
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=icnv20

Cancer Investigation

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/icnv20

The Utility of ctDNA in Lung Cancer Clinical
Research and Practice: A Systematic Review and
Meta-Analysis of Clinical Studies

Xuezheng Sun, Page Abrahamson, Nicholas Ballew, Linda Kalilani, Kelesitse
Phiri, Kelly F. Bell, Alexander Slowley, Magdalena Zajac, Erin Hofstatter,
Alexander Stojadinovic, Angela Silvestro, Zebin Wang, Amine Aziez &
Solange Peters

To cite this article: Xuezheng Sun, Page Abrahamson, Nicholas Ballew, Linda Kalilani, Kelesitse
Phiri, Kelly F. Bell, Alexander Slowley, Magdalena Zajac, Erin Hofstatter, Alexander Stojadinovic,
Angela Silvestro, Zebin Wang, Amine Aziez & Solange Peters (2023) The Utility of ctDNA in
Lung Cancer Clinical Research and Practice: A Systematic Review and Meta-Analysis of Clinical
Studies, Cancer Investigation, 41:6, 571-592, DOI: 10.1080/07357907.2023.2220820

To link to this article:  https://doi.org/10.1080/07357907.2023.2220820

© 2023 The Author(s). Published with
license by Taylor & Francis Group, LLC

View supplementary material 

Published online: 18 Jun 2023. Submit your article to this journal 

Article views: 1432 View related articles 

View Crossmark data Citing articles: 1 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=icnv20
https://www.tandfonline.com/loi/icnv20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/07357907.2023.2220820
https://doi.org/10.1080/07357907.2023.2220820
https://www.tandfonline.com/doi/suppl/10.1080/07357907.2023.2220820
https://www.tandfonline.com/doi/suppl/10.1080/07357907.2023.2220820
https://www.tandfonline.com/action/authorSubmission?journalCode=icnv20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=icnv20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/07357907.2023.2220820
https://www.tandfonline.com/doi/mlt/10.1080/07357907.2023.2220820
http://crossmark.crossref.org/dialog/?doi=10.1080/07357907.2023.2220820&domain=pdf&date_stamp=18 Jun 2023
http://crossmark.crossref.org/dialog/?doi=10.1080/07357907.2023.2220820&domain=pdf&date_stamp=18 Jun 2023
https://www.tandfonline.com/doi/citedby/10.1080/07357907.2023.2220820#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/07357907.2023.2220820#tabModule


REVIEW

The Utility of ctDNA in Lung Cancer Clinical Research and Practice:
A Systematic Review and Meta-Analysis of Clinical Studies

Xuezheng Suna , Page Abrahamsonb, Nicholas Ballewc, Linda Kalilania, Kelesitse Phiric, Kelly F. Bellc,
Alexander Slowleyd, Magdalena Zajacd, Erin Hofstattere, Alexander Stojadinovicc�, Angela Silvestroe,
Zebin Wange�, Amine Aziezf and Solange Petersg

aGSK, Research Triangle Park, NC, USA; bSalmon Bay Consulting, Seattle, WA, USA; cGSK, Collegeville, PA, USA; dGSK, London, England,
UK; eGSK, Waltham, MA, USA; fGSK, Zug, Switzerland; gDepartment of Oncology, Lausanne University Hospital, Lausanne, Switzerland

ABSTRACT
This systematic review with embedded meta-analysis aimed to evaluate the clinical utility of
circulating tumor DNA (ctDNA) in lung cancer. After screening and review of the Embase
database search, 111 studies from 2015 to 2020 demonstrated ctDNA’s value in prognostica-
tion/monitoring disease progression, mainly in patients with advanced/metastatic disease
and non–small cell lung cancer. ctDNA positivity/detection at any time point was associated
with shorter progression-free survival and overall survival, whereas ctDNA clearance/de-
crease during treatment was associated with a lower risk of progression and death.
Validating these findings and addressing challenges regarding ctDNA testing integration
into clinical practice will require further research.
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Introduction

Released by cancer cells through apoptosis, lysis
of circulating tumor cells, and active secretion,
circulating tumor DNA (ctDNA) constitutes a
small fraction of cell-free DNA (cfDNA) in blood
(1,2). Unlike tumor tissue sampling, which is lim-
ited by invasiveness and associated risks, tissue
accessibility, sampling frequency, and cost,
ctDNA offers a convenient, minimally invasive
method to measure tumor burden and genomic
profile. Additionally, because of the short half-life
in circulation, ctDNA is considered a “real-time”
snapshot of tumor activity (2). These features
make ctDNA a promising molecular biomarker
in oncology and have triggered interest in ctDNA
utility during the past decade. Recent techno-
logical advances in the detection and quantifica-
tion of low-abundance ctDNA have accelerated
the progress of integrating ctDNA testing into
clinical decision-making in cancer care. Recently

published US Food and Drug Administration
draft guidance and the European Society for
Medical Oncology recommendations on ctDNA
utility in cancer further confirm the value and
potential of ctDNA while also highlighting the
knowledge gaps and data limitations in its clinical
utility (3,4). Within the field, there is substantial
interest in refining study designs and standardiz-
ing assessment methods to improve the level of
evidence for the different ctDNA utilities in
early- and late-stage disease (3–5).

