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Abstract

Bayesian inversions followed by estimations of rare event probabilities are often needed to analyse ground-
water hazards. Instead of focusing on the posterior distribution of model parameters, the main interest lies then
in the distribution of a specific quantity of interest contingent upon these parameters. To address the associated
methodological challenges, we introduce a two-stage Sequential Monte Carlo approach. In the first stage, it
generates particles that approximate the posterior distribution; in the second stage, it employs subset sampling
techniques to assess the probability of the rare event of interest. By considering two hydrogeological problems of
increasing complexity, we showcase the efficiency and accuracy of the resulting PostRisk-SMC method for rare
event probability estimation related to groundwater hazards. We compare the performance of the PostRisk-SMC
method with a traditional Monte Carlo approach that relies on Markov chain Monte Carlo samples. We show-
case that our estimates align with those of the traditional method, but the coefficients of variation are notably
lower for the same computational budget when targeting more rare events. Furthermore, we highlight that the
PostRisk-SMC method allows estimating rare event probabilities approaching one in a billion using less than one
hundred thousand forward simulations. Even if the presented examples are related to groundwater hazards, the
methodology is well-suited for addressing a wide range of topics in the geosciences and beyond.

1 Introduction

Decision-making processes concerning groundwater and other environmental systems are sub-
ject to uncertainty. Consequently, decision-making often involves the identification and avoid-
ance of hazards while assessing associated risks. While a hazard represents a dangerous phe-
nomenon itself, risk considers the resulting potential of harm for human individuals or economic
assets (Ward et al., 2020). Risk assessment plays a crucial role in the context of groundwater
management, as fresh and uncontaminated groundwater is a prerequisite for global water se-
curity (Famiglietti, 2014) and as remediation of contaminated aquifers is extremely costly and
time-consuming. Groundwater contamination and over-exploitation have not only direct ad-
verse consequences for humans, but also for ecosystems and ecosystem services.

Our focus is on a particular aspect of risk assessment, namely, the estimation of the probability
of a hazard occurring. This hazard is defined by a quantity of interest that takes on critical
values. For a precise analysis of hazard occurrence, it is essential to consider the uncertainty as-
sociated with the parameters of a conceptual model. Hence, in the field of hydrogeology, Monte
Carlo approaches for sampling uncertain hydrological model parameters have been widely em-
ployed (e.g., Lahkim and Garcia 1999, Khadam and Kaluarachchi 2003, Benekos et al. 2007,
Siirila et al. 2012, Enzenhoefer et al. 2012). Such approaches can be challenging to apply in
practice since hazards often fall under the category of rare events, requiring specialized mod-
eling techniques to accurately represent the tail behavior of the quantity of interest. In this
context, classical Monte Carlo estimation is impractical as it requires an excessively large sam-
ple (Cérou et al. 2012). One approach to mitigate the computational burden is to combine
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Monte Carlo methods with surrogate modeling (e.g., Li and Xiu 2010), thereby speeding up
the computation time of forward evaluations. Another option is to employ importance sam-
pling in order to focus the sampling on critical regions of the quantity of interest. However,
selecting a well-working importance density for high-dimensional problems is often difficult
(Au and Beck, 2003a). Extreme value theory (e.g., Brodin and Klüppelberg 2008), relying on
fitting an extreme value distribution to represent the distribution of the quantity of interest, of-
fers yet another alternative and is widely used to predict probabilities of environmental hazards
such as extreme floods (Morrison and Smith, 2002). Extreme value theory necessitates sizable
sample sizes for distribution fitting, is contingent on the chosen distribution’s shape, and does
not offer simulations of the rare event (e.g., Diebold et al. 2000). An alternative data-intensive
method for estimating extremes is based on the ’Peaks over Threshold’ technique (POT; Lead-
better 1991). In this approach, extreme events are analysed by focusing on values that exceed a
certain threshold.

We perform rare event probability estimation for the case when indirect site-specific data y
are available (e.g., from tracer or pumping tests). We employ a Bayesian framework in which
the hydrogeological parameters θ are characterized by a posterior probability density function
(PDF) p(θ |y), given by the distribution of θ conditioned on measurements y. Compared to a
standard Bayesian inversion problem in which the end-product is an approximation of the pos-
terior PDF, we interrogate the distribution of a quantity of interest depending on the parameters
through a non-linear relationship θ 7→ R(θ), for instance, in the probability of this quantity
exceeding a critical threshold (considered as the hazard). In practical scenarios, the presence of
non-linearity frequently precludes the availability of an analytical formula for the distribution
of the quantity of interest when conditioned on the data y.

In structural engineering, similar problems have been addressed by performing probabilistic
updating of system parameters using dynamic data and subsequently updating the estimation of
the system’s reliability (e.g., Papadimitriou et al., 2001). In this context, Straub (2011) intro-
duced the so-called Bayesian Updating with Structural reliability methods (BUS; e.g. Straub
and Papaioannou 2015). For the Bayesian analysis, BUS can be interpreted as an extension of
rejection sampling (Ripley 2009). To extend BUS for posterior rare event probability estima-
tion, Straub et al. (2016) present an approach targeting both the posterior and the rare event by
using reliability methods. A challenge of this method is the selection of the constant employed
in the extended rejection sampling, as its choice can impact overall performance. In a similar
approach targeting ‘updated robust reliability measures’, Jensen et al. (2013) rely on transi-
tional MCMC (Ching and Chen, 2007) to derive a set of posterior samples followed by subset
sampling for the reliability analysis. A very different approach enabling the combination of
inference and rare event estimation that has been explored in the geosciences is Bayesian Evi-
dential Learning (BEL; Hermans et al. 2016), which aims to learn a direct relationship between
measurements and quantity of interest by sampling from the prior distribution (e.g., Thibaut
et al. 2021). For higher-dimensional parameter spaces and non-linear relationships, it can be
difficult for BEL to capture the full joint distribution with a reasonable number of samples.

We propose a two-stage application of Sequential Monte Carlo (SMC; Doucet et al. 2001),
which we refer to as the Posterior Risk Sequential Monte Carlo (PostRisk-SMC) method.
Bayesian inversion in hydrogeology and other environmental fields is often addressed using
Markov chain Monte Carlo (MCMC) methods. For high-dimensional problems with non-linear
forward solvers, standard MCMC methods often have difficulties in approximating the poste-
rior PDF within realistic computational constraints. This happens as the Markov chains may be
trapped in local minima for long times or have insignificant probabilities of switching between
posterior modes (e.g., Neal 2001, Amaya et al. 2022). To overcome these challenges, methods
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based on so-called power posteriors have been introduced. In a power posterior, the likeli-
hood function is downweighted by exponentiating it with the inverse of a temperature greater
than one, a process known as tempering. This facilitates more straightforward exploration at
higher temperatures. Parallel tempering (Earl and Deem, 2005) is an MCMC approach where
interacting chains target different power posteriors, allowing states sampled at higher tempera-
tures to propose states in chains targeting the posterior distribution. In geophysical inversion,
Sambridge (2014) illustrated that parallel tempering significantly enhances sampling efficiency,
enabling a more extensive exploration of the parameter space in comparison to conventional
MCMC methods. Similar to traditional MCMC techniques, parallel tempering approximates
the posterior using states sampled post burn-in. In contrast, annealed importance sampling
(Neal, 2001) relies on sequential importance sampling. While in MCMC, the accuracy of pos-
terior estimates relies on the precise identification of the burn-in period for the chains, annealed
importance sampling ensures asymptotic correctness through importance steps, even when er-
rors occur in approximating intermediate distributions (Neal, 2001). The SMC method (Doucet
et al., 2001) is based on annealed importance sampling. As a particle method, it provides a
weighted sample of particles for posterior approximation by simulating a sequence of power
posteriors transferring the prior PDF to the posterior PDF by successively increasing the weight
of the likelihood (Del Moral et al. 2007). While the SMC method is extensively used in science
and engineering, it has only seen limited use in the geosciences (i.e., Vrugt et al. 2013, Linde
et al. 2017). We build our PostRisk-SMC method on an adaptive version of the SMC method by
Zhou et al. (2016), which automatically tunes the cooling sequence between power posteriors.
Recently, adaptive SMC methods have been employed successfully for geophysical (Amaya
et al., 2021; Davies et al., 2023) and hydrogeological (Amaya et al., 2022) inversion problems,
demonstrating superior performance compared with state-of-the-art MCMC methods.

