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Abstract: We present a fuzzy approach aiming at assigning origins (children home locations)

to destinations (schools) while considering capacity and segregation constraints. Solving the

classic instance of the optimal transportation problem generally leads to many equivalent so-

lutions, and can be computationally demanding for large networks. Introducing an additional

origin-destination mutual information term, measuring the assignment cohesiveness and penal-

izing hard assignments, allows faster computing of an unique solution. The algorithm is built on

two freely adjustable parameters : the temperature T controlling the assignment cohesiveness,

and the mixing parameter c, favoring social diversity at the destinations. The approach yields

relevant results in school organisation and is currently used by the public administration of Lau-

sanne to plan children-to-school assignment as well as to evaluate and simulate the development

of the schooling infrastructures.

Key-words: optimal transport, regularization, fuzzy clustering, fuzzy logic, social mixing mod-
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I INTRODUCTION
May it be from an urbanistic, a social or from a governance point of view, the evolution of cities

is a major challenge of our contemporary societies. By giving the opportunity to analyze spatial

and social configurations or attempting to simulate future ones, GIS cannot be overlooked in ur-

ban planning and management. In five years, the population of the city of Lausanne has grown

from 134′700 to 140′570 inhabitants while the numbers in public schools have increased from

12′200 to 13′500 schoolchildren. Demographic rise and dynamics constitute spatially heteroge-

nous processes that have a direct impact on school organization and planning. They require

the adaptation of the schooling infrastructures and may generate uncertainty in schoolchildren

location-allocation. Nowadays most cities have divided their territory into multiple school dis-

tricts to assign children to school. But sooner or later such districts become inaccurate as they

define fixed boundaries in an evolving urban landscape. Beyond the demographic aspects, as-

signing children to public schools is a complex task as it has to satisfy political and public

demands, as well as to meet legal requirements. To help to the administrative services in per-

forming this task we have developed a fuzzy-logic approach for children to school assignment.

Models for schools and schoolchildren location-allocation have been investigated in operational

research ever since the 60’s (Clarke and Surkis (1968), Koenigsberg (1968), Heckman and Tay-

lor (1969)): see the reviews of Caro et al. (2004), as well as Castillo-Lopez and Lopez-Ospina

(2015) for recent years. All the models seek to to allocate geography units to facilities, while

considering spatial (journey to school distance treshold, closest assignment), logistic (capac-

ity of schools) (Delmelle et al. (2014)), segregation and or economic constraints (Antunes and

Peeters (2000)). Minimizing the average distance for given children locations and school ca-

pacities amounts to the celebrated optimal transportation problem (see e.g. Villani (2009)), pos-

sessing in general many equivalent solutions, computationally demanding for large networks.
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Minimizing the social segregation at schools also possesses a multitude of solutions whenever

the number of children locations exceeds the number of social categories, as in real situations.

The intrinsic degeneracy of the minimal distance and the minimal segregation problems pre-

vents the existence of a unique and stable spatial partition, made of the union of school assigna-

tion basins. By contrast, introducing an additional origin-destination mutual information term,

measuring the assignment cohesiveness and penalizing hard assignments, permits to make the

solution unique. It furthermore allows the quick iterative computing of the minimal distance

and the minimal segregation problems, as well as convex combinations of the latter, provided

the penalization term is large enough.

The formalism and issues presently addressed bear obvious connections with iterative fitting,

doubly constrained gravity flows, regularized optimal transportation, and model-based clus-

tering with fixed mixture proportions. It involves in addition a presumably original term, the

social segregation at destination, and appears to be analytically tractable (iterative determi-

nation of the unique solution, duality theory and sensitivity analysis). All the ingredients can

be combined into an unique objective functional, the free energy, depending upon two freely

adjustable parameters, the temperature T controlling the penalization of hard assignments, and

the mixing parameter c, favoring social diversity at the destinations (section II). Toy and real ap-

plications (section III) illustrate the formalism together with its arguably numerous virtues, and

the conclusion (section IV) emphasizes its connections to sensitivity analysis and robustness.

II FORMALISM
Formalizing the above considerations necessitates the introduction of three categorical vari-

ables, namely O = “child domicile” with n modalities, G = “school locations ” with m modali-

ties, and A = “social characteristics at origin” with p modalities.

2.1 Notations and definitions
Consider the n×m matrix N = (nig) counting the number of children living at i and assigned

at school g. Row margins ni• (where “•” denotes the sum over the replaced index) count the

number of children at i. Column margins n•g yield the absolute capacity of school g.