ctDNA biology, evaluation techniques, and
potential applications have been reviewed in
numerous publications (2,6–9). As the treatment
landscape for lung cancer has increasingly shifted
toward the use of targeted therapies and immu-
notherapies (10–12), there has been substantial
interest in using ctDNA for the detection of spe-
cific gene mutations to inform treatment selec-
tion. Multiple actionable mutations have been
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identified in non–small cell lung cancer
(NSCLC), including mutations in EGFR, KRAS,
and ALK (11). ctDNA-mediated detection of
these mutations has the potential to help direct
targeted therapy selection or monitor treatment
response in situations where biopsies are not
feasible.

Previous systematic reviews on ctDNA in lung
cancer have primarily focused on diagnostic
accuracy, evaluating the concordance between
ctDNA results and tissue-based testing (13–16).
Another systematic review in NSCLC focused on
the association between ctDNA and response to
immune checkpoint inhibitors (ICIs) (17). The
literature on ctDNA utility within small cell lung
cancer (SCLC) is more limited, with 1 systematic
review that examined the role of ctDNA for dis-
ease monitoring and genomic profiling (18).
Although these analyses furnish valuable insights,
they do not provide information on the bigger
picture of how ctDNA is being used across lung
cancer in this rapidly developing field. This sys-
tematic review aimed to comprehensively sum-
marize data on the utility of ctDNA from
published clinical studies of lung cancer. The
findings detail the current landscape of ctDNA
applications in lung cancer, serving as a founda-
tion to inform study design development and
result interpretation.

Methods

Literature identification and eligibility criteria

A systematic literature review was performed
using the Embase database to identify published
literature on lung cancer and ctDNA from
January 1, 2015, to December 31, 2020. The final
search terms were “(‘lung cancer’/exp OR ‘lung
cancer’) AND (‘ctDNA’ or ‘circulating tumor
DNA’ or ‘cell-free tumor DNA’) AND [english]/-
lim AND [2015–2020]/py”. No limitations were
placed on lung cancer type or disease stage.

Full-text original clinical research articles were
included; review/meta-analysis articles and non-
English articles were excluded. Conference
abstracts, editorials, commentaries, case reports,
and study protocols were excluded because of
incompleteness of data or small sample sizes.

Articles were included for studies in which
ctDNA was linked to clinical features (eg, tumor
stage) or outcomes (eg, progression-free survival).
Articles that were limited to the following topics
were considered out of scope for this review and
therefore excluded: cfDNA, specimens other than
blood/plasma/serum, ctDNA analytic validation
(eg, descriptive analysis of ctDNA dynamics or
correlation with tumor tissue DNA), or assess-
ment of the tumor burden without relating
ctDNA to tumor characteristics or clinical out-
comes. However, articles that measured the gen-
omic alterations of specific molecular tumor-
related alterations in cfDNA were included.
Initial selection based on title and abstract was
performed by 2 independent reviewers; any dis-
agreements on inclusion/exclusion were resolved
by a third reviewer or consensus-based discus-
sion. One reviewer also identified additional
articles using reference lists from systematic
review or meta-analysis reports on the same or a
similar topic.

Data collection and extraction

One reviewer extracted data from included
articles into a predefined extraction Excel table,
covering article information (authors, title, publi-
cation year), study design (study period, location,
research/clinical settings, study population, sam-
ple size), tumor characteristics (lung cancer sub-
type, stage), and ctDNA-related information
(platform type, test timing, clinical utility).
Extracted data were quality checked by a second
reviewer.

The ctDNA utilizations proposed by Wan and
colleagues and Narayan and colleagues were
adapted (Table 1) (2,19). Studies were classified
into 3 categories based on ctDNA testing aims,
the timing of ctDNA tests, and endpoints/out-
comes in the analyses: (1) diagnosis (early diag-
nosis, screening), (2) prognostication (detection,
profiling, prognostication), and (3) monitoring
(monitoring disease progression, treatment
response, or genomic evolution using longitu-
dinal ctDNA samples). Because disease history
and ctDNA dynamics are a continuous course,
categories were not mutually exclusive. Studies
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that fulfilled more than 1 predefined category
were reported in multiple categories.

Meta-analysis

A meta-analysis was conducted to quantitively
review and synthesize the association of ctDNA
with clinical outcomes for patients with lung can-
cer. Studies that reported hazard ratios (HRs)
with corresponding 95% CIs for the association
between ctDNA and progression-free survival
(PFS) or overall survival (OS) were included in
the meta-analyses. ctDNA detection was assessed
as a binary variable (positive vs. negative or
decrease/clearance yes vs. no). For longitudinal
ctDNA assessments, results were grouped accord-
ing to 3 broad categories (before, during, or after
treatment). The definition of ctDNA decrease/-
clearance varied across studies in terms of the
timing and number of ctDNA assessments.
However, because of the small number of studies,
all definitions of ctDNA decrease/clearance were
grouped together and treated as the same.
Separate analyses were performed for the detec-
tion of EGFR mutation(s) in ctDNA. Although
mutations in other tumor genes were of interest,
data were insufficient for meta-analyses.