Relying only on a particle approximation of the posterior PDF is insufficient when estimating
rare event probabilities. As a relatively small number (tens or hundreds, sometimes thousands)
of particles is used in practice, this means that no particle is likely to be associated with the rare
event that might, for instance, have a probability of one in a million. To address this, a new
SMC formulation has emerged that specifically targets rare events by employing a sequence of
nested sets pertaining to the hazard scenario. This sequence refers to a hierarchical structure of
sets with each set being a subset of the set above it. In a scenario targeting the probability of the
quantity of interest exceeding a critical threshold, the nested sets are related to intervals [Tk,∞)
with thresholds Tk increasing from minus infinity to the threshold of interest. This approach re-
lies on the fact that the small probability of the rare event can be expressed as a product of larger
conditional probabilities involving the intermediate nested sets. Such a splitting technique was
first introduced as ‘subset sampling’ by Au and Beck (2001) in the context of reliability anal-
ysis and has been applied, for instance, in the context of radioactive waste management (e.g.,
Cadini et al. 2012) and earthquake engineering (e.g., Au and Beck 2003b). In the SMC litera-
ture, subset sampling is presented by Del Moral et al. (2006) and Johansen et al. (2006). Cérou
et al. (2012) and Botev and Kroese (2008) extended the existing methods by using an adaptive
method that optimally selects the subsets on the fly. Subset sampling has been further leveraged
by employing surrogates (Bourinet et al., 2011) or by employing a multilevel approach (Ull-
mann and Papaioannou, 2015). While all of these applications rely on uncertain parameters θ

following a ‘prior’ PDF, we here adapt this approach to rare event estimation with respect to a
posterior PDF that is first approximated by adaptive SMC. The resulting PostRisk-SMC method
relies on the same principles as the approach of Jensen et al. (2013) but within the theoretical
formulation of particle methods and SMC. Further, Jensen et al. (2013) consider engineering
applications and dynamic data, while we introduce the PostRisk-SMC in the context of hydro-
geological rare event probability estimation. In addition, we perform resampling of the particles
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only occasionally (during the posterior phase), while the transitional MCMC approach applied
by Jensen et al. (2013) does so in every iteration. Since resampling impacts the variance of
estimates (Douc and Cappé, 2005), it is usually beneficial to resample only when the variation
in the particle weights becomes too high.

For comparison purposes, we consider a conventional Monte Carlo approach for the rare event
probability estimation, as applied for instance by Dall’Alba et al. (2023) for risk assessment
of groundwater inflow in the context of tunnel construction. In our inversion setting, we rely
on MCMC samples approximating the posterior PDF for the Monte Carlo estimation. Our
first example consists of a simplified one-dimensional flow scenario where we utilize pumping
tests to estimate the probability of high flow rates. Subsequently, we consider a more realistic
two-dimensional flow and transport problem, focusing on assessing the probability of contami-
nation breakthrough. The remainder of the manuscript is organized as follows: Section 2 gives
a methodological overview of the considered setting and introduces the PostRisk-SMC method;
Section 3 presents the one-dimensional flow example and Section 4 the two-dimensional trans-
port example; finally, the study ends with a discussion and conclusions in Sections 5 and 6,
respectively.

2 Methodology

2.1 Notation

We target an unknown property vector θ ∈ RP representing a model domain from which we
obtain measurements y ∈ RM. We consider a setting where measurements are realizations of
the random variable Y = G (θ)+ εO , with G : RP → RM referring to the forward operator and
εO to the observational noise. Assuming independent Gaussian observational errors, we express
the likelihood as p(y|θ) = ϕM(y;G (θ),ΣY ), with ϕM(·;G (θ),ΣY ) denoting the PDF of a M-
variate normal distribution with the mean G (θ) and the diagonal covariance matrix ΣY of the
observational errors. While we have opted for the simplicity of assuming independent Gaussian
observational errors, the methodology remains applicable in a broader context, accommodating
alternative error assumptions.

We consider a quantity of interest R = R(θ) derived from θ via some function R : RP → R.
More specifically, we target a rare set A = {θ ∈ RP : R(θ) ∈ T } for some interval T ⊆
R∪ {∞,−∞}. If we target the exceedance probability P(R(θ) ≥ T ) for some real number
T , we assign T = [T,∞). We are interested in P(θ ∈ A|y) for θ distributed according to the
posterior PDF p(θ |y) and write,

P(θ ∈ A|y) =
∫

A
p(θ |y)dθ . (1)

2.2 Bayesian inversion and Metropolis–Hastings

In Bayes’ theorem, the posterior PDF is given by,

p(θ |y) = p(θ)p(y|θ)
p(y)

, (2)

with the prior PDF p(θ) of the model parameters, the likelihood function p(y|θ) and the evi-
dence p(y). As in practice, it is often not possible to sample directly from the posterior when
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the forward solver θ 7→ G (θ) is non-linear, sampling methods such as MCMC and SMC can be
applied.

The most used MCMC method is the Metropolis–Hastings algorithm (MH algorithm; Metropo-
lis et al. 1953; Hastings 1970). The MH algorithm is an iterative algorithm that, in each
iteration, proposes a new set of model parameter values, which is then accepted or rejected
based on the acceptance probability. The choice of the proposal density is crucial, as it has
to balance the trade-off between exploration and exploitation. While standard Gaussian model
proposals can be applied for a model space with reduced dimension, more high-dimensional pa-
rameter spaces present considerable challenges (e.g., Robert et al. 2018). To ensure robustness
against different discretization choices and to maintain a reasonable step size while inferring
thousands of unknowns, we rely on preconditioned Crank-Nicolson proposals that preserve the
prior PDF (pCN; e.g. Cotter et al. 2013). The utilization of such prior-preserving proposals re-
sults in the acceptance probability being solely dependent on the likelihood values. In the field
of geophysics, MCMC algorithms with model proposals that preserve the prior are known as
extended Metropolis (Mosegaard and Tarantola, 1995). The pCN proposals have been utilized
for instance in a parallel tempering approach by Xu et al. (2020).

2.3 From Sequential Monte Carlo to PostRisk-SMC

In this Section, we first introduce Sequential Monte Carlo for posterior inference (Section 2.3.1)
and Sequential Monte Carlo for rare event estimation (Section 2.3.2). Subsequently, we intro-
duce PostRisk-SMC , a novel sequential combination of both methods, designed to tackle the
challenge of estimating rare event probabilities while accounting for posterior uncertainty (Sec-
tion 2.3.3). For the methodology of the first stage (Section 2.3.1), we rely on the framework
of Del Moral et al. (2007) and Zhou et al. (2016) and refer to their works for further details
such as convergence behaviour. Likewise, for the second stage (Section 2.3.2), we follow the
framework presented by Cérou et al. (2012) and suggest consulting their paper for additional
information.

