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Abstract 

The pH in the different tissues and organs of our body is kept within tight limits. Local pH 

changes occur, however, temporarily under physiological conditions, as for example in 

synapses during neuronal activity. In pathological situations, such as in ischemia, 

inflammation, and tumor growth, long-lasting acidification develops. Acid-sensing ion 

channels (ASICs) are low pH-activated Na+-permeable ion channels that are widely 

expressed in the central and peripheral nervous systems. ASICs act as pH sensors, leading to 
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neuronal excitation when the pH drops. Animal studies have shown that ASICs are involved 

in several physiological and pathological processes, such as pain sensation, learning, fear 

sensing, and neurodegeneration after ischemic stroke. ASIC inhibitors could be used as 

analgesic and anxiolytic drugs, and as drugs for the treatment of ischemic stroke. For these 

reasons, ASICs have recently attracted increasing attention. Currently, no drugs are clinically 

used as ASIC modulators. ASICs are however targets of several peptide toxins from animals. 

Much effort is invested in research studying the function of these channels. We review here 

the available pharmacological agents acting on ASICs, which include small molecules and 

animal toxins. We then discuss the current understanding of the molecular mechanisms by 

which pH controls ASIC activity. Knowledge of the function of ASICs at the molecular level 

should allow the development of new pharmacological strategies for targeting these 

promising ion channels.  
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(Introduction) 

Acid-sensing ion channels (ASICs) are Na+-permeable channels of the nervous system that 

are transiently activated by extracellular acidification. ASICs form a subfamily of the 

Epithelial Na+ channel (ENaC)/degenerin channel family. This family comprises among 

others the amiloride-sensitive ENaC, which is important for reabsorption of Na+ in the distal 

kidney, and contributes to the control of the liquid level on airway epithelia. A second 

subfamily, the degenerins, forms the channel part of a mechanosensitive complex in neurons 

of C. elegans, where it contributes to light touch sensation. The cloning of ASICs is 

indirectly linked to Switzerland, since it was based on the sequence homology of ASICs to 

ENaC. The ENaC is a heterotrimeric channel, formed by the homologous α, β and γ subunits. 
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Cloning of the α subunit was achieved by Cecilia Canessa in the laboratory of Bernard 

Rossier at the Department of Pharmacology of the University of Lausanne [1]. Expression 

cloning from colon mRNA of salt-depleted rats allowed the cloning of the α, and later the β 

and γ ENaC subunits [2].  The cloning of ENaC led to a very fruitful period of research 

addressing the function and physiology of ENaC in cells, in murine models and in human 

disease [3].  

Proton-activated Na+ currents of neurons had been measured first in the 1980s [4] and were 

subsequently described by several laboratories. The identity of the channels mediating these 

currents remained, however, unknown. Soon after the cloning of ENaC, so-called brain Na+ 

channels were cloned based on their sequence homology to ENaC [5, 6]. These channels 

showed only very small currents at physiological pH, and their activators were not known. 

The breakthrough came from the laboratory of Michel Lazdunski, who found that these novel 

Na+ channels were activated by lowering of the extracellular pH [7]. Initially, the members of 

this new subfamily of ion channels were considered as the poor cousins of ENaC, since not 

much was known about their expression and physiological or pathological roles. Very 

rapidly, several different ASIC subunits were identified, and their expression and function 

were characterized (rev. in [8, 9]). Studies with subtype-specific ASIC knockout mice 

identified diverse roles of ASICs, raising the interest in these channels [10, 11]. Still now, 

there are, however, no disease-causing mutations of ASICs known, and there are no selective 

small molecule inhibitors available to confirm their functions observed in animals.  

