k, Ni(k), is calculated as the sum of the renewals and
the new clients arriving from other insurers

Ni(k) = Ni(k − 1)pi,i(k) +
I+1∑

j=1,j 6=i

Nj(k − 1)pj,i(k) =
I+1∑
j=1

Nj(k − 1)pj,i(k)

where Ni(0) = ni. For a discount factor v, the adapted objective function from Dutang
et al. (2013) is defined as the present value of the operating profit for m periods of the
game, i.e;

Omi (x) =
vkNi(k)

n

m∑
j=1

(
1− βi(k)

( xki
mi(xk)

− 1
))

(xki − πi(k)),

where n is the total number of possible customers, and for period k, mi(x
k) is the average

premium of insurer i’s competitors, βi(k) is the price elasticity coefficient and πi(k) is the
break-even premium. The extended model considers the effects of the economic situation
on the break-even premium and on price elasticity coefficients, where clients can be more
or less sensitive to premium differences.

1.6. Contributions in this thesis

Chapter 2 gives an extension to a game-theoretic pricing model under competition for
non-life insurance companies presented in Dutang et al. (2013). We define a game where
not all the insurers have full information about their competitors and examine the effects
of this asymmetric information on the equilibrium premium. We calculate Bayesian Nash
equilibria as well as Bayesian Stackelberg equilibria and illustrate the sensitivity of equi-
librium prices to different configurations and degrees of information asymmetry through
various numerical examples. The results indicate that Nash premiums are lower than the
Stackelberg premiums, and that the uncertainty in an asymmetric information game is
normally compensated by higher premiums. We get evidence that in a market with more
players, the equilibrium price is more sensitive to uncertainty than in a market with just
a few competitors. We also demonstrate how, depending on the situation, insurers do or
do not have incentives to share their own information with their opponents. The obtained
quantitative results support the perception one may have on the influence of incomplete
information on prices.

Chapter 3 starts with an overview of the Swiss mandatory health insurance market. We
examine the effect of different factors such as price, group affiliation and service level on
the annual changes of the insurers’ market shares. A linear model with two-sided lognor-
mally distributed errors is developed and using a published dataset for the years 2002 to



2015, we test several hypotheses concerning the main motives for changes in the insurers’
market shares. The results suggest that the difference between the insurer’s premium and
the market premium is the main factor that affects the market share changes. We define a
second premium related variable as the relative difference between the insurer’s premium
change and the market premium change and it turns out to have a smaller yet significant
impact on the market share changes. Service level and group affiliation appear not to be
significant in explaining annual market share changes.

Chapter 4 introduces a demand function for the mandatory health insurance in Switzer-
land based on findings from Chapter 3. A game with the operation profit as an objective
function of the insurer is considered as a pricing model to optimize premiums. While in
the model from Dutang et al. (2013), the initial market share does not affect the equi-
librium premiums, the new developed pricing model is constructed such that the initial
market share becomes a relevant factor for the equilibrium premiums. A numerical il-
lustration demonstrates the calculated Nash equilibrium premiums as well as Stackelberg
equilibrium premiums. The levels of price elasticity coefficients of policyholders in the
Swiss mandatory health insurance are evaluated using a published dataset and support the
market dynamics where policyholders have relatively low sensitivity to price differences re-
sulting in low switching rates. Accordingly, the calculated equilibrium premiums are equal
to the maximum allowed premium in most cases. We compare the results with the equilib-
rium premiums calculated with the model presented in Dutang et al. (2013), and we assess
the effect of the initial market share on the equilibrium premiums through sensitivity tests.
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Chapter 2

On Effects of Asymmetric Information

on Non-Life Insurance Prices under

Competition

ABSTRACT

We extend a game-theoretic model of Dutang et al. (2013) for non-life insurance pricing
under competition among insurers and investigate the effects of asymmetric information
on the equilibrium premium of insurance companies. We study Bayesian Nash equilibria as
well as Bayesian Stackelberg equilibria and illustrate the sensitivity of equilibrium prices
with respect to model assumptions in numerical examples.
The chapter is based on the paper Albrecher, H. and Daily-Amir, D. (2017), published in
International Journal of Data Analysis Techniques and Strategies 9, 287- 299.

2.1. Introduction

The pricing of an insurance policy is a classical research topic. In practice, insurance com-
panies use various approaches including general principles of premium calculation (often
based on moments of the claim distribution), credibility theory and generalised linear mod-
els (GLM). Game theory concepts have been suggested as a way to evaluate the strategic
options available to the insurance companies with respect to competition and the premi-
ums choices. Although applications of game theory in insurance have a long history, the
potential of this approach has not yet been fully exploited, particularly with respect to
non-cooperative games. The classical reference is Rothschild and Stiglitz (1976), where
insurance firms offer contracts with different premium and deductible. The model demon-
strates that there might be no equilibrium point in this type of competition in the insurance
market. However, when an equilibrium exists, high-risk clients will choose full coverage,
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where low risk clients will choose partial coverage. Lemaire (1980) developed a number of
insurance applications based on cooperative game theory concepts and implemented them
for different situations. Emms & Haberman (2005) present a model based on control the-
ory in which they use a demand function to describe the number of underwriting policies,
and the objective function of the insurer is the expected terminal wealth. Their findings
include two pricing strategies; (i) set a low premium, which creates a loss in order to gain
a large market share, followed by higher premium that produces profit, (ii) market with-
drawal strategy, which means that the insurer leaves the market and does not compete.
This model does, however, not cover the situation of a very competitive insurance market,
with few strong insurance companies. Emms (2012) describes an extension using game
theory concepts. Other papers dealing with game theory concepts for the insurance mar-
ket include e.g. Taylor (1986), Polborn (1998), Rees et al. (1999) and Powers and Shubik
(2006).
In this paper, we adopt a one-period model of Dutang et al. (2013)based on a non-
cooperative game among non-life insurers (see Section 2.2 for details) to the situation
where players do not have full information on their competitors and we investigate the ef-
fects on resulting premium equilibria. In particular, we study Bayesian Nash equilibria and
Bayesian Stackelberg equilibria through a numerical implementation for several different
scenarios.
Section 2.2 introduces the model assumptions and the considered solution concepts. Section
2.3 then presents and interprets the numerical results. Finally, Section 3.4 concludes.

2.2. One-period model and solution concepts

Let us assume a market with I insurers competing for a fixed number n of policyholders
with homogeneous risks. The insurance contracts are issued for one period (one year). Each
insurer j sets his premium xj at time 0, choosing from a possible ’action’ set Aj. After xj
is set by all the insurers, each policyholder can decide either to renew his policy with the
present insurer or switch to a competitor. It is assumed that there is no price distinction
between new insurance contracts and renewed ones as the insurers offer the same product
to all clients. Furthermore, the insurers do not cooperate to set their prices. In Dutang
et al. (2013) it was assumed that the lapse rate of the policyholders as a function of the
different prices xj can be estimated through a multinomial logit function which motivates
the demand function

Dj = 1− βj(
xj

mj(x)
− 1)

of insurer j. This demand function gives an approximation for the rate of renewed policies,
where βj > 0 is a price sensitivity (elasticity) parameter representing the lapse behavior
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of the policyholders relative to company j and mj(x) = 1
I−1

∑
j 6=l

xk is the average price of

the competitors. For each insurer, the objective is to maximize the expected operational
profit

Oj(x) = Dj(xj − πj), (2.1)

where πj is the break-even premium calculated as a weighted average of the actuarial pre-
mium aj,0 of insurer j (based on the individual claim experience of each insurer) and the
market premium m0 (based on the collective claim experience of the entire market). In
addition, the model includes a solvency constraint imposed by the insurance regulator with
respect to the choice of premium xj as well as possible general premium restrictions, i.e.
xj ∈ [x , x]. For the scenarios implemented in the next section, realistic magnitudes for the
solvency constraint and such bounds on the premium turn out to be automatically fulfilled
by the obtained equilibrium prices, so we will not consider these constraints further in the
present paper.

As insurance companies will typically only have limited information about their competi-
tors, in this paper we extend the model of Dutang et al. (2013) to the case of asymmetric
information and we will apply the concept of Bayesian games to determine the resulting
premiums. In a Bayesian game, players only have prior beliefs about some characteristics
of other players, so player j is assumed to be of ’type’ i (tji) with probability p(tji). The
characteristic for which the information is not symmetric is either assumed to be the elas-
ticity parameter β or the internal break-even premium in this paper.
Harsanyi (1966) established a solution to such an incomplete information game, where each
player ’plays’ against all the different types of other players at the same time and maximizes
the expected value of the objective function with respect to the (subjective) probabilities
of the various types of the other players. A Bayesian Nash equilibrium (BNE) is hence a
set of actions x? = (x?1, . . . , x

?
M) such that

∀xj ∈ Aj : E(Oj(x?j(tj), x?−j(t−j))) ≥ E(Oj(xj(tj), x?−j(t−j))) (2.2)

for all players j and all types tj, where player j knows his own type, so that the index
·−j refers to all the possible types of the other players, and M is the number of all the
considered types in the game. As shown in Dutang et al. (2013), the objective function
ensures the existence of a unique Nash equilibrium, so that the same holds true for the
BNE x?.
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While the BNE is an intuitively appealing solution concept in a competitive environment, in
some markets there may be a clear market leader who takes his decision first, and the other
companies will take that premium choice into account to then choose their own optimal
premium. This approach was formalized by Stackelberg (1934) (originally in a duopoly
setup). In an oligopoly market, the model assumes that the leader chooses a price and
the followers then react with a Nash equilibrium model, given the leader’s choice. Assume
without loss of generality that Player 1 is the leader, then the Stackelberg equilibrium is
the vector x? = (x?1, . . . , x

?
I) if x?1 solves the subproblem

∀j, xj ∈ Xj : O1(x?1, x
?
−1(x1)) ≥ O1(x1, x

?
−1(x1)), (2.3)

and x?−1(x1) is the Nash Equilibrium for all other (types of) players, given the leader’s
choice x?1.

2.3. Numerical implementation and results

In the following, we calculate Bayesian Nash premiums and Bayesian Stackelberg premiums
according to the setup of Section 2.2 under some particular choices for model parameters.

2.3.1. Bayesian Nash Equilibrium Premiums

In order to illustrate the effect of the information asymmetry with respect to the case of
full information, we start with the situation that only one insurer (Player 1) has unshared
information.

Bayesian Nash Premiums for three companies

In general, Ki possible types for Player i lead to
∑I

i=1Ki equations, each one maximizing
the choice of one type according to (2.1). Assume now a market with three insurance
companies (players), where the price sensitivity (elasticity) parameter β1 of Insurer 1 is
unknown to the other players, and based on their beliefs they assign probabilities p(t1i)
for Player 1 to have price sensitivity parameter β1i (cf. 2.1). For simplicity we assume
that these values and their probabilities coincide for Insurer 2 and 3. If they assign two
possible values for β1i, then (2.2) consists of four equations (two types for Player 1, one
type for Player 2 and Player 3) and the equilibrium premiums are the solution of the linear
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equation system

4β11x11 − (1 + β11)(x2 + x3)− 2β11π1 = 0

4β12x12 − (1 + β12)(x2 + x3)− 2β12π1 = 0

4β2x2 − (1 + β2)
[
p(t11)(x11 + x3) + p(t12)(x12 + x3)

]
− 2β2π2 = 0

4β3x3 − (1 + β3)
[
p(t11)(x11 + x2) + p(t12)(x12 + x2)

]
− 2β3π3 = 0.

The break-even premiums πj = wjaj,0 + (1 − wj)m0 are chosen corresponding to the loss
model and the respective individual claim experience. For the present purpose and for
the purpose of comparison, we stick to the setup of Dutang et al. (2013) and assume
aj,0 = (1.1, 1.15, 1.05) and m0 = 1.1 as well as weighting parameters wj = (1/3, 1/3, 1/3),
i.e. πj = (1.1, 1.117, 1.083).

Figure 2.1 shows the resulting BNE premiums for the case where β1 ∈ {1, 5} with prob-
ability 1/2 each, compared with the case of four types β1 ∈ {0.75, 1.25, 4.75, 5.25} with
probability 1/4 each (the constant values β2 = 3.8 and β3 = 4.6 for Player 2 and 3 are
known to all market participants). Note that for both distributions of β1 we have E(β1) = 3

and V ar(β1) = 4. The results in Figure 2.1 indicate that higher uncertainty about the
type of Player 1 (more possible types for Player 1) results in higher equilibrium premiums
for the other players, although the first two moments of β1 do not change.

Figure 2.1: BNE Premiums with two or four types for Player 1
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Figure 2.2 shows – from the viewpoint of Player 3 – the influence on the BNE premium of
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the number of other players with unknown βi as well as the value of V ar(βi). We depict
the following five scenarios for comparison:

• a full information game where the price sensitivity parameter is β1 = 3 (and known
to all players),

• a Bayesian game where Player 1 has two possible types β1 ∈ {2.75, 3.25},

• a Bayesian game where Player 1 has two possible types β1 ∈ {1, 5},

• a Bayesian game where Player 1 and Player 2 both have two possible types β1 ∈
{2.75, 3.25}, β2 ∈ {3, 4.6} (the expected value for the previously constant value of β2

stays the same),

• a Bayesian game where Player 1 and Player 2 both have two possible types β1 ∈ {1, 5}
and β2 ∈ {1.8, 5.8} (same expected value, higher variance)

Figure 2.2: BNE Premiums for Player 3 - various games!
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The results show that the additional uncertainty spread (for Player 3) over several oppo-
nents changes the respective equilibrium premium only slightly while the variance of the
price sensitivity has a larger (and the major) effect on the BNE premiums.

It is also of interest to see to what extent it is an advantage or disadvantage in this setup
for one particular player to not communicate transparently his β-value. To that end, let
us compare the BNE premium of Player 1 (having elasticity parameter β1 = 3) in the
following three situations:

• a full information game where the price sensitivity parameter β1 = 3
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• a Bayesian game where Player 1 has β1 = 3, but the other players only know β1 ∈
{1, 3, 5}

• a Bayesian game where Player 1 has β1 = 3, but the other players only know β1 ∈
{0.55, 3, 5.45}.

Figure 2.3: BNE Premiums with varying degree of uncertainty about Player 1
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Figure 2.3 illustrates that a higher uncertainty about Player 1 causes Player 2 and Player 3
to choose higher premiums. In turn, Player 1 (being of type β1 = 3) also has to ’rationally’
(in the sense of Nash equilibria) react by choosing a higher premium. Table 2.1 depicts
the actual values of the objective function for each player (which anticipates the resulting
market share). One can see that it can be an advantage for Player 1 not to disclose his
β1 value to the competitors, since his objective function value increases with additional
uncertainty (the increase is slightly higher for Player 1 than for the other players).

Var(β1)=0 Var(β1)=2.67 Var(β1)=4

Player 1 (β1 = 3) 0.397 0.468 0.570

Player 2 0.391 0.451 0.527

Player 3 0.454 0.523 0.611

Table 2.1: Objective function values corresponding to Figure 2.3

However, what if Player 1 is of type β1 = 1? Table 2.2 compares the objective function
values for this case between the full information game and the game where the other players
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only knows β1 ∈ {1, 3, 5} with probability 1/3. Here Player 1 of type β1 = 1 turns out
to have an incentive to communicate his true (low) β value to his opponents. So one
interpretation may be that the disclosure of information is beneficial if the value of β is
under-estimated by competitors, but not if there is symmetric uncertainty.

Var(β1)=0 Var(β1)=2.67

Player 1 (β1 = 1) 0.956 0.659

Table 2.2: Objective function values with β1 = 1

Up to now, the uncertainty in the game was about the price sensitivity parameter β of
competitors. Let us now investigate a situation where Player 1 considers reducing the
used value of the break-even premium to, say, 80% of its real value (e.g. in order to gain
market share). A natural question is whether this information should be passed on to the
competitors or not. Figure 2.4 gives equilibrium premiums (and Table 2.3 the respective
objective function values) for the following situations:

• using a low π1-value and disclosing it to the other players (left column in Fig. 2.4):
as may be expected, this results in a substantially reduced premium and objective
function value.

