
Combination of Aerial, Satellite, and
UAV Photogrammetry for Quantifying
Rock Glacier Kinematics in the Dry
Andes of Chile (30°S) Since the 1950s
Sebastián Vivero1*, Xavier Bodin2, David Farías-Barahona3,4, Shelley MacDonell 5,
Nicole Schaffer5, Benjamin Aubrey Robson6 and Christophe Lambiel 1

1Institute of Earth Surface Dynamics (IDYST), University of Lausanne, Lausanne, Switzerland, 2Laboratoire Environnements,
Dynamiques et Territoire de Montagne (EDYTEM), CNRS, Université Grenoble Alpes, Université Savoie Mont-Blanc, Bourget Du
Lac, France, 3Departamento de Geografía, Universidad de Concepción, Concepción, Chile, 4Institut für Geographie, Friedrich-
Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, 5Centro de Estudios Avanzados en Zonas Áridas, La Serena,
Chile, 6Department of Earth Science, University of Bergen, Bergen, Norway

The diachronic analysis of aerial and satellite imagery, uncrewed aerial vehicle (UAV) and in
situ surveys obtained between 1956 and 2019 are employed to analyse landform surface
kinematics for the Tapado site located in the Dry Andes of Chile. A feature tracking
procedure was used between series of orthorectified and co-registered images to
calculate surface velocities on several ice-debris landforms, including rock glaciers and
debris-covered glaciers. For the active rock glaciers, the results exhibit typical viscous flow,
though local destabilisation process seems to occur, increased velocities since 2000
(>1m/yr) and terminus advance. Nevertheless, the debris-covered glaciers displays
heterogeneous spatial patterns of surface velocities, together with collapse
(downwasting) associated with the development of thermokarst depressions and
supraglacial ponds. Our findings show that surface kinematics and multitemporal
observations derived from different sensors are valuable tools for differentiating
between glacial and periglacial features. The pluri-decadal time series since 1956
constitute a unique dataset for documenting the surface kinematics of creeping
mountain permafrost in the Southern Hemisphere. The approach developed in this
work offers a way forward to reconstruct the recent behaviour of glacial and periglacial
features in the Andes, where archival aerial photographs are available but have not
previously been processed rigorously to obtain an accurate assessment of landform
kinematics.
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1 INTRODUCTION

Cryosphere components in high-mountain regions such as glaciers, snow cover and permafrost are
sensitive to environmental changes such as rising temperatures because of their proximity to melting
or thawing conditions (Haeberli and Beniston, 1998; Barry and Gan, 2011; Hock et al., 2019).
Permafrost is invisible for the layperson because it is a thermal phenomenon (Dobiński, 2011);
however, direct temperature measurements (Noetzli et al., 2021), geophysical measurements
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(Mollaret et al., 2019), geomorphological evidence (Barsch, 1996)
and modelling approaches (Gruber, 2012) can reveal permafrost
conditions in diverse mountain or polar environments. In the Dry
Andes (17°30´–35°S, sensu Lliboutry, 1998), rock glaciers are
regarded as the unequivocal expression of the creep of
mountain permafrost, and it is assumed that they play an
essential role as water reservoirs due to their prevalent
occurrence in the high Andean landscape (Corte, 1976;
Schrott, 1996; Azócar and Brenning, 2010; Perucca and Esper
Angillieri, 2011; Schaffer et al., 2019). In this mountain region,
rock glaciers, push moraines and debris-covered glaciers
assemblages represent cases of intricate permafrost-glacier
interactions (Trombotto et al., 1997; Bodin et al., 2010). In
addition, recent studies performed in the Dry Andes have
highlighted the remarkable development of several transitional
landforms from glacial to periglacial domains (Monnier and
Kinnard, 2015, 2017). These studies stress glacial and
periglacial processes’ importance and encourage more in-depth
investigations to characterise this hybrid cryospheric landscape.
Nevertheless, and due to this complexity, glaciers and periglacial
landforms are not distinguished from one another in current
country-wide glacier inventories at the Chilean and Argentinian
share of the Andes (Barcaza et al., 2017; Zalazar et al., 2020).
Environmental laws designed to protect surface and subsurface
perennial ice reservoirs (sensu stricto glaciers and rock glaciers)
have been implemented in Argentina, and are currently in
discussion in Chile, which means that their correct
characterisation and monitoring have become a highly relevant
environmental matter (Brenning, 2008; Brenning and Azócar,
2010; Kronenberg, 2013; Wainstein et al., 2020).

In the Andes, one of the earliest rock glacier monitoring
activities was performed in 1970 at the Pedregoso rock glacier
in the Valparaiso Region of Chile (32°S). Using a triangulation
land survey technique, Marangunic (1976) measured 23 points
during the late summer of 1970, estimating velocities between 0.2
and 1.28 cm per day at the rock glacier root and the central part,
respectively. Later on, Valenzuela (2004), reported the kinematics
of South Infiernillo Alto rock glacier near the Los Bronces mining
site (33°S). In this particular case, the rock glacier reached up to
25 m/yr in 1995 after the deposit of 14 m tons of mining waste on
the rock glacier’s central part. Terrestrial geodetic surveys have
been sporadically implemented at the Tapado rock glaciers since
2009 (Dirección General de Aguas [DGA], 2010), between 2012
and 2016 at the Varas rock glacier (23°S) in the Norwest
Argentinean Andes (Martini et al., 2017) and between 2013
and 2016 at the Morenas Coloradas rock glacier (32°S) in the
Central Argentinean Andes (Trombotto-Liaudat and Bottegal,
2020). More recently, Blöthe et al. (2020) provided the surface
velocities of 244 rock glaciers between 2010 and 2018 in the
Cordón del Plata Range (Central Argentinean Andes) using high-
resolution satellite images and cross-correlation matching
techniques. Using a combination of UAV and geophysical
surveys, Halla et al. (2021) investigated the surface kinematics,
ice content and interannual water storage at the Dos Lenguas rock
glacier, approximately 15 km to the southeast of the Tapado area.
Despite the recent upsurge of rock glacier studies in the Andes,
the lack of long-term systematic measurements of these

landforms has precluded a better understanding of their
response to changes in environmental conditions (Masiokas
et al., 2020) and more appropriate classifications of rock
glaciers according to their degree of activity (i.e., the
traditional distinction between active and inactive landforms,
sensu Barsch, 1996).