 

1. Functional properties of ASICs 

A typical current trace of a voltage-clamp experiment carried out with an ASIC3-expressing 

cell in the presence of the modulator 2-guanidine-4-methylquinazoline (GMQ, see 3.2) is 

shown in Fig. 1A. A change of the extracellular pH from 7.4 to 6 induces a rapidly 
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developing inward current. This current is transient and the major part of it does not persist as 

long as the pH is kept acidic, because the channels enter rapidly after opening a non-

conducting, so-called desensitized state. ASICs can therefore exist in three different 

functional states, closed, open and desensitized (Fig. 1B). The channels can leave the 

desensitized state only if the pH is brought back to a more alkaline value, which allows them 

to enter the closed state, from which they can be activated again by a subsequent 

acidification. Four ASIC genes have been identified, and six homologous subunits, ASIC1a, 

ASIC1b, ASIC2a, ASIC2b, ASIC3 and ASIC4 are known. ASICs can assemble into hetero- 

or homotrimeric channels [12, 13], whose properties (pH dependence, kinetics and ion 

selectivity) depend on the subunit composition [14]. There is currently no evidence that 

ASIC4 could form functional channels, and it was shown that co-expression of ASIC4 with 

other ASIC isoforms decreases their current amplitude [15, 16]. All ASIC subunits except 

ASIC4 are expressed in sensory neurons of the peripheral nervous system, and ASIC1a, 

ASIC2a, ASIC2b and ASIC4 are widely expressed in the central nervous system.  

Crystal structures of chicken ASIC1a, which shares 90% sequence homology with human 

ASIC1a, describe the individual subunits as resembling a hand (extracellular part) and a 

forearm (transmembrane parts). Accordingly, the individual domains have been given names 

such as finger, thumb, knuckle, and palm, as shown in Fig. 1C [12]. The most important 

cavities, to which some pharmacological ligands bind, are the extracellular vestibule located 

at the pore entry at the level of the “wrist”, the central vestibule located above it, and the 

three “acidic pockets”, which open towards the external surface of the channel and are easily 

solvent-accessible (Fig. 1C, right panel). The channel pore, which contains the channel gates 

and the selectivity filter, is lined mostly by the transmembrane α−helices 2 of the three 

subunits. Most ASICs are ∼10-fold selective for Na+ over K+ [9, 17].  Homomeric ASIC1a 

and certain ASIC1a-containing heteromers display in addition a small permeability for Ca2+. 
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ASICs are characterized by two types of pH dependence, 1) the pH dependence of activation, 

which can be derived from a plot of the current as function of the pH, and 2) the pH 

dependence of steady-state desensitization (SSD), which characterizes the transition from the 

closed to the desensitized state (Fig. 1D) and thus determines the fraction of channels that are 

available for opening at a given pH. The midpoint of the pH dependence of activation is ∼6.5 

for ASIC1a and ASIC3, ∼6.1 for ASIC1b, and ∼4.5 for ASIC2a [8, 9].   

 

Figure 1. ASIC function and structure. A, Typical ASIC3 current trace, measured in 

whole-cell voltage-clamp at -60mV in the presence of 1mM GMQ. The extracellular pH was 

changed from pH 7.4 to 6 for the time indicated by the horizontal bar. B, Kinetic model of 

ASIC activity. The numbers in A and B indicate the transitions between the states, as 1 = 

opening, 2 = desensitization, and 3 = recovery from desensitization. C, Structural model of 

ASIC1a based on the crystal structure of the channel opened by mit-toxin [18]. Left, single 

subunit, with coloring of the domains. Right, ASIC1a trimer of different vestibules and the 

pore; grey horizontal bars indicate the approximate limits of the membrane. The major part of 

the channel is extracellular. The acidic pocket constitutes a cavity composed of the thumb, 

finger and β-ball domains of one subunit, and the palm domain of an adjacent subunit. Note 

that one ASIC trimer contains three acidic pockets, one of which is indicated. D, pH 

dependence of steady-state desensitization (SSD, corresponding to the closed à desensitized 

transition, red) and activation (green), shown for ASIC1a. For SSD, the cells were exposed to 

the indicated conditioning pH during 60s, before measurement of the fraction of non-

desensitized channels by an acidification to pH6. For activation, the normalized current 

amplitude is represented as a function of the stimulating pH. E, Illustration of ASIC 
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activation leading to Na+ entry, membrane depolarization and induction of an action potential 

in a neuron.   