• asymmetric information scenario, where the other players know that either Player
1 uses the (true) higher break-even premium (probability 0.5) or the reduced one
(probability 0.5). In case Player 1 actually uses the higher π1, the BNE premium
as well as the objective function value is lower than for the complete information
scenario, so it is better to communicate this to the competitors. However, in case
Player 1 uses the smaller π1, he has an incentive not to tell the competitors about it
(in other words, creating uncertainty can be an advantage), cf. Table 2.3. For the
other players, even if Player 1 uses the smaller value, not knowing this with certainty
is an advantage in terms of their objective function value, and they will also use
higher premiums in that case.

Bayesian Nash premiums for seven companies

Let us now look at the effect of the number of players on the resulting premiums. For that
purpose, add four insurers to the original game in such a way that the game consists now
of three insurers with the same characteristics as Insurer 2 before, and three insurers with
the same characteristics as Insurer 3 before, but the total number of policyholders stays the
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π1=1.1 π1 ∈ {0.88, 1.1} π1=0.88

Player 1 0.397 0.307

Player 1 (π1 = 1.1) 0.364

Player 1 (π1 = 0.88) 0.339

Player 2 0.391 0.337 0.283

Player 3 0.454 0.392 0.330

Table 2.3: Objective function values

Figure 2.4: BNE Premiums for two possible π1
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same. We choose πj = (1.1, 1.117, 1.083, 1.117, 1.083, 1.117, 1.083) and β2 = β4 = β6 = 3.8,
β3 = β5 = β7 = 4.6 throughout, and calculate the resulting premiums for a

• a full information game with β1 = 3,

• two possible types for Player 1 with β1 ∈ {2.75, 3.25}, specifications as before

• two possible types for Player 1 with β1 ∈ {1, 5}, specifications as before.

The resulting BNE premiums for Insurer 1 of type β1 = 3 and for Insurer 2 are given
in Figure 2.5 and 2.6, respectively. The results suggest that in a full information game,
higher competition due to additional players in the market result in only slightly reduced
premiums whereas in an incomplete information game, the higher the uncertainty, in a
market with more players the resulting premiums will be reduced much more significantly.
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Figure 2.5: BNE Premiums for Player 1
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Figure 2.6: BNE Premiums for Player 2
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2.3.2. Stackelberg equilibrium premiums for three companies

Let us now assume that there are three players, and Player 1 is the leader as his price sen-
sitivity parameter β is the lowest, which suggests that his policyholders are less sensitive
to a possible price increase. We assume that the elasticity parameter β2 of Player 2 is not
known to the other players, they instead use probabilities p(t2i) for Player 2 to use β2i. If
they assume two possible values, then the expected value of the objective function of the
leader, Player 1 is:
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E(O1) =
[
p(t21)(1− β1(

2x1

x21 + x3

− 1))

+ p(t22)(1− β1(
2x1

x22 + x3

− 1))
]
(x1 − π1). (2.4)

Once Player 1 sets his premium x?1 by maximizing (2.4), the other players calculate their
corresponding Bayesian Nash premiums and the optimal solution is obtained by finding
the zeroes of their respective derivatives, i.e.

4β21x21 − (1 + β21)(x1 + x3)− 2β21π2 = 0

4β22x22 − (1 + β22)(x1 + x3)− 2β22π2 = 0

4β3x3 − (1 + β3)
[
p(t21)(x1 + x21) + p(t22)(x1 + x22)

]
− 2β3π3 = 0.

First, we calculate the Stackelberg equilibria for a full information game with πj = (1.1, 1.167, 1.083)

and βj = (3, 3.8, 4.6). Table 2.4 presents the equilibrium premiums and the objective func-
tion values for the different insurers:

j x?j Oj
Player 1 1.792 0.446

Player 2 (β2 = 3.8) 1.624 0.578

Player 3 1.581 0.668

Table 2.4: Stackelberg premiums and objective function values

Figure 2.7 shows the Stackelberg premiums of Insurer 1, the leader, as a function of
V ar(β2), for constant E(β2) = 3.8. One sees that in general the Stackelberg equilibrium
premiums are much higher than the BNE premiums and Insurer 1 will react to additional
uncertainty about Insurer 2 with higher premiums.

To verify the incentive of Insurer 2 to communicate the information about his β2-value
to his competitors, in Figure 2.8 we compare the value of the objective function for the
two types of Insurer 2 with β21 = 2.8 and β22 = 4.8. One sees that if Insurer 2 is of
Type 1, he has an incentive to communicate his information to the other insurers (as in a
full information game he has a higher objective function value), whereas if Insurer 2 is of
Type 2, he has no incentive to communicate his type and prefers to keep the information
asymmetric.
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Figure 2.7: Stackelberg Bayesian premiums for Player 1
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Figure 2.8: Stackelberg Bayesian premiums for Player 2
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2.4. Conclusion

In this paper, we deal with the effects of asymmetric information about risk profiles on
the pricing mechanism of a competitive insurance market. We use Bayesian Nash and
Stackelberg equilibrium concepts to quantify these effects in an extension of the game-
theoretic model of Dutang et al. (2013). We numerically illustrate some scenarios in which
uncertainty can be beneficial, and others where market participants have incentives to
be transparent to their competitors. For the cases considered in this paper, Stackelberg
premiums resulting from the presence of a market leader are higher than Nash premiums,
and the uncertainty in a Bayesian game is typically compensated by increased premiums.
In a market with more participants (competitors), we find the equilibrium points to be
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more sensitive to uncertainty than in a market with fewer players. Clearly, the findings
in this paper rely on the particular choice of model, objective function and equilibrium
concept. However, a number of important market features have been taken into account,
and the obtained results quantify within this framework some intuitive causal relations in
a quantitative way. It is left for future research to study similar questions for other such
choices.

Appendix: Additional illustrations of equilibrium premiums

Case I

We are interested in testing the equilibrium premiums when one player has uncertainty
about his price elasticity coefficient. We calculate the Nash equilibrium premiums for a
game with asymmetric information in three situations:

• G1: a full information game with βj = (3, 3.8, 4.6),

• G2: three possible types for Player 1 with β1 ∈ {1, 3, 5},

• G3: three possible types for Player 2 with β2 ∈ {1.8, 3.8, 5.8},

• G4: three possible types for Player 3 with β3 ∈ {2.8, 4.6, 6.6}.

The variance is fixed such that V ar(βj) = 2.67, the probabilities of each type are equal such
that the expected value of the price sensitivity coefficients are E(βj) = (3, 3.8, 4.6). The
Nash equilibrium premiums are presented in Table 2.5. In the three games, the player with
uncertain β increases his premiums less than his competitors who face the uncertainty. For
instance, when the uncertainty is about Player 1, the competitors increase their premiums
by 5% compared with only 3% raise in the premium of Player 1. The smaller raise allows
him to increase his demand compared with his demand in a full information game. We note
similar results when the uncertainty is about the other two players with lower premium
change for higher expected values of the β.

x?1 x?2 x?3 D1 D2 D3

G1 1.544 1.511 1.471 0.893 0.992 1.169

G2 1.594 1.587 1.546 0.947

G3 1.576 1.530 1.501 1.021

G4 1.561 1.527 1.481 1.186

Table 2.5: Nash equilibrium premiums and the demand function value
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Case II

We now want to test the effect of small uncertainty about the price elasticity coefficient on
the incentive of the insurer to become transparent. We construct three games with three
possible slightly different values of βj with equal probabilities such that:

• G1: a full information game with βj = (3, 3.8, 4.6),

• G2: three possible types for Player 1 with β1 ∈ {2.99, 3, 3.02},

• G3: three possible types for Player 2 with β2 ∈ {3.79, 3.8, 3.81},

• G4: three possible types for Player 3 with β3 ∈ {4.59, 4.6, 4.61}.

We compare the objective function values for each type to verify if the player with the
unknown parameter has an incentive to expose his information to his competitors and
present the transparency incentives in Table 2.6. Naturally, for such a low level of un-
certainty about the βj coefficient, the resulted equilibrium premiums and the objective
function value are very close, e.g., for Player 1 with β1 = 2.99, the objective function
value for full information game is greater by 0.00013 than with asymmetric information.
Contrarily, if Player 1 has β1 = 3.01, in full information game, the objective function value
is smaller by 0.00014 than in the asymmetric information game. For Player 1 with β1 = 3,
the difference is even smaller, nonetheless, the objective function value is greater for the
asymmetric information game, so a rational player who wants to maximize his utility, will
keep the information for himself, and will not be transparent. Same situation applies for
the other two players. For all the insurers, when their price sensitivity coefficient is even
slightly smaller than the expected value, they already have an incentive to be transparent
with their competitors. When their price sensitivity coefficient is equal or greater than the
expected value, they have no incentive to be transparent.

Type T1 T2 T3

Insurer 1 7 7

Insurer 2 7 7

Insurer 3 7 7

Table 2.6: Transparency incentive



Chapter 2. On Effects of Asymmetric Information on Non-Life Insurance Prices under Competition 43

Case III

Until now, we calculated equilibrium premiums for situations with symmetric probabilities
for being each of the possible types of the player with uncertainty. We construct three
games with asymmetric information about Player 1, with changing probabilities of the two
types:

• G1: two possible types for Player 1 with β1 ∈ {3, 3.5},

• G2: two possible types for Player 1 with β1 ∈ {2.75, 3.25},

• G3: two possible types for Player 1 with β1 ∈ {2.5, 3}.

For all games, we calculate the equilibrium premiums when the probabilities P (β11) and
P (β12) are changing. The Nash equilibrium premiums for Player 2 and Player 3 are pre-
sented in Table 2.7. The results support previous findings about the effect of the asym-
metric information on the equilibrium premiums. For situations with the same E(β1), the
equilibrium premiums are higher for higher V ar(β1). Furthermore, comparing equilibrium
premiums of cases with equal V ar(β1), the higher the E(β1), the lower the equilibrium
premiums.

Game G1: β1 ∈ {3, 3.5} G2: β1 ∈ {2.75, 3.25} G3: β1 ∈ {2.5, 3}

P (β11) E(β1) V ar(β1) x?2 x?3 E(β1) V ar(β1) x?2 x?3 E(β1) V ar(β1) x?2 x?3

1 3.000 0.000 1.511 1.471 2.750 0.000 1.525 1.486 2.500 0.000 1.544 1.503

0.75 3.125 0.047 1.505 1.466 2.875 0.047 1.519 1.479 2.625 0.047 1.535 1.495

0.5 3.250 0.063 1.499 1.460 3.000 0.063 1.512 1.472 2.750 0.063 1.527 1.487

0.25 3.375 0.047 1.493 1.454 3.125 0.047 1.505 1.466 2.875 0.047 1.519 1.479

0 3.500 0.000 1.488 1.449 3.250 0.000 1.498 1.459 3.000 0.000 1.511 1.471

Table 2.7: Equilibrium premiums for games with asymmetric probabilities

Case IV

For two games with asymmetric information about Player 1, with E(β1) = 3, V ar(β1) = 0.5

and probabilities P (β11) = 1/3 and P (β12) = 2/3 with:

• G1: two possible types for Player 1 with β1 ∈ {2, 3.5},

• G2: two possible types for Player 1 with β1 ∈ {4, 2.5},

the Nash equilibrium premiums for Player 2 and Player 3 are:

• G1: x?2 = 1.521, x?3 = 1.481,

• G2: x?2 = 1.518, x?3 = 1.478.
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Although the expected value and the variance of β1 are equal, the equilibrium premium are
slightly different. In G1, where β12 > β11 and P (β12) > P (β11), the equilibrium premiums
are slightly higher that in G2, where β12 < β11 and P (β12) > P (β11).

We then determine the equilibrium premium for G1 and G2 with seven players, where πj =

(1.1, 1.117, 1.083, 1.117, 1.083, 1.117, 1.083) and β2 = β4 = β6 = 3.8, β3 = β5 = β7 = 4.6.
The Nash equilibrium premiums for Player 2 and Player 3 are:

• G1: x?2 = 1.492, x?3 = 1.446,

• G2: x?2 = 1.491, x?3 = 1.445.

One can note the same effect as with three players, however, the difference between the
equilibrium premiums, for each player in the two games, is 0.001 compared with 0.003 in
the three players game. As in a previous example, with more players, the effect of the
uncertainty is smaller.

For other variations, with different parameters, we identify similar effects of the asymmet-
ric information on the equilibrium premiums. Below we give two more examples:

Case V

For πj = (1.1, 1.117, 1.083), β1 ∈ {2, 4} and β2 ∈ {2.8, 4.8} with changing probabilities and
β3 = 4.6, the Nash equilibrium premiums are presented in Table 2.8.

Game G1 G2 G3 G4 G5

P (β11) 0.25 0.5 0.75 0.25 0.75

P (β21) 0.25 0.5 0.75 0.75 0.25

Nash equilibrium premiums

x?11 1.649 1.693 1.742 1.692 1.694

x?12 1.466 1.502 1.543 1.502 1.503

x?21 1.563 1.608 1.658 1.588 1.629

x?22 1.453 1.493 1.537 1.475 1.511

x?3 1.451 1.498 1.551 1.487 1.511

Table 2.8: Three players games with asymmetric information about β1 and β2
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Smaller expected value of the price elasticity coefficient and higher uncertainty, result in
higher premiums.

Case VI

For βj = (3, 3.8, 4.6), π1 ∈ {0.8, 1.4} with changing probabilities, π2 = 1.117 and π3 =

1.083, the Nash equilibrium premiums are presented in Table 2.9.

P (π11) 0 0.25 0.333 0.5 0.667 0.75 1

x?11 1.426 1.415 1.394 1.373 1.362 1.330

x?12 1.758 1.726 1.715 1.694 1.673 1.662

x?2 1.608 1.559 1.543 1.511 1.478 1.462 1.413

x?3 1.566 1.519 1.503 1.471 1.440 1.424 1.376

OB11 0.764 0.746 0.710 0.674 0.656 0.604

OB12 0.242 0.207 0.196 0.174 0.153 0.143

Table 2.9: Three players games with asymmetric information about π1

One can note, that if Player 1 has π1 = 0.8, his objective function is equal to 0.604 in the
full information game. The objective function value in the asymmetric game has higher
value, meaning that a rational Player 1 will keep the uncertainty about his break-even
premium.
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Chapter 3

Analysis of insurers’ market share in the

Swiss mandatory health insurance

market

ABSTRACT

In the mandatory health insurance market in Switzerland a range of insurers offer policies
that differ in characteristics like premium and service level. In this paper, we give an
overview of the Swiss health insurance market and analyse the relationship between these
characteristics and the changes of the insurers’ market shares. We develop a linear model
with two-sided lognormally distributed errors and use a publicly available data on the Swiss
mandatory health insurance market for the years 2002 to 2015 to test several hypotheses
concerning main drivers for changes in market shares. The results suggest that market
share changes are particularly linked to the difference between the insurer’s premium and
the market premium. In addition, the difference to the previous year’s premium also has
an impact on the market share while the service level as well as group affiliation turn out
not be significant in explaining annual market share changes.
This chapter is based on the manuscript Daily-Amir et al. (2019), which is submitted for
publication.

3.1. Introduction

Health insurance systems around the world face major challenges including increasing ex-
penditures and a growing number of old people leading to a growth of premiums. According
to the OECD Health Statistics published in 2017 (Groninger & Lacher (2017)), the average
expenditure for health-related services in 2016 was 9% of the GDP in the OECD countries.
In Switzerland, it increased from 9.4% in 1999 to 12.4% in 2016 and, in the US, it amounted
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to 17.2% in 2016. While the GDP in Switzerland only grew by 90% and the population by
23% from 1990 to 2014, the healthcare costs grew by 165% in the same period.