Several studies have highlighted the coherent nature of rock
glacier surface deformation over time, indicating a large-scale
stress transmission mechanism on the ice-debris mixtures under
permafrost conditions (Wahrhaftig and Cox, 1959; Kääb, 2002;
Haeberli et al., 2006). This coherent surface deformation is
mainly the result of permafrost creep processes occurring
inside the rock glacier body, like the plastic deformation of
frozen sediments supersaturated with ice and the localised
deformation at the shear horizon (Wagner, 1992; Haeberli,
2000; Arenson et al., 2002; Cicoira et al., 2021). As a result of
these intrinsic rock glacier dynamics, changes in surface
morphology and kinematics fields are dissimilar between rock
glaciers and other ice-debris complexes like debris-covered
glaciers (Berthling, 2011; Bosson and Lambiel, 2016).
However, differentiating among debris-covered glaciers, glacial
and periglacial landforms from solely monotemporal remote
sensing observations is non-trivial (see, for instance, the
classification scheme proposed by Janke et al., 2015), and the
interpretation of composite geomorphological processes is
potentially ambiguous. Therefore, multitemporal observations
based on archival or contemporary high-resolution imagery
are more suitable to describe complex geomorphological
processes in high mountain environments (Roer and
Nyenhuis, 2007; Micheletti et al., 2015; Groh and Blöthe, 2019;
Hu et al., 2021; Kääb et al., 2021).

Conventionally, rock glacier inventories and classification
schemes are based on the presumed degree of activity by the
visual inspection of optical imagery alone (Brardinoni et al.,
2019). Furthermore, deliberations on rock glacier activity based
only on surface morphology indicators (see Imhof, 1996;
Burger et al., 1999) should be taken with precaution, as
controversy and confusion have intensified from
morphological centred approaches on complex landform
mapping (Berthling, 2011). Currently, kinematical data
obtained from optical and radar remote sensing datasets
(Delaloye et al., 2007; Barboux et al., 2014; Villarroel et al.,
2018; Hu et al., 2021; Kääb et al., 2021) has been recognised to
be instrumental in distinguishing among different types of
slope movements in the high mountain periglacial
environments. Typically, rock glacier kinematics can be
evaluated from remotely sensed datasets, either airborne or
space-borne, obtained for at least two different points in time to
calculate significant displacements above a certain threshold
(Kääb, 2005).

In the present study, we aim to analyse spatial-temporal
changes of surface kinematics over rock glaciers and ice-debris
complexes in the Dry Andes by exploiting an assemblage of
remote sensing datasets spanning 63 years (1956–2019). This
work supports a geomorphological mapping proposal based on
multitemporal remote sensing techniques and geomorphic
interpretations informed by observations on the evolution of

Frontiers in Remote Sensing | www.frontiersin.org November 2021 | Volume 2 | Article 7840152

Vivero et al. Rock Glacier Kinematics Dry Andes

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


landform kinematics. Furthermore, we provide a systematic
description of the development of rock glacier kinematics over
distinct types of landforms since 1956. Our work is embedded
into the efforts of the recently founded International Permafrost
Association (IPA) Action Group (RGIK, 2021) on rock glacier
inventories and kinematics by deciphering long-term surface
velocities.

2 STUDY SITE AND PREVIOUS WORK

The study site is located in the La Laguna basin at the
headwaters of the Elqui River catchment in the Coquimbo
Region of Chile (30°S, 69°W, see Figure 1). The regional
climate is characterised by semiarid conditions and is
influenced mainly by the extratropical precipitation systems
(Garreaud, 2007), although nonnegligible convective activity is
occasionally present during the austral summer months
(Vuille and Keimig, 2004). The annual precipitation
amounts and corresponding snowpack processes exhibit
substantial variability associated with El Niño-Southern
Oscillation (ENSO, e.g., Montecinos and Aceituno, 2003;
Réveillet et al., 2020), with above (below) -average
precipitation during El Niño (La Niña) events. At the
nearest long-term meteorological station (La Laguna,
3,160 m a.s.l.), the mean annual air temperature (MAAT)
was 8.15°C in 1976–2019; and the mean annual
precipitation was 156 mm in 1964–2019. The MAAT at the
La Laguna station experienced a warming trend of 0.17°C per

decade (Monnier et al., 2014). Furthermore, a sequence of dry
years has been observed since 2010 in this region, with a
precipitation deficit between 20 and 40% (Garreaud et al.,
2020). Short-term meteorological data from an automatic
weather station (AWS) at 4,306 m a.s.l. (Figure 1) indicates
a MAAT of -0.6°C between 2014 and 2020 (CEAZA, 2021).
According to a recent permafrost distribution model
developed by Azócar et al. (2017), permafrost is scattered
between 3,900 and 4,500 m a.s.l. and more prevalent above
4,500 m a.s.l.

The Tapado area (Figure 1) includes the Cerro del Tapado
(5,536 m a.s.l.), which is covered with the largest glacier in the
region (Barcaza et al., 2017). The Tapado Glacier has drawn
much research attention in recent years due to its relatively easy
accessibility, large area and unique position south of the so-
called “South American Arid Diagonal” (Nicholson et al., 2016;
Pourrier et al., 2014; Sinclair and MacDonell, 2016). The
analysis of a 36 m long ice core and borehole temperatures
near the summit retrieved in February 1999 revealed a large
interannual variability of net accumulation during the 20th
century and temperatures down to -11°C at the ice-bedrock
interface (Ginot et al., 2006). In connection with the Tapado
Glacier, a complex glacio-geomorphologic assemblage (here
termed Tapado complex) of rock glaciers, moraines, and a
debris-covered glacier is present (Monnier et al., 2014). Next
to the Tapado complex, Las Tolas and El Cachito rock glaciers
(Figure 1) display clear signs of ongoing activity such as
transversal ridges and furrows and steep lateral-frontal talus
(Figure 2). The dominant surface material in this area is mainly