2.3.1 Sequential Monte Carlo for posterior inference

Posterior estimation with the SMC method is based on a particle approximation using N par-
ticles {θ

(1),θ (2), ...,θ (N)} with weights {W (1),W (2), ...,W (N)}. If the particles are sampled
according to the posterior, the weights are redundant and reduce to 1/N. In practice, it is gener-
ally not possible to sample from the posterior and importance sampling using a density η(θ |y)
is applied. Importance sampling generates samples from an importance distribution that as-
signs higher probabilities to regions where the target distribution is expected to have most of
its mass, thereby reducing the variance of estimators (e.g. Owen and Zhou 2000). To achieve
a well-working importance sampling approach for the posterior PDF, one should strive for a
η(θ |y) as close as possible to p(θ |y). This can be achieved by building a sequence of K PDFs
{p0(θ |y), p1(θ |y), ..., pK(θ |y)} with p0(θ |y) = p(θ) and pK(θ |y) = p(θ |y), thus moving grad-
ually from the prior PDF to the posterior PDF (Del Moral et al. 2007). The sequence is built on
unnormalized power posteriors (Neal 2001),

pk(θ |y) = p(y|θ)αk p(θ), (3)

with 0 = α0 < α1 < ... < αK = 1. With increasing exponent αk, the relative influence of the
likelihood on the power posterior grows. For a smaller exponent, the exponeniated term is
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Figure 1: Illustration of the SMC method for posterior inference. We depict the first four power posteriors for an
example with N = 4 particles and sP = 4 MH steps.

‘flatter’ such that the power posterior is closer to the prior PDF. When using the importance
density η(θ |y) to sample the particles θ

(p), the weights W (p) correspond to the normalized
version of the importance weights w(p) = p(θ (p)|y)/η(θ (p)|y).

We start at iteration k = 0 with particles θ
(p)
0 (p = 1,2, ...,N) sampled from the prior PDF

p0(θ |y) = p(θ) and initial weights W (p)
0 being all equal to 1/N . At iteration k of the SMC

method, pk(θ |y) is approximated by importance sampling based on the previously estimated
power posterior pk−1(θ |y). Therefore, the particles θ

(p)
k−1 are assigned with incremental weights,

w(p)
k =

pk

(
θ
(p)
k−1|y

)
pk−1

(
θ
(p)
k−1|y

) =
p
(

y|θ (p)
k−1

)αk

p
(

y|θ (p)
k−1

)αk−1
= p

(
y|θ (p)

k−1

)αk−αk−1
. (4)

To account for the previous importance sampling steps, the cumulative normalized weights W (p)
k

of the particles θ
(p)
k−1 are defined as,

W (p)
k =

W (p)
k−1w(p)

k

∑
N
j=1W ( j)

k−1w( j)
k

, (5)

taking into account the history of weights and normalizing them to ensure their sum equals one.
The particles θ

(p)
k−1 approximating pk−1(θ |y) are generated by propagating each particle θ

(p)
k−2

according to a Markov kernel leaving pk−1(θ |y) invariant (Neal 2001). This can be achieved
by employing a finite number sP of MH steps (Del Moral et al., 2007). In contrast to MCMC
methods, the MH steps used within the SMC method do not have to converge as the importance
sampling weights account for any possible sampling from the wrong distribution (Del Moral
et al. 2007). The SMC procedure for posterior inference is illustrated in Figure 1.

When the (empirical) variance of the weights W (p)
k at iteration k becomes large, it is benefi-

cial to resample the particles before propagation (Del Moral et al. 2007, Doucet and Johansen
2009). Resampling decreases the variance of the weights by discarding most particles with
low weights and preferably reproducing those with high weights. Here, we use systematic re-
sampling (Doucet and Johansen 2009). Subsequently, the weights W (p)

k are set to 1/N, as the
resampled particles are approximately distributed according to pk(θ |y). Resampling increases
the variance of the estimator, making it wasteful if the importance weights do not exhibit sig-
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nificant variability (Del Moral et al., 2006). To decide when resampling is to be performed, the
effective sample size (ESS; Kong et al. 1994),

ESSk =

(
∑

N
p=1W (p)

k−1w(p)
k

)2

∑
N
o=1

(
W (p)

k−1

)2(
w(p)

k

)2 , (6)

is used. For instance, Del Moral et al. (2006) apply the decision rule of resampling if the
ESSk falls below 30 % of the number of particles N. To ensure that the final particles are a
(unweighted) approximation of the posterior, we enforce a resampling step in the last iteration.

When defining the sequence of exponents α , one has to consider that too large differences
between αk−1 and αk lead to a large discrepancy between the power posteriors pk−1(θ |y) and
pk(θ |y) and a subsequent high variance of the importance sampling estimator. However, if the
difference is very small, an excessive number of steps are needed until αk = 1 is reached. It is
natural to aim for a similar discrepancy between successive power posteriors (Zhou et al. 2016).
To select the sequence of exponents α , we use the adaptive method of Zhou et al. (2016), based
on the conditional effective sample size (CESS),

CESSk = N

(
∑

N
p=1W (p)

k−1w(p)
k

)2

∑
N
p=1W (p)

k−1

(
w(p)

k

)2 . (7)

The CESSk quantifies the quality of pk−1(θ |y) as an importance density to estimate expectations
under pk(θ |y) (Zhou et al. 2016). The CESS is equal to the ESS when resampling is conducted
at each iteration. Zhou et al. (2016) show that using the CESS for the adaptive sequence leads
to a reduction in estimator variance compared to an approach using the ESS. To define the next
αk, a binary search for the value for which the CESS is the closest to a pre-defined target value
CESS∗ is performed (Zhou et al., 2016). A binary search operates by iteratively halving the
interval containing the potential values, effectively reducing the search space with each step by
comparing the target value to the middle element. If the target is less than the middle element,
the search is restricted to the lower half of the interval; if it’s greater, the search is limited
to the upper half. The closer this target value CESS∗ is to N, the better the approximation,
but the slower the algorithm becomes as the number of power posteriors grows. The SMC
algorithm stops when αk reaches one. Such an adaptive approach is expected to result in a
more efficient algorithm compared to its non-adaptive counterpart. Importantly, it also leads
to a more automated algorithm by minimizing the number of user-defined tuning parameters
(Beskos et al., 2016). However, using an adaptive method for the selection of the exponents
introduces a slight bias into the results. Beskos et al. (2016) explore the convergence behaviour
for such adaptive approaches and establish that the output satisfies a weak law of large numbers
and a central limit theorem. To indicate if we use an adaptive or fixed sequence of exponents,
we specify the binary variable ADAP as 1 for an adaptive and 0 for a predetermined selection.
The full workflow of the SMC method for posterior inference is summarized in Figure 2.

2.3.2 Sequential Monte Carlo for rare event estimation

The SMC method can be modified to enable simulation of rare events and estimation of their
probabilities by using a sequence of not-so-rare nested events (Del Moral et al., 2006; Johansen
et al., 2006; Cérou et al., 2012). It is assumed that θ is a random element on RP with probability
distribution p(θ) that can be sampled from. To estimate P(θ ∈ A), the SMC method for rare
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Initialization

• Select: N, sP, ESSres

• Select how to choose exponents:

– Adaptive: ADAP = 1, CESS∗

– Non-adaptive: ADAP = 0, fixed α

• Sample θ 0 = (θ
(1)
0 , ...,θ

(N)
0 ) from prior

• Set weights w(p)
0 =W (p)

0 = 1/N,
α0 = 0, k = 1

• If ADAP = 1: Search for αk s.t.
CESSk closest to CESS∗ (Eq. 7)

• If ADAP = 0: Set αk = αk

If αk ≥ 1, set αk = 1

Define the weights w(p)
k (Eq. 4) and

normalized weights W (p)
k (Eq. 5).