Pooled estimates were calculated using fixed-
effect and random-effect models (20), respect-
ively, depending on the p value (cut point, 0.05)
and I2 for the test of heterogeneity (>50%).
Results were presented in forest plots. Stratified
analyses were performed by potential effect modi-
fiers, including ctDNA assessment timing (before,
during, or after treatment), study type

(observational study vs. clinical trial), lung cancer
histology subtype (NSCLC vs. other), and disease
stage (advanced/metastatic vs. early) when
adequate data were available (�3 studies in a cat-
egory). The appropriateness of the assumptions
made for the analyses was assessed by performing
the I2 test of heterogeneity and using meta-
regression to assess effect modifiers (21,22).
Egger tests (when study number was >10) and
funnel plots were used to assess publication bias.
All statistical tests were 2-sided with a of 0.05.
All analyses were performed using R version
4.1.0 with the “meta” and “metafor” packages.

Results

Study selection

A total of 2200 publications were identified in
the initial Embase search (Figure 1). Of the 238
articles selected from the initial screening for
full-text review, 101 articles were selected for
inclusion. Ten additional articles were identified
by reviewing the reference lists for recent selected
meta-analysis or review articles (23–25). The final
review included 111 articles (Table 2).

Study and patient characteristics

Table 3 summarizes the characteristics for all 111
included studies. ctDNA was increasingly studied
during 2015–2020, with 60 studies (54.1%) pub-
lished in 2019 or 2020. Overall, 52.3% of included
studies were conducted in Asia-Pacific, 25.2% in
European countries, and 19.8% in the United
States or Canada. Most studies (78.4%) used an

Table 1. Description of ctDNA clinical utilities in lung cancer.
Utility Aims Timing of ctDNA Test Endpoints/Outcomes

Diagnosis
(early diagnosis, screening)

Detect ctDNA in general population or
high-risk noncancer populations to
identify patients with lung cancer

Cross-sectional or longitudinal
before clinical lung cancer
diagnosis

Cancer incidence, prediction
accuracy, etc

Prognostication
(detection, profiling,
prognostication)

Characterize ctDNA qualitatively or
quantitatively in patients with lung
cancer to predict clinical prognosis

Cross-sectional in disease/treatment
journey (eg, at diagnosis, after
surgery, after systemic therapy)

Cancer characteristics, recurrence,
progression, death, etc

Monitoring
(monitoring disease progression,
treatment response, or genomic
evolution)

Capture ctDNA dynamics (ie, change in
repeated measures) during/after
treatment qualitatively or quantitatively
in patients with lung cancer, and
correlate these features with
progression, treatment response, or
tumor evolution

Longitudinal through patient
treatment journey (eg,
during/after neoadjuvant
treatment, adjuvant treatment,
or systemic treatment)

Treatment response, recurrence,
progression, death, prediction
accuracy, lead time, changes in
ctDNA genomic profile, etc

ctDNA: circulating tumor DNA.
Adapted from the ctDNA utilizations proposed by Wan et al.(2) and Narayan et al.(19)
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observational design, with clinical trials constitut-
ing 21.6% of the studies. The number of patients
who underwent ctDNA testing differed signifi-
cantly across studies, ranging from 8 to 1070,
with 39.6% of studies including fewer than 50
patients with ctDNA data. Of the included stud-
ies, 73.0% were conducted among patients with
advanced/metastatic disease (Table 3). Most stud-
ies (79.3%) included patients with NSCLC.

ctDNA measurement

Although the number of ctDNA tests per patient
depended on the study aims and design, 52.3% of
the studies measured ctDNA in each patient (or a
subset of patients) multiple times (Supplementary

Table 1). In the identified studies, tumor-
informed testing was used less frequently (2.7%)
than tumor-naïve testing (97.3%). Prognostication
was the most common utility (76.6%), followed
by monitoring progression/treatment response
(47.7%). Only 3 studies (2.7%) assessed ctDNA
for early cancer diagnosis.

ctDNA for early cancer diagnosis and screening

Three studies used ctDNA as a screening bio-
marker for the diagnosis of lung cancer
(Supplementary Table 2) (26–28). Studies were in
the exploratory stage and generally focused on
diagnostic accuracy compared with pathological
diagnosis, with varied results for sensitivity and
specificity.