FIGURE 1 | (A) Location of the study area (red star), near the boundary between Chile and Argentina. (B) The Tapado complex and studied landforms (dashed red
lines). The yellow triangle indicates the position of the Automatic Weather Station (AWS). Green circles indicate the position of the shallow boreholes 1 (BH1) and 2 (BH2).
Black polygon indicates the area covered by the UAV surveys. The background image corresponds to a Pléiades orthoimage from November 18th 2014. Contours are
derived from the corresponding DEM. © CNES (2018), and Airbus DS (2018), all rights reserved.
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a mix of pebbles and cobbles derived from the Pastos Blancos
and Doña Ana formations, whose lithologies are mainly silicic
volcanic rocks (Strauch et al., 2006). According to their
predominant clast size, the rock glaciers are classified as
pebbly rock glaciers (sensu Ikeda and Matsuoka, 2006),
which is also the dominant typology in this part of the
Andes (Falaschi et al., 2014).

Earlier reconnaissance work done by Paskoff (1967) detailed
the first geomorphological map of the Tapado site as well as
some initial insights into the complex interplay between glacial
and periglacial landforms. Later on, Milana and Güell (2008)
performed seismic refraction surveys on the lower Tapado
complex and Las Tolas rock glacier, inferring active layer
thicknesses of 4 and 11 m, respectively. From these findings,
they postulated that the Tapado rock glacier was derived from
the debris-covered glacier and labelled it of “glacigenic” origin
based on the higher ice content detected by their geophysical
survey. Monnier et al. (2014) performed more extensive
geomorphological and geophysical measurements,
concluding that the debris-covered glacier overlapped the
Tapado rock glaciers after a noticeable glacier advance,
which probably occurred during the Little Ice Age (LIA)
climate episode (Espizua and Pitte, 2009). Recent studies
have also focused on the hydrological mechanisms
operating through the different cryospheric components

(Pourrier et al., 2014) and their hydrological relevance
(Schaffer et al., 2019).

3 MATERIAL AND METHODS

The methodological approach provides an integrated kinematic
quantification and geomorphological analysis using various
multi-temporal remote sensing datasets (Table 1). Distributed
kinematic changes were quantified at different time intervals
within the period 1956–2019. Products of the kinematic
quantification were subject to a quantitative evaluation and a
detailed geomorphic interpretation. The ensemble of
orthoimages was projected to the Universal Transverse
Mercator (UTM) 19S zone and WGS-84 Datum to provide
compatible datasets. Elevation values were recorded in heights
above the WGS-84 ellipsoid.

3.1 Airborne Laser Scanning Dataset
The airborne laser scanning (ALS) survey was performed by
Digimapas company on 18 April 2015, using a Trimble Harrier
68i laser scanning system onboard a helicopter, flying at 640 m
above the ground. The airborne system was embedded with a
metric camera, an inertial measurement unit (IMU) and GNSS
devices. The postprocessing (trajectories, point cloud filtering,

FIGURE 2 | Terrestrial view of the study area. (A)Overview of Tapado site with the three studied units (05.02.2015). (B) The tongue-shaped Las Tolas rock glacier
with clear margins (also note the crevasses in the upper area) and well-developed furrows and ridges (01.02.2018).
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orthomosaic and registration) and quality control steps were
performed by Digimapas. After filtering, the final point density
was 13.67 pts/m2 with a vertical accuracy (RMSE) within 0.086 m
(DIGIMAPAS, 2015).

The lack of surface contrast caused by a thin layer of seasonal
snow excluded the use of the accompanying orthomosaic for the
ALS 2015 dataset for further kinematic measurements. However,
this dataset proved to be extremely useful during the extraction of
photogrammetric ground control on assumed stable areas outside
the Tapado complex. Following the approach presented by James
et al. (2006), several ground control points (GCPs) were extracted
from the ALS dataset based on two main principles: 1) correctly
and easily recognisable on several images; and 2) located on stable
zones during each period. These requirements were typically met
by medium-sized boulders on flat areas and rock outcrops near
mountain ridges.

3.2 Geodetic Measurements
The surface kinematics of the Tapado rock glacier have been
surveyed on a network of 46 points since 2009 using differential
GNSS (dGNSS) system (Dirección General de Aguas [DGA], 2010).
A temporary base station on a flat exposure of bedrock, near the rock
glacier, was deployed during each surveying campaignwith a logging
interval of 1–2 s. Additionally, around three control points located
on stable terrain outside the rock glaciers weremeasured during each
campaign as a quality check and to ensure the stability of the base
station. During the 2018 and 2019 field surveys, this control network
was augmented to include between 14 and 17 GCPs to be used
during the processing of the UAV surveys. The base station
coordinates were fixed using the Trimble Center Point RTX
postprocessing service, and the differential postprocessing of the
GNSS raw data between this base and the rover GNSS antenna was
conducted using Trimble Business Center (TBC, V.4) surveying
software. The stability of the base station and the coordinate system
is discussed in section 5.3. The reported average horizontal and
vertical precisions (95%) were 0.02 and 0.04m, respectively.

3.3 Archival Aerial Photographs
Archival aerial photographs from the 1956 HYCON aerial survey
were provided by the Instituto Geográfico Militar (IGM) of Chile,
and the 1978 CHILE60 and 2000 GEOTEC aerial surveys were
provided by the Servicio Aerofotogramétrico (SAF) of Chile. In

the high Chilean Andes, and until recently, the general approach
for analysing raw archival aerial photographs sourced from either
the IGM or SAF was their treatment by georeferencing using the
available regular 1:50000 scale cartography or recent datasets
(Bown et al., 2008; Rabatel et al., 2011; Ruiz Pereira and Veettil,
2019; among others). However, georeferencing itself cannot
compensate for the distortions induced by the camera optics
and the extreme relief encountered in such mountain regions
(Mikhail et al., 2001). Therefore, more robust processing based
on reconstructing the interior and exterior image orientations
of historical aerial photographs can be sought using modern
digital photogrammetric techniques and high-quality ground
control (see Farías-Barahona et al., 2019, 2020). With the
reconstruction of three-dimensional terrain data through
stereo images, input imagery can be transformed into
geometrically corrected images (i.e. orthoimages and
orthomosaics). We applied this methodology using
Geomatica Banff photogrammetric software.