Check if ESSk < ESSres (Eq. 6)
or αk = 1, if YES then resample

and set w(p)
k = W (p)

k = 1/N

Propagate particles for sP MH
steps leaving pk(θ |y) invariant

and define θ k with the last states

Check if αk = 1, if YES then STOP

k = k+1

Figure 2: Flow chart illustrating the SMC method for posterior inference.

event estimation employs a sequence of nested sets Ak = {θ ∈ RP : R(θ) ∈ Tk}, with RP =
A0 ⊃ A1 ⊃ ...⊃ AK = A. It holds that,

P(θ ∈ A) =
K

∏
k=1

P(θ ∈ Ak|θ ∈ Ak−1) . (8)

If we are interested in P(R(θ)≥ T ), the sequence of nested sets Ak = {θ ∈RP : R(θ)∈ [Tk,∞)}
corresponds to a sequence of increasing thresholds {T0, ...,TK} with T0 =−∞ and TK = T . For
P(R(θ) ≤ T ), we employ Ak = {θ ∈ RP : R(θ) ∈ (−∞,Tk]} using a sequence of decreasing
thresholds with T0 = ∞ and TK = T .

The SMC method for rare event estimation starts by initializing N particles θ 0 = (θ
(1)
0 , ...,θ

(N)
0 )

sampled from p(θ). The first intermediate distribution pA0(θ) = p(θ |θ ∈ A0) is equal to p(θ).
To approximate the intermediate distribution pAk(θ) = p(θ |θ ∈ Ak) for k ≥ 1, each particle
θ
(p)
k−1 is assigned a weight,

W (p)
k =

{
1/|Ik|, if θ

(p)
k−1 ∈ Ak

0, otherwise,
(9)

with Ik = {p : θ
(p)
k−1 ∈ Ak} and |Ik| denoting its cardinality. Thereby, we are assuming that Ik

is non-empty, otherwise the particle system dies. Subsequently, systematic resampling (Doucet
and Johansen 2009) is employed such that particles which do not lie in Ak are replaced by
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Figure 3: Illustration of the SMC method for rare events targeting P(R(θ)≥ T ). We depict the first three thresh-
olds for an example with N = 4 particles, sR = 4 MH steps and a quantile of γ = 0.25.

particles that do. The resampled particles are propagated using a Markov kernel, leaving pAk(θ)
invariant (Cérou et al. 2012). We are considering sR steps with a MH algorithm whereby a
transition is only accepted if θ stays in Ak. The procedure of SMC for rare event estimation
targeting P(R(θ)≥ T ) is illustrated in Figure 3.

We need to choose a sequence of nested sets such that P(θ ∈ Ak|θ ∈ Ak−1) is reasonably high.
Cérou et al. (2012) detail both a fixed and an adaptive algorithm. For Ak = {θ ∈ RP : R(θ) ∈
[Tk,∞)}, an adaptive method based on quantiles of R(·) of the particles ensures that the asymp-
totic variance of the estimator is minimal (see Cérou et al. 2012). Utilizing the γ-quantile,

Tk = qγ (R(θ k−1)) , (10)

guarantees that a ratio of (1− γ) of the particles survive. The adaptive algorithm’s stopping cri-
terion is met when the quantile surpasses the targeted threshold, at which point the last TK is set
equal to T . Then, P(θ ∈ A) is estimated by multiplication of all Pk = |Ik|/N for k = 1, ...,K. Due
to the adaptiveness of the thresholds, the resulting estimator is biased given the finite number of
particles N (Au and Beck, 2001). This bias is positive and becomes negligible compared to the
variance of the estimator as the number of particles increases (Cérou et al., 2012). To circum-
vent this bias, one can either re-run the algorithm with the previously optimized sequence or
use a predetermined fixed sequence of thresholds. With the binary variable ADAR we indicate
if we use fixed (ADAR = 0) or adaptive (ADAR = 1) sequences of thresholds. The work flow of
the SMC method for rare event estimation is summarized in the flow chart in Figure 4.

2.3.3 Posterior Risk Sequential Monte Carlo method

To estimate P(θ ∈ A|y), we introduce a sequential combination of the two SMC methods de-
scribed in Sections 2.3.1 and 2.3.2 (PostRisk-SMC) . Let us write the k-th power posterior with
respect to the subset Ak as,

pA
k (θ |y) = p(y|θ)αk p(θ)1{θ ∈ Ak}. (11)

While the first stage of the PostRisk-SMC algorithm generates particles distributed according
to the posterior by increasing the exponent of the likelihood αk with the subset Ak being held
constant as Rp, the second stage shrinks the subset while leaving the exponent of the power
posterior at 1. For the rare event analysis, it is crucial that we start the second phase with
a unweighted particle approximation of the posterior, ensured by the resampling step in the
last step of the posterior inference stage. We denote as KP the number of intermediate power
posteriors, as KR the number of thresholds and as K = KP +KR their sum. Additionally, we
define sP as the number of MH steps employed between each importance sampling step in the
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Initialization

• Select: N, sR

• Select how to choose thresholds:

– Adaptive: ADAR = 1, γ-quantile
– Non-adaptive: ADAR = 0, fixed T

• Sample θ 0 = (θ
(1)
0 , ...,θ

(N)
0 ) from prior

• Set weights W (p)
0 = 1/N,

T = (T0,T1, ...) = (−∞,−∞, ...),
P = (P1,P2, ...) = (1,1, ...)

• If ADAR = 1: Next threshold
with γ-quantile (Eq. 10)

• If ADAR = 0: Set Tk = T k

Check if Tk ≥ T

Define the weights W (p)
k (Eq. 9).

Resample particles according to
weights and set Pk = |Ik|/N (Eq. 9)

Propagate particles for sR MH
steps leaving pAk(θ) invariant

and define θ k with the last states.

Set Tk = T ,
Pk = |Ik|/N and calculate
P(θ ∈ A) = ∏

k
j=1 Pj

NO

k = k+1

YES

Figure 4: Flow chart illustrating the SMC method for rare event estimation of P(R(θ)≥ T ).

posterior phase and sR as the number between the subset sampling steps during the rare event
phase. When the same number of steps is used for both, we denote it as s = sP = sR. The
PostRisk-SMC method inherits the theoretical properties of the SMC methods utilized in the
two stages, including any biases present in the estimators resulting from adaptive sequences of
exponents and thresholds. The complete work flow of the PostRisk-SMC method is summarized
in Figure 5.

In high-dimensional scenarios characterized by complex posterior distributions, the process of
particle propagation using a limited number of MH steps can become limiting. In such contexts,
the frequency of particle resampling becomes important to monitor. In the rare event probability
estimation phase, this aspect becomes even more critical as frequent resampling is unavoidable.
This implies the need to ensure that a sufficient number of MH steps are used to prevent particle
collapse following the resampling steps.

In groundwater settings where the rare event revolves around contamination hazards, the simu-
lation of the quantity of interest often demands more computational resources than the forward
model used to estimate the posterior PDF. To achieve computational speed-up under such situ-
ations (as exemplified in Section 4), we introduce a minor modification to the propagation step
during the rare event phase of PostRisk-SMC . Instead of simulating both the forward response
and quantity of interest in every step, we conduct first a series of ssR posterior steps within each
of the sR steps. Subsequently, the last state is treated as a proposal from the posterior which is
accepted or rejected based on whether it falls within the current subset.
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Initialization

Posterior inference (Fig. 2)

pA
k (θ |y) (Eq. 11)

• Increase exponent αk
• Constant Ak = Rp

• k = 1,2, ...,KP

Particle
approximation

posterior p(θ |y)

Rare event estimation (Fig.
4)

pA
k (θ |y) (Eq. 11)

• Shrink subset Ak
• Constant αk = 1
• k = KP +1,KP +2, ...,K

Rare event probability
estimate P(θ ∈ A|y) and
rare event simulations

Figure 5: Work flow of the PostRisk-SMC method.

3 1D flow example

As a first example, we study a steady-state 1-D groundwater flow problem (diffusion equation).
The chosen problem setting is inspired by a test case by Straub et al. (2016), which corresponds
to the steady-state version of a test case introduced by Marzouk and Najm (2009). The fast run
time of this simple toy example allows for a sensitivity analysis of the algorithmic parameters
of the PostRisk-SMC method.