 

While ASIC1a- and ASIC1b currents are only transient, the acid-induced currents of ASIC3 

and of some heteromeric ASICs do not completely desensitize, leading to an additional 

sustained current (see Fig. 1A), which is generally of much smaller amplitude than the 

transient current. This sustained current may mediate slower, and long-lasting effects of 

sustained pH changes.     

 

2. Physiological and pathological roles of ASICs 

Rapid local acidification occurs in synapses during neuronal activity, whereas slower and 

sustained tissue acidification develops in ischemia, in inflammation, and in tumors [19]. 

Since ASICs are Na+-permeable, their activation in such situations depolarizes the neuronal 

membrane and leads to an excitation of the neuron [20, 21] (Fig. 1E). Table 1 lists the most 

important roles of ASICs, and indicates the evidence for these roles. Fear and anxiety, 

synaptic plasticity and learning, as well as epilepsy, are most likely accompanied by rapid pH 

changes in synapses. The other roles of ASICs are associated with situations that are 

accompanied by slower and sustained tissue acidification. It is currently not well understood 

how ASICs, which have a mostly transient activity, can be efficient sensors for long-lasting 

pH changes. It has been hypothesized that currently unknown modulators modify the ASIC 

function to enable prolonged activity [22]. ASICs can also act as mechanosensors, as 

illustrated by their role in the intestine (Table 1). Note also that ASICs are involved in pain 

perception at two levels, in peripheral sensory neurons, as well as in signal processing in the 

CNS. The roles of ASICs described in Table 1 are based mostly on results with rodents. For 

more exhaustive recent discussions, see [8, 9, 19]. Studies on the roles of ASICs in humans 

are very sparse, to a large extent because potent and selective inhibitors are not available. 
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Table 1. Physiological and pathological roles of ASICs 

Clinical 

manifestation 

Involvement of ASICs 

Fear and anxiety ASIC1a(-/-) mice showed deficits in fear conditioning and fear 

behaviors [8, 23, 24] 

Overexpression of ASIC1a increased fear-related behavior [25] 

Increased CO2 levels induced fear behavior that depended on the 

expression of ASIC1a in the amygdala [26] 

SNPs of the non-coding region of ASIC1a in humans are 

associated with panic disorder and fear-related reactions [27] 

Ischemic stroke Pharmacological inhibition or genetic deletion of ASIC1a 

strongly reduced the infarct volume in the MCAO model [28] 

Increasing the ASIC1a activity worsened the neuronal injury in 

the MCAO model [29] 

Synaptic plasticity and 

learning 

Genetic deletion of ASIC1a disrupted LTP in synapses of 

different regions of the brain [30-32] 

ASIC1a(-/-) mice showed mild learning deficits [30] 

Pain sensation Specific knockdown of ASIC3 prevented inflammation-induced 

heat hyperalgesia in rats [33]  

Local injection in the mouse paw of the ASIC3 activator GMQ 

[34] or of the general ASIC activator mit-toxin [35] induced pain 

Inhibition of ASIC1a in the central nervous system by animal 

toxins reduced pain [36, 37] 

Pain induced by injection of acid in the skin of human volunteers 

was prevented by amiloride and had the pH dependence of ASICs 

[38, 39]   

Migraine ASIC-like currents are expressed in dural afferents [40] 

Amiloride reduced migraine symptoms in a small clinical trial 

[41]  

Cutaneous allodynia, which typically occurs with migraine, was 

decreased in rats by the ASIC1 inhibitor Mambalgin-1 [42] 
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Intestinal functions Selective genetic deletion of ASIC1a, ASIC2 or ASIC3 affected 

gastric coordination and emptying, and colonic motility [43, 44] 

Epilepsy Seizures were inhibited by amiloride in several animal models 

[45-47] 

Disrupting the expression of ASIC1a increased, however, the 

severity of seizures [48]  

An SNP in ASIC1a is associated with temporal lobe epilepsy [49] 

Multiple sclerosis Genetic disruption of ASIC1a reduced axonal degeneration and 

the clinical damage in EAE [50] 

Amiloride was neuroprotective in animals with EAE and humans 

with multiple sclerosis [51, 52] 

An SNP in the untranslated region of ASIC2 is associated with 

multiple sclerosis [53] 

The data underlying these roles of ASICs are from studies with mice, unless noted 

differently. EAE, experimental autoimmune encephalomyelitis; GMQ, 2-guanidine-4-

methylquinazoline; LTP, long-term potentiation; MCAO, middle cerebral artery occlusion; 

SNP, single nucleotide polymorphism. 