Relative n×m couplings P = (pig) with pig = nig/n•• = p(i, g) constitute the joint probability

distribution of O and G. Its margins are denoted by fi = ni•/n•• = p(i) (origin weights) and

ρg = n•g/n•• = p(g) (destination weights). The assignment cohesiveness is measured by the

origin-destination mutual entropy, that is

I[P ] := I(O : G) =
∑

ig

pig ln
pig
fiρg

= H(O)+H(G)−H(O,G) = H(G)−H(G|O) (1)

where H() denotes the corresponding entropies. By construction, I[P ] ≥ 0, with equality iff

pig = fiρg, that is iff O and G are independent.

Let D = (dig) denote the n ×m matrix of domicile to school pedestrian distances. The trans-

portation cost or energy is the average journey to school distance:

U [P ] :=
∑

ig

pig dig (2)
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Finally, consider a “social variable” A (such as nationality, ethnicity, social class or sex) with

p modalities a = 1, . . . , p, and let Y = (yia) denote the given n × p matrix specifying the

proportion of social type a at origin i, i.e. yia = p(a|i) with yia ≥ 0 and yi• = 1. The joint

distribution of social types and destinations is given by Q = (qag) with

qag =
∑

i

yia pig = p(a, g) with qa• =
∑

i

fiyia =: ra and q•g = ρg .

ra = p(a) is the overall proportion of type a. Let us measure the social segregation at destina-

tions by the mutual information between A and G, that is

S[P ] := I(A : G) =
∑

ag

qag ln
qag
raρg

(3)

By construction, S[P ] ≥ 0, with equality iff qag = raρg, that is iff A and G are independent

(absence of segregation at destinations).

2.2 Minimizing the free energy
The simultaneous control of the average distance, segregation and cohesiveness can be achieved

by minimizing the free energy

F [P ] := U [P ] + c S[P ] + T I[P ] (4)

among all couplings P with given margins f and ρ. Here T ≥ 0 is a freely adjustable tempera-
ture parameter, and c ≥ 0 a freely adjustable mixing parameter. Optimal transportation problem

corresponds to T = c = 0. Setting T > 0 favors soft assignment, and setting c > 0 dimin-

ishes social segregation at destinations. c < 0 can also be adopted, favoring social segregation,

provided |c| is not too large: further analysis demonstrates that F [P ] is convex for c ≥ 0 (and

hence possesses an unique minimizer), but ceases to be convex for c < −T .

The minimization of F [P ] is a standard exercise in calculus. Setting to zero its first derivative

(including the Lagrange multipliers term insuring that marginal constraints are satisfied) yields

the identities

pig = fiρg exp(−β dig) exp(−β c �ig) exp(β(λi + μg)) (5a)

exp(−βλi) =
∑

g ρg exp(βμg) exp(−β dig) exp(−β c �ig) (5b)

exp(−βμg) =
∑

i fi exp(βλi) exp(−β dig) exp(−β c �ig) (5c)

where �ig[P ] :=
∑

a

yia ln
qag[P ]

raρg
=

∑

a

p(ia)

p(i)
ln

p(ag)

p(a)p(g)
. (5d)

Here β = 1/T is the inverse temperature or coldness, λi and μg the Lagrange multipliers

insuring the origin, respectively destination constraints. The quantity �ig (possibly negative)

behaves as a “social distance” in the expression dig + c �ig, penalizing the assignment i → g
whenever the dominant social characteristics a at i tend to be overrepresented at g.

Direct substitution shows the minimum free energy to be F =
∑

i fiλi+
∑

g ρgμg, an expression

generalizing Kantorovitch duality theory of optimal transportation (e.g. Villani (2009)), and

justifying the interpretation of the multipliers λi and μg as the unit embarkment cost at origin i,
respectively disembarkment cost at destination g.
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2.3 Iterative determination of the optimal coupling
Starting from some initial coupling such as P (0) = fρ′, and some destination multiplier value

such as μ(0) = 0, a new coupling P (1) is obtained by successively applying (5d), (5b), (5c) and

(5a). The process is then iterated. Convergence occurs provided the cohesiveness contribution

is large enough compared to the contributions of both energy and social segregation. That is, the

temperature T must be large enough to allow efficient regularization. Numerical experiments

with R (2.15.2) for the toy network of section 3.2 shows that convergence occurs (say after ca.