3.1 Synthetic setting

The model domain is the unit interval D = [0,1] m and we consider the following steady-state
equation,

d
dx

(
θ(x)

dh
dx

)
+b(x) = 0, (12)

with hydraulic conductivity θ(x) [m/s], source b(x) [1/s] and hydraulic head h(x) [m].

The log-conductivity logθ(x) is parameterized as a finite rank Gaussian random process ex-
pressed by,

logθ(x) = µlogθ +
n

∑
i=1

√
wivi(x)Zi, (13)

with {wi,vi} representing the first n eigenvalues and eigenfunctions from the Karhunen-Loève
expansion (Loève, 1977) of a Gaussian process with mean µlogθ = log(10−5) and exponential
covariance function κlogθ (∆x) = σ2 exp(−∆x/l) with standard deviation σ = 3 and integral
scale l = 0.3 m. Zi denote independent standard normally-distributed variables. Following
Straub et al. (2016), we employ a truncation after n = 10 terms. For the representation, we use
a uniform grid with 40 intervals and under the assumption of the mean and covariance structure
being known, we infer the ten first Zi. The ’true’ log-hydraulic conductivity values logθ(x) are
depicted in Figure 6a.

For the measurements, the source term b(x) in Equation (12) is modelled using sources in the
cells at 0.26, 0.51 and 0.76 m with identical strengths of 0.001 1/s. The measurements y are
performed on the steady-state solution of h(x) employing 7 sensors spaced uniformly on D
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Figure 6: (a) ’True’ log-hydraulic conductivity logθ(x) on D = [0,1] m and corresponding (b) steady-state solu-
tion h(x) (solid line) for the diffusion equation including the pumping sources (source locations dashed) and the
resulting noisy measurements y (crosses).

excluding the endpoints. To achieve this, Equation (12) is solved with linear finite differences
on a uniform grid employing 40 cells and boundary conditions h(0) = h(1) = 0 m (Langtangen
and Linge 2017). Finally, the synthetically-generated measurement values are contaminated
with independent Gaussian errors having a standard deviation of 0.01 m (Fig. 6b).

For the rare event, we consider flow from the left to the right of the model domain and define
the ‘hazard’ as the flow rate on the right boundary exceeding a critical value of T . To calculate
the flow rate, we assume a hydraulic head difference of 1 m and take the harmonic mean of the
conductivity values. To enable a comparison with MC estimation, we consider a first value of
T ∗ = 9×10−6 m/s; the second value of T ∗∗ = 9.5×10−6 m/s is selected such that it targets a
rare event with probability of one in a billion.

3.2 Results

We employ independent normal prior PDFs for the unknown Zi of the KL-expansion repre-
senting the log-conductivity (Eq. 13). For the likelihood, we assume independent Gaussian
measurement errors with the same standard deviation as used in the data generation process.
We compare the results of the PostRisk-SMC method with those of a standard MH algorithm
employing Gaussian proposals. To ensure an acceptance rate of approximately 30 %, the step
width of the proposals is adjusted accordingly, taking into account the different scales of vari-
ation in the KL components (based on initial MH runs). The same configuration of the MH
algorithm is used in the MH steps employed in each iteration of the PostRisk-SMC method.

For the PostRisk-SMC method, the following parameter choices have to be made: the number
of particles N, the number of MH steps s in each iteration (here s = sP = sR), the selection
of the exponents αk (Eq. 7), the threshold ESSres below which resampling is employed (Eq.
6) and the selection of the thresholds Tk (Eq. 10). Following Del Moral et al. (2006), we
fix ESSres = 0.3×N for the resampling in the initial stage of posterior inference. We start
by testing a configuration of PostRisk-SMC with N = 40,CESS∗ = 0.99×N, γ = 0.05 and
s= 40, employing adaptive schedules for the likelihood’s exponents and the thresholds. Figure 7
depicts resulting particle approximations of the following distributions of the log-diffusivity
profile: (a) prior pA

0 (θ |y) = p(θ), (b) posterior pA
KP
(θ |y) = p(y|θ)p(θ) and (c) posterior rare

event pA
K(θ |y) = p(y|θ)p(θ)1{R(θ)≥ T ∗}. Considering our utilization of only 40 particles,

it is not particularly problematic or unexpected that the true value may deviate outside the
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Figure 7: Results for the 1D flow example with the PostRisk-SMC method: Particle representation (N = 40) of the
log-conductivity’s (a) prior, (b) posterior and (c) posterior rare event (for T ∗) distribution; the black lines depict
the true profile and the coloured lines the particles.

expected range in specific areas of Figure 7c.

To explore the level of bias introduced by the adaptive schemes for our choice of N = 40 parti-
cles, we re-run the algorithm using the previously defined sequences as pre-defined values. The
range of ten resulting estimates for T ∗∗ are depicted in Figure 8a (adaptive and re-run). The
adaptive runs yield a mean estimate that is approximately 200 times greater than that of the re-
runs. To circumvent bias while avoiding the computational burdens associated with increasing
the number of particles or performing re-runs, we adopt in what follows a fixed sequence of
thresholds for the rare event estimation part (ADAR = 0 in Fig. 4). With KP denoting the num-
ber of intermediate power posteriors and following the flow chart in Figure 5, the first threshold
different from minus infinity is TKP+1. For the shape of the sequence, a suitable form can be
determined, for example, by conducting an initial adaptive run (Fig. 8b). We use a logarithmic
function,

fT (k) = a log(k)+TKP+1, (14)

increasing from TKP+1 to T ∗∗. Therefore, we set the thresholds to Tk = fT (k −KP) for k =
KP + 1, ...,K and ensure that TK = fT (KR) = T ∗∗ by expressing a = (T ∗∗− TKP+1)/ log(KR).
Finally, we change the closest value of T ∗ to this very value. For the first threshold, we test the
choices of TKP+1 = 3,5,7×10−6. The resulting threshold sequences are depicted in Figure 8b,
together with the adaptive sequence utilizing γ = 0.05. The range and mean of ten estimates
for T ∗∗ obtained with the different sequences are depicted in Figure 8a. We note that while the
adaptive sequence leads to much higher values, the ones of the re-runs and the fixed sequences
with the different TKP+1 are comparable.

In our specific context, where the focus is on estimating the probability of rare events and the
posterior of θ is rather smooth, the bias caused by the adaptive schedule in the first stage of pos-
terior estimation is minimal. Tests (not shown) demonstrated that even when considering T ∗∗

and N = 40, the adaptive sequence for the posterior estimation resulted in an almost identical
mean estimate compared to the re-runs (less than 0.02 % difference). As a result, we continue to
use an adaptive sequence of exponents for the first stage of the algorithm (ADAP = 1 in Fig. 2).

We now keep TKP+1 = 5× 10−6 and explore the influence of the remaining parameters on the
rare event estimation. As a baseline configuration, we use N = 20,CESS∗ = 0.9×N (resulting
in KP = 40), KR = 100 and s = 20, requiring 55,000 forward simulations for T ∗∗. Next, we
multiply the computational budget by a factor of ten, allocating these additional computational
resources successively to each of the parameters. This results in N = 200, CESS∗ = 0.9999×N
(such that KP = 1250), KR = 1330 and s= 200. The resulting ranges of the rare event probability
estimates for T ∗∗ using ten runs are depicted in Figure 9a and the means and coefficients of
variation (COV; ratio of standard deviation to the mean) for both thresholds are summarized in
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Figure 8: Illustration of the bias resulting from the adaptively determined threshold sequence within the PostRisk-
SMC method for the 1D flow example: (a) Range of estimates P(R(θ) ≥ T ∗∗|y) using the different threshold
sequences (ten runs each); the red crosses indicate the mean of the values and (b) evolving particle estimation
of R(θ) with the adaptive Tk-sequence (red) and the different fixed logarithmic sequences (black, Eq. 14 with
different TKP+1).