 

3. Pharmacology of ASICs 

The subunits of ASICs contain many acidic residues, which probably attract the cations that 

are transported by the channel. Upon extracellular acidification, protonation of some of these 

residues likely contributes to the activation of ASICs. In addition, many of the known ASIC-

targeting modulators contain amine or guanidine groups or Arg residues that have an affinity 

for the acidic groups. This concerns the small molecule inhibitors amiloride and diminazene, 

as well as neuropeptides that contain an Arg-Phe-amide motive, and several animal toxins 

that are rich in basic residues. Some of them may bind to the residues that are involved in H+-

dependent ASIC activation. The consequences of the binding of a bigger ligand are, however, 

likely to be different from those of protonation.  
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3.1. Small molecule inhibitors 

Amiloride (Fig. 2A) blocks the ENaC pore with an IC50 of 0.1 µM and is clinically used as 

K+-sparing diuretic [54]. It has a lower potency on ASICs (IC50 of 10-100 µM, depending on 

subtype), where it binds within the channel pore, and inhibits the transient, but not the 

sustained current component [9, 55]. Amiloride has been used as ASIC inhibitor in 

experimental studies in humans [38, 41, 52]. Not surprisingly, at doses that suppress ASIC 

activity, it inhibits ENaC, and, in addition, other ion channels and several transporters [56]. 

Diminazene (Fig. 2A), an antiprotozoal drug used in animals, was shown with other 

diarylamidines to inhibit ASICs at low micromolar concentrations [57]. Diminazene acts as a 

pore blocker; part of its inhibitory action may also be due to binding to the central vestibule 

[58-60]. Several non-steroidal anti-inflammatory drugs were reported to inhibit ASIC 

currents with IC50 values up to mM concentrations [61] that are not reached during therapy 

with these drugs. Interestingly, aspirin, diclofenac and ibuprofen were shown to prevent 

inflammation-induced upregulation of ASIC mRNA in sensory neurons at therapeutic doses 

[61]. Several small molecule inhibitors of ASICs have been characterized but were not 

further developed. For current reviews on ASIC pharmacology, see [9, 62, 63]. 

 

Figure 2. Molecules targeting ASICs. A, Structures of amiloride, diminazene and GMQ.  

B, Structural model of ASIC1a (see Fig. legend 1), and illustration of the sites of action of 

ASIC modulators. Inhibitory actions are indicated by a “-“ sign, activation and potentiation 

by “+”.   
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3.2. ASIC modulators 

ASICs are targets of many endogenous and exogenous modulators [8, 9]. Among the latter, 

the compound GMQ (Fig. 2A) has intrigued many researchers, because it was the first non-

proton activator of ASICs, and because it drew attention to the central vestibule as potential 

drug binding site. Initially, GMQ was shown to activate selectively ASIC3 at pH 7.4, and to 

induce pain in mice in an ASIC3-dependent manner [34]. Based on in silico docking, 

mutagenesis and functional analysis, the central vestibule was identified as critical site for its 

functional effects [64]. We reported that GMQ affects the pH dependence of all studied 

ASICs by shifting the pH dependence of SSD to more acidic values. Its effects on activation 

depend, however, on the subunit composition [55]. GMQ induces an alkaline shift of the pH 

dependence of activation in ASIC3, leading to channel activation at pH 7.4; in ASIC1a, this 

shift goes in the opposite direction and decreases the channel activity [55]. Besides shifting 

the pH dependence, GMQ blocks the ASIC pore at higher concentrations [55]. This 

compound has been useful in the study of gating mechanisms of ASICs, and in the 

confirmation of the role of ASIC3 in pain sensation (Table 1). An important drawback of 

GMQ is its low potency on ASICs (EC50 = ∼3 mM). 