In this paper, we are interested in better understanding the development of health insurers’
size and to link this evolution to the pricing decisions in the mandatory health insurance
market in Switzerland. We formulate a model for the impact of the premium decisions
on the individual insurer’s market share and test it on publicly available data. In fact,
insurers operate in a competitive and highly regulated market that went through a process
of consolidation and a major reduction of the number of players over the last years. There
are numerous studies in different countries regarding the influence of price changes, service
level, number of available insurance plans, the health situation and the age of the insureds
on the health plan consumer’s choice. Schut et al. (2018) compare the switching behaviour
of insureds in Germany and the Netherlands. They show that in Germany, insureds react
more sensitively to an increase of premium than in the Netherlands. They also find that
older policyholders are less sensitive to increasing premiums than younger ones. Chris-
tiansen et al. (2016) analyse the policyholders’ switching behaviour in the German private
health insurance market. Their findings show that a premium change and its adjustment
frequency relate to the switching behaviour of customers between insurers. Schmitz &
Ziebarth (2017) use field data to test the effect of price framing on the switching rates
in the German health insurance market. They find that presenting differences between
the insurer’s premium and a federal reference premium in absolute Euro values instead of
percentage points of the gross salary, results in increasing switching rates. In the Dutch
health insurance market, Boonen et al. (2016) test the effect of premium and quality rating
of the insurer on the switching decision of the insureds. Other studies such as Strombom
et al. (2002) and Goldman et al. (2004) also investigate the effect of price on the insureds’
health insurance choice. Schmeiser et al. (2014) study the perception of risk factors and
gender-related price differences in several European countries and insurance products in-
cluding Switzerland and health insurance. A game-theoretic approach to model pricing
decisions and lapse rates of policyholders as a function of the different players’ premium
decisions is suggested by Dutang et al. (2013), see also Albrecher (2016) and Albrecher &
Daily-Amir (2017) for including asymmetric information in the analysis.

Studies on decision making find that more options to choose from is linked with inertia.
Decision makers tend to avoid taking a decision and stay with the current choice (see e.g.
Samuelson & Zeckhauser (1988)). Eling & Kiesenbauer (2011) and Hellier et al. (2003)
suggest the number of different insurance models and the rate of complementary insur-
ance holders as explanatory variables to the switching behaviour of the insureds. Frank
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& Lamiraud (2009) discover that the large number of plans, offered by a large number of
players in the Swiss health insurance market, contributes to the relatively low switching
rate and large premium differences. They find evidence that policyholders who stay with
the same health plan provider for longer periods are less likely to switch plans, representing
a certain degree of inertia. In another study on German health insurance, Wuppermann
et al. (2014) test the effect of the number of available health insurance plans and their
respective premium differences on the premium sensitivity of the insureds. They also find
that insureds are less likely to switch to a lower priced plan when they have more plans to
choose from.

In terms of linking customer satisfaction and loyalty to their service provider, conclusions
are unclear. For example, Abraham et al. (2006) report that they did not find a connec-
tion between health plan satisfaction and switching behaviour, for which high switching
costs are suggested as a possible reason. In their studies Staudt & Wagner (36) and Mau
et al. (2018), the authors analyse customer loyalty, the development of relationships and
purchase in the non-life insurance market in Switzerland. They link purchase behaviour to
the services and channels used.

Among other factors to explain switching behaviour, Browne & Hofmann (2013) find ev-
idence that low-risk policyholders are more likely to change health plans. In the Spanish
health insurance market, Pinquet et al. (2011) find evidence that insufficient information
about the available insurance plans cause the insureds to lapse.

In this paper, we formulate and test several hypotheses concerning the influence of pre-
miums, group affiliation and service level on the market share of Swiss insurers. We use
data covering a period of 14 years, from 2002 to 2015, containing portfolio size, premiums
and service level for each insurer in each of the 26 Swiss cantons. Applying linear regres-
sion models, the results suggest that the relative difference between insurer’s premium and
market premium represent a significant factor to explain changes in market share. The dif-
ference between the relative annual change in the premium and the relative annual change
in the market premium is another significant factor while our study does not indicate a
significant impact on market share changes from service level and group affiliation. We also
establish that those sensitivities vary considerably among cantons. We find that residuals
in the regression are rather two-sided lognormally distributed than normally distributed,
and develop a corresponding statistical procedure for this case, which may be interesting
in its own right.
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The rest of this paper is organised as follows: Section 2 provides an overview of the Swiss
Health insurance market, Section 3 then describes the available dataset, discusses limita-
tions, states the model and the hypotheses. Section 4 contains the results and Section 5
concludes. Details on the methodology for our linear model with lognormal residuals is
given in the appendix.

3.2. The Swiss health insurance market

Buying a basic health insurance policy is compulsory for all Swiss residents since 1996 with
the introduction of the Swiss Health Insurance Federal Law (Swiss Confederation, 1994).
LAMal intended to deal with the increasing costs on health while ensuring a high quality
health system, promoting freedom of choice and solidarity. LAMal determines a manda-
tory health insurance for all Swiss residents (Swiss Health Insurance Benefits Ordinance
832.102) as a basic homogeneous cover with defined benefits (Health Insurance Benefits
Ordinance 832.112), imposes reserve levels to ensure the financial stability of the insurers,
forces the acceptance of every person as a client without screening and ensures the flexi-
bility to change the insurance plan without switching costs (Theurl (1999)). In terms of
organization, although highly regulated by the state, insurance plans are offered by private
insurance companies. The law sets limits on premium discounts between plans (e.g. for
deductibles) and forces the insurers to set premiums for each level of deductible in a way
that the cover of the insurance expenses is done without profit. The government employs
a risk adjustment scheme and transfers capital between insurers in order to balance the
financial situation across insurers. In that way, insurers facing higher medical expenses
receive capital from insurers with a less risky pool of policyholders.
The governance of the health care system is done on a federal level by both the Swiss Fed-
eral Office of Public Health (SFOH) and the Federal Department of Home Affairs (FDHA),
and on a cantonal level by the cantonal Department of Public Health. The SFOH defines
the mandatory health insurance benefit basket, regulates the insurers and approves their
premiums annually. The FDHA defines up to three regions within a single canton for
the premiums and sets the maximum differences between them (Ordinance of the Federal
Department of Home Affairs on Premium Regions 832.106). The cantons supervise the
hospitals and finance part of their expenses. The federal government together with the
cantons subsidy the health insurance premiums for low-income households. The condi-
tions and the level of the financial aid vary from canton to canton. In 2015, almost 27%

of the insureds received some level of financial support in the premium payments. The
cantons transfer the financial aid directly to the health insurers and the policyholders pay
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the difference.
The billing system includes two standard methods. The indirect claim settlement, known
as "tier garant", is the main billing method. Under this method, the care giver (e.g. doctors
and physiotherapists) sends the medical bill directly to the policyholder. After controlling
and paying the bill, the policyholder passes a reimbursement demand to his insurer that
will compensate the policyholder with the bill amount minus the deductible and the par-
ticipation amounts. In the direct claim settlement, known as "tier payant", the doctor
sends the bill directly to the insurer. The insurer pays the bill and issues an invoice to
the policyholder for the deductible and the participation amounts. Usually, policyholders
can choose between the two billing methods, however, some insurers do not allow a "tier
payant" method for the purchase of medications. In such cases, the policyholders need to
pay for medications themselves and wait for the reimbursement. For low-income house-
holds, this might present financial difficulties so these customers may choose other insurers.

The 26 Swiss cantons differ considerably in terms of economic, political and demographic
characteristics. Table 3.1 summarises some characteristics for the most populated cantons
in each linguistic region with Zurich (ZH), Bern (BE) and Aargau (AG) from the German
speaking region, Vaud (VD) and Geneva (GE) from the French speaking region and Ticino
(TI) as the Italian speaking region as well as Switzerland (CH) as a whole. For example,
in 2016, the rate of population living in urban areas was 100% in Geneva and only 74.6%
in Bern. The number of physicians in private practice per 100,000 people was more than
twice as large in Geneva than in Bern. Differences like these lead to variations among the
cantons in the market structure, premium levels, competition and switching rates.

An overview of the Swiss health insurance market is published every year by SFOH and key
financial figures for the years 1998 to 2015 are reported in Table 3.2. One can observe the
reduction of the number of insurers, the large growth in premiums and expenditures and
the operating results alternating through years with positive and negative results. In the
following subsections, we present the development since the introduction of the mandatory
health insurance law.

3.2.1. Market structure

The Swiss health insurance market is heterogeneous with insurance portfolio sizes ranging
from very small regional insurers with a customer base of less than 5,000 up to big insurers
with a customer base of over 500,000 insureds. Like other health insurance markets, the
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Canton AG BE GE TI VD ZH CH

Residents (2016) 663,462 1,026,513 489,524 354,375 784,822 1,487,969 8,419,550

Urban population in % (2016) 85.1 74.6 100.0 92.0 89.6 99.3 84.6

Unemployment rate in % (annual
average 2017)

3.15 2.59 5.28 3.38 4.52 3.54 3.19

Physicians in private practice per
100 000 people (2017)

167 220 376 219 244 257 219

Hospital beds per 1000 people
(2017)

4.5 4.8 5.2 5.4 4.8 4.2 4.5

Debt of the cantons in CHF per
inhabitant (2016)

3,542 6,735 31,504 10,300 4,382 5,236 7,640

Social assistance rate (2016) 2.2 4.2 5.7 2.8 4.8 3.2 3.3

Higher education rate (2016) 22.6 24.0 28.0 29.1 25.9 22.6 28.7

Source: Federal Statistical Office, 2018

Table 3.1: Economic and demographic data for selected cantons and Switzerland

Swiss market underwent a consolidation process since the introduction of LAMal (Robinson
(2004)). In 1996, the number of insurers offering health insurance was 145 and has reduced
significantly in the last 20 years to a total of only 58 in 2015 (see Table 3.3) due to mergers
and acquisitions of companies. The number of insurers with a customer base of up to 5,000
reduced significantly from 90 in 1996 to 11 in 2015, whereas the number of insurers with
a customer base greater than 100,000 has increased. Froidevaux & Kilchenmann (2016)
suggest that insurers who offer low premiums receive many new affiliation demands, but
as the state of health of newly insureds is not known, these insurers have to substantially
increase their reserves to cover the unknown risk. They mention that this risk has put
several insurers into financial difficulties in the past, among them mainly small and medium
sized ones that targeted regional communities. Over the long run, some of these insurers
have then been absorbed by larger competitors.

Groups of insurers often have more flexibility and are able to offer larger premium ranges
for different members in the group. Additionally, a group of insurers can consolidate the
business by restructuring the group. In 2015, more than 50% of the insurers were either
part of a group or related to a group by a collaboration contract, and these groups of
insurers amount to 80% of the market (Froidevaux & Kilchenmann (2016)). As a result,
the market share (in terms of number of insureds) of the insurers with more than 100,000
customers increased from 82% in 1996 to 92% in 2015 (see Figure 3.1). Figure 3.2 illustrates
the development of market shares from 1998 to 2015 of the eight largest insurers as of 2015.

The insurers’ market shares largely differ among cantons. As an illustration, Figure 3.3
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Number of Average number Average premium Gross expenses Total Premium Gross expenses Total operating

insurers of insureds per insured per insured result

Year (1’000) (CHF) (CHF) (CHF mio.) (CHF mio.) (CHF mio.)

1998 118 7,247 1,754 1,935 12,708 14,024 -0.03

1999 109 7,271 1,793 2,011 13,034 14,621 -49.39

2000 101 7,265 1,850 2,131 13,442 15,478 -305.95

2001 99 7,301 1,917 2,244 13,997 16,386 -789.7

2002 93 7,345 2,091 2,328 15,355 17,096 -223.67

2003 93 7,373 2,281 2,431 16,820 17,924 399.73

2004 92 7,384 2,442 2,592 18,030 19,140 514.14

2005 85 7,436 2,487 2,736 18,496 20,348 171.42

2006 87 7,478 2,583 2,755 19,315 20,603 490.95

2007 87 7,538 2,612 2,863 19,689 21,579 178.66

2008 86 7,616 2,586 2,984 19,692 22,722 -755.32

2009 81 7,709 2,611 3,069 20,125 23,656 -471.61

2010 81 7,780 2,834 3,123 22,051 24,292 224.51

2011 63 7,863 3,005 3,171 23,631 24,932 587.67

2012 61 7,953 3,075 3,257 24,458 25,901 915.88

2013 60 8,046 3,105 3,471 24,984 27,926 -141.2

2014 60 8,147 3,172 3,515 25,845 28,639 295.74

2015 58 8,245 3,289 3,653 27,119 30,122 -606.89

Table 3.2: Key figures on the Swiss health insurance market from 1998 to 2015
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Figure 3.1: Development of the market share by
insurer size
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Figure 3.2: Development of the market share of
the eight largest insurers

shows the market shares in six cantons of the eight largest insurers in the respective canton
per year between 2002 and 2015 where the largest insurer in each year is noted by 1, the
second largest by 2 and the eighth largest insurer by the number 8. In GE, the total market
share of the eight largest insurers grew from about 40% of the market in 2002 to 60% in
2015. In ZH, the market share is distributed more equally between companies. In VD,
during the first years, the market share was more equally distributed, but in recent years,
big insurers have captured large market shares, so that market is mainly dominated by a
few bigger insurers today.

3.2.2. Premium development 1998-2015

Naturally, the premium size may drive the insureds to switch their insurance plan. Since
health expenditures keep growing the insurers have to raise the premiums (see Table 3.2).
The calculated average yearly growth (CAGR) is 3.68% during 1998-2015 where the yearly
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Figure 3.3: Market shares of eight largest insurers in different cantons 2002-2015
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Number of
customers

Up to 5,000 5,001-
10,000

10,001-
50,000

50,001-
100,000

100,001-
500,000

Over
500,000

Total

1996 90 14 20 6 12 3 145

1997 76 14 20 4 11 4 129

1998 64 13 21 6 10 4 118

1999 56 12 19 8 10 4 109

2000 48 11 19 9 10 4 101

2001 43 9 23 9 11 4 99

2002 33 10 25 9 13 3 93

2003 32 10 26 9 12 4 93

2004 32 11 24 9 12 4 92

2005 27 13 20 8 13 4 85

2006 28 14 20 7 14 4 87

2007 27 13 21 8 14 4 87

2008 26 13 19 9 15 4 86

2009 22 10 20 8 17 4 81

2010 19 10 22 9 16 5 81

2011 13 10 14 3 18 5 63

2012 14 8 13 3 18 5 61

2013 14 8 10 5 18 5 60

2014 14 8 10 5 18 5 60

2015 11 9 10 6 17 5 58

∆1996− 2015 -88% -35% -50% 0% 42% 67% -60%

Table 3.3: Number of insurers by portfolio size (number of customers)

average premium raised from CHF 1,754 in 1998 to CHF 3,289 in 2015. In 2008, after
five years of positive operating results and a reduction by 1% of required reserve rate (ex-
pressed as a percentage of the premium volume) by the authorities, the premium level has
been reduced by 1% (see Comparis, 2008). However, in the years 2002, 2003 and 2010 the
average growth in premiums was much higher than in the other years. One explanation for
this increase is the negative balance between the collected premiums and the paid benefits
in the years prior to the premium jump (see Table 3.2).

The population is aging with life expectancy increasing in Switzerland from 78.9 years in
1996 to 82.9 years in 2015 (World Bank, 2017) and the proportion of adults aged 26 or
more in the population is growing (cf. Figure 3.4), causing increasing health expenses.