1’000 iterations) provided both the following conditions hold:

i) T ≥ 0.003 · dc, where dc is the Hausdorff distance between the set (support) of sources

S = {i|fi > 0} and the set of targets T = {g|ρg > 0}, that is dc = max(d′c, d
′′
c ), where

d′c=maxi ming dig and d′′c=maxg mini dig. Below that threshold, overflow occurs in (5b) or (5c).

ii) T ≥ |c|, that is c ∈ [−T, T ]. Outside that range, the iterative process may exhibit periodic

or non-converging behavior (especially for small values of T ), betraying instability of the

fixed point (yet existing and unique for T > 0 and c ≥ 0 since F [P ] is convex).

2.4 Boundaries and placement error
High temperature favors low cohesiveness, that is soft memberships (of children into schools)

zig = pig/fi = p(g|i). The conditional entropy H(G|i) = −∑
g zig ln zig ≥ 0 measures the

uncertainty in the assignment of i. High values of H(G|i) characterize origins i lying at the

boundary of two or more assignment basins, and help selecting domicile candidates for school

reassignments, if needed (e.g. changes in f , ρ or Y from year to year).

This being said, even origins far from the assignment boundaries obey H(G|i) > 0 for T > 0 in

view of the softness of Z. Attributing a given origin to different schools is not always possible

nor desirable in real situations, so Z might have to be hardened into Z� = (z�ig), where z�ig = 1 if

g = argmaxh zih, and z�ig = 0 otherwise (ties are resolved at random). In general, Z� does not

satisfy the capacity constraint, that is the quantity ρ�g =
∑

i fiz
�
ig generally differs from ρg: for f

and ρ given, equation ρ = fZ ′ possesses generally no hard solution Z. The relative placement

error δ =
∑

g |ρg − ρ�g| is expected to increase with T (figure 1). The absolute placement

error Nδ (where N is the total number of children) counts the number of misattributed children

(excess or deficit) by the hardened assignment.

III ILLUSTRATIONS AND APPLICATIONS

3.1 Example A
n = 600 children of the same kind (no segregation considerations here) are uniformly placed

on a 25× 24 grid, and have to be assigned to m = 6 schools of identical capacity of 100 each,

so that the average city-block distance (L1 metric) is minimal (1). As expected, the fuzziness of

the boundaries as well as the placement error diminishes with the coldness β = 1/T .

3.2 Example B
Consider the random placement, without overlapping, of n = 40 origins and m = 5 destina-

tions, on a 13 × 13 grid endowed with the city-block distance, with uniform origin weights

fi = 1/n and uniform destination weights ρg = 1/m. In addition, we focus on gender segrega-

tion (p = 2), and generate a gender gradient across the origins, such that the proportion of girls

is maximum in the south-west corner, and minimum in the north-east corner. Figure (2) depicts

the hardened memberships Z� for each origin i, and also the proportion of girls versus boys at

domiciles and at schools.
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Figure 1: Example A: entropic boundaries H(G|i) between school assignment basins, home-to-school

assignment based upon the hardened membership z�ig (section 2.4), group sizes and resulting placement

error δ, for decreasing values of the temperatures T = 1/β.
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Figure 2: Example B. I: Hardened membership z�ig (I), II: the proportion of girls versus boys at origins

p(a|i) (circles) and at destinations p(a|g) (triangles). With dc = 7, T = 16 and while penalizing gender

segregation at the destinations (c = 70 > 0) or, on the opposite, favoring it (c = −270 < 0).
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Figure 3: Example B: at low temperature T = 0.02, the iterative solution converges for c ∈ [−1, 4.2].
Mixings c ∈ [0, 3] increase the cohesiveness I but leave U and S unchanged. Values c > 3 produce a

sharp decrease in segregation S, and a sharp increase in energy U , depicting an effective anti-segregation

regime together with an additional average distance cost.
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3.3 Children-to-school constrained assignment in Lausanne
In the optimal transportation limit, that is in absence of social segregation considerations (i.e.

c = 0), and for low temperatures T → 0+, the procedure has been shown (Guex et al. (2016),

Emmanouilidis (2016)) to permit mapping of school attendance areas together with their fuzzy

boundaries. As shown in Figure 4 (left), large values of the (spatially smoothed1) assignment

entropy H(G|i) (section 2.4) highlight fuzzy boundaries between basins, where the origin-to-

destination attribution is most uncertain, and where the potential for school organisation and

planning is most promising (e.g. balancing class sizes, or splitting up neighborhoods between

two or more schools in order to promote social mixing). Furthermore, groups of attendance ar-

eas can be aggregated to design a new school district pattern. Mapping Lagrangian multipliers

provides an overview of embarkment costs λi and disembarkment costs μg (Figure 4, right).