We have recently synthesized and tested a number of GMQ derivatives, and identified certain  

guanidinopyridines with a 20-fold increased potency for the pore blocking effect [65].  

ASICs containing the subunits 1a, 1b or 3 are modulated by neuropeptides containing an Arg-

Phe-amide motive [66]. These shift the pH dependence of SSD to more acidic values and 

slow the ASIC current decay, which increases the duration of ASIC activity and may enhance 

the ASIC response to sustained pH changes. Modulation by neuropeptides increases indeed 

pain sensation [67] and cell death after prolonged acidosis [68]. Interestingly, the endogenous 

opioid peptide Big dynorphin was shown to have similar effects as Arg-Phe-amide peptides 
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on ASICs, with an EC50 of as low as ∼30 nM [68]. It is therefore likely that dynorphin and 

structurally related peptides may modulate ASICs under physiological conditions.     

 

3.3. ASIC modulating toxins 

Several peptide toxins bind to ASICs with nanomolar affinity. The most important toxins are 

psalmotoxin1 (PcTx1) of the spider Psalmopoeus cambridgei [69], APETx2 from the sea 

anemone Anthopleura elegantissima [70], mit-toxin of the Texas coral snake (Micrurus tener 

tener) [35], and mambalgin from the black mamba (Dendroaspis polyepis polyepis) [37]. 

Since these toxins are peptides of ≥ 40 amino acid residues, their binding sites on ASICs 

must be well exposed. Indeed, PcTx1 and Mambalgin were both shown to bind to the thumb 

α-helix 5 of the acidic pocket [71, 72], with PcTx1 reaching in addition into the acidic pocket 

[73, 74]. The larger mit-toxin binds to the surface of the thumb, palm and wrist [18]. These 

toxins can be classified as inhibitors (PcTx1, APETx2, Mambalgin) and activators (mit-

toxin). The inhibitors show ASIC subtype specificity, with PcTx1 inhibiting ASIC1a, 

Mambalgin ASIC1a, ASIC1b and ASIC1a-containing heteromers, and APETx2 inhibiting 

homo- and heteromeric ASIC3-containing channels [9, 75]. APETx2 inhibits also voltage-

gated Na+ channels [76, 77]. Mechanistically, these toxins act as gating modifiers. PcTx1 

shifts the pH dependence of SSD (Fig. 1D) to more alkaline values. Consequently, ASIC1a is 

desensitized at pH7.4, and can not be opened when the pH drops [78]. Mambalgin-1 was 

shown to shift the pH dependence of activation (Fig. 1D) of ASIC1a to more acidic values; 

therefore, stronger acidification is needed to open the ASIC in the presence of the toxin [37]. 

The molecular mechanism of ASIC activation by mit-toxin is not known. It was, however, 

shown that ASIC2a currents are increased in the presence of mit-toxin due to an alkaline shift 

of the pH dependence of activation [35]. 
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Due to their high potency and their ASIC subtype specificity, these toxins were instrumental 

in defining the physiological and pathological roles of ASICs (Table 1). Purification of toxin-

ASIC complexes allowed the elucidation of the 3D structure of ASIC1a in the open state [18, 

73, 74]. Finally, experiments with PcTx1 and Mambalgin indicated that the acidic pocket co-

determines the ASIC pH dependence. 

 

Taken together, ASICs are potential drug targets of high interest. To date, no potent and 

selective small molecule modulators of ASICs are available. The crucial role of the toxins in 

elucidating ASIC functions in animal models illustrates how important the availability of 

ASIC-selective small molecule modulators would be to confirm the predicted roles of ASICs 

in humans. A molecular understanding of the function of ASICs would certainly enhance the 

chances to identify such modulators.    

 

4. Activation mechanism of ASICs 

It is generally thought that proton binding to the extracellular domain initiates conformational 

changes that are transmitted through the wrist to the transmembrane domains to promote pore 

opening. To understand the activation mechanism of ASICs, it would therefore be important 

to identify the protonation sites and to know the conformational changes that transmit the 

protonation signal from these sites to the channel gate. We will discuss here 1) information 

from crystal structures, 2) investigation of the protonation sites, and 3) findings on 

conformational changes from diverse approaches.  