The premiums are fixed by the insurers for each premium region in each canton. In each
region, all residents of the same age group (below 18 years, 18-25 years and 26 plus years)
pay the same premium per insurance plan and chosen deductible at the same insurer.
Regulations do not allow premium discounts in the mandatory insurance scheme. To
increase the choice for insureds and in addition to the deductible levels (CHF 300, 500,
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1,000, 1,500, 2,000 and 2,500 for adults), insurers offer restricted models. The two main
restricted models are the Health Maintenance Organization model (HMO) in which the
policyholder agrees to always first consult a specified doctor based at the HMO centre
and the family doctor model in which policyholders consult first their predefined family
doctor who will refer them to a specialist if needed. Other models include the "Telmed"
model in which the policyholder has to call a hotline for a first consultation and then
will be referred to further treatment if needed. The purpose of these models is to limit
medical care within a predefined network of doctors in order to lower health expenses and
to offer lower premiums. According to SFOH data, in 1998 about 66% of the insureds in
Switzerland had the standard basic insurance (with accident coverage and with the lowest
possible deductible, which is CHF 300 since 2004) whereas in 2015 only 21.1% were covered
by this insurance model. Against a background of ever-rising premiums, the reduction in
this share is linked to the fact that policyholders change towards a more restrictive plan
to benefit from lower premiums. The proportion of insureds choosing the standard model
(including accident coverage and deductible of CHF 300) per canton is available for the
years 2001 to 2015 and is presented in Figure 3.5.
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Figure 3.4: Share of the population aged 26 or
more
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Figure 3.5: Percentage of insureds with the stan-
dard model

As mentioned above, insurers perform a premium differentiation by offering several levels
of deductible for the three age groups and models with restrictions. Employees covered by
accident insurance through their employer can buy the basic insurance without accident
cover. These options result in many variations of the basic health insurance premiums
(Colombo (2001)). The average premium is calculated for each insurer as the total premium
income divided by the number of insured from the data published by the SFOH. Although
the law aims at increasing the competition between the insurers, the difference between the
highest premium and the lowest one has not changed much (Figure 3.6) and the maximum
average premium is approximately twice as large as the lowest one. Leu et al. (2009)
suggest that the premium differences among insurers are a result of poor risk adjustment
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schemes. Figure 3.7 shows the premium differences between the cantons. Leu et al. (2009)
find a high positive correlation between the density of physicians and the premium level,
which explains to some extent the premium differences across cantons (see Table 3.1).
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Figure 3.6: Premium range in Switzerland, 1998-
2015
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Figure 3.7: Average premium per canton, 1998-
2015

The effect of the deductible and inflation on the premium level

New drugs, new treatments, new technology and the increase in life expectancy are some
of the reasons that are related to the constant raise in health costs. This phenomenon is
called ‘medical inflation’. In the Swiss mandatory health insurance, policyholders share
the health costs with the insurer. Since 2004, the minimum deductible is CHF 300 and
adults can choose between six options of franchise deductible (CHF 300, 500, 1000, 1500,
2000 and 2500). Adults pay a retention fee as well, above the deductible, of 10% of any
treatment up to a maximum CHF 700 per year and participate by CHF 15 per day of
hospitalization. Children and young adults, contribute reduced amounts. Figure 3.8 shows
the economic index development of:

• Health cost index: the evolution of gross benefits (with participation in the expenses
of the insureds) per insured,

• Premium index: the evolution of the average premium,

• Policyholder cost index: the evolution of costs for policyholders including premiums
and participation in the expenses (only takes into account the invoices announced to
the insurers),

• Income index: the evolution of the nominal wage,

• Insurer cost index: the evolution of the net benefits (without participation in the
expenses of insureds) per insured,

• Consumer price index (CPI): the evolution in prices of goods and services in Switzer-
land.
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Figure 3.8: Index rate in the health insurance sector

One can note that while the development in the premium level and the insurer’s cost follow
the increase in health cost, the CPI and the nominal wage, are significantly lower. Since
the deductible levels stay fixed for many years, the insurers experience even higher increase
in the health costs, due to the leverage effect (Klugman et al. (2008)). This increase in
costs, is transferred to the policyholders through increasing premiums.

3.2.3. Switching behaviour of the policyholders

In view of the strict regulation on the insurers and a defined catalogue of benefits, one
might expect a strong price competition and high switching rates of the insureds to ensure
paying the lowest possible premium. This could then be followed by convergence of the
prices so that the difference between the lowest and the highest premiums would shrink
over the years. However, as seen in Figure 3.6, the premium range does not change a
lot over the years and the yearly estimated switching rate of policyholders published by
SFOH are between 6.5% − 13% (see Figure 3.9). Note that in case of a merger between
insurers, the insureds are counted as a new entries, although they do not have actively
changed. Hence, the actual switching rates are expected to be even lower. Figure 3.9 also
suggests a relationship between the average annual premium change and the switching rate.

Each year in September, the SFOH publishes the premiums for the coming year. At
that time, each insured can compare the change in premium of the own contract with the
average change of all insurers. Policyholders have time until the end of November to change
their provider. The results of a survey among policyholders concerning their switching be-
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haviour (Federal Statistical Office, 2007) suggest that 77% of the ones that changed their
insurer, did so due to premium increases, with higher switching rates among those with
a higher education level (5.5% against 3.6%). The linguistic region has an effect on the
switching rates as well, with a 8% rate in the French-speaking region and only a 2.9%

switching rate in the Italian-speaking region. In 2010, the consumer website bonus.ch did
a survey among 3,700 insureds, where 80% of the customers who changed their insurer,
did so in order to reduce their premium.
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Figure 3.9: Switching rates and annual premium growth from 2004 to 2015

Ortiz (2011) investigates three data sets of Swiss health insurance plans and their prices
for the period from 2004 to 2010. His findings suggest that many policyholders do not
perform a sufficient price optimization when switching the insurer, resulting in choosing
insurers with relatively high premiums. Wilson and Price (2010) suggest that even in a
transparent simple market, the ability of consumers to compare correctly between different
suppliers is rather limited.

The satisfaction level in the health insurance market in Switzerland is very high (79%) and
insureds do not switch insurers when they are satisfied with their current one (Thomson
et al. (2013)). In the above-mentioned survey from 2010 by bonus.ch, 4% of the insureds
that changed their insurer declared that they did so due to a lack of satisfaction with the
services.

In addition to the basic mandatory cover, insureds can buy a complementary insurance.
Dormont et al. (2009) investigate the effect of existing complementary insurance on the
switching behaviour. The results show some evidence that insureds who purchase a com-
plementary insurance are more reluctant to switch the basic insurance provider. These
results are supported by the survey from 2010 done by bonus.ch, in which 13% of insureds
responded that the main reason for them to stay with their current insurer is having a
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complementary plan.

3.3. Hypotheses, available data and model assumptions

3.3.1. Hypotheses and variables

We now present our hypotheses about the effect of selected factors on the insurer’s market
share and define the dependent variable DMSi,t,c as the absolute year-to-year difference of
an insurer’s market share with the one of the previous year, where i indicates the insurer,
t the year and c the canton.

Premiums: Colombo (2001) conducted a study on the switching behaviour of the health
insurance customers in Switzerland and his findings suggest that while service level appears
as minor parameter supporting switching decisions, the premium level is the main motiva-
tion for customers to switch their health plan. Nevertheless, the results of that study show
that in order to reduce their premium level, policyholders prefer to change their health
insurance plan from the standard basic one to more restrictive ones (like HMO) from the
same insurer. Following these findings and the surveys mentioned in Section 3.2.3, we want
to test two different variables associated with the premiums. First, we suggest that the
annual changes in market share of insurers depend on the relative difference between the
insurer’s premium and the market premium denoted by RDPMi,t,c. Our hypothesis (H1) is:

(H1): A lower premium than the market premium results in an increasing market share.

Secondly, we define DRPCi,t,c as the absolute difference between the insurer’s relative an-
nual change in the premium and the one of the market premium. We assume a positive
relationship between premium increase and switching decisions:

(H2): A higher relative annual increase in premium than in the market premium results
in a decreasing market share.

Satisfaction: Although a satisfied customer is not necessarily a loyal customer, Berry
(1995) claims that a good service level promotes the relationship with customers in service
companies such as insurance. Anderson et al. (1994) find a positive effect of satisfaction
and performance. We define an explanatory binary variable for the satisfaction of the pol-
icyholders SLi,t. Our hypothesis (H3) is:
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(H3): Insurers with better customer satisfaction level yield an increasing market share.

Group: Companies that are members of a group have advantages such as knowledge shar-
ing, reduced administrative expenses from scale effects and stronger marketing. Following
various research findings such as Cummins and Xie (2008), we test whether belonging to
a group supports the insurer and allows to attract and retain more customers. We define
a binary variable (GRi,t) representing if the insurer is part of an insurance group or not.
Our hypothesis (H4) is:

(H4): Belonging to a group results in an increasing market share.

Canton: As discussed in Section 3.2.3, the switching behaviour of the policyholders is
related to demographic parameters such as language and education level. The language
spoken is strongly linked to the cantons, i.e. we want to test the hypothesis that in different
cantons, the independent variables affect the market share of the insurers differently. Nev-
ertheless, as different insurers operate in the different cantons, we cannot quantify these
differences so we will test this assumption qualitatively (H5).

We summarise the variables introduced above in Table 3.4:

Variable Description Type

DMSi,t,c Absolute year-to-year difference in market share Number

RDPMi,t,c Relative difference between the insurer’s premium and the market
premium

Number

DRPCi,t,c Difference between the insurer’s and the market’s relative annual
change of the premium

Number

SLi,t Satisfaction level of the customers Binary: low, high

GRi,t Group affiliation Binary: yes, no

Table 3.4: Description of the variables

3.3.2. Available Data

Data description

The Swiss Federal Statistical Office publishes yearly reports, including data of the health
insurance system in Switzerland. The available data for the years 2002-2015 include the
premiums for different insurance models offered by the insurers in the different cantons, the
size of the portfolio of each insurer per canton, the percentage of insureds with the basic
standard model per canton and general statistics about the insured population including
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age and sex. For each of the 26 cantons and each year, we consider the data from insur-
ers with market share greater than 1% neglecting smaller insurers. We analyse a dataset
containing a total of 6,117 data points with an accumulated market share from 80% held
by 16 insurers in Neuchâtel (NE) in 2003 to over 97% held by 22 insurers in Schaffhausen
(SH) in 2014. The number of retained insurers per canton and per year varies from 10 in
the canton Appenzell Innerrhoden (AI) in 2002 (total market share of 96%) to 25 insurers
in BE in 2008 (total market share of 95%). More specifically, in GE and VD, the number
of insurers with market share greater than 1% decreased by three between the years 2002
to 2015 while in the German cantons, the number increased by three. In TI, the number
increased from 17 insurers in 2002 to 22 in 2008, before decreasing back to 17 in 2015.

Data preparation

In our work, we only consider the basic standard insurance model including accident cover
and a deductible of CHF 300 for the group of adults aged 26+ years. We use the published
premiums for the chosen insurance model and the portfolio size for each insurer, each year
and canton. From the data, we calculate:

• The Market Share (MSi,t,c) per insurer, year and canton as the size of an insurer’s
customer base divided by the population in the canton.

• The Market Premium (MPi,t,c) for insurer i as the weighted average premium (with
market shares) of all the other insurers in the market per year and canton.

• The absolute year-to-year change in market share DMSi,t,c= MSi,t,c −MSi,t−1,c as
the difference between the current year market share and the one of the previous year
per insurer, year and canton.

• The relative difference between the insurer’s premium and the market premium
(RDPMi,t,c) as the difference between the current year premium (Pi,t,c) and the cur-
rent market premium (MPi,t,c) divided by the current market premium, i.e. RDPMi,t,c

= (Pi,t,c−MPi,t,c)/MPi,t,c. As this is a relative difference variable, we can ignore the
inflation and use the nominal premium values given in the dataset.

• The difference between the relative annual change of the insurer’s premium and the
relative annual change in the market premium (DRPCi,t,c) per insurer, year and
canton, which is defined by

DRPCi,t,c = [(Pi,t,c − Pi,t−1,c)/Pi,t−1,c]− [(MPi,t,c −MPi,t−1,c)/MPi,t−1,c].
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As mentioned in Section 3.2.3, the policyholder can compare the annual change in his
premium with the average annual change in the canton. These changes are based on
the actual premium levels without considering the inflation, so we ignore the inflation
effect when calculating the variable DRPCi,t,c values.

Annual consumer satisfaction reports are published by comparis.ch and bonus.ch and
include a calculated grade for each of the ranked insurers based on customer satisfaction.
Generally, the policyholders are satisfied with their insurers and give relatively high grades
for the service level with averages ranging from 4.80 to 5.03 out of 6 over the years. We
assigned a binary satisfaction level variable (SLi,t) with 0 (=low) for all non-ranked insur-
ers and defined it as our baseline. The ranked insurers are all given a ranking grade of 1

(=high). Since the source for available satisfaction reports varies over the years and not
all insurers are ranked, the reliability of these data is lower. This is why we remain with
only using a two-level rating.

The group affiliation variable (GRi,t) is binary and is assigned using information from in-
surers’ websites and reports. Our baseline value is zero for insurers that are not affiliated
to a group.

Outliers: As in 2011, one group of insurers restructured the group and reduced the num-
ber of insurers from 15 to only four. This event led to considerable increase in the market
share of the four remaining insurers. We consider these data points for 2011 as outliers
and we remove them (29 data points) from the dataset.

Data limitations

Before proceeding with the analysis, we lay out the important limitations of our data as
follows:

• Information about market events such as mergers and acquisitions are not included
as this information is not fully available. Nevertheless, such events may have an
important impact on the market share.

• Our data includes only the total number of insureds per year per insurer per canton
mixing all available insurance models so we use the market share (MSi,t,c) as an
estimation of the insurers’ cantonal market share. This is relevant since for the
premium level we remain with using the standard model premium for reference.

• The yearly switching rates between insurers are unknown and there is no information
about the number of policyholders that change their insurance model within the same
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insurer.

Descriptive statistics

Table 3.5 presents descriptive statistics of the variables for the entire dataset. We give
the average monthly premium, the mean of the market share for each year which ranges
between 5.2% − 6.3% and basic statistics (the mean, minimum, maximum and standard
deviation) of the dependent variable DMSi,t,c, the explanatory variables RDPMi,t,c and
DRPCi,t,c as well as SLi,t and GRi,t.

We suggest that some of extremal values in DMSi,t,c can be explained by specific events in
the market like mergers and acquisitions of insurers, reduction in financial reserves below
the required level which results in an important raise in premiums or the restructuring of
an insurance group. The minimum and maximum yearly values of DMSi,t,c are in 2010
and 2011 with both years having high switching rates (see Figure 3.9). The year 2010 was a
year with high increases in premiums while between 2010 and 2011 the number of insurers
has reduced from 81 to 63. These events partially explain the extremal values of DMSi,t,c

in 2010 and 2011.

The minimum yearly values of RDPMi,t,c are between -0.182 and -0.245. Some insurers
offer an attractive premium with average RDPMi,t,c over all cantons and all years of -12%.
Other insurers set premiums above average with an average value of RDPMi,t,c of 14%.
Groups of insurers often offer different premium ranges for the basic health insurance. For
example, in one group, two insurers may offer different premiums for the basic standard
model with one being significantly higher than the market premium and the other one
being lower than the market premium.

Reduction in financial reserves below the required level can result in an important raise in
premiums in the following years. The largest observed DRPCi,t,c is 32% in 2013 when an
insurer fell below the statuary reserve ratio and had to increase premiums by up to 34%

in canton Nidwald (NW) while the market premium increased by only 2%. Unexpected
increases in claims or administration costs can be another reason for a significant rise of
premiums. Such has happened in 2012 in canton Zug (ZG) with one insurer raising premi-
ums by 20%. In 2015, the minimum value of DRPCi,t,c is -22% for an insurer that reduced
premiums in the canton Obwalden (OW) by 16% while the market premium increased by
6%.

Cooperation between insurers in the same group and mergers and acquisitions might be
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related to extremal values as well. In 2003, a ZH based insurer joined an insurers’ group
and while its market share reduced in the canton by 30%, another insurer from the group
increased its portfolio size by a factor of five from 4,900 insureds in 2002 to 24,500 in 2003.
In 2009, a merger of a Luzern based insurer with another insurance company increased the
market share by 3.69 in the canton.