Figure 1. PRISMA diagram. All records were screened and reviewed by 2 independent human reviewers. ctDNA: circulating tumor
DNA; EGFR: epidermal growth factor receptor; OS: overall survival; PFS: progression-free survival.
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ctDNA for prognostication

Linking ctDNA to prognosis was the most com-
mon utility identified among the included stud-
ies. Most studies of ctDNA detection and lung
cancer prognosis focused on PFS or OS, with
worse survival outcomes for patients with
detected ctDNA at all disease stages. The associ-
ation between detection of ctDNA and tumor
characteristics, such as stage and subtype, has not
been extensively studied in patients with lung
cancer. Results from studies reporting these asso-
ciations have been mixed.

ctDNA positivity before treatment
Many studies focused on the implications of
ctDNA positivity/detection before treatment (eg,
surgery, chemotherapy, targeted therapy) in
patients with all disease stages combined (10
studies, Supplementary Table 3) (29–38),

nonmetastatic disease (stages I–III combined, 7
studies, Supplementary Table 4) (39–45), and
advanced/metastatic disease (45 studies,
Supplementary Table 5) (42,46–88). The associ-
ation between detectable ctDNA before treatment
and baseline tumor features (eg, tumor size, type of
metastasis) was not consistently reported. Several
studies reported higher ctDNA levels with advanced
disease stage; this association was not consistently
observed, perhaps owing in part to the inclusion of
relatively few patients with early-stage disease (30–
34,36,42,49). Similarly, several studies reported
ctDNA positivity or a higher concentration of
ctDNA associated with specific metastatic sites or
the number of metastatic sites, but results were
sparse and inconsistent (32,33,49–52,86,87).

Most studies reported shorter OS or PFS asso-
ciated with ctDNA positivity and/or higher con-
centrations of ctDNA, regardless of lung cancer
stage (Supplementary Tables 4 and 5) (39–88).
Among studies that evaluated overall ctDNA
positivity (not specific genetic mutations in
ctDNA) before treatment, only 2 studies did not
find an association between overall ctDNA posi-
tivity/detection and survival outcomes (44,71).
Most of the studies that evaluated mutations in a
single predefined mutated oncogene (eg, T790M
resistance mutation in the EGFR gene, KRAS) did
not find an association between pretreatment
ctDNA and prognosis (34,46,54,59,63,67,68). One
study found patients with a low pretreatment
T790M/EGFR ratio had significantly less tumor
shrinkage (47). Three of the studies that reported
no association between detectable pretreatment
ctDNA and subsequent outcomes were clinical
trials (54,67,68). Four studies focused on the
association between the methylation of specific
genes (KMT2C, SOX17, SHOX2) and prognosis
and reported improved survival outcomes with
lower levels of methylation (30,35,42,45). Ten
studies analyzed the association between pretreat-
ment ctDNA and the overall response rate, dis-
ease control rate, or tumor response; however,
the results were not consistent (38,46,48,60,70,75,
77,79,84,85).

ctDNA during or after treatment
The prognostic value of ctDNA assessed cross-sec-
tionally during treatment, after treatment, or

Table 3. Characteristics of the 111 studies included in the
review.
Characteristic Studies, n (%)

Study characteristics
Publication year
2015 3 (2.7)
2016 15 (13.5)
2017 15 (13.5)
2018 18 (16.2)
2019 22 (19.8)
2020 38 (34.2)

Region
Asia-Pacific 58 (52.3)
Europe 28 (25.2)
United States and Canada 22 (19.8)
Multiple countries 3 (2.7)

Study design
Clinical trial 24 (21.6)
Observational study 87 (78.4)

Sample sizea

<50 44 (39.6)
50–100 33 (29.7)
�101 34 (30.6)

Patient characteristics
Tumor stageb

Stage I 2 (1.8)
Stage I–III 5 (4.5)
Stage II/III 2 (1.8)
Stage III 1 (0.9)
Stage I–IV 20 (18.0)
Stage III/IV 29 (26.1)
Advanced 21 (18.9)
Stage IV or “metastatic” 31 (27.9)

Tumor subtype
Any non–small cell lung cancer 88 (79.3)
Adenocarcinoma only 11 (9.9)
Squamous cell carcinoma only 1 (0.9)
Small cell lung cancer only 2 (1.8)
Any lung cancer (not defined) 9 (8.1)

ctDNA: circulating tumor DNA.
aNumber of patients who underwent ctDNA testing, not the size of the
study population.

bCategories represent the descriptions provided in the studies.
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specifically at the time of radiographic progression
was evaluated in patients with lung cancer in 24 stud-
ies (Supplementary Table 6) (37,44,45,70,81,86, 89–
105). Two studies were conducted in patients with
nonmetastatic lung cancer; in both studies, a higher
risk of recurrence was observed for patients with
detectable ctDNA after surgery or chemotherapy
compared with patients with undetectable ctDNA
after surgery/chemotherapy (44,105).

The remaining 22 studies included only
patients with advanced/metastatic lung cancer.
Most studies consistently reported an association
between ctDNA positivity during/after treatment
and reduced survival (PFS, OS, or relapse-free
survival [RFS]) or treatment response. All 8
studies that assessed overall ctDNA positivity
during/after treatment in patients with advan-
ced/metastatic disease found worse outcomes for
patients with detectable ctDNA.