 

4.1. ASIC structures in the closed, open and desensitized state 

Superposition of the closed, open and desensitized structures suggests a conserved structural 

scaffold defined by the upper palm and knuckle domains (Fig. 1C), which adopt the same 
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conformation in the three states [18, 79]. The main differences between the closed and open 

states reside in the conformation of the acidic pocket and in the geometry of the transmembrane 

domains (Fig. 3). The transition from the closed to the open state is accompanied by the 

collapse of the acidic pocket from an extended conformation. It has been suggested that low 

pH drives this collapse and leads to structural rearrangements through the extracellular domain, 

culminating in the expansion of the wrist region and in the widening of the pore [12, 79]. 

Continued exposure to protons leads to desensitization of the channel by inducing changes 

allowing the wrist and pore to relax back into a narrower, non-conducting conformation that 

resembles the closed state (Fig. 3).  

 

Figure 3. Hypothetical conformational changes during ASIC gating. Cartoons of an ASIC 

trimer, showing two of the three subunits, in the closed, open and desensitized state are 

depicted. In the closed state, the acidic pocket adopts an extended conformation with the thumb 

pushed away from the β-ball and finger domains. The transmembrane domains assume a 

constricted conformation that shuts the gate and prevents the passage of ions. Protonation of 

several ASIC domains (highlighted with blue circles) induces the collapse of the acidic pocket 

and conformational changes in the extracellular and transmembrane domains lead to the 

opening of the pore. The permeation of Na+ ions through the open channel is illustrated. 

Channel desensitization is accompanied by substantial reorganization of the acidic pocket, and 

a shift of the palm and the transmembrane domains that leads to the closing of the pore. The 
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red and black arrows highlight the conformational changes in the subsequent transition (closed 

state: à opening; open state: à desensitization). Black arrows, derived from the comparison 

of crystal structures; red arrows, evidence from voltage-clamp fluorometry studies. 

 

4.2. Protonation sites  

The crystal structures provide snapshots of the architecture as well as the structural relations 

between domains. They do however not identify the residues that need to be protonated to 

induce ASIC activation. Different functional approaches have been used to identify potential 

pH sensors in the extracellular domain of ASICs. Identification of proton-sensing sites is 

complicated by the fact that mutation of many residues – even those not directly involved in 

proton binding - may affect the pH dependence of ASIC currents. One study exploited the 

difference in proton sensitivity between ASICs of two evolutionary distant species, the non-

proton-sensitive lamprey ASIC1 and rat ASIC1. Mutation of two residues located in the palm 

domain was sufficient to convert a nonfunctional ASIC1 into a proton-gated channel [80]. The 

two mutations are located in the part of the palm that is connected to the first transmembrane 

segment. Changes in this part of the palm are likely involved in the transmission of 

conformational changes from the ectodomain to the channel pore. Other studies exploited the 

differences between the pH-sensitive ASIC2a and the pH-insensitive ASIC2b splice variants 

to conclude that the first 87 residues after the first transmembrane domain are critical for ASIC2 

activation by protons [81, 82].  

The wrist, located at the interface of the palm and the transmembrane segments, contains 

several His and acidic residues. Simultaneous mutation of several of these potential proton-

sensing residues led to non-functional channels that were, however, still expressed at the cell 

surface, suggesting that this region may be critically involved in ASIC proton sensing [83]. 

Other studies identified residues in the β-ball and palm domains as key molecular determinants 
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of ASIC proton sensitivity [84, 85]. Liechti and colleagues estimated pKa values of Asp, Glu 

and His residues based on the desensitized ASIC1a structure and tested the functional relevance 

of residues with a predicted pKa between 7.4 and 5. Their analysis identified several residues 

in the palm, thumb and β-ball domains as putative proton sensors [86]. 

Because of its high negative electrostatic potential due to the presence of many acidic residues, 

the acidic pocket represents an excellent candidate for conferring proton sensing to ASICs. 