Table 1: Table summarizing the different trials of the PostRisk-SMC and MH method applied to the 1D flow test
case. The second column indicates the computational budgets used for the thresholds (in terms of the total number
of forward and quantity of interest simulations); the mean and COV (coefficient of variation) are calculated based
on 10 estimates of P(R(θ)≥ T |y) for T ∗ and T ∗∗.

T ∗/T ∗∗

[×103]
N CESS∗

N s KR
Mean T ∗

[×10−3]
COV T ∗ Mean T ∗∗

[×10−9]
COV T ∗∗

PostRisk-SMC 40/55 20 0.9 20 100 2.28 0.71 3.88 1.72
PostRisk-SMC 400/550 200 0.9 20 100 2.45 0.27 4.81 0.35
PostRisk-SMC 510/550 20 0.9999 20 100 2.60 0.49 6.91 1.66
PostRisk-SMC 400/550 20 0.9 200 100 2.91 0.65 4.77 1.08
PostRisk-SMC 255/550 20 0.9 20 1330 2.72 0.44 4.31 0.79

MH 400/550 - - - - 2.45 0.25 0 -

Table 1. While the means are comparable for all configurations, it is seen that the parameter
with the most impact in reducing the COV for both thresholds is the number of particles N.
In this test example, the optimal CESS∗ only has limited influence on the variance of the rare
event estimate. Still, a high-quality representation of the posterior from the first stage leads to
a smaller variance of the rare event estimate. Concerning the number of MH steps, we perform
additional tests with values s = 5,10,20,200,500 (Fig. 9b for T ∗∗). While there is high variance
in the estimates for s = 5, the variance seems to stabilize from a value of s = 20 steps. Further
increasing s to 200 or 500 necessitates a considerable number of additional forward operations,
but leads to a much smaller improvement in the accuracy of the rare event estimate compared
to increasing the number of particles. Furthermore, in the context of parallel computation,
increasing the number of particles is more efficient compared to increasing s. Finally, when
testing a value of KR smaller than 100, we observed frequent failures due to the particle system
dying. On the other hand, increasing the value to KR = 1330 resulted in a decrease in the COV
for both thresholds. Although this decrease was more significant than the effect of increasing the
number of MH steps s, it still did not match the substantial improvement achieved by increasing
the number of particles.

To enable comparison with a basic MH algorithm, we run 10 chains in parallel with one million
iterations each. The resulting posterior median and 95% credible interval of the estimated log-
diffusivity are shown in Figure 10a and the resulting samples of R(θ)|y in Figure 10b. To
visually compare this results with the SMC method, the credible interval in Figure 10a and the
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Figure 9: Impact of the configuration choices within the PostRisk-SMC method for the 1D flow example. (a)
Range of the rare event probability estimates for T ∗∗ with the first bar corresponding to the base configuration and
the following ones referring to the successive allocation of ten times more computational resources for either of the
parameters with N = 200,CESS∗ = 0.9999×N, KR = 1330 and s = 200. (b) Range of the rare event probability
estimates for T ∗∗ using different numbers of MH steps s. The red crosses in both plots indicate the mean values of
the ten runs.

Figure 10: Results for the 1D flow example with the MH method: (a) Estimated posterior median (red) and
credible interval (dashed) of the log-conductivity profile, together with the true profile (blue) and (b) transformed
MH samples using θ 7→ R(θ) with the thresholds of interest indicated (T ∗ in red and T ∗∗ in blue).
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particle representation in Figure 7b can be considered. If we would perform MH running three
chains in parallel, convergence according to the potential-scale reduction factor (R̂-statistics
using a target value of 1.2 for all parameters and the second half of the chains; Gelman and
Rubin 1992) would be declared after 140’000 iterations and the resulting estimate would be
6.44× 10−3 for T ∗ and zero for T ∗∗. This indicates that with the computational budget of
the basic version of PostRisk-SMC as shown in Table 1, we are unable to obtain any reliable
estimates with MCMC using MH. With a higher budget of 400,000 for T ∗, the mean of the
ten estimates is 2.45×10−3, and the COV is 0.25. The mean value matches the ones obtained
with the PostRisk-SMC method. The comparable COV for the same computational budget of
PostRisk-SMC (N = 200) is not surprising since the target probability enables enough samples
in the MH chains. However, for T ∗∗, all estimates obtained with MH are zero, even when using
the full one million samples per chain.

Finally, we would like to highlight the power of including measurement data into this rare event
estimation problem. As indicated in Figure 8b, for the prior distribution of the log-conductivity
field (k = 0), R(θ) ≥ T is not a rare event for the considered thresholds. Therefore, we can
easily estimate P(R(θ) ≥ T ) under the prior using a limited number of Monte Carlo samples,
which gives us 0.23 for T ∗ and 0.22 for T ∗∗ (here employing 10,000 samples). We conclude
that, compared to this previous prior probability of about one quarter, the pumping test measure-
ments lead us to the assessment that the hazard occurrence can be specified as highly unlikely,
especially for T ∗∗.

4 2D flow and transport example

In the second test case, we infer a hydraulic transmissivity field θ using steady-state pressure
data y from pumping tests. For the quantity of interest R(θ), we consider the release of a con-
taminant on the left side of the model domain and observe the breakthrough of the concentration
at a location on the right side of the domain. We are examining a hypothetical scenario where
the contamination is expected to no longer pose a risk beyond a pre-defined time frame. That
is, the hazard materializes if we observe a breakthrough at the considered location before this
time has elapsed.

4.1 Problem setting

The aquifer under consideration has a size of 250× 250× 5 m and we use a discretization on
a grid with 51×51×1 cells. We assume the properties to be uniform in the vertical direction,
thereby simplifying the problem to two spatial dimensions. For the purpose of simulating both
the data and the quantity of interest, we utilize the MODFLOW package implemented in Python,
specifically the FloPy library (Bakker et al., 2016) and ’MT3D-USGS’ (Bedekar et al., 2016)
for the transport simulations.

We make the assumption that the system under investigation is confined. The unknown log-
transmissivity field θ is assumed to be a Gaussian Random field (Chiles and Delfiner 2012). We
assume a constant mean µlogθ = log(5×10−5) with the transmissivity having units of m2/s. For
the isotropic covariance function, we employ an isotropic exponential covariance function in R2

with standard deviation σ = 3 and integral scale l = 25 m. In order to generate a realization of
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the (51×51)-dimensional Gaussian random field, we utilize a pixel-based parameterization,

X = µθ +Σθ
1/2Z, (15)

where Σθ denotes the exponential covariance matrix and Z represents a (51×51)-dimensional
random vector composed of independent and identically distributed (i.i.d.) standard normal
variables. The ‘true’ log-transmissivity field is depicted in Figure 11a.

For the data y, we are considering a five-spot pumping test using a pumping well located in
the middle of the model domain and local measurements of the log-transmissivity field at the
well locations (Fig. 11b). For the pumping test, we consider a fixed hydraulic head at the left
(2.5 m) and right (0 m) sides of the domain, no-flow boundaries on the other boundaries and
pump with a rate of 5× 10−4 m3/s. For the data collection, we consider the steady-state of
the system and measure the hydraulic head in four wells centered in the middle of the four
quadrants of the domain. For the generation of the synthetic data, we add independent Gaussian
observational errors with a standard deviation of 0.02 m. For the local measurements in the five
wells, we assume a Gaussian measurement error with a standard deviation of 0.1 (log-scale).
Then, we employ standard results for conditional Gaussian random fields, resulting in a mean
and covariance matrix in Equation (15), which are conditioned on the local measurements and
include their error.