Most studies (12/14, 86%) that focused on spe-
cific genes (EGFR, BRAF, KRAS, methylated
SHOX2) in ctDNA assessed during/after treat-
ment observed an association between the detec-
tion of variants in these genes and worse survival
outcomes. One study of 20 patients with meta-
static disease treated with second- or third-line
EGFR-tyrosine kinase inhibitor (TKI)-targeted
therapy found 50% of non-responders had EGFR
detected in ctDNA after treatment compared
with none with EGFR detected among the
ongoing treatment responders (89). An additional
study of 120 patients with advanced disease
treated with a first- or second-generation TKI
found that detection of the EGFR T790M resist-
ance mutation during treatment was associated
with progression at extra-thoracic metastatic sites
(p¼ 0.008) and bone disease (p¼ 0.003) (91).
However, 2 studies found no association between
the detection of the T790M resistance mutation
in EGFR and patient outcomes (93,97).

ctDNA assessed at nonuniform or unclear time
points
Ten additional studies included patients with
cross-sectional ctDNA collected at nonuniform or
unclear time points across the treatment spec-
trum (Supplementary Table 7) (106–115). As
with the cross-sectional studies noted above, a
consistent association between ctDNA detection

or higher levels of ctDNA was associated with
worse survival outcomes. A study of 128 patients
with stage I–IV NSCLC with ALK assessed before
treatment with a TKI, or at the radiographic fol-
low-up evaluation reported a shorter OS for those
with �1 ALK mutations than for those with no
ctDNA detected; OS and PFS were worse for
those with �2 ALK mutations than for those
with a single ALK mutation (111).

Association between ctDNA positivity at any time
point and clinical outcomes in patients with
advanced disease (meta-analysis)
To evaluate the association between ctDNA posi-
tivity at certain time points and clinical out-
comes, we included studies that reported an HR
and 95% CI for the association between ctDNA
positivity and PFS and OS in a meta-analysis.
Among the 8 estimates from 6 studies (n¼ 622)
included, patients with lung cancer who were
positive for ctDNA had a significantly shorter
PFS than those with no ctDNA detected (HR,
2.34; 95% CI, 1.89–2.89; Figure 2(A)). A stronger
association was observed for the 5 observational
studies (HR, 2.99; 95% CI, 2.27–3.94) than for
the 3 clinical trials (HR, 1.67; 95% CI, 1.21–2.31;
Supplementary Table 8). Similar results were
observed for 10 studies (n¼ 743) specifically
reporting the detection of the EGFR alterations in
ctDNA (HR, 2.19; 95% CI, 1.78–2.68; Figure
2(B)) and among 4 studies (n¼ 337) evaluating
the EGFR T790M resistance mutation in ctDNA
(HR, 2.55; 95% CI, 1.67–3.90; Supplementary
Figure 1). However, a stronger association
between EGFR and PFS was observed for the
studies assessing the detection of EGFR during
treatment (HR, 4.29; 95% CI, 2.77–6.67) than for
the studies that assessed EGFR before treatment
(HR, 1.82; 95% CI, 1.37–3.29; Supplementary
Table 8). No significant evidence of publication
bias was found in these analyses (p> 0.05;
Supplementary Figure 2). Subgroup analyses were
performed by study design, ctDNA test timing,
lung cancer subtype, and disease stage and are
summarized in Supplementary Table 8; results
were similar to overall positivity results for both
ctDNA overall and EGFR mutations, with positiv-
ity associated with shorter PFS and OS.
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Among 9 estimates from 8 studies (n¼ 723)
with data available for ctDNA positivity and OS,
patients with positive ctDNA had a significantly
shorter OS than those with no detected ctDNA
(HR, 2.33; 95% CI, 1.91–2.85; Figure 2(C)). A
stronger association was observed for the 6 obser-
vational studies (HR, 2.72; 95% CI, 2.12–3.50)
than for the 3 clinical trials (HR, 1.81; 95% CI,
1.31–2.50; Supplementary Table 8). No differen-
ces were observed for ctDNA timing (before vs.
during treatment) or for analyses limited to
patients with advanced/metastatic disease or
those with the NSCLC subtype. Similar results
were observed for 9 studies (n¼ 841) specifically
reporting circulating mutations in EGFR (HR,
1.96; 95% CI, 1.58–2.43; Figure 2(D)). Stratified
analyses showed few significant differences by
study design (Supplementary Table 3). A stronger
association between EGFR positivity and shorter
OS was observed for EGFR-mutation detection
during treatment (HR, 5.34; 95% CI, 3.05–9.34)
than for detection before treatment (HR, 1.64;
95% CI, 1.30–2.07; Supplementary Table 8).
However, the small number of studies within

each stratum precludes drawing strong conclu-
sions. The funnel plot for the EGFR positivity
analysis shows asymmetry, which may indicate
the presence of publication bias (p¼ 0.0311); little
evidence of publication bias was observed in the
other OS analyses.