Consistent with this property, channels harboring individual or combined neutralizing 

mutations within this pocket showed reduced proton affinity. However, combined mutation of 

a large number of titratable residues in the acidic pocket resulted in channels that retained the 

ability to open in response to acidification, indicating that proton sensing in the acidic pocket 

influences ASIC pH dependence, but is not required for ASIC activation [12, 87].   

In conclusion, the hypothesis that pH sensing in the acidic pocket drives ASIC opening, as 

suggested by the structural work, was not confirmed by functional studies. Rather, ASIC 

activation depends on protonation of multiple residues located in different channel domains.  

 

4.3. Evidence for conformational changes during ASIC activity 

Since some of the protonation sites are located quite distantly from the channel pore where the 

gate resides, it is expected that protonation of these sites allosterically affects the state of the 

channel gate. Several studies have investigated the structural rearrangements occurring in 

different channel domains during ASIC activation. Measurements using luminescence 

resonance energy transfer that measures distances between two sites in a given protein, reported 

structural rearrangements in the thumb and finger domains of ASIC1a, consistent with a 

decreased distance between these two domains in the desensitized as compared to closed state 

[88]. A reduced distance between the thumb and finger domains during ASIC desensitization 

has also been observed in a study from our laboratory that employed voltage-clamp 
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fluorometry (VCF) [87].  This study involved introduction of a Cys residue into a domain of 

interest, expression of the mutant channel in Xenopous oocytes, and selective attachment of an 

environmentally sensitive fluorophore to the engineered Cys residue. The fluorescence signal, 

which reports conformational changes, was then measured simultaneously with the current. 

This approach allowed a direct correlation between the observed movements at a distinct 

location within the channel and a specific channel transition [89]. Studies conducted on ASICs 

using VCF suggest that proton binding induces conformational changes in different ASIC 

domains. Rapid and slow conformational changes have been detected in the acidic pocket, 

consistent with a role in both, activation and desensitization (Fig. 3) [87]. Rapid conformational 

changes have also been observed in the finger and knuckle domains [90, 91].   

To derive information on conformational changes, several studies have measured the 

accessibility of engineered Cys residues to Cys-specific methanethiosulfonate reagents. By 

using this technique, it was shown that the modification rate of engineered Cys residues 

pointing to the central vestibule by a positively charged methanethiosulfonate reagent was 

decreased when the reagent was applied to the desensitized channels as compared to 

application to the closed state, suggesting that the lower palm domains of the three subunits 

undergo a closing movement during desensitization [92, 93].  

The introduction of disulfide bonds can constrain inter-domain or inter-subunit distances, and 

with this prevent conformational changes. The consequences of formation or cleavage of 

disulfide bonds can be used to investigate the link between local changes in conformation and 

channel function. This approach has been used to confirm that the collapse of the acidic pocket 

is required for ASIC activation [79]. Analysis of inter-subunit disulfide bonds at the level of 

the thumb and palm indicated that the subunits need to move away from each other to allow 

pore opening [91]. 
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Taken together, the crystal structures and functional approaches indicate that upon 

extracellular acidification, the acidic pocket collapses, and the wrist and pore adopt an 

extended open conformation, allowing current flow. If the acidification persists, the lower 

palm and, with it, the wrist and the pore, collapse. With these changes, the channel enters the 

desensitized state. The conformational changes are driven by protonation in different parts of 

the ASIC ectodomain. 

 

5. Conclusion and perspectives 

ASICs have recently attracted great interest because of their involvement in physiological 

and pathological processes, as revealed by animal studies. However, most of these proposed 

functions have not been confirmed in humans, probably in part due to the lack of potent and 

selective ASIC modulators. With the ongoing progress in the elucidation of the molecular 

mechanisms of ASIC function, and with the availability of new screening approaches, it will 

hopefully be possible to develop such modulators in the near future. This would allow testing 

of the relevance of ASICs in human physiology and pathology, and may give rise to new 

anxiolytic and analgesic drugs, and drugs that reduce neuronal death after ischemic stroke.     
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