For the rare event, we examine a scenario where a contaminant is released on the left side of the
model domain, while monitoring the concentration of the contaminant on the right side. Our
primary focus lies in determining the time of breakthrough R(θ) in a critical area in the middle
of the right side of the model domain. The hazard is specified as a breakthrough before 60 days
(T = 60 days), with the breakthrough being specified as the concentration being higher than or
equal to 1 mg/l. To simulate this, we assume a constant concentration of 1 g/l on the left side,
along with a fixed hydraulic head difference of 2.5 m between the left and right sides (as for the
data collection). Additionally, we maintain a constant porosity of 0.3, an effective molecular
diffusion coefficient of 10−9 m2/s, a longitudinal dispersivity of 1 m, a ratio of the transverse to
the longitudinal dispersivity of 0.1. Figure 11c illustrates the concentration distribution after 60
days from the start of the injection for the true field, and Figure 11d visualizes the corresponding
contaminant front.

4.2 Results

We first investigate the occurrence of a contamination breakthrough without incorporating the
data. Given the resource-intensive nature of the transport simulations, we adhere to a compu-
tational limit of approximately 15,000 evaluations of R(·). When using the PostRisk-SMC
method for this setting, we only employ the second phase and use N = 40 particles and sR = 10
MH steps per subset (Fig. 4). Given that we have demonstrated significant bias when con-
sidering an adaptive sequence of thresholds in the one-dimensional flow example (Fig. 8), we
choose to directly employ a fixed sequence in this test case. We employ a decreasing logarith-
mic sequence ranging from T1 = 3500 days down to 100 days, utilizing 30 steps (according to
Equation 14 with KP = 0). As the conditional probability during the last steps becomes lower
and the risk of the particle system dying is particularly high, we adapt the sequence to steps of
five days from 100 days down to the 60 days of interest, leading to KR = 38. For the propa-
gation of the particles with MH, we use pCN proposals initialized with a ρ = 1 (independent
proposals), which is then geometrically decreased by a factor of 0.9 in each subset. In this
test case, we utilize the pCN proposals as we target a parameter space characterized by high
dimensionality (51 × 51 variables). On the other hand, in the case of the one-dimensional flow
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Figure 11: (a) ’True’ log-hydraulic transmissivity field and corresponding (b) hydraulic heads resulting from the
steady-state pumping test, the red dots indicate the well locations, (c) contamination field and (d) contaminant
front after 60 days.
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Figure 12: Rare event estimation for the 2D transport example with the PostRisk-SMC method (without inver-
sion): (a-c) log-hydraulic transmissivity field examples from the final subset with R(θ)≤ 60 days and (d-f) their
corresponding contaminant fronts.

example involving only 10 variables, standard Gaussian proposals proved to be effective. In
Figure 12, we provide visual representations of three illustrative log-hydraulic transmissivity
field realizations extracted from the final subset where R(θ) ≤ 60 days. These examples are
accompanied by their respective contamination fields. Figure 13a displays the mean transmis-
sivity field of the particles. Running ten repetitions of the PostRisk-SMC method, we obtain
a mean of 0.71× 10−4 and a COV of 0.37 for P(R(θ) ≤ 60 d) (Table 2). With prior sam-
pling and Monte Carlo estimation for the same computational budget, we obtain a mean of
0.87× 10−4 and a COV of 0.60. While the Monte Carlo approach includes zero in the range
of the ten probability estimates, the PostRisk-SMC method specifies the probability as being at
least 0.24×10−4.

We now consider the data. Figure 11d demonstrates that the hazard is occurring for the true
log-hydraulic transmissivity field and we are interested to see if the integration of the local
and pumping measurements helps to reflect this by increasing the rare event probability esti-
mate. For the posterior inference part of PostRisk-SMC , we use a configuration with N = 40,
CESS∗/N = 0.99 (leading to KP = 100) and sP = 100 MH steps per iteration (Fig. 2). A
particle estimate of the posterior mean is depicted in Figure 13b. For the rare event phase of
PostRisk-SMC , we implement the adaptation outlined in Section 2.3.3, wherein we conduct
ssR = 100 posterior steps within each of the sR = 10 MH steps during the rare event phase of
the algorithm. This implies that for every subset, we need to assess R(·) ten times and G (·)
one thousand times. We use the same sequence of thresholds with KR = 38 as described above.
In total, this results in N × (KP × sP +KR × sR × sRR) = 1.92 million evaluations of G (·) and
N ×KR × sR = 15,200 evaluations of R(·) (Table 2). For the propagation, the step size of the
pCN proposals is adapted such that the ‘posterior’ steps have an acceptance rate of about 30 %.
In Figure 14, we showcase three particles from the final posterior subset where R(θ)≤ 60 days,
along with their corresponding contamination fields. Figure 13c shows the mean of the parti-
cles lying in the last posterior subset. Upon executing the PostRisk-SMC method ten times, we
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Figure 13: Results for the 2D transport example with the PostRisk-SMC method: Particle mean representing the
log-hydraulic transmissivity field from the (a) prior subset where R(θ) ≤ 60 days, (b) posterior distribution and
(c) posterior subset where R(θ)≤ 60 days.

Table 2: Table summarizing the different trials of the PostRisk-SMC and MH method applied to the 2D transport
test case under the prior and the posterior distribution. The second column shows the number of required simu-
lations of the forward response G (·) and quantity of interest R(·) and mean, COV (coefficient of variation), min
(minimum) and max (maximum) refer to the 10 estimates of the rare event probability.

Method
G (·)/R(·)

[×104]

Mean
[×10−4]

COV
Min

[×10−4]

Max
[×10−4]

N CESS∗
N sP sR ssR KR

Prior PostRisk-SMC - / 1.5 0.71 0.37 0.24 1.09 40 - - 10 - 38
Monte Carlo - / 1.5 0.87 0.60 0 1.33 - - - - - -

Posterior PostRisk-SMC 192 / 1.5 4.56 0.21 3.55 6.64 40 0.99 100 10 100 38
MH 192 / 1.5 5.64 0.49 2.01 12.75 - - - - - -

compute an average of 4.56×10−4 and observe a COV of 0.21 for P(R(θ)≤ 60 days) (Table
2).

For a fair comparison with Monte Carlo estimation based on MCMC samples, we run ten chains
with 1.92 Million steps and evaluate R(·) for only 15,000 samples (per chain) that are obtained
by thinning. We employ pCN proposals with an adjusted step size aiming for an acceptance rate
of 30 %. We obtain a mean rare event probability estimate of 5.64× 10−4 and a COV of 0.49
(Table 2). Using the first three chains, convergence with respect to the R̂-statistics would be
declared after 350,000 iterations. The corresponding merged 1,500 thinned samples per chain
would specify the hazard occurrence probability as zero.

Similar to the one-dimensional flow example, we can observe that incorporating measurements
leads to a shift in our estimation of the hazard occurrence probability. In the context of this
two-dimensional transport example, the incorporation of local measurements and pumping data
increases the estimated probability of hazard occurrence by a factor of about six compared with
the estimate based on prior knowledge only. We observe that for the ten considered estimates,
the range of the values for the prior and posterior can be clearly separated (for both PostRisk-
SMC and Monte Carlo estimation).