Aerial photographs were scanned at 1,200 dpi and 8-bit/pixel
using a photogrammetric scanner and provided with their
corresponding calibration certificates, except the 1956 photographs
for which the camera calibration certificate was not available.
Therefore, we only retrieved the calibrate focal length from the
1956 photographs’ data strip and estimated the rest of the interior
orientation parameters such as principal points and radial distortion
parameters through a self-calibration adjustment implemented in
Geomatica Banff photogrammetric software. Such adjustment
requires more GCPs than when calibration certificates are
available. A bundle block adjustment (Table 2) was performed
based on several GCPs extracted from the 2015 ALS dataset
(point cloud and orthomosaic) and automatically generated Tie
Points (TPs) followed by a subsequent aerotriangulation, including
adjusted camera parameters. Using a Semi-Global Matching
algorithm, DEMs were extracted from stereo images at a
resolution of 1m × 1m. Orthoimages were generated at the same
resolution and extent (i.e. concurrent) using their
corresponding DEMs.

3.4 High-Resolution Satellite Imagery
Two stereo panchromatic images from the GeoEye-1 and two tri-
stereos Pléiades satellites were available for this study (Table 1).
GeoEye-1 and Pléiades images were provided in level 1B and

TABLE 1 | Available remote sensing imagery for the study area between 1956 and 2019. Pan refers to the panchromatic bands in GeoEye-1 and Pléiades sensors.

Date Platform Sensor N° images/datasets GSD (m)/point density (m2)

04/04/1956 Aircraft Fairchild T-11 Stereo 1
31/05/1978 Aircraft Wild RC-10/Uag II Stereo 1
31/01/2000 Aircraft Wild RC-10/Uag II Stereo 1
12/04/2010 Satellite GeoEye-1 pan Stereo 0.5
23/03/2012 Satellite GeoEye-1 pan Stereo 0.5
18/11/2014 Satellite Pléiades pan Stereo and tri-stereo 0.5
18/04/2015 Aircraft Trimble Harrier 68i Orthomosaics and point cloud 0.15/13.67
29/01/2018 UAV1 Phantom 3 FC300X 1,359 0.02
31/01/2019 Satellite Pléiades pan Stereo and tri-stereo 0.5
20/03/2019 UAV1 Phantom 4 FC6310 1,516 0.02

1The area covered by the UAV surveys is indicated in Figure 1.
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coded over 11-bit/pixel and 12-bit/pixel for each sensor,
respectively. The original orientation data obtained from the
rational polynomial coefficient (RPC) was refined using 8
GCPs and between 65 and 85 automatically extracted TPs.
The GCPs were sourced from the 2015 ALS dataset similarly
to the aerial photographs. Table 2 shows the accuracy of the
GCPs and TPs for each bundle block adjustment. Using the
OrthoEngine module in Geomatica Banff, the processing of the
satellites images follows the same preparation as the aerial

photographs to generate high-resolution orthoimages and
DEMs for each year.

3.5 Uncrewed Aerial Vehicle Surveys
The UAV surveys were planned to acquire recent high-resolution
images of the northern frontal lobe of the Tapado complex
(Figure 1) and performed simultaneously with the GNSS
surveys in January 2018 and March 2019. The 2018 and 2019
UAV surveys were conducted using Phantom 3 Pro and Phantom

TABLE 2 | Bundle block adjustment parameters included the number (N°) of ground control points (GCPs) and tie points (TPs) employed and the RMS error in x, y and z
directions (m) for each date.

Date Sensor GCPs TPs

N° x RMS y RMS z RMS N° x RMS y RMS z RMS

04/04/1956 Fairchild - T-11 16 0.90 0.82 1.09 30 0.35 0.04 0.08
31/05/1978 Wild RC-10/Uag II 11 0.28 0.30 0.53 35 0.32 0.05 0.12
31/01/2000 Wild RC-10/Uag II 11 0.30 0.33 0.77 30 0.18 0.07 0.05
12/04/2010 GeoEye-1 pan 8 0.24 0.12 0.31 76 0.06 0.01 0.00
23/03/2012 GeoEye-1 pan 8 0.16 0.15 0.18 65 0.05 0.01 0.00
18/11/2014 Pléiades pan 8 0.17 0.10 0.44 80 0.08 0.10 0.01
31/01/2019 Pléiades pan 8 0.29 0.25 0.28 85 0.13 0.08 0.03

FIGURE 3 | Distribution of GCPs and CPs used during the 2018 and 2019 UAV surveys. The background images correspond to the UAV-derived orthomosaics
from 2018 to 2019, respectively.
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4 Pro DJI devices (Table 1), and their planning and execution
were achieved employing the PIX4Dcapture flight planning app.
The front and side overlaps were set to 80 and 70%, respectively,
using a single grid flight plan. The nominal altitude above the
ground during both surveys was kept around 45 m by flying
nearly parallel to the slope, and the final ground sampling
distances (GSD) were below 2 cm. The total area covered by
both UAV surveys reached 0.2 km2.

The UAV images were processed using PIX4Dmapper pro
version 4.4 software through a prescribed Structure-from-Motion
(SfM) photogrammetry approach to derive 3D point clouds,
DEMs and orthomosaics (Carrivick et al., 2016). Noise
filtering and medium surface smoothing were activated in the
software processing options. A bundle block orientation of each
survey was achieved using 14 (2018) and 17 (2019) GCPs
distributed on the rock glacier surface (Figure 3). The
resulting orthomosaics and DEMs were sampled at a
resolution of 2 cm × 2 cm. High-resolution elevation changes
were computed by the DEMs of differences (DoD) method, using
the Geomorphic Change Detection (GCD), version 7 software
(Wheaton et al., 2010). Between 16 (2018) and 11 (2019)
checkpoints (CPs) were strictly employed to independently
gauge the quality of their corresponding DEM (Figure 3). The
standard deviation of the elevation differences between the
reference CPs and DEM was used to calculate the minimum
level of detection (LoD), which determines the threshold between
significant and non-significant elevation change (at 95%
confidence interval).