When we plot RDPMi,t,c and DRPCi,t,c versus DMSi,t,c for all Switzerland (Figures 3.10a
and 3.10b), one can observe that the relationship is not linear. One possible explanation
is that the plot mixes data points from all cantons and that the influence of the variables
on the market shares differs in different cantons, in a superposition of different slopes.
The value of the correlation coefficient between DMSi,t,c and RDPMi,t,c is -0.420 and
between DMSi,t,c and DRPCi,t,c the value is -0.266 for the 6, 117 data points. Figure
3.11 presents the relationship between RDPMi,t,c and DMSi,t,c for six selected cantons.
Indeed, on the canton level the relationship turns out to be more linear, with the slopes
differing across cantons. In fact, French-speaking cantons have a steeper slope than others,
indicating stronger reactions by insureds in those regions. A similar picture occurs when
plotting DRPCi,t,c versus DMSi,t,c (Figure 3.12), with again more pronounced slopes for
the French cantons.
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Figure 3.10: The relationship between DMS and explanatory variables

Overall, the distribution of the SLi,t values through all 26 cantons is shown in Figure 3.13a.
The variation in the distribution between the cantons can been seen with ZH and TI hav-
ing over 85% data points of high ranked insurers and only 15% of low ranked insurers.
BE has more than 28% data points of lower ranked insurers. One explanation could be
that the insureds in BE are more sensitive and critical to service level. Figure 3.13b shows
the percentage of data points of insurers with group affiliation per year from 2002 to 2015
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Figure 3.11: RDPM versus DMS in selected cantons

(variable GRi,t). The percentage of insurers that are not affiliated with a group reduced
during the years from 47% in 2002 to 27% in 2015.

3.3.3. Regression models

To test our hypotheses (H1) - (H4), we first construct a set of linear models (R1). As the
number of data points is limited for each canton, we define (R1) with single regressions
testing our hypotheses about the different variables one by one such that the difference
in market share (DMSi,t,c) depends on the relative difference between the premium and
the market premium (RDPMi,t,c), the difference between the relative annual change in
the premium and the market premium (DRPCi,t,c), the service level (SLi,t) and the group
affiliation (GRi,t). To analyse our assumption on different effects of variables on the market
shares in different cantons, (H5), we will run the regression for the six selected cantons
separately. We define (R1) as:



Chapter 3. Analysis of insurers’ market share in the Swiss mandatory health insurance market 68

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4

−0
.0
6

−0
.0
2

0.
02

0.
06

AG

DRPC

D
M
S

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4

−0
.0
6

−0
.0
2

0.
02

0.
06

BE

DRPC

D
M
S

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4

−0
.0
6

−0
.0
2

0.
02

0.
06

GE

DRPC

D
M
S

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4

−0
.0
6

−0
.0
2

0.
02

0.
06

TI

DRPC
D
M
S

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4

−0
.0
6

−0
.0
2

0.
02

0.
06

VD

DRPC

D
M
S

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4

−0
.0
6

−0
.0
2

0.
02

0.
06

ZH

DRPC

D
M
S

r = .473

r = .010

r = .362

r = .305

r = .168 r = .378

r	=	-.473 r	=	-.362

r	=	-.010 r	=	-.305

r	=	-.473r	=	-.168

Figure 3.12: DRPC versus DMS in selected cantons

DMSi,t,c = β0 + βj ·VARi,t,c + εi,t,c with VARi,t,c ∈ {RDPMi,t,c, DRPCi,t,c, GRi,t, SLi,t} (R1)

where β0 is the intercept, βj is the coefficient for the independent continuous variables
RDPMi,t,c, DRPCi,t,c and the binary categorial variables SLi,t and GRi,t and εi,t,c are
error terms.

Secondly, we propose a multivariable linear model (R2) including both continuous premium
related variables such that:

DMSi,t,c = β0 + β1·RDPMi,t,c + β2·DRPCi,t,c + εi,t,c (R2)

where β0 is the intercept, βj is the coefficient for the independent continuous variables
RDPMi,t,c and DRPCi,t,c and εi,t,c are error terms.

Figure 3.14 shows the histogram of DMSi,t,c for the entire dataset together with a normal
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Figure 3.13: Group distribution and satisfaction distribution

and a two-sided lognormal fit. Clearly, the normality assumption is violated in this case,
and the two-sided lognormal assumption seems to be a much better description for the
data. For a quantitative comparison in terms of AIC on the resulting residuals, we refer
to Section 3.4. We therefore suggest to perform the linear regressions (R1) and (R2) with
two-sided lognormally distributed residuals. The corresponding needed statistical method-
ology is given in the appendix. In Section 4, we compare the results and Q-Q plots of
the residuals from the regressions with normal residuals and with the two-sided lognormal
residuals. We will see that for individual cantons the normality assumption is better ful-
filled, however, the regression with two-sided lognormally distributed residuals turns out
to fit better in these cases as well.
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Figure 3.14: Distribution of the dependent variable DMSi,t,c with normal (blue) and two-sided
lognormal (green) fit
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3.4. Testing the regression models and results

First, we test the classical regression with normally distributed residuals. The results for
model (R1) with normal residuals are presented in Table 3.6 including the coefficients with
their standard deviation and the adjusted R2 as criterion for goodness of fit. They show
that the explanatory variables, RDPMi,t,c and DRPCi,t,c, are very significant in the six
cantons and for Switzerland. Service level and group affiliation are not significant explana-
tory variables in most of the cantons.

We also conduct a linear regression analysis with normal residuals for a multivariate re-
gression model (R2) with RDPMi,t,c and DRPCi,t,c as explanatory variables in the se-
lected cantons and for the entire dataset and we report the results in Table 3.7 including
the variable coefficients (β), the significance level with standard deviation (in brackets),
the standardised coefficients (Std.β), the adjusted R2 and number of observations. Both
explanatory variables are very significant, nevertheless a comparison of their coefficients
shows that the standardised coefficients of RDPMi,t,c are higher than the ones of DRPCi,t,c
which suggests that a change in RDPMi,t,c has a higher effect on DMSi,t,c than a change
in DRPCi,t,c. The coefficient values vary as a function of the canton with highest values
in GE and lowest in AG. The adjusted R2 values are higher than in the set of single re-
gressions and are between 16.8% in AG and 35% in GE and ZH.

The analysis of the residuals from the regression with the entire dataset of Switzerland
(see Figure 3.15a) confirms that the normality assumption is not met in this case, so the
validity of the results is non-satisfactory. For the individual cantons (see Figure 3.15b for
TI as an example), the results show a better agreement to the normality assumption.

In order to enhance the credibility of the findings, we conduct the linear regression (R2)
with two-sided lognormal residual distribution (according to the procedure outlined in the
appendix) and we report the results in Table 3.8 including the variable coefficients and
their significance. We verify the significance levels of the explanatory variables with Nsim
= 5,000 (see appendix).

The analysis of the residuals in the case of the entire dataset of Switzerland (Figure 3.16a)
confirms the excellent fit of the two-sided lognormal model with AIC =-47,257 compared
with -42,120 under the normality assumption. Figure 3.16b shows the Q-Q plot of the
residuals for TI (as an example for the performance on the cantonal level) and confirms
a better fit than the model with normal residuals (compare with Figure 3.15b). The two-
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Figure 3.15: QQ-plot of normally distributed residuals versus theoretical quantiles

AG BE GE TI VD ZH CH

RDPMi,t,c -.0150 *** -.0140 *** -.0412 *** -.0101 *** -.0192 *** -.0204 *** -.0164 ***

DRPCi,t,c -.0033 -.0215 *** -.0925 *** -.0337 ** -.0236 ** -.0195 *** -.0175 ***

Intercept -.0008 -.0006 .0015 -.0006 .0004 -.0006 -.0006

Observations 283 293 184 259 228 268 6,117

The reported values show the regression coefficients with significance code.
Significance codes: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01; Nsim = 5, 000

Table 3.8: Multivariate regression results with two-sided lognormal residuals

sided lognormal model fits the data better in the other individual cantons as well.

When considering the results from the regressions with normality assumption and two-sided
lognormal assumption, we notice that:

• RDPMi,t,c, the relative difference between the insurer’s and the market premium, is
the most significant explanatory variable with very high significance level in all can-
tons and with the aggregated data for all Switzerland in both regressions. The coef-
ficient values of RDPMi,t,c are always negative which indicates the negative relation
between the dependent variable DMSi,t,c and the explanatory variable RDPMi,t,c.
The coefficient values with normal residuals are always higher (in absolute value)
than the ones with the two-sided lognormal residuals.

• DRPCi,t,c, the difference between the insurer’s and market annual premium change,
is a significant explanatory variable with negative coefficient values, meaning that
a larger value of the difference between the relative change in annual premium and
the relative change of the market premium causes a diminution in market share.
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Figure 3.16: QQ-plot of Two-sided lognormally distributed residuals versus theoretical quantiles

However, for the model with two-sided lognormal residuals, in AG the DRPCi,t,c is
not a significant explanatory variable and the coefficient value is only -.0033 compared
to -.0195 under the assumption of normal residuals.

• The intercept of the multivariate regression (R2) has positive values in GE and
VD and negative values in the German cantons. As the number of insurers in GE
and VD reduced along the years of our study, naturally, even with zero values of
the explanatory variables, the insurers’ market shares grow and vice-versa for the
German cantons.

We summarise the results in the following: The relative difference between the in-

surer’s and the market premium is the most significant variable and the coefficients
of RDPMi,t,c have negative value. The results support our hypothesis (H1) that a lower
premium than the market premium results in increasing market share. Further, the dif-

ference between the relative annual change in the insurer’s premium and the

relative annual change in the market premium is a significant explanatory variable
with negative coefficient values. The results support hypothesis (H2) that higher relative
annual increase in premium than the market premium results in decreasing market shares.
Satisfaction level is not a significant variable and the results do not support hypothesis
(H3). The group affiliation does not affect the dependent variable so this result does
not support our hypothesis (H4). The regression results are different among the cantons
implying that factors influence the market shares differently in different cantons, which
supports hypothesis (H5). Since the operating insurers vary between the cantons, we
could not quantify these effects through a categorial canton variable.
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3.5. Concluding remarks

The Swiss health insurance market has changed dramatically in the years since the intro-
duction of the mandatory health insurance in 1996. The number of insurers offering health
insurance plans decreased extensively from 145 insurers in 1996 to 58 in 2015 and the an-
nual premiums increased from an average annual premium of CHF 1,917 in 1996 to CHF
3,286 in 2015. We analyse the effect of different variables such as premium, satisfaction
level and group affiliation on the market shares of the insurers in the different cantons. We
define a model with the market share as dependent variable and four explanatory variables
and test hypotheses using data of the mandatory health insurance for the years from 2002
to 2015.

Our regression results support the hypothesis that the difference between the insurer’s
premium and the market premium is strongly negatively correlated to the market share.
We get confirmation for the hypothesis that the premium change from one year to another
is important as well. The results do not support the hypothesis about satisfaction. One
explanation can be that customers in Switzerland are in general satisfied with their insurer
and the small differences in satisfaction levels do not affect the market shares much. The
hypothesis that belonging to a group of insurers results in a higher market share is not sup-
ported in our findings. Additional investigation of other explanatory variables such as age,
education level, health status and possession of complementary insurance is suggested for
future research according to the availability of such data. As the available panel dataset is
growing every year with the publication of new data, it will be possible to add explanatory
variables without the risk of overfitting.

Appendix: A regression model with two-sided lognormal residuals and its es-

timation

Data sometimes exhibit a linear relation between variables to a satisfactory degree, but
instead of normally distributed residuals, the latter follow another distribution. For non-
normally distributed residuals within the context of risk modelling see e.g. Prettenthaler
et al. (2012). In the context of the application in this paper, it turns out that two-sided log-
normally distributed residuals provide an excellent fit. Therefore, we develop a regression
model which can be fitted to data that exhibit two-sided lognormally distributed residuals.

More specifically, let us consider a p-dimensional vector of independent variates X and a
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real-valued response variable Y . We propose the model

Y = βX + εµ,

where β is a p-dimensional vector of slopes and εµ is a random variable with density

fµ(x) =
1

Φ(1)
√

8π(|x|+ eµ−1)
e−(ln(|x|+eµ−1)−µ)2/2,

where Φ is the standard normal cumulative distribution function. Such a density arises
naturally when considering the density of the transformation eN+µ, where N is a standard
normal random variable, and then reflecting it at its mode, and finally centering it such that
the symmetry point is the origin. Observe that a direct consequence of this construction
is that it has mean zero. Another consequence is that the tails on both sides of the origin
are heavy-tailed, with lognormal behaviour. We hence denote the above density as a two-
sided lognormal density, with the name carrying over for the variable εµ, the cumulative
distribution function Fµ(x) =

∫ x
−∞ fµ(y)y, and so on.

We are interested in the estimation of the slope parameter vector β above. For the fitting
of a Gaussian linear model, least squares are used, which coincides with maximum likeli-
hood estimation. Here, we adopt the maximum likelihood approach as well, but now the
geometrical interpretation of least squares is lost, due to the form of the density fµ. Given
some observed covariates x = (x1, . . . , xn), where each xi is a p-dimensional vector, and
variates y = (y1, . . . , yn), where each yi is a real number, the likelihood of the model for
the parameters β and µ is given by

L(β, µ|x, y) =
n∏
i=1

fµ(yi − βxi),

and the maximum likelihood estimates are

(β̂, µ̂) = arg max(β,µ)L(β, µ|x, y),

which can be computed numerically.

Testing significance between nested models

Whenever two nested models, with resulting maximum likelihood estimators

(β̂0, µ̂0), (β̂1, µ̂1), dim(β̂0) = q < p = dim(β̂1),

are fitted, it is of importance to know the significance of the additional parameters in β̂1
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with respect to the more basic model. The way this is done for Gaussian errors is by
regarding the simpler model as true, and under this assumption determining the distribu-
tion of the extra parameters in the more complicated model. The resulting distribution
helps to assess how likely it is to see parameters of the magnitude that were estimated
(or even larger), obtaining in such a way a p-value. Presently, the distribution of the ex-
tra parameters given the simpler model is complicated to obtain, so we use Monte Carlo
simulation.

Furthermore, given an estimator β̂1, testing for the significance of a single entry of the
vector, say, β̂1(i), i ∈ {1, . . . , p}, is equivalent to fitting a model without that entry, and
comparing that simpler model with the full model. That is, regarding the q = p − 1-
dimensional model as true, and determining the distribution of β̂1(i) for the p-dimensional
model, such that we can say how likely it is to observe a value such as β̂1(i), or of larger
magnitude. Since this is the most common and directly interpretable way of assessing sig-
nificance, we describe the Monte Carlo algorithm only for q = p−1. Analogous algorithms
can be deduced for q < p− 1, but significance intervals must then be replaced by suitable
significance regions.

Procedure:

1. Fit the two-sided lognormal regression model (M1) with p slope parameters to the
data (x, y). Let the resulting maximum likelihood estimator be denoted by

(β̂1, µ̂1) = (β̂1(1), . . . , β̂1(p), µ̂1).

2. Fit the two-sided lognormal regression model (M0) with p−1 slope parameters which
is formed by deleting the i-th slope parameter from the model in the previous step
to the data (x, y). Let the resulting maximum likelihood estimator be denoted by

(β̂0, µ̂0) = (β̂0(1), . . . , β̂0(p− 1), µ̂0).

3. Simulate Nsim times from model M0, that is, create

ysimj = β̂0 x\i + εµ̂0 , x\i := x\xi, j = 1, . . . , Nsim.

4. Fit Nsim p-dimensional (full) two-sided lognormal regression models to each simu-
lated response, resulting in the replicated estimators (β̂j1, µ̂

j
1), j = 1, . . . , Nsim, and



denote the empirical distribution function of β̂j1(i), j = 1, . . . , Nsim, by F̂β1(i)(x),
x ∈ R.