Longitudinal ctDNA for monitoring disease
progression or treatment response

Longitudinal ctDNA assessment was used in eval-
uating ctDNA dynamics during treatment, evalu-
ating prognosis, determining lead time compared
with radiographic progression, and assessing
changes to the genomic profile of tumors.

ctDNA dynamics
In 8 studies, ctDNA detection was assessed for
changes at � 2-time points during the treatment
period without evaluating the associations with
clinical outcomes (Supplemental Table 9)
(51,58,65,116–120). These studies described
ctDNA changes in a variety of ways, which
makes it challenging to compare results. In

Figure 2. Meta-analysis of ctDNA positivity, PFS, and OS. (A) Meta-analysis of ctDNA positivity and PFS (n¼ 622). (B) Meta-analysis
of EGFR mutation positivity and PFS (n¼ 743). (C) Meta-analysis of ctDNA positivity and OS (n¼ 723). (D) Meta-analysis of EGFR
mutation positivity and OS (n¼ 841). aIf a study measured the cross-sectional association at different time points, the HR at each
time point was assumed independently and entered the meta-analysis separately, which is reflected by multiple records from 1
study in the forest plots. The assumption was assessed and supported by sensitivity analysis where 1 study only contributed 1
record in meta-analysis. bHR was adjusted for baseline status. ctDNA: circulating tumor DNA; HR: hazard ratio; OS: overall survival;
PFS: progression-free survival.
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general, these studies show a decrease in ctDNA
positivity during or after treatment compared
with before treatment, or a higher proportion of
patients with detectable ctDNA in those with
progressive disease (PD) than in those with stable
disease (SD). For example, among 20 patients
with stage IV NSCLC who received either a TKI
or chemotherapy, 65% had detectable ctDNA
before treatment, which subsequently decreased
for patients with SD (35%) and increased for
those with PD (80%) (117). Another study of 41
patients with stage I–IV NSCLC reported 8.9% of
patients with ctDNA positivity before surgery,
which decreased to 0.28% after surgery (116).

ctDNA for monitoring tumor progression
The association between ctDNA collected at mul-
tiple time points in relation to lung cancer out-
comes was evaluated in 7 studies of patients with
nonmetastatic lung cancer or for all disease stages
combined, and in 30 studies of patients with
advanced/metastatic disease. In each of the 7
studies evaluating the association between ctDNA
monitoring and clinical outcomes in patients
with the nonmetastatic disease (or all stages com-
bined), more favorable survival (longer PFS, OS,
or RFS) was observed for patients with ctDNA
clearance, ctDNA decreases, or no detectable
ctDNA observed across the treatment and/or fol-
low-up periods (Supplementary Table 10)
(26,43,45,105,121–123). Each study evaluated
multigene ctDNA using a next-generation
sequencing (NGS) platform; no studies focused
on specific genes such as EGFR.

ctDNA monitoring studies conducted in
patients with advanced/metastatic lung cancer
consistently reported improved survival outcomes
for patients with ctDNA clearance, ctDNA
decreases, and those who remained with
undetectable ctDNA across the monitoring period
(Supplementary Table 11) (46,48,50,54,56,58,66–
71,73,77,79,81,87,95,101,106,124–133). Among
these studies, 18 evaluated the change/clearance
of a specific gene in ctDNA, EGFR or EGFR
T790M, and the remaining 12 studies evaluated
overall ctDNA clearance/decreases without a spe-
cific gene focus. Several studies (n¼ 8) evaluated
the association between ctDNA changes
and radiological response; in each study,

ctDNA clearance/decrease/absence was associated
with improved tumor response outcomes
(48,70,71,79,81,126,128,129).

Association between ctDNA clearance/decrease and
clinical outcomes (meta-analysis)
For the meta-analysis of longitudinal ctDNA,
we included studies that reported an HR and
95% CI for the association between ctDNA
clearance/decrease during treatment and PFS or
OS. The change in ctDNA was defined in a
variety of ways, including any decrease (67,95)
or >50% decrease (71) in ctDNA concentration
from before to after treatment; above vs. below
median change in detected ctDNA quantity
from baseline and at follow-up during treat-
ment (68); increased ctDNA or no change vs.
complete clearance in ctDNA (45,46,132); and
ctDNA disappearance at 4weeks (126), 8 weeks
(56), or the start of the third therapy cycle
(129) during systemic treatment. ctDNA clear-
ance/decrease was associated with a lower risk
of progression in 8 studies (Figure 3(A); HR,
0.24; 95% CI, 0.19–0.31) and a lower risk of
death in 8 studies (Figure 3(B); HR, 0.40; 95%
CI, 0.27–0.60). However, there was evidence of
publication bias (p¼ 0.0005) based on the fun-
nel plot analysis for the OS analysis.

Subgroup analyses of ctDNA clearance/change
and PFS did not show differences when limited
to observational studies or advanced/metastatic
disease (Supplementary Table 12). For the OS
analysis, the association between improved sur-
vival outcomes and ctDNA clearance/change was
stronger in observational studies (HR, 0.21; 95%
CI, 0.13–0.36) than in clinical trials (HR, 0.62;
95% CI, 0.49–0.78; Supplementary Table 12).
There was no difference in the OS analysis when
limiting the analysis to studies of patients with
advanced/metastatic lung cancer.