3.6 Feature Tracking
Each orthoimage pair was analysed at their respective coarsest
resolutions (see Table 1). Surface feature tracking was obtained by
a normalised cross-correlation procedure using CIAS software
(Kääb and Vollmer, 2000; Debella-Gilo and Kääb, 2011). The
dimensions of the reference and search windows were first

defined based on the orthoimages resolution, quality and time
interval considered. Typically, smaller (larger) reference and search
windows were employed for short (long) periods. The resulting
sizes of the reference (search) windows are 64 × 64 (128 × 128) for
aerial images (early periods), 25 × 25 (50 × 50) for satellite images
(recent periods) and 50 × 50 (200 × 200) for UAV-derived
orthomosaics. To derive comparable surface velocities,
conjugated (corresponding) points in two orthoimages were
spaced within the predefined boundaries based on an invariable
10 m sampling grid (i.e. eulerian framework). Older aerial
photographs presented different image quality due to dust, dirt
and scratches on the film during the scanning process, reducing the
quality of the feature matching processing. On the other hand,
modern high-resolution satellite imagery presented better
conditions for feature tracking due to their higher radiometric
resolution of 11–12 bit/pixel and better signal-to-noise ratio with
respect to the archival aerial photographs scanned at 8-bit/pixel
(Poli et al., 2015).

The accuracy of the kinematic time series was assessed by
stable features such as boulders and outcrops that were
considered representative of the study landforms (Figure 4).
This assessment is done by matching features on stable
ground, computing an apparent x-y shift, scale and rotation
values between the two images, and then the final residuals
after the adjustments (Kääb, 2021). The x and y standard
deviations (σx and σy) of the residuals were used to calculate
the uncertainty associate with the horizontal displacements
(σl) following the rationale presented by Redpath et al. (2013)
and evaluated using the LoD with a confidence limit of 90%
(i.e. 1.64×σl). The resulting LoD values were converted to m/yr
based on the time difference between subsequent datasets
(Table 1).

Different conditions were applied to filter and exclude poorly
correlated points and those displaying anomalous displacement
or directions. Depending on the intrinsic quality of orthoimages
pairs (e.g. image 1 and image 2), reliable displacement values were
retrieved with correlation coefficients higher than 0.4–0.6
(Wangensteen et al., 2006; Kääb et al., 2021). Zones with
significant changes in the surface texture such as thermokarst
depressions and ponds, fluvioglacial fans, snow patches and
exposed glacier ice hampered the feature tracking procedure.
Therefore, these zones were excluded from the feature tracking
analyses. Time series of surface kinematic were derived using the
mean value within manually drawn kinematic zones, defined by
an almost coherent movement and the availability of high-quality
correlation points during the analysed periods.

3.7 Ground and Air Temperature Data
Ground temperatures from two shallow boreholes were available
at the northern frontal lobe of the Tapado complex (Figure 1).
The setup consists of five temperature data loggers (E348-S-
TMB-M006 HOBO) placed at depths between 0.2 and 2.5 m
(Dirección General de Aguas [DGA], 2010). Recordings are
stored in a centralised datalogger (HOBO U-30) with a
logging interval of 30 min. Air temperature data was also
measured on each borehole site, but the recordings were quite
discontinuous. Long term mereological data was sourced from

FIGURE 4 | Time-series of orthorectified aerial and satellite images
between 1956 and 2019. Yellow lines represent the stable points outside the
moving landforms employed for CIAS assessment.
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the nearest meteorological station (La Laguna, 3,160 m a.s.l.)
using the Chilean Climate Explorer (http://explorador.cr2.cl).
In this study, we derived the MAAT from 1976 (beginning of
the temperature measurements) to 2019.

4 RESULTS

4.1 Evaluation of the Displacement
Accuracy
The horizontal accuracy assessment between orthoimage pairs
was achieved by evaluating the apparent displacement of the
stable points outside the studied areas (Figure 3 and Table 3). As
expected, the older orthoimage pair presents the larger LoD
associated with the more significant errors during the bundle
block adjustments (Table 2) and the relatively low quality of
the original scanned film. Additionally, the 1956 aerial survey
is the only one where the internal calibration parameters were
reconstructed using a self-calibration technique. Nevertheless,
this large LoD is somehow compensated by the significant time

span between the early aerial photography acquisitions (nearly
22 years). Smaller LoDs are associated with the orthoimages
pairs from the recent satellite acquisitions (GeoEye-1 and
Pléiades) and the UAV-derived orthomosaics. The standard
deviations associated with CIAS analysis were approximately
equal in the y and x directions for most orthoimages pairs,
revealing a small anisotropy in the resulting displacement
uncertainties.

4.2 Surface Kinematics
Figure 5 displays surface velocities of the Tapado site derived
from a pair of Pléiades orthoimages between 2014 and 2019. This
figure highlights the complex morphology and heterogeneous
kinematic patterns of the Tapado complex. It also reveals the
noticeably coherent kinematic behaviour of the Las Tolas and
El Cachito landforms. Areas with steep slopes, snow cover and
significant textural changes between 2014 and 2019 provided
low-quality kinematic data and therefore were excluded from
our analysis. However, surface kinematics on the debris-
covered glacier revealed rather chaotic values due to drastic

TABLE 3 | Assessment of the horizontal displacement accuracy of orthoimage pairs over stable terrain.