5. Define the p-value of the parameter β̂1(i) as p = F̂β1(i)(−|β̂1(i)|) + 1− F̂β1(i)(|β̂1(i)|).

Goodness of fit

Having fitted and chosen a model, it is customary to look at the residuals rk = yk − β̂x,
k = 1, . . . n, as a goodness of fit diagnostic. Analogous to the Gaussian linear models, we
look for homogeneous dispersion of the residuals, with their distribution now being two-
sided lognormal rather than normal, we suggest here a QQ-plot of Φ−1(Fµ̂(rk)), k = 1, . . . n,

against theoretical standard normal quantiles, and visually expect a straight line when the
fit is adequate.



Chapter 4

A game-theoretic health insurance

pricing model

ABSTRACT

We present and compare two non-cooperative games as pricing models for insurance com-
panies. We apply the models using a dataset of the Swiss mandatory health insurance
to determine price elasticity coefficients and analyze the resulting Nash equilibria for the
premiums. We also consider a Stackelberg solution to study equilibrium premiums for a
market where a few players dominate the market. We evaluate the influence of the model
parameters on the equilibrium premiums through a set of sensitivity tests. The calculated
price elasticity parameters demonstrate the low switching rates in the health insurance mar-
ket in Switzerland and as a result, the estimated equilibrium premiums equal the largest
allowed value. We suggest an extended model that incorporates the cost of capital in the
objective function and present corresponding numerical results. The premiums calculated
with the extended model reflect the additional cost loadings.
This chapter is based on the manuscript Daily-Amir (2019), which will be submitted for
publication.

4.1. Introduction

Game theory concepts have been applied to insurance in general and to premium calcu-
lation in particular for many years. Rothschild & Stiglitz (1976) investigate an insurance
contract, where insurers offer different premiums and deductibles. The customers can
choose freely any of these contracts taking into consideration their own risk perception,
and the typical assumption is that customers will want to maximize their own expected
utility. Insurance companies, however, do not have the knowledge about the individual
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risk perception of their clients, so they compete in a market with imperfect and asymmet-
ric information. The model demonstrates that an equilibrium point does not necessarily
exist in this type of competition. However, when an equilibrium exists, low risk clients
prefer a partial coverage and high risk clients prefer the full coverage. Lemaire (1980)
introduced insurance applications for cooperative game theory and implemented them for
various situations. Taylor (1986, 1987) examined the optimal premium when the market
premium changes and found that during economic downturn, the strategy to follow the
market premium might not be optimal. In his work, he assumed that the market premium
is independent of the individual insurer premium.
The relationship between the Law of Large Number (LLN) and the number of insurers
in an oligopoly market was investigated by Powers & Shubik (1998). Using the Cournot
model, they presented a one period game where each player proposes a price he is willing to
pay for the insurance and each insurer decides the level of risk he is willing to underwrite.
The aggregate risk taken by insurers is subject to solvency regulations. A central clearing
house then matches the insurers’ offers and the clients’ needs. The results of that study
suggest a direct relationship between the LLN and the number of insurers.
Jordan & Rothwell (2009) used the winner’s curse notion of auction theory to determine
the premium of an insurance policy. In this framework, firms bid by setting a premium on
an insurance product. As the real risk of that product is a stochastic process, insurers will
determine the price by calculating the expected loss. The winner’s curse theory suggests
that the lowest winning premium offered is likely to underestimate the real loss and there-
fore it is likely to be ’cursed’ by lower profit than expected.
Emms & Haberman (2005) present a model based on control theory in which they use a
demand function to describe the number of underwriting policies, and an objective function
of the insurer is the expected wealth. Their findings include two pricing strategies; the first
one is to set a low premium, which creates a loss in order to gain a large market share,
followed by a higher premium which produces profit, and the second one is a market with-
drawal strategy, which means that the insurer leaves the market and does not compete.
This model is limited in the sense that it applies only for a very competitive insurance
market, with few strong insurance companies. Emms (2007, 2012) describes an extension
to the Emms-Haberman model, using game theory concepts. The model is still based on a
demand function and an objective function of the insurers, and presents a pricing strategy
for the insurers.
Dutang et al. (2013) suggest a game theory solution for a non-cooperative competition
among non-life insurers. They construct a one-period model and test their model with a
numerical example. An extension to their work for an asymmetric information game is
presented in Albrecher & Daily-Amir (2017). Battulga et al. (2018) extend the one-period
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model and develop a multi-period model using a transition probability matrix which re-
flects on various economic circumstances.
Boonen et al. (2016) investigate the effect of various parameters as price, service level, age
and education on policyholders’ switching behaviour in the Dutch health insurance mar-
ket. They suggest to model the insureds’ switching decisions with a logit function of the
decision parameters. Their results support the assumption that switching decisions depend
on these parameters. Boonen et al. (2018) suggest a differential game as a pricing model
and investigate the dynamics of insurers’ equilibrium premium in a competitive non-life
insurance market. They show how competition influences the premium process. Asimit &
Boonen (2018) study a set of Pareto-optimal insurance contracts using cooperative game
theory concepts, where insurers share the insured risk. They find a closed-form solution for
different preferences that the insurance companies might have and investigate the resulting
optimal contracts.

Insurance companies sell a product that is basically a commitment to compensate the
policyholder in case of loss. Insurance companies need to raise capital to support their
commitment to the policyholders and the regulator imposes a certain level, the Solvency
Capital Requirement (SCR), in order to ensure that the insurance company has sufficient
reserves to cover the liabilities from underwriting insurance policies up to a defined level
of confidence (e.g. 99.5%). Pantelous & Passalidou (2016) describe an optimization model
to determine a fair insurance price and develop a non-linear pricing model. While their
model includes parameters such as break-even premium, market premium, portfolio size,
the insurer’s elasticity of demand and inflation, they give an additional consideration to
the influence of the reserve level as a parameter in the insurer’s premium decision.
Fuether models suggested by Rees et al. (1999), Polborn (1998), Powers & Shubik (2006),
Wu & Pantelous (2017) and others will not be covered in this work.

In this paper, we introduce a demand function for health insurance in Switzerland based
on findings from Daily-Amir et al. (2019). We develop a game with an objective function
in terms of the operation profit of the insurer, and we calculate Nash equilibrium as well as
Stackelberg equilibrium premiums. The estimated level of price elasticity coefficients for
health insurance in Switzerland demonstrates the low sensitivity of policyholders to price
differences and the low switching rates. This phenomenon results in insurers setting the
maximum allowed premium. We compare the results with the premiums calculated for the
one-period model introduced in Dutang et al. (2013) and perform parameter sensitivity
tests.
The rest of this paper is organised as follows: Section 4.2 provides a description of the
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one-period pricing model including the definition of two demand functions and the derived
objective functions with a set of constraints. Section 4.3 explains the solution concepts
used, Section 4.4 then reports the results of a numerical example using a published dataset
of the health insurance in Switzerland, and Section 4.6 concludes.

4.2. One-period pricing model

In this chapter, we describe in detail a one-period pricing model for a market with I in-
surers who compete for n policyholders. Insurance contracts are issued at time t for one
period (usually one year). After the insurers take their premium decisions, the n policy-
holders react by either renewing their policy or by switching the insurer and buying the
insurance coverage from another one. The model assumes that the insurers offer the same
product to all policyholders, there is no price distinction between renewal policies and
new policies, and the insurers do not cooperate in their premium decisions. The model
includes a demand function, a loss model and a definition of an objective function with con-
straints. In many aspects, we follow the model presented in Dutang et al. (2013) as we want
to compare the results of the numerical illustration with the results in Dutang et al. (2013).

In the following subsections, the insurer index will be denoted by i ∈ {1, . . . , I}. The price
vector (x1, . . . , xI) ∈ RI represents the premiums, where xi is the premium decision of
insurer i and mi(x) = 1

I−1

∑
k 6=i

xk is the market premium calculated as an average price of

the competitors.

4.2.1. The demand function

We define the demand function Di(x) as the the market share (MSi,t) of insurer i and
suggest two models:

In the first model we adopt the approach introduced in Daily-Amir et al. (2019), and use a
linear model to calculate the difference in market share for insurer i (DMSi) as a function of
the relative difference between the premium and the market premium (RDPMi) such that:

RDPMi = (
xi

mi(x)
− 1)

and

DMSi = MSi,t −MSi,t−1 = bi ·RDPMi + εi,
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(R1)

where Bi is the coefficient for the independent continuous variable RDPMi and εi are
residual error terms. The RDPMi coefficients Bi will have a negative value, verifying
the negative relation between changes in market shares and the relative difference of the
insurer’s premium and the market premium. We define the demand of insurer i as

Di(x) = MSi,t−1 − βi · (
xj

mj(x)
− 1),

with price elasticity coefficients βi = −bi. The model does not restrict the market share,
so theoretically it may assume values outside [0%, 100%]. However, it will turn out that
the numerical values obtained in the subsequent study do not get close to these bounds in
any case.

As a second alternative, we use the linear model

RDMSi = (MSi,t −MSi,t−1)/MSi,t−1 = ai ·RDPMi + εi,

(R2)
where ai is the coefficient for the independent continuous variable RDPMi and εi are
residual error terms. We calculate the price elasticity coefficients βi for the model suggested
by Dutang et al. (2013) as a second demand function D̃i(x):

D̃i(x) =
ni
n

(1− βi(
xi

mi(x)
− 1)) = MSi,t−1(1− βi(

xi
mi(x)

− 1)),

with price elasticity coefficients βi = −ai.

Whereas Daily-Amir et al. (2019) perform a linear regression for all insurers per canton, we
implement the model per insurer and per canton as we want to calculate the price elasticity
coefficients for each insurer. Implementing the multivariate regression model suggested in
Daily-Amir et al. (2019), it turns out that the coefficients of the second variable DRPC
(which is the difference between the relative annual change in the premium and the market
premium) are close to zero, hence the effect of the variable on the market share is negligible
here.
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4.2.2. The loss model

For the loss model we adapt the model presented in Dutang et al. (2013). Let Yj be the
aggregate claim size for policyholder j, Mj the number of claims, Zj,l the random variable
of the claim size and n the total number of policies issued. The portfolio size for insurer i
is denoted by Ni(x), and Si is his aggregate loss. With that in mind, note that:

Yj =

Mj∑
l=1

Zj,l

and

Si(x) =

Ni(x)∑
j=1

Yj =

Ni(x)∑
j=1

Mj∑
l=1

Zj,l =

M̃i(x)∑
l=1

Zl

with

M̃i(x) =

Ni(x)∑
j=1

Mj

(the number of claims Mj is i.i.d. and independent from the claim size Zj,l).

The model considers a Lognormal distribution LN (µ1, σ
2
1) for the claim size r.v. Zi,l and

two different types of distribution for the number of claims Mj: (i) Poisson distribution,
P(Ni(x)λ), (ii) Negative Binomial distribution, NB(Ni(x)r, p).
As Yj are assumed to be independent and identically distributed random variables, the
distribution of the aggregate loss Si(x) is a compound distribution. In the model, the
notation PLN will be used for the Poisson-Lognormal distribution and NBLN for Negative-
Binomial-Lognormal distribution.

4.2.3. The objective function

We choose the operating profit (OP ) as the objective function for the insurers to maximize.
OP is defined as the difference between the operating revenues and the operating expenses.
In our model, we adopt the procedure presented in Dutang et al. (2013) in calculating the
expected operating profit. We define it as the difference between the premiums income and
expenses (including payments to settle policyholders’ claims and other operating expenses
like administrative fees and marketing costs). This approach for calculating the OP means
that it only includes policies issued at the beginning of the insurance period, without
previous years outstanding claims demand. We multiply the demand by the difference
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between the policy’s price xi and the break-even price πi per unit of exposure, which
includes the underwriting expenses. The first objective function is then

OPi = Di(x) · (xi − πi) =
(
MSi,t−1 − βi · (

xj
mj(x)

− 1)
)
· (xi − πi), (4.1)

and the second one

ÕPi = D̃i(x) · (xi − πi) = MSi,t−1(1− βi(
xi

mi(x)
− 1))(xi − πi). (4.2)

Tax and interest payments paid by the insurers are not incorporated in the OP computa-
tions, and neither are the capital costs.

4.2.4. The solvency constraint function

Article 101 of the Solvency II Directive states that “The Solvency Capital Requirement
(SCR) shall be calibrated so as to ensure that all quantifiable risks to which an insurance
undertaking is exposed are taken into account. It shall cover existing business, as well
as the new business expected to be written over the following 12 months [. . . ]. It shall
correspond to the Value at Risk (VaR) of the basic own funds of an insurance undertaking
subject to a confidence level of 99.5% over a one year period”. While under the Solvency
II, health insurers in the EU countries are required to have an absolute minimum of capital
(2.5 mio Euro), in Switzerland, there is no absolute minimum capital requirement. The
Swiss Solvency Test (SST) defines similar solvency capital requirements where the calcu-
lated SCR should be equal to the ES with 99% confidence level. As for the lognormal
distribution (the defined distribution of the claim size in the loss model), the ES with 99%

confidence level is approximately equal to the V aR with 99.68%, we consider it as a good
enough approximation and we adapt the method in Dutang et al. (2013) who suggest an
approximation for the SCR using a q-quantile (in this case 99.5%) of the aggregate claim
amount of ni i.i.d. risks such that,

SCRi = k995 · σ(Y ) ·
√
ni,

where k995 is the number of standard deviation needed to ensure 99.5% confidence level
and σ(Y ) is the standard deviation of the expected loss. This SCR represents only renewal
and new written policies without previous years business. The solvency constraint function
is defined as
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gi2(xi) =
Ki + ni(xi − πi)(1− ei)

k995σ(Y )
√
ni)

− 1. (4.3)

The minimum price vector which will satisfy the solvency constraint, can be calculated with

xi ≥
(k995σ(Y )

√
ni −Ki)

ni(1− ei)
+ πi, (4.4)

where Ki is the initial SCRi and ei is the expenses value.

4.2.5. The min-max price constraints

We impose the same constraints on the minimum and maximum prices that the insurer
can ask for and use the constraints defined in Dutang et al. (2013). The minimum price
constraint is set as x = E(Y )/(1− emin) and the maximum price constraint is, x = 3E(Y ).
The min-max constraints functions are then;

gi2(xi) = xi − x ≥ 0,

gi3(xi) = x− xi ≥ 0.
(4.5)

4.2.6. The expected underwriting results

Once the insurers set their equilibrium prices (x?i ), the policyholders choose their insurer.
The underwriting results are calculated with

UWRi(x
?) = Di(x

?) · x?i · (1− ei)− Si(x?), (4.6)

where Di(x
?) is the market share and Si(x?) =

Di(x)∑
j=1

Yj.

4.3. Solution concepts

4.3.1. Nash equilibrium solution concept

In this model, the main solution concept considered is the Nash equilibrium, where all the
insurers take their decision simultaneously.

Definition (Nash equilibrium): For a game with I players, where Oi is the objective
function of player i, and action set Xi, the Nash equilibrium solution is the vector x? =
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(x?1, . . . , x
?
I), if for all i = 1, . . . , I, x? solves the subproblem

∀i, xi ∈ Xi : Oi(x?i , x?−i) ≥ Oi(xi, x?−i).

The equilibrium premium of insurer i, x?i , solves the following Karush-Kuhn-Tucker con-
ditions, see e.g. Facchinei & Kanzow (2009):

∇xiOi(x?) +
∑

1≤k≤3

λi?k ∇xig
k
i (x?i ) = 0,

λi? ≥ 0, gi(x
?
i ) ≥ 0, gi(xi?)

Tλi? = 0,

(4.7)

where λi? ∈ R3 are Lagrange multipliers. The complementary condition in Equation 4.7,
gi(x

?
i )
Tλ?i = 0, denotes that the kth constraint gk is either inactive (gk(x?) > 0) but then

λ?i = 0, or active (gk(x?) = 0).