Lead time of ctDNA-detected progression compared
with radiographic progression
The lead time or concordance for detection of
ctDNA progression compared with radiographic pro-
gression after treatment was reported in 12 studies; 5
studies focused specifically on circulating EGFR
and/or EGFR T790M, with the remaining 7 studies
evaluating the detection ctDNA (Supplementary

CANCER INVESTIGATION 581

https://doi.org/10.1080/07357907.2023.2220820
https://doi.org/10.1080/07357907.2023.2220820
https://doi.org/10.1080/07357907.2023.2220820
https://doi.org/10.1080/07357907.2023.2220820
https://doi.org/10.1080/07357907.2023.2220820


Table 13) (26,31,43,45,54,65,71,86,99,124,127,132).
Most studies (8/12; 67%) were conducted in patients
with advanced/metastatic disease. The average lead
time varied widely between studies (17days to
12.6months) in both patients with early-stage and
advanced/metastatic disease. The variation may
reflect differences in frequency or timing (eg, weekly,
monthly, pre-/post-treatment only), ctDNA assess-
ments (overall positivity or specific alterations), radio-
graphic imaging (eg, every 2months, every 5–
10weeks), and the study populations (eg, treatment
type, early stage vs. metastatic), making it difficult to
compare results across studies. However, each of
these studies demonstrated that ctDNA may be a
useful tool for detecting disease progression earlier
than standard radiographic methods.

Assessing tumor evolution and resistance by
changes in ctDNA genomic profile
Clonal evolution, or the acquisition of new muta-
tions in response to selective pressures, is

increasingly recognized to explain tumor hetero-
geneity and therapeutic resistance (134).
Longitudinal profiling of ctDNA in serial moni-
toring provides an attractive, cost-effective, non-
invasive monitoring technique to describe tumor
genomic clonal evolution in response to treat-
ment in a real-time manner, and consequently
contribute to understanding the mechanisms of
acquired drug resistance. Several studies have
evaluated the prognostic effect of newly acquired
mutations during TKI treatment, with EGFR
T790M most frequently evaluated. Additional
studies evaluated small samples of patients during
treatment for several different ctDNA-based gen-
etic changes. These ctDNA-based genetic changes
included the acquisition of new mutations during
TKI treatment (122,135) or chemotherapy (36),
increases in gene copy numbers or losses of
tumor suppressor genes during ICI therapy (136),
and the frequency of C>G and C>A substitu-
tions during chemotherapy (77).

Figure 3. Meta-analysis of ctDNA clearance/decrease during the treatment period and clinical outcomes. (A) Meta-analysis of ctDNA
clearance/decrease during the treatment period and PFS (n¼ 552). (B) Meta-analysis of ctDNA clearance/decrease during the treat-
ment period and OS (n¼ 669). ctDNA: circulating tumor DNA; HR: hazard ratio; OS: overall survival; PFS: progression-free survival.
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In this review, 1 clinical study examined gen-
etic evolution with systemic approaches (eg, evo-
lutionary trees). In the TRACERx study, Abbosh
and colleagues detected subclonal single-nucleo-
tide variants in early-stage NSCLC and mapped
them back to multiregion exome sequencing (M-
Seq)–derived tumor phylogenetic trees (137). A
limited number of additional studies described
changes in the detection of specific genes in
ctDNA, which may indicate genomic evolution in
response to treatment. For example, a study of 43
patients with advanced NSCLC evaluated the
copy number gains in specific genes (eg, MET,
EGFR) from before treatment with third-gener-
ation EGFR-TKI, rociletinib, to the time of PD;
patients with shorter PFS were more likely to
have copy number gains (47).

Discussion

In this systematic review, we summarized the
data on ctDNA clinical utility in lung cancer,
focusing on 3 key areas: diagnosis, prognostica-
tion, and monitoring. Among these, prognostica-
tion was by far the most studied utility for
ctDNA in lung cancer. In meta-analyses, both
overall ctDNA positivity and the presence of
EGFR mutations within ctDNA were associated
with worse PFS and OS outcomes. The second
most common ctDNA utility in lung cancer was
disease monitoring. The association between
ctDNA dynamics and clinical outcomes was eval-
uated by a meta-analysis, in which ctDNA clear-
ance/decrease was associated with a lower risk of
progression and death. In terms of diagnosis or
other applications within ctDNA monitoring,
such as detecting residual disease or disease
relapse, assessment of treatment efficacy, or iden-
tification of treatment resistance mechanisms, the
data in the literature are limited and/or mixed.
As such, although these results are promising, the
existing data are insufficient to formulate defini-
tive conclusions or recommendations for use,
and additional research is needed. The least
studied utility was diagnosis (3 of 111 studies),
and many key issues need be addressed before
ctDNA can be applied for cancer screening and
early detection.