Orthoimage pair Setup x-shift (m) y-shift (m) σx (m) σy (m) LoD (m) LoD (m/yr)

1956–1978 Aerial–Aerial −0.34 −0.21 2.57 2.55 4.21 0.19
1978–2000 Aerial–Aerial −0.46 −0.06 1.99 1.92 3.20 0.15
2000–2010 Aerial–Satellite −0.13 0.11 0.44 0.50 0.76 0.08
2010–2012 Satellite–Satellite 0.00 0.12 0.31 0.34 0.52 0.27
2012–2014 Satellite–Satellite −0.06 −0.07 0.31 0.32 0.51 0.19
2014–2019 Satellite–Satellite −0.03 −0.13 0.23 0.24 0.38 0.09
2018–2019 UAV–UAV −0.02 0.01 0.03 0.04 0.07 0.06

FIGURE 5 | Surface velocities of the three investigated units between 2014 and 2019. Black lines and labels (A–F) indicate the surface velocity profiles (Figure 6).
White arrows indicate the four zones (black dashed outlines) where the time series (1956–2019) of surface kinematics were compiled (Figure 7). The background image
corresponds to a Pléiades-derived hillshade from January 2019. CNES (2018), and Airbus DS (2018), all rights reserved.
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textural changes. Surface velocities below the LoD were
concentrated in the recently deglaciated glacier forefield and
near the unit’s margins. Velocities of more than 1.5 m/yr were
detected in the upper debris-covered glacier; and the central
and lower sections of Las Tolas and El Cachito rock glaciers,
respectively.

The velocity profiles of the three most active rock glacier units
can be seen in Figure 6. The fastest rock glacier part was up to
1.8 m/yr near the front of the El Cachito rock glacier. The Las
Tolas rock glacier presented the fastest section (1.6 m/yr)
around the middle approximately halfway between the
rooting zone and the terminus. On the Tapado 1 rock
glacier (T1rg), the increase in velocity along the centre
profile was neither uniform nor linear but indicated at least
two rapid sections (Figure 6).

Time series of surface kinematics were compiled for two
rock glacier units at the Tapado complex (T1rg and T2rg), Las
Tolas (LTrg) and El Cachito (ECrg) rock glaciers (Figure 7).
However, between 1956 and 1978, results from CIAS analysis
at the El Cachito rock glacier showed values below the LoD;
therefore, no kinematic values were reported. Figure 7 also

includes the estimated MAAT at 4,500 m a.s.l. since 1976 and
the recent in-situ kinematic monitoring by GNSS surveys at
the Tapado 1 rock glacier (2010–2019). Excluding the Tapado
2 rock glacier, the group of landforms display a nearly
synchronous kinematic behaviour. The Tapado 2 rock
glacier displayed nearly constant velocities and low activity
(<0.3 m/yr, see Figure 7). Surface kinematics indicate
relatively low velocities in the 1950–2000 period, followed
by a rapid acceleration since the 2000s. Over the period
2010–2012, the surface kinematics of the El Cachito,
Tapado 1 and Tapado 2 rock glaciers experienced a slight
deceleration, which lasted until 2015 for Tapado 1. The Las
Tolas rock glacier was the only landform that did not
decelerate during the entire study period.

The 63 years glacier retreat and periglacial processes can be
observed from the dynamic visualisation of the sequential
orthoimages at the video supplement (Supplementary video
S1). On the one hand, this dynamic visualisation also shows
the chaotic downwasting structure and the development of
thermokarst depressions and ponds at the debris-covered
glacier. On the other hand, the viscous flow appearance of

FIGURE 6 | Longitudinal surface velocity profiles (2014–2019) for the Tapado 1 (T1rg), Las Tolas (LTrg) and El Cachito (ECrg) rock glaciers.

FIGURE 7 | Time series of mean surface velocities for the kinematics zones as defined in Figure 5. The continuous black line represents the Tapado 1 (T1rg) rock
glacier mean surface velocities obtained from the GNSS surveys (6 points) between 2010 and 2019. The MAAT at 4,500 m a.s.l. (continuous grey line) was extrapolated
from La Laguna meteorological station (3,130 m a.s.l.) using a temperature lapse rate of -0.6°C per 100 m.
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the most active rock glaciers is revealed during the same
period.

4.3 High Spatial Resolution Surface
Changes
The spatial surface behaviour of the Tapado 1 rock glacier is
analysed based on the recent UAV-derived DEMs and
orthomosaics (Figure 8). The delineation of the surface between
the central and frontal parts and lateral talus (Figure 8) was
distinguished by the distinctive elevation change patterns (see
Halla et al., 2021 for a similar rock glacier division). From the
high-resolution DoD, the advection of transverse ridges is seen
through the alternating positive and negative elevation
changes at the rock glacier central tongue. Here, surface
rising (sinking) patterns are found in the front (rear) of
individual ridges. The amplitude associated with the surface
rising and sinking can reach between 0.5–1 m, whereas the
wavelength of the ridge-and-furrow morphology is around
20 m. The widespread positive elevation changes at the frontal
and lateral slopes are associated with the advance of the
rock glacier and reworking processes. Negative elevation
changes (up to -1.5 m) are associated with some rockfalls
and gullying patterns just below the rock glacier front. The
recent changes of the Tapado 1 rock glacier can be observed
from the dynamic visualisation of the sequential high-
resolution hillshades at the video supplement
(Supplementary video S2).

The surface velocities at the Tapado 1 rock glacier derived
from recent satellite images (2014–2019) and UAV (2018–2019)
display a similar structure (Figures 5 and 8). Surface velocities
over 1.25 m/yr were measured near the rock glacier front.
Near the lateral margins, there is a sharp decrease in the
observed velocities. Surface velocities remained high near the
rock glacier front. Due to the steep topography of the frontal and
lateral talus (slopes angles between 32 and 39°) and the
significant texture changes, no reliable velocities values were
obtained on this zone. Nevertheless, visual inspection of the

high-resolution orthomosaics indicates that the surface changes
are associated with erosive processes such as falling boulders,
small debris slides and localised gullying.

4.4 Landform Interpretation
The following landform interpretation is mainly based on the
recent guidelines published by the IPA Action Group on rock
glacier inventories and kinematics (RGIK, 2021). Some
subjectivity is still inherent in the difficulty of conciliating
kinematics zones with fuzzy geomorphological boundaries.