For the case that the constraints are inactive, the premium equilibrium for insurer i will
verify ∇xiOi(x?i ) = 0. Maximizing the objective function (4.1), implies that the Nash
equilibrium solution - when the constraint functions are inactive - will be a function of the
sensitivity parameters βi, the break-even premiums πi, the initial market share MSi,t−1

and the number of insurers I. We get the following linear system of equations:

2βix
?
i − (MSi,t−1 + βi) ·m?

i = βiπi, (4.8)

which is equivalent to

2βjx
?
j − (MSi,t−1 + βi)

1

I − 1

∑
k 6=i

x?k = βiπi,

or solving the linear system Mβx = v, where

Mβ =



2β1 −MSi,t−1+β1
I−1

· · ·

−MSi,t−1+β2
I−1

2β2 −MSi,t−1+β2
I−1

· · ·
...

... . . . ...

−MSi,t−1+βI
I−1

−MSi,t−1+βI
I−1

· · · 2βI


and v =


β1π1

...

βIπI

 . (4.9)
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With the objective function (4.2) when the constraints are inactive, the NE price solves
the equation system

2βix
?
i − (1 + βi)

1
I−1

∑
k 6=i x

?
k = βiπi,

or solving the linear system Mβx = v, where,

Mβ =



2β1 −1+β1
I−1

· · ·

−1+β2
I−1

2β2 −1+β2
I−1

· · ·
...

... . . . ...

−1+βI
I−1

−1+βI
I−1

· · · 2βI


and v =


β1π1

...

βIπI

 . (4.10)

The above structure of the objective function and the settings imply that the Nash equi-
librium solution - when the constraints functions are inactive - will be a function only of
the sensitivity parameters, βi, the break-even premiums πi and the number of insurers I,
but not a function of the initial market shares.

Properties of the equilibrium

Rosen (1965) proved that the following requirements are sufficient to ensure the existence
and uniqueness of a NE:

1. The action set (the price vector) Xi ∈ R = [x, x], which is nonempty, compact and
convex set.

2. The function xi → Oi(x) is a strictly concave and differentiable function. With the
parameter values of the models, both objective functions are strictly concave. So, we
ensure the existence and uniqueness of the NE.

4.3.2. Stackelberg solution concept

The Stackelberg model is based on games with one or more leaders and a few followers.
The Stackelberg equilibrium fits a market where decisions are made sequentially. First,
the market leader takes a decision, and then the followers take their decision as a function
of the one of the leader.
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Definition (Stackelberg equilibrium): For a game with I players, one leader and I − 1

followers, where Oi is the objective function of player i, and action set Xi, the Stackelberg
equilibrium is the vector x? = (x?1, . . . , x

?
I), if x?1 solves the subproblem

∀i, xi ∈ Xi : O1(x?1, x
?
−1) ≥ O1(x1, x

?
−1),

with x?−1(x1) being the Nash equilibrium for I − 1 players, given the leader’s choice.

4.4. Numerical implementation

We apply a numerical test of the one-period model to a game with both objective functions
OPi and ÕPi for both loss models PLN andNBLN and calculate the resulted NE premium
for each insurer with three and eight players in two cantons, Geneva (GE) and Bern (BE).

4.4.1. Model parameters, assumptions and price elasticity coefficient esti-

mates

Price elasticity coefficients

To evaluate the price elasticity coefficients βi, we use a dataset presented in Daily-Amir
et al. (2019) by implementing the linear regressions R1 and R2. The yearly reports with
the data are published by the Swiss Federal Statistical Office and contain the information
on the premiums of the mandatory health insurance plan for each insurer active in the
twenty-six cantons, the portfolio size of each insurer per canton and the solvency ratio
of the insurer. Including the data from insurers with market share greater than 1% and
neglecting smaller insurers, the dataset includes 6,117 data points for all Switzerland with
an accumulated market share between 80% and 97% per year and canton. The number of
maintained insurers is between 10 to 25 per year and canton. From the data, we calculate
for each insurer, year and canton:

• The Market Share (MSi,t,c) as the insurer’s portfolio size divided by the population
in the canton.

• The Market Premium (MPi,t,c) for insurer i as the average premium of all the com-
petitors in the market per year and canton.

• The absolute year-to-year change in market share DMSi,t,c= MSi,t,c −MSi,t−1,c as
the difference between the market share at time t and the previous year’s premium.
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• The relative year-to-year change in market shareRDMSi,t,c= (MSi,t,c−MSi,t−1,c)/MSi,t−1,c

as the difference between the current and the previous year’s market shares divided
by the previous year’s market share.

• The relative difference between insurer i’s premium and the market premium (RDPMi,t,c)
as the difference between the premium (Pi,t,c) and the market share (MPi,t,c) divided
by the market premium, i.e. RDPMi,t,c = (Pi,t,c −MPi,t,c)/MPi,t,c.

We perform linear regressions R1 and R2 for the six largest insurers that offer the health
insurance plan in two selected cantons, Bern (BE), a German-speaking canton and Geneva
(GE), a French-speaking canton, and we add two other insurers to a total of eight per
canton. All regressions include 14 data points, one for each year, from 2002 to 2015. Table
4.1 gives the regression results including the Bi and Ai coefficients and the adjusted R2

coefficient as a measure of the goodness of fit. Figure 4.1 shows an example of the residuals
distribution for Insurer 4 for both regression models in GE and BE and reasonably confirms
the normality assumption of the linear model. The adjusted R2 values vary, while Insurer
6 having the best fit from 46% for model R2 in GE up to 86.5% for the same model in
BE. The regression results for Insurer 1 in GE do not support the assumption of a relation
between the market share changes and the premium difference. RDPMi,t,c coefficients are
negative and in most cases very significant implying a negative relationship between the
market share change and the relative difference between the insurer’s premium and the
market premium.

We take the insurers’ market shares for 2015 in each canton from the dataset and determine
the break-even premiums πi by assigning a value of πi = 1.05 (representing 5% markup on
the expected loss E (Yj) to the insurer who offers the lowest premium) and adjusting for
the other insurers multiplying by the corresponding insurers 2015’s premiums ratio. The
total market share for the eight insurers in GE and BE is 88% and 61%, respectively.
We present the insurers’ portfolio size, market share, break-even premium and the solvency
ratio for the year 2015, as well as the coefficient values for the two models in Table 4.2.
Comparing the βi for the model ÕPi with the numerical illustration in Dutang et al. (2013)
who examine a case with βi between 3 and 4.6, we observe significantly lower values. The
low values of the price elasticity coefficient can be related to the low switching rates in
Switzerland and the reduction to less than half in the number of insurers during the years
of the dataset, see e.g. Daily-Amir et al. (2019). One can note that the coefficients for the
same insurer vary among the cantons, with higher price elasticity coefficients in GE than
in BE, which implies that policyholders in GE are more sensitive to premium differences.
The highest coefficient per model and canton is 8-10 times larger than the smallest one,
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(a) OPi - GE
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(b) ÕPi - GE
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(c) OPi - BE
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(d) ÕPi - BE

Figure 4.1: Residual QQ-plot for Insurer 4

Canton GE BE

Insurer ni MSi πi βi (OPi) βi (ÕPi) ni MSi πi βi (OPi) βi (ÕPi) ρi

1 63796 0.1435 1.4049 0.0467 0.5170 15448 0.0153 1.4950 0.0182 0.5932 1.17

2 11048 0.0248 1.4224 0.0290 0.7239 25439 0.0252 1.3322 0.0089 0.3020 2.51

3 21949 0.0494 1.3759 0.0640 2.4417 31335 0.0310 1.1864 0.0211 1.4845 0.87

4 11004 0.0247 1.3952 0.0419 1.2248 33931 0.0336 1.2806 0.0609 1.1882 1.18

5 106397 0.2393 1.0500 0.0592 0.3434 112389 0.1112 1.0500 0.0484 0.8150 1.13

6 81064 0.1823 1.3996 0.2856 3.0255 45703 0.0452 1.3555 0.0834 0.9507 1.45

7 16797 0.0378 1.3944 0.2421 2.3195 1.66

8 81587 0.1835 1.3521 0.2553 1.6088 0.79

9 132859 0.1315 1.2112 0.0886 0.8878 0.79

10 220059 0.2177 1.3368 0.0437 0.1750 2.09

Table 4.2: Initial portfolio size, initial market share, break-even premium and price elasticity
coefficients per insurer in GE and BE
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which suggests a significant difference in the policyholders’ price sensitivity among the
insurers. Insurer 5 from GE has the highest market share in the canton and small price
elasticity coefficients, the same situation applies for Insurer 10 from canton BE. In both
cantons, there is one insurer with market share larger than 20% and two to three insurers
with market share between 10-20%. The other insurers have market shares smaller than
5%. The largest break-even premium is about 35-40% higher than the lowest one. The
solvency ratio ranges from 79% for Insurers 8 and 9 to 251% for Insurer 2.

Loss model and solvency parameters

For the loss model parameters and solvency constraint parameters are all taken from Du-
tang et al. (2013):

1. The parameters for the loss model, we choose E (Yj) = 1 for the aggregate loss Yj of
policyholder j. The standard deviation for the PLN model is σ(Y )PLN = 4.472, and
for the NBLN model we choose σ(Y )NBLN = 10.488.

2. A solvency coefficient k995 = 3 has been chosen. This is the number of standard
deviations required to ensure the 99.5% confidence level in the Solvency II framework
and is based on the Lognormal distribution of the claims’ size. The full institution
for this choice can be found in Dutang et al. (2013).

3. The initial capital Ki = k995σ(Y )
√
niρi per unit of exposure for the two loss models

is estimated with the initial solvency coverage ratio ρi as reported in Table 4.2. The
minimum value for the price vector, which will satisfy the solvency constraint, can
be calculated with (4.4). With the expense value ei = 15% for all insurers and the
calculated initial capital Ki, the solvency price constraints are presented in Table 4.3
for both loss models PLN and NBLN. As Insurer 2 has a very high solvency ratio
ρ2 = 2.51, his solvency constraint price is much lower than the one of the other insur-
ers. Insurer 5, with low break-even premium, has relatively low solvency constraint
prices as well. Insurer 3 with low initial solvency coverage and relatively high break-
even premium in GE, has relatively high solvency price constraints in the canton.
In BE, where his break-even premium is low, even with low initial solvency ratio,
Insurer 3 has medium size solvency price constraints.

4. The minimum and maximum price constraints, as presented in Section 4.2.5, are

x =
E(Y )

(1− emin)
=

1

1− 0.15
= 1.1765, and x = 3E(Y ) = 3.
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Insurer 1 2 3 4 5 6 7 8 9 10

Canton Model

GE PLN 1.3944 1.1958 1.3898 1.3687 1.0435 1.3747 1.3144 1.3640

NBLN 1.3803 0.8930 1.4085 1.3333 1.0348 1.3414 1.2075 1.3799

BE PLN 1.4736 1.1829 1.1988 1.2655 1.0437 1.3223 1.2204 1.2999

NBLN 1.4450 0.9833 1.2135 1.2454 1.0352 1.2779 1.2326 1.2507

Table 4.3: Solvency constraints on prices

Note that from the above results, the minimum price constraint on x is fulfilled au-
tomatically with the solvency price presented in Table 4.3 except for Insurer 5 and
for Insurer 2 for the NBLN loss model.

4.4.2. Nash equilibrium results

We start with assessing equilibrium premiums for the two objective functions, OPi and
ÕPi in a three players game. We choose the three insurers with the highest coefficients
(Game I), i.e. Insurers 6, 7, 8 in GE and Insurers 3, 4, 6 in BE. From the results of
Game I in GE (see Table 4.4), we observe that the range of NE premiums’ is higher for
OPi than for ÕPi. In the same game with objective function OPi, in which the market
share influences the equilibrium premiums, Insurer 7, who starts with low market share,
offers premiums lower by almost 20% than his competitors although he has the lowest
price elasticity coefficient. This strategy results in him increasing his market share by
4.4%, while the other insurers lose market share. With objective function ÕPi, where
the market share is not a parameter, Insurer 6 with the highest price elasticity coefficient,
offers the lowest premium. Nevertheless, the premium is not low enough for him to increase
much his market share (1% increase) and Insurer 8 who offers the highest premium, loses
only 1% market share as he benefits from much lower price elasticity coefficient than his
competitors. In BE (see Table 4.5), where the price elasticity coefficients are lower than
in GE, the NE premiums are equal to the maximum possible premium for all the insurers
such that x?i = 3 for all i. As a direct result, the market shares do not change.

Model/Insurer x?6 x?7 x?8 ∆MS6 ∆MS7 ∆MS8 x?6/π6 x?7/π7 x?8/π8

OPi 2.873 2.374 2.931 -0.023 0.044 -0.029 2.053 1.703 2.094

ÕPi 2.437 2.532 2.691 0.01 0.00 -0.01 1.741 1.816 1.343

Table 4.4: Game I: NE premiums, expected market shares and markup ratio - GE
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Model/Insurer x?3 x?4 x?6 ∆MS3 ∆MS4 ∆MS6 x?3/π3 x?4/π4 x?6/π6

OPi 3 3 3 0 0 0 2.5286 2.3427 2.2132

ÕPi 3 3 3 0 0 0 2.5286 2.3427 2.2132

Table 4.5: Game I: NE premiums, expected market shares and markup ratio - BE

We then calculate NE premiums for the three largest insurers in each canton (Game II),
i.e. Insurers 5, 6 and 8 in GE and Insurers 5, 9 and 10 in BE. The three largest insurers
in GE hold together approximately 60% of the market, while it is 46% for BE. In both
cantons, the insurers set the maximum constraint premium (see Tables 4.6 and 4.7). We
get the same results for other combinations of insurers in both cantons.

Model/Insurer x?5 x?6 x?8 ∆MS5 ∆MS6 ∆MS8 x?5/π5 x?6/π6 x?8/π8

OPi 3 3 3 0 0 0 2.8571 2.1434 2.2188

ÕPi 3 3 3 0 0 0 2.8571 2.1434 2.2188

Table 4.6: Game II: NE premiums, expected market shares and markup ratio- GE

Model/Insurer x?5 x?9 x?10 ∆MS5 ∆MS9 ∆MS10 x?5/π5 x?9/π9 x?10/π10

OPi 3 3 3 0 0 0 2.5286 2.3427 2.2132

ÕPi 3 3 3 0 0 0 2.5286 2.3427 2.2132

Table 4.7: Game II: NE premiums, expected market shares and markup ratio - BE

With our model settings, the loss model does not influence the equilibrium premium di-
rectly but through the solvency minimum premium constraints. Since the equilibrium
premiums are higher than the minimum solvency constraints, the results of the game are
the same for both loss models.

Secondly, we calculate the NE premiums in a game with eight insurers in both cantons and
for the two objective functions (Game III). As in the three players game, since the price
elasticity coefficients βi, are relatively low, the equilibrium price is equal to the maximum
allowed premium, x?i = x = 3 for all i in both GE and BE. Table 4.8 presents the set of βi-
values for each insurer in GE and BE such that the equilibrium price with no constraints,



Chapter 4. A game-theoretic health insurance pricing model 96

i.e. the solution for the (4.9) and (4.10) is equal to x = 3 for all insurers. The calculated
βi-values are higher than the real values for most of the insurers in both cantons and both
models. With these values, any increase in the price elasticity of any of the insurers will
result in premiums smaller than the maximum value 3.

Insurer 1 2 3 4 5 6 7 8 9 10

Canton Model

GE OPi 0.2699 0.0472 0.0912 0.0463 0.3681 0.3418 0.0706 0.3340

ÕPi 1.8808 1.9016 1.8472 1.8693 1.5385 1.8746 1.8684 1.8205

BE OPi 0.0305 0.0453 0.0513 0.0586 0.1711 0.0825 0.2205 0.3927

ÕPi 1.9933 1.7988 1.6542 1.7448 1.5385 1.8242 1.6771 1.8037

Table 4.8: Price elasticity coefficients insuring NE premiums without constraints equal the maxi-
mum premium

With equilibrium premiums for all insurers equal to the maximum premium constraint
and much higher than the solvency constraint, all insurers will keep their market share
unchanged and will increase the solvency ratio as the premiums are significantly higher
than the break-even premiums.