Despite the consistent association between
ctDNA and prognosis in patients with lung can-
cer, several important limitations need to be
addressed in future studies. A critical limitation
is the small sample size in most studies, with
almost 70% of studies having ctDNA data for
fewer than 100 patients. Consistent with this,
many studies were not statistically powered to
detect associations between ctDNA results and
outcomes in subgroups where patients were
stratified by factors with the potential to contrib-
ute to heterogeneity (eg, lung cancer subtype or
stage). Further, the small sample sizes also lim-
ited the independent prognostic value of the
results because it was not possible to estimate
and remove potential confounding variables (eg,
stage). Sample sizes were especially small in stud-
ies measuring ctDNA dynamics longitudinally for
monitoring disease progression and/or treatment
response. For studies with few patients (ie, <20)
with ctDNA encompassing hundreds of cancer-
related or other genes measured at 2 or more
time points, it is challenging to determine the
true association between ctDNA changes and
prognosis. Moreover, most of the identified stud-
ies simply estimated the association of ctDNA
with clinical outcomes at multiple time points
individually or ctDNA change over 2 time points.
Consequently, they cannot address important
questions, such as quantitatively characterizing
ctDNA dynamics throughout the disease course
or identifying the optimal timing and frequency
of blood sampling for the intended purpose of
the study and whether any adjustments need to
be made depending on cancer subtype.

Most of the studies evaluated were conducted
in patients with advanced/metastatic NSCLC.
There were limited prognostication data in
patients with early-stage lung cancer or other
histological subtypes. Because only 2 of the
included studies focused exclusively on patients
with SCLC, the utility of ctDNA for predicting
prognosis in patients with this aggressive lung
cancer is less clear (36,84). Besides prognostica-
tion, 3 studies used ctDNA for the detection of
molecular residual disease (26,43,137). These
studies suggest that ctDNA analysis, particularly
using highly sensitive tumor-informed assays, can
identify recurrence earlier than radiographic
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imaging. If confirmed, ctDNA for molecular
detection has the potential to inform and
improve patient identification and stratification
for treatment selection. A more comprehensive
review covering topics beyond our study, such as
technical considerations and major barriers for
use in clinical practice, on ctDNA molecular
residual disease detection in patients with early-
stage NSCLC, was published recently (138).

Several limitations should be considered when
interpreting the findings of this systematic litera-
ture review. First was the heterogeneity across
studies. Within each of the 3 clinical applications
or articles that addressed similar research ques-
tions, studies vary significantly by study design,
lung cancer histological type, stage, tumor bur-
den, location, treatment, the timing of ctDNA
testing, features of ctDNA assays, and in the pre-
analytic or analytic parameters of the ctDNA
analysis. For example, in studies that assessed a
single gene mutation, some studies estimated the
mutation status using digital PCR assays (24),
whereas others used NGS (139). In addition, the
timing of ctDNA sampling varied, with some
studies testing for EGFR mutations before (45,51)
or during treatment (66,90,126). The differences
across studies reflect the complexity of ctDNA
research but also highlight the importance of
standardizing guidelines when ctDNA becomes
part of standard clinical practice. In meta-analy-
ses, when the overall prognostication associations
with PFS and OS were estimated, we did not
detect heterogeneity by stage, histological type, or
ctDNA measurement timing. However, this result
may be due to sparse data in certain subgroups
and the underpowered analyses. Moreover, there
might be other factors that were not evaluated
but that also contributed to the associated hetero-
geneity. Another limitation of the embedded
meta-analyses was that not all prognostic studies
reported HRs. Of the 85 studies on prognostica-
tion, only 26 studies qualified for meta-analyses.
Many studies, particularly those with small sam-
ple sizes, simply reported the median survival
time for patients with detected vs. those with no
detected ctDNA alterations. The lack of HR data
in these studies may have biased the pooled HRs.

Our study covered a wide range of ctDNA
clinical utility and synthesized the data largely
based on the availability of published studies.
Therefore, some interesting topics were not
reviewed in detail. For example, as an actionable
alteration in advanced NSCLC, ctDNA EGFR
mutations have been extensively studied and
reviewed previously (140–142). However, this
review focused on the association of ctDNA
EGFR mutations, at both a single time point or
longitudinally with clinical outcomes. Beyond
that, several studies also demonstrated the value
of EGFR or EGFR T790M mutation in monitor-
ing EGFR-TKI treatment and treatment resist-
ance (122,135). However, because data were
usually presented descriptively or on a patient-
by-patient basis, with large interstudy differences,
we did not summarize these findings, despite
their clinical relevance.

Although ctDNA testing has been increasingly
used and studied in recent years, ctDNA is
unlikely to replace tumor tissue DNA testing for
lung cancer screening and diagnosis or for the
detection of disease progression in the short-
term. However, ctDNA will play an important
role in lung cancer as oncology advances preci-
sion medicine. This systematic review of 111
studies with embedded meta-analyses demon-
strated that ctDNA is a sensitive biomarker,
reflecting tumor burden and dynamics, that also
has prognostic value. These factors make ctDNA
a promising tool for predicting clinical outcomes
and tracking treatment responses. Large-scale,
prospective clinical trials are needed to further
validate these findings. Future studies will evalu-
ate the potential for improved patient outcomes
or cost savings of ctDNA applications compared
with standard clinical approaches to assess treat-
ment response, detect treatment resistance, indi-
vidualize therapy, and predict outcomes.
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