4.4.1 Tapado Complex
Following the recent definitions of spatial connection of the rock
glacier to the upslope unit, the Tapado 1–5 rock glacier units are
glacier-connected (Figure 9) because they interact with the debris-
covered glacier and push moraine complexes. Independently from
the origin of the ground ice, glaciers can supply large amounts of
meltwater and ice to proglacial permafrost landforms. As the case for
Tapado 6 rock glacier, this unit is classified as glacier forefield-
connected, which probably was in contact with the Tapado glacier
during the LIA advance. This recently exposed glacier forefield is the
heritage of the former Tapado glacier dynamics, and its thermal
regime (i.e. polythermal glacier) probably explains the presence of
several fluted moraines, fluvioglacial fans and dry gullies. Due to the
diffusemargin between this rock glacier unit and the glacier forefield,
the Tapado 6 rock glacier unit was previously interpreted as part of
an upper lateral moraine complex (Monnier et al., 2014). However,
the surface velocities up to 0.25 m/yr and the well-developed frontal
and lateral talus indicate an active rock glacier unit, though the
development of the landform remains difficult to determine when
considering the evolution of the glacier.

Large thermokarst depressions might indicate the boundary
between the Tapado debris-covered glacier and the push
moraines (Figure 9). These push moraines (glaciotectonized
frozen sediments) are associated with the former glacier advance
during the LIA. Following glacier retreat and downwasting, these
push moraines have developed a particular back creeping process
toward the former glacier body (Haeberli, 1979; Kneisel and Kääb,

FIGURE 8 | UAV-derived vertical changes and surface kinematics of Tapado 1 rock glacier (T1rg) between January 2018 and March 2019. The background image
corresponds to the UAV-derived orthomosaic from March 2019.
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2007), which is shown in Figure 9. Despite the short transport route
of fine-grained sediments in Tapado glacier forefields, the size of this
push moraine formation is quite exceptional and may indicate the
incorporation of a preceding ice-debris landform during its
development.

4.4.2 Las Tolas and El Cachito rock glaciers
The Las Tolas rock glacier is a talus-connected landform. The
topographical sequence goes from a massive headwall of an ice-
free cirque with several coalescent talus slopes, a distinguished
body of permafrost creep with the typical ridge-and-furrow
morphology, and ending with a trident-like form (Figure 5).
Considering the particular topographical setting, the El Cachito
rock glacier was catalogued as a debris-mantled slope-connected
rock glacier. Multitemporal observations and kinematic data
suggest the debris are provided from the in-situ weathering
process founding the upslope geomorphological unit and
subsequently mobilising downslope to convene into a well-
organised expression of creeping mountain permafrost
(Supplementary video S1).

5 DISCUSSION

5 1 Potential Sources of Uncertainty
The study area is situated on a tectonically active mountain range
due to the Nazca plate’s subduction beneath the South American

one. Several earthquakes have hit the area during the last decades,
generating large coseismic and postseismic displacements (Ruiz
and Madariaga, 2018). Remarkably, the September 2015 Mw 8.3
Illapel earthquake generated coseismic displacements up to
2.13 m across the whole region (Barnhart et al., 2016). The
study site is located 235 km NE from the earthquake epicentre.
Postprocessing values of the Tapado GNSS base station before
(2014) and after (2018) the Illapel earthquake indicated a
westward motion of 0.2 m, which is coherent with the data
from the nearest earthquake monitoring GPS station
(Shrivastava et al., 2016). Together with the continuous
mountain uplift, such displacements have generated various
horizontal and vertical shifts in the global coordinate system
among fixed points, which were assumed to remain stable.
However, it should be remarked that this study involved using
a standard set of GCP and CP (extracted from the ALS and GNSS
surveys before September 2015) during the orthorectification and
coregistration procedures. This procedure ensured that
orthorectified images were generated with respect to the epoch of
the ALS and GNSS surveys, irrespective of the overall planimetric
displacements associated with themassive earthquakes, as well as the
potential mountain uplift. This approach benefits from eliminating
the possible systemic error (bias) due to tectonic displacements since
1956 by assuming a homogenous plate motion in the study area (i.e.
roughly 13 km2, see Figure 1). Hence, a more consistent set of
kinematic values for the studied landforms can be informed from a
tectonically active region.

FIGURE 9 | Geomorphological interpretation of the Tapado complex base on recent surface kinematics and multitemporal analysis. Gf: glacier forefield, Tdgc:
Tapado debris-covered glacier, Pm: Push moraine, T1–6rg: Tapado rock glacier units. The background image corresponds to an orthorectified Pléiades image from
January 2019. © CNES (2018), and Airbus DS (2018), all rights reserved.
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5.2 Kinematics Evolution and Recent
Climatic Trends
Traditionally, rock glaciers have been considered less sensitive
to climate change than glaciers (Barsch, 1996). This notion has
been mainly held for the Andes, where long term subsurface
temperature monitoring on mountain permafrost is lacking.
Yet, a few studies have observed permafrost degradation on
Andean rock glaciers by geophysical investigations (Francou
et al., 1999), short-term borehole measurements (Monnier and
Kinnard, 2013) or by future climate warming scenarios (Drewes
et al., 2018). Elsewhere in Europe, a plethora of studies have
highlighted some symptoms of permafrost degradation, such as
rock glacier acceleration (Kääb et al., 2007; Eriksen et al., 2018;
Kellerer-Pirklbauer et al., 2018), destabilisation (Delaloye et al.,
2013; Vivero and Lambiel, 2019; Marcer et al., 2021) or even
collapse (Bodin et al., 2017; Marcer et al., 2020), mainly due to
rising air temperatures and feedback mechanisms such as the
availability of meltwater (Buchli et al., 2013; Cicoira et al., 2019).
In our study area, despite their relatively small size, the
kinematic results on the three most active landforms show
velocity rates that are comparable to the rock glaciers in the
northern Tien Shan region (Kääb et al., 2021) and the Cordón
del Plata range (Blöthe et al., 2020). The general acceleration
trend since the 2000s that we observed with our results is in
reasonable agreement with values reported elsewhere in the
Northern Hemisphere (Hartl et al., 2016; Necsoiu et al., 2016;
Eriksen et al., 2018; PERMOS et al., 2019; Kääb et al., 2021).
Regarding the atmospheric warming in this region (Carrasco
et al., 2008; Falvey and Garreaud, 2009), our findings on the
long-term kinematics evolution can be regarded as an indicator
of environmental changes, in particular climatic and ground-
thermal conditions, but also the complex interaction between
glaciers and mountain permafrost.