4.4.3. Stackelberg equilibrium premiums

Calculating the Stackelberg equilibrium, we consider a game with 8 insurers in canton GE.
Insurer 5 is set as the leader, and the other insurers are the followers. The leader sets
his price, and the others follow by optimizing their objective function with respect to the
leader’s decision. Figure 4.2 shows the value of ÕPi for Insurer 5 as a function of his
premium decision x5 ∈ (x, x).

Evidently, if Insurer 5 wants to maximize his objective function, he should set his premium
to the maximum possible value, i.e. x?5 = 3. As Insurer 5 has a very low price elasticity
coefficient in the ÕPi model, only if β5 is multiplied by a factor higher than 6, the objective
function ÕPi will be maximized for a price slightly lower than the maximum premium.

4.4.4. Parameter sensitivity analysis

In this subsection, a sensitivity analysis is conducted for the canton GE by changing values
of different parameters and calculating the resulted equilibrium prices. We analyse the
effect of:

(i) multiplying by 3 the price elasticity parameter βi,

(ii) decreasing the break-even premium πj by 20%,
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Figure 4.2: ÕPi for Insurer 5 as a function of his premium decision

(iii) starting with an equal initial market share for all insurers.

(iv) starting with an identical price elasticity parameter β and break-even premium π

for all insurers.

Price elasticity coefficient analysis

We would like to investigate the effect of the price elasticity coefficient on the equilibrium
prices. The calculated price elasticity coefficients indicate low sensitivity of policyholders
to price difference between insurers. Hence, calculated equilibrium premiums are equal in
most cases to the maximum premium constraint. We determine the equilibrium premiums
for a game with the three insurers with highest βi coefficients (Game I), the three insurers
with highest market shares (Game II) and the eight insurers (Game III) in GE, assuming
their βi-coefficients are tripled. One can note that with tripled βi values, the insurers reduce
their prices below the maximum premium allowed. In a three players game, the equilibrium
premiums are lower by 33-42% than in the game with the real βi values (see Tables 4.9
and 4.10). The NE premiums for a game with eight insurers (Game III) are below the
maximum price constraint for all the insurers as presented in Table 4.11. The premiums
calculated for model OPi are higher than the ones calculated for model ÕPi. The highest
equilibrium premiums equals 2.912 for Insurer 5 who has relatively low price elasticity
coefficient, the largest market share and the lowest break-even premium. Insurer 7 who
has relatively high price elasticity coefficient, small market share and medium break-even
premium sets the smallest premium of 1.935.
With tripled price elasticity coefficients for the insurers in Game I, the equilibrium premi-
ums are similar to the ones calculated in the numerical illustration in Dutang et al. (2013)
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Model/Insurer x?6 x?7 x?8

OPi 1.695 1.588 1.694

ÕPi 1.612 1.631 1.655

Table 4.9: Game I: NE premiums with tripled price elasticity parameter - GE

where the NE prices where in the range of 1.353-1.884 depending on the parameters.

Model/Insurer x?5 x?6 x?8

OPi 3 1.984 1.998

ÕPi 2.472 1.944 2.009

Table 4.10: Game II: NE premiums with tripled price elasticity parameter - GE

Insurer x?1 x?2 x?3 x?4 x?5 x?6 x?7 x?8

OPi 2.8928 2.1998 2.1482 2.0927 2.9118 2.1118 1.9352 2.1186

ÕPi 2.4122 2.2467 1.9102 2.0529 2.5537 1.8949 1.9259 1.9693

Table 4.11: Game III: NE premiums with tripled price elasticity parameter - GE

We then estimate the NE premium as a function of the price elasticity coefficient multiplier.
We multiply the coefficient values by 2 to 15 in a game with the 8 insurers in GE. Figures
4.3(a) and 4.3(b) show the NE premiums for insurers 2, 5 and 7 as a function of the
price elasticity coefficient multiplier for the two models. The break-even premiums of each
insurer are presented as a horizontal line. All the insurers reduce premiums with higher βi
coefficients and one can note the convergence of the equilibrium prices towards the break-
even premium. In both models, Insurer 5 who starts with highest market share, smallest
break-even premium and low price elasticity coefficient, sets the highest premiums until
coefficients multiplied by 12 in the OPi model and by 6 in the ÕPi model. Then, Insurer 5
takes advantage of his low break-even premium and sets the lowest equilibrium premium
that gives his a margin of 33% above the break-even premium. At the same conditions,
the other insurers set premiums that allow them only 3-5% margin. Premium levels in the
OPi model are higher than the ones in the ÕPi model.

Break-Even premium analysis

The break-even premium π is a parameter in the objective function. Any increase in the
break-even premium will result in insurers increasing the prices up to the maximum price
constraint, whereas any decrease in the break-even premium will result in decreasing of
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Figure 4.3: Price elasticity coefficient multiplier versus NE premiums and break-even premiums
for Insurers 2, 5 and 7

prices up to the minimum price constraint. Since in most cases we test, the NE premium
is the maximum premium constraint, we want to test if break-even premiums lower by
33% result in equilibrium premiums lower than the maximum price. In a game with three
players (see Table 4.12), the NE premiums are lower by 33% meaning that the insurers
transfer the decreasing costs to the policyholders.

Model/Insurer x?6 x?7 x?8

OPi 1.9247 1.5909 1.9635

ÕPi 1.6330 1.6965 1.8030

Table 4.12: Game I: NE premiums with reduced break-even premium - GE

Market size analysis

A significant difference between the two models is that while in the ÕPi model presented in
Dutang et al. (2013), the initial market share does not influence the equilibrium premiums,
and it is an influencing parameter in the OPi model. In order to analyze the effect of the
initial market share in the OPi model on the equilibrium premiums, we construct several
further games and calculate the Nash and Stackelberg equilibrium premiums. First, we
define a game in which all players start with an equal market share. By construction of the
model with objective function ÕPi, the insurers’ initial market share has no direct effect on
the equilibrium premiums. For the OPi model, in a game with equal initial market share,
all the insurers fix the maximum premium, so x?i = 3 for all i both in 3 and 8 players’ games.
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Secondly, we construct a game where all insurers start with the same price elasticity coef-
ficient βi = 3.05 for the ÕPi model and 0.26 for the OPi model and the same break-even
premium πi = 1.35 for all insurers. The chosen price elasticity coefficient is twice the
average one, and the break-even premium is the average break-even premium of the eight
insurers. As the initial market share is not an influencing parameter on the equilibrium
premiums in the ÕPi model, with equal βi = 3.05 and πi = 1.35, all insurers will fix the
same price x?i = 2.0085, which reflects almost 50% markup on the break-even premium.
The NE premiums for the OPi model are reported in Table 4.13 and one can note that the
premium levels are linearly related to the initial market share, where Insurer 5, who starts
with the highest market share, sets the highest premium and loses 6.76% of the market.
Insurers 2 and 4 with lowest market shares, set the lowest premiums and gain over 4.3%

of market share. The average premium for the OPi model is significantly higher than the
one for the ÕPi model.

Insurer x?1 x?2 x?3 x?4 x?5 x?6 x?7 x?8

OPi 2.4639 1.9761 2.0793 1.9757 2.8375 2.6175 2.0307 2.6221

MSi,t−1 0.1435 0.0248 0.0494 0.0247 0.2393 0.1823 0.0378 0.1835

MSi,t 0.1256 0.0685 0.0803 0.0685 0.1717 0.1443 0.0748 0.1449

Table 4.13: NE premiums with equal βi and πi - GE

For the Stackelberg equilibrium, in the ÕPi model with equal βi = 3.05 and πi = 1.35,
Insurer 5 will fix his premium level on x?5 = 1.8150 in order to maximize his objective
function, while all the followers will fix the same price, x?i = 1.6445. Figure 4.4 shows the
objective function value OP5 of Insurer 5 for the OPi model. Insurer 5 will maximize his
utility if he will set his premium at x?5 = 1.86. The premiums of his followers are presented
in Table 4.14. While the followers set a premium as a function of their initial market share,
Insurer 5 can benefit from being a leader and set a lower premium to ensure his position
as the market leader with 21.25% market share compared with 17.17% in the Nash settings.

Insurer x?1 x?2 x?3 x?4 x?5 x?6 x?7 x?8

OPi 1.8235 1.5074 1.5741 1.5072 1.8600 1.9234 1.5427 1.9264

MSi,t−1 0.1435 0.0248 0.0494 0.0247 0.2393 0.1823 0.0378 0.1835

MSi,t 0.1232 0.0592 0.0724 0.0591 0.2125 0.1442 0.0662 0.1448

Table 4.14: Stackelberg premiums with equal βi and πi, Insurer 5 as leader - GE

As the leader sets a lower premium in a game with Stackelberg settings than in a game
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Figure 4.4: OP5 for Insurer 5 as a function of his premium decision, βi = 3.05 and πi = 1.35

with Nash settings, the followers adjust and reduce premiums as well.

4.4.5. Additional game settings

If for example, the objective of Insurer 5 is to become the cheapest insurer in order to
maintain his position as the market leader and to increase his market share, he might
decide to quit the game and to set his premium as the lowest possible, i.e. x?5 = 1.1765.
In this case, Insurer 5 does not consider his opponents premiums and still has a 12%

markup on his break-even premium. The other insurers who are still playing the game, set
their equilibrium premiums lower than the maximum as well. We present the equilibrium
premiums for this scenario in Table 4.15. The results demonstrate how the very low
elasticity parameter of Insurer 1 allows him to set the highest premium even if the other
insurers reduce their premiums. One can note that in a game with eight insurers, even if
one decides to reduce the premium considerably, the other insurers will react and reduce
premiums as well. Nevertheless, they still set significantly higher premiums than the lowest.

Insurer x?1 x?2 x?3 x?4 x?5 x?6 x?7 x?8

OPi 3.0000 2.4828 2.3885 2.2395 1.1765 2.2835 1.8462 2.3321

ÕPi 3.0000 2.9795 2.1075 2.4845 1.1765 2.0449 2.1359 2.2907

Table 4.15: Equilibrium premiums with Insurer 5 setting x?5 = x - GE

According to the published reports including the insurers’ premiums, in reality indeed In-
surer 5 sets the lowest premium in GE. Even with strict premium regulations, Insurers 1
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and 2 set the highest premiums, which in 2015, are 35% higher than the one of Insurer 1.

4.5. Cost of capital and an extended model

Insurance companies sell a product that is basically a commitment to compensate the pol-
icyholder for losses. This commitment imposes the insurance companies to raise capital
to support their liabilities to the policyholders. The raised capital from shareholders has
a cost associated with it, the Cost of Capital (CoC). The CoC depends on the financing
structure of the company. It can be either the cost of debt or the cost of equity. Companies
that are using a combination of equity and debt use the Weighted Average Cost of Capital,
known as WACC. As insurance companies usually have small or no long-term debt, the
CoC is the risk premium the investors demand in order to invest in the company. The
CoC is a function of the risk: the higher the risk, the higher the cost. We denote the rate
related to the CoC by rCoC .

Kielholz (2000) suggests to incorporate the cost of capital in the pricing decision for the
policy, by using measures of economic profit (also known as the Economic Value Added -
EVA). He claims that "only by targeting economic profit as a decision metric can insur-
ers maximize shareholder value". The economic profit is a measure used to evaluate the
company’s financial performance. It is defined as the difference between the net operating
profit after tax and the CoC needed to finance the company’s operations.
SwissRe (2005) also suggests that a company creates value to its shareholders only if the
return generated (the economic profit) is greater than the expected CoC. Generating a
positive economic profit enables the company to insure its independence and to ensure a
market value that is higher than the book value.

In view of the above, one may want to adapt the objective function of the different models
to the economic profit instead of the operating profit (OP ) leading to

Oi(x) = OP − rCoCSCR.

With the settings and model definitions in Dutang et al. (2013), the economic profit is
then defined as

Oi(x) =
ni
n

(1− βi(
xi

mi(x)
− 1))(xi − πi)− rCoC · k995 · σ(Y ) ·

√
ni.

When the constraints are inactive, the NE premiums vector, x? solves the equation system
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(1 + βi) ·mi · ni + ni · βi(πi − 2xi) +
0.5 · βi · rCoC · k995 · σ(Y ) · n0.5

i

(1 + βi − βi(xi/mi))0.5
= 0.

One can observe that the Nash equilibrium premiums (when the constraints are inactive)
depend on the price sensitivity parameter βi, on the break-even premium πi, the initial
portfolio size ni, the standard deviation of the loss model σ(Y ), the rCoC and the k995.
For a basic numerical illustration, we adapt the chosen parameters and assumptions from
Dutang et al. (2013) and calculate the Nash equilibrium premiums. We then compare the
results with Dutang et al. (2013). The chosen parameters are:

• Break-even premium: for the PLN model πj = (1.170, 1.202, 1.136). and for the
NBLN model πj = (1.247, 1.285, 1.231).

• Price elasticity coefficients: βi = (3, 3.8, 4.6).

• The minimum and maximum price constraints using an expense rate of 15%, x =

1.1765, and x = 3.

• A solvency coefficient k995 = 3.

• The rCoC = 0.06, based on an average CoC rate values in the insurance market in
the last few years and the rate set by the regulator in Europe and Switzerland.

The Nash equilibrium premiums for the two loss models are shown in Table 4.16.

Model/Insurer x?1 x?2 x?3 x?1/πj x?2/πj x?3/πj

PLN 1.651 1.621 1.568 1.411 1.349 1.380

NBLN 1.778 1.748 1.697 1.426 1.360 1.378

Table 4.16: Nash equilibrium premiums and markup ratio

As intuitively expected, Insurer 1 who has the lowest price sensitivity parameter βi and an
average break-even premium πi, sets the highest price.

In general, the Nash equilibrium premiums are 35-42% higher than the break-even premium
πi. The equilibrium price vector in Dutang et al. (2013) is x?i = (1.544, 1.511, 1.471). As
expected, the additional loading of the cost of capital results in increased premiums. For
PLN model, the premiums are increased by 6-7% and for NBLN model, the premiums are
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approximately 15% higher.
The Nash equilibrium results are much higher than the solvency requirements and satisfy
x?i ∈ [x, x].
Further examination of the extended model with other demand functions and sensitivity
tests are left for future research.

4.6. Discussion and conclusions

The one-period model presented in Dutang et al. (2013) presents a model for pricing an
insurance product in a regulated market with solvency constraints, using non-cooperative
game theory. In this paper, we suggest a supplementary demand function for this pricing
model which is constructed such that the initial market share has an impact on the result-
ing equilibrium premiums. We perform a numerical test for both pricing models using a
published dataset on the Swiss mandatory health insurance market to estimate the price
elasticity coefficient of the insurers. First, we calculate these coefficients for each insurer
in two different cantons and use them in the pricing model to calculate the equilibrium
premiums. The low price elasticity coefficients support the market experience that switch-
ing rates of policyholders are low. As a result, in most cases, the equilibrium premiums
equal the maximum allowed price in the two pricing models. When we triple the value of
the coefficients, the insurers reduce their premiums. The computed equilibrium premiums
with the two models are comparable. Future research with other datasets might help to
determine which model is more accurate.
One may also consider other objective functions for different insurance markets. For ex-
ample, as in the Swiss mandatory health insurance, the law restricts any profit and the
premiums set by the insurers should cover only their expenses, the insurers might consider
maximizing their market share so that they can enjoy profits from selling complementary
insurance products.
In non-life insurance, incorporating the cost of capital into the premium consideration and
choosing the economic profit as an objective function might improve the accuracy of the
model. As a first step in that direction, we presented here an example of the economic
profit as an objective function of the insurer with numerical illustrations.
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