Such a visualization can be especially useful for the comparison and evaluation of various po-

tential scenarios involving changes of school capacities or new schooling infrastructures.
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Figure 4: Resulting allocation plan for children entering secondary school in summer 2016 (β = 0.2).

Left: hard assignment Z� generates fairly compact attendance areas around schools. Children located in

dark areas (high entropy H(G|i)) are more likely to be assigned to two or more schools, than the ones

living in white areas. Right: the lack of schools in the western and northern outskirts of the city generates

high (red orange) values of λi (spatially smoothed large embarkment costs). By contrast, children living

in the center and in the south benefit from shorter journeys to school (green, yellow). The top-right

school is too small to enroll all the surrounding children, which results in a large disembarkment cost μg.

3.3.1 Assignment with gender segregation constraint
Running the analysis on a similar dataset with adding the mixing parameter c leads to the re-

sults exposed in Figure 5. We here consider the assignment of 973 children into 9 schools.

Cases I and II relates respectively the results with high (c = −700) and low (c = 300) gender

segregation, while case III is free of segregation constraint (c = 0). Despite the almost perfect

balance between the number of boys (486) and girls (487), their repartition within the city is

locally heterogeneous (background maps of line B). Allocating children with high segregation

(c = −700) generates almost five unisex schools (maps I-B & C). Four of them are located in

1in this paper, spatial interpolation is systematically performed through krigging (ArcGIS settings: type spher-

ical, variable search radius, number of points:10).
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the city-center while the fifth, on the top, is surrounded by a majority of girls. Highest values of

c promotes, on the opposite, gender mix within schools (II-B & C). Results obtained with c = 0
are almost the same ((III-B & C), showing a good gender balance and suggesting that propor-

tion of boys and girls around schools are almost equal. Accordingly, gender segregation here

involves spatial mixing of overlapping hard assignments (I-A), while gender mixing creates a

spatial partition of homogeneous connected groups (II & III-A).

Although the range of the assignment uncertainty (H(G|i), line D) tends to narrow as c de-

creases, highest values characterize the same city parts in the three maps. The Lagrangian mul-

tipliers (line E) exhibit similar trends in cases I and II, where children of the west, north and far

east suburbs have the longest journey to school (highest λi). With c = 300 (II-E) embarkment

costs in these areas are more smoothed. The disembarkment costs μg vary little between the

three cases, suggesting that gender segregation has, for this dataset, little effect on the former.
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Figure 5: Children to school assignment with gender segregation constraint. A large negative value of

c in (I) produces segregative allocation plan tending towards unisex schools. On the opposite, a large

positive value of c promotes gender mixing within the schools.
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IV CONCLUSION
Introducing some amount of randomness and uncertainty in an otherwise deterministic problem

(the optimal transportation) results in a unique solution, easily and quickly computable, and

robust with respect to small variations of child locations and populations, or school locations

and capacities: once more, the regularizing virtues of the origin-destination mutual entropy are

confirmed. Regularization permits in addition the effective identification and visualization of

borders, of costs, and of alternative near-optimal solutions: those benefits are essential (and

much appreciated) for adapting assignments to changes (turn-over of children at the origins,

modifications of the pedestrian network) and for future planning.

As demonstrated in the present paper, this approach can be extended to handle in addition the

issue of social segregation, by the introduction of a new mixing parameter controlling for the

segregation. The resulting thermodynamic-like formalism permits to perform tractable sensi-
tivity analyses of various kinds, assessing the amount of change in the quantities of interest

induced by a change in the network geometry, origin or destination distributions, or by a change

in the temperature or mixing parameters. In particular, the distance versus segregation trade-off

can be made fully explicit (figure 3) - a crucial prerequisite for informed political decisions.

Instead of using pedestrian distances, the algorithm can be also be fed by alternative transporta-

tion costs, such as the total displacement time on uni- or multimodal transportation unoriented

networks. Also, beside gender mixing, the segregation issues related to child age or ethnic

origin can be tackled by the same approach, to be addressed in a future work. Among further

possible developments, the question of dealing with flexible school penalized capacities (in-

stead of with fixed capacities) seems worth investigating, as is the issue of imposing a minimal

social mixing at each school, rather than on average only.
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