The short-term temperature data from the two shallow
boreholes at Tapado 1 rock glacier (2 m depth, see Figure 1)
suggests a slight cooling trend in the active layer during the
2010–2015 period (Figure 10), which is concomitant with the
lower MAATs estimated at 4,500 m a.s.l during the same period
and a short deceleration trend for the majority of the studied
landforms (Figure 7). This short cooling trend may be related to
the prevalence between La Niña (dry and cold phase of the ENSO)
and neutral ENSO conditions since 2009 (Garreaud et al., 2017).
In addition, the active layer temperature variations revealed that
the zero-curtain effect (Outcalt et al., 1990) was only present
during the freezing May-June but not during the thawing
conditions November–December. Commonly, the zero-curtain
occurs during the onset of the freezing or thawing periods by
delivering latent heat generated by water phase changes (French,
2017). Hence, the lack of a zero-curtain during thawing
conditions can indicate low moisture content in the active
layer (Zenklusen Mutter and Phillips, 2012). This could be
explained by the premature depletion of the snow cover,
occurring just before the temperature rises, and below the
normal precipitation levels and high sublimation rates
occurring during La Niña conditions (Ginot et al., 2006;
Réveillet et al., 2020). Furthermore, the early removal of the
thin snow cover facilitates the penetration of the winter cold in
the active layer, potentially leading to a noticeable permafrost
cooling. More research on the particular conditions of the
Andean active layer and its relation to climate events is
undoubtedly needed.

5.3 Evidence of Destabilisation Processes
Multitemporal analysis on the El Cachito rock glacier (Figure 11)
evidenced that the front toe of the rock glacier advanced about
20 m (∼1 m/yr) between 1978 and 2000, but only 6 m (∼0.3 m/yr)

FIGURE10 | Active layer temperature records (daily averages) at the two shallow boreholes (2 m depth) at Tapado 1 rock glacier (see Figure 1) between November
2011 and November 2015. Blue boxes indicate the zero-curtain periods during freezing conditions (May-June).
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between 2000 and 2019. Note that during the same periods, the
front toe of the Tapado 1 rock glacier advanced only 4 m (∼0.2 m/
yr) and 5 m (∼0.25 m/yr), respectively. Also, a transverse scarp
approximately 120 m long at an elevation of 4,390 m asl can be
observed at the El Cachito rock glacier from the 1978 orthoimage
(Figure 11). During the first period, the lack of coherent surface
topography precluded obtaining kinematic values just below the
scarp, where the surface structure changed dramatically.
Therefore, the surface velocities reported in Figure 7 could
not capture the main destabilisation phase. The recent
velocities (2014–2019, Figure 6) ranged from about 1.8 m/yr

near the front (below the former scarp) to 0.35 m/yr near the
upper central zone (above the former scarp). This form of
reversed velocity profile has been observed on destabilised
rock glaciers where extensive flow patterns are associated with
convex slopes (Delaloye et al., 2013; Marcer et al., 2019) and
might indicate that the destabilisation phase has not ended.

Aside from the collapse of the Las Tórtolas rock glacier (20 km to
the N, 4,500 m a.s.l, Bodin et al., 2012) or the sudden acceleration
of the South Infiernillo Alto rock glacier after the artificial
overload by waste deposits (330 km to the S, 3,900 m a.s.l,
Valenzuela, 2004), there are no reports about destabilised or
collapsed rock glaciers in the Andes. Nevertheless, a visual
evaluation for the area surrounding the Tapado site (30°S)
using Google Earth Pro revealed at least two other rock
glaciers exhibiting destabilised morphologies (e.g. large
transverse scarps and rapid terminus advance). The absence
of detailed geomorphological maps and the lack of geophysical
information hinders our ability to unravel the exact processes
from these particular types of slope failures. Nevertheless, the
destabilisation process in these rock glaciers stresses the need for
more studies in the context of periglacial hazards in this part of
the Andes (Iribarren Anacona et al., 2015; Vergara Dal Pont
et al., 2020).

6 CONCLUSION

We have compiled one of the longest records of rock glacier
kinematics in the Southern Hemisphere. The quantification of
kinematics on different landforms was based on an assemblage of
diverse remote sensing datasets covering the 1956–2019 period.
Average rock glacier velocities ranged from 0.26 m/yr during the
1978–2000 up to 1.25 m/yr during the 2014–2019 periods. The
recent rock glacier acceleration trend in this part of the Dry Andes
mimics what has been reported in the Northern Hemisphere.
UAV-derived datasets provided detailed short-term surface
elevation changes and surface velocities at the northern frontal
lobe of the Tapado complex, which were not observable with the
other datasets.

Archival aerial photography, high-resolution satellite images
and UAV surveys are suitable for determining the surface flow of
different cryospheric components located in remote areas. The
combination of UAV surveys and SfM photogrammetry can help
document rapid cryospheric changes in a relatively low-cost
approach. Furthermore, improved landform documentation
can be achieved with the assessment of past and recent
kinematics information. Also, our contribution can further
support the work of the IPA Action Group rock glacier
kinematics and inventories, which want to establish rock
glacier kinematic as an Essential Climate Variable (ECV) in
the framework of the Global Climate Observing System
(GCOS) of the World Meteorological Organization (WMO).
In this context, the appropriate analysis of archival aerial
photography can help to reduce the paucity of long-term
systematic measurements on rock glacier kinematics and fill
the gap between Northern and Southern hemisphere
permafrost observations.

FIGURE 11 | Sequence of orthoimages for the El Cachito rock glacier.
The front toe of the landform that could be identified is indicated in blue (1978)
and yellow (2000). Red dashed line indicates the landform outline in 2019.
Note the strong changes in the surface morphology just below the scarp
between 1978 and 2000. © CNES (2018), and Airbus DS (2018), all rights
reserved.
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