5 Discussion

Sustainable groundwater management and assessment of associated hazards are pressing needs
that are being accentuated under global change (e.g., Siebert et al. 2010, Famiglietti 2014,
Gorelick and Zheng 2015). With the Posterior Risk Sequential Monte Carlo (PostRisk-SMC)
method, we present an approach that combines Bayesian inversion and rare event probability
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Figure 14: Rare event estimation for the 2D transport example with the PostRisk-SMC method (with inversion):
(a-c) log-hydraulic transmissivity field examples from the final subset with R(θ)≤ 60 days and (d-f) their corre-
sponding contaminant fronts.

estimation under uncertainty. It first generates a particle approximation of the posterior which
is then propagated to provide an accurate estimation of the rare hazard probability. Thereby,
the method relies on ‘subset sampling’ and aims to estimate a small probability as a product of
larger conditional probabilities. In addition to probability estimation, the method also generates
realizations of the rare event (as illustrated in Figs. 7 and 14), providing tangible representations
of how the subsurface property field leading to the hazard could look like in practice. In this
vein, the PostRisk-SMC approach aligns with the perspective of Ferré (2017), advocating for the
communication of information to decision-makers regarding what is known, what is possible,
and what remains unknown.

In the first phase of the PostRisk-SMC method, we employ adaptive SMC for Bayesian infer-
ence (Zhou et al., 2016), relying on power posteriors giving increasingly more weight to the
likelihood. The adaptivity of the exponents introduces a slight bias in the results (Beskos et al.,
2016), but its extent was found to be negligible in the considered test cases. This adaptive fea-
ture is attractive as it reduces the number of user-defined tuning parameters and contributes to a
more efficient algorithm. The adaptively determined exponents rely on the choice of the target
CESS∗ (Eq. 7). The closer this target value is to the number of particles N, the better the approx-
imation, but the slower the algorithm becomes as the number of power posteriors grows. The
optimal choice of the algorithmic variables CESS∗, sP (number of MH steps) and N (number of
particles) depends on the complexity of the posterior distribution, which is influenced by various
factors such as the dimension of the parameter space and the underlying physics (Amaya et al.,
2021). In their work, Amaya et al. (2021) suggest employing a combination of CESS∗ and sP
such that the weighted-mean likelihood of the particles is in agreement with the tempered like-
lihoods corresponding to the prescribed model throughout the entire run. Moreover, the authors
suggest an algorithmic configuration that avoids too frequent resampling steps. To achieve this,
they initially set a CESS∗ (for instance, 0.99N), and subsequently fine-tune the number of MH
steps (sP) to ensure fitting the data and minimizing the need for resampling. This process can be
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done employing a smaller number of particles N for preliminary runs, followed by employing a
larger number of samples in the ’final’ runs. While the accuracy of the approximation improves
with an increase in the number of particles N, this enhancement comes at a computational cost.
However, unlike many MCMC methods, the SMC method is particularly well-suited for parallel
computation, as the particles can be distributed across multiple computing nodes.

In the second phase of the PostRisk-SMC method, we rely on subset sampling to estimate the
rare event probabilities. The selection of intermediate thresholds involves a trade-off between
the intermediate conditional probabilities and the number of particles (Au and Beck, 2001). If
the threshold increases slowly, the conditional probabilities are large and a small number of par-
ticles is needed to ensure accurate estimation. On the other hand, more intermediate thresholds
are needed until the target threshold is reached. If the thresholds increase faster, more particles
are needed for an accurate estimation, which also increases the total number of simulations.
Cérou et al. (2012) propose an adaptive sequence of thresholds based on quantiles to increase
the efficiency of their algorithm. The negative aspect of introducing adaptive thresholds is a
positive bias in the rare event probability estimate, which diminishes with an increasing num-
ber of particles (Cérou et al., 2012). Cérou et al. (2012) propose a correction factor for the
bias, however, their analytical study assumes that the particles are independent, which is hard
to guarantee in practice due to the resampling and the finite number of MH steps sR.

In the one-dimensional flow example (Section 3), the bias resulting from the adaptive thresholds
is far from negligible, especially when using a relatively small number of N = 40 particles and
targeting a rare event with probability of one in a billion (Fig. 8). In light of this, we strongly
caution against employing an adaptive scheme for the thresholds, particularly if not carefully
assessing this bias by re-running with the previously defined sequence as pre-defined thresh-
olds. To avoid bias, and the computational burden associated with re-running or increasing the
number of particles, we employ a fixed sequence of thresholds (Eq. 14). When the choice of
a suitable form for the fixed sequence is unclear, one option is to run an initial adaptive run
that can provide valuable insights into appropriate functional forms of the sequence. Similarly,
determining the number of subsets KR can benefit from an initial adaptive run using a ratio of
surviving particles guided by the literature (e.g., Cérou et al. 2012 recommend 75-80 %). A
fixed sequence of thresholds leads to the possibility of the particle system “dying” during the
rare event estimation process if no particles exceed the current threshold. We did not specif-
ically consider this scenario, but one possible approach to address this issue is discussed by
LeGland and Oudjane (2006). Their idea involves continuing to generate new particles until a
specified count of particles has reached the given threshold.

In the context of the two-dimensional flow and transport example (Section 4), posterior ex-
ploration presents a challenge as strong non-uniqueness and underdetermination enable a wide
range of solutions to accurately explain the observed data (Soueid Ahmed et al., 2014; Cotter
et al., 2013). Hence, the number of resampling steps and the propagation through the MH steps
play a crucial role in preventing particle collapse. This latter aspect gains even greater signif-
icance during the phase of rare event estimation, as resampling cannot be avoided. For this
reason, we implement a slight adaptation of the PostRisk-SMC method outlined in Figure 5.
Rather than simulating both the forward response and the quantity of interest at each iteration
of the rare event phase, we first perform a sequence of ssR posterior steps during each of the
sR MH steps. We then consider the last state as proposal from the posterior distribution and
decide to accept or reject it depending on whether it lies within the current subset. In scenarios
involving contamination simulations, where the computational cost of the contamination simu-
lation typically surpasses that of the data simulation flow model, this strategy enhances particle
propagation efficiency while simultaneously decreasing computational demands. We suggest
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to verify that the chosen values for N, sR and ssR guarantee the generation of significantly new
realizations through the MH steps, thereby preventing particle collapse. Visual inspection of
particles at various stages of the algorithm can facilitate this assessment. Similar as for the pos-
terior phase, elevating the number of particles N appears to be a suitable strategy for diminishing
the variance of the rare event estimator. This proves advantageous, particularly considering the
parallelizability of particles.

In both test examples, we investigate the significance of using the posterior instead of the prior
PDF to determine the probability of hazard occurrence. In the context of the one-dimensional
flow example, we showcase how the introduction of pumping test measurements in this scenario
alters a rather likely event into a highly unlikely one. Indeed, the initial occurrence probability
of roughly a quarter is after considering the data turned into a probability of one in a billion
for T ∗∗. In the case of the two-dimensional transport example, the situation is reversed: the
inclusion of local measurements and pumping data helps in quantifying the probability of haz-
ard occurrence as being six times higher than with prior knowledge alone. The integration of
posterior inference serves as a clear demonstration of why it is crucial to design appropriate data
acquisition strategies within the realm of risk assessment. Designing appropriate experimental
designs for such tasks is a research area on its own, as exemplified by Li and Xiu (2010) and
Nowak et al. (2012) for hydrological settings.

We compare the performance of the PostRisk-SMC method with a conventional Monte Carlo
approach relying on prior or posterior samples obtained by the MH algorithm. In the one-
dimensional flow example (Table 1), the estimates obtained with PostRisk-SMC align with
those of the traditional method for the less rare event. For the more rare event with occur-
rence probability approaching one in a billion, the Monte Carlo approach fails in simulating
the hazardous scenario. The PostRisk-SMC method, on the other hand, is able to specify the
occurrence probability with a coefficient of variation of 0.35. In the two-dimensional transport
example (Table 2), the PostRisk-SMC method successfully reduces the coefficient of variation
by more than 50 % compared to Monte Carlo estimation based on MH samples (for the inver-
sion setting). This comparison is established within a scenario where Monte Carlo estimation
remains feasible. For rarer events, we anticipate complete failure of Monte Carlo estimation, as
showcased by the one-dimensional flow example (Table 1).

It is worth noting that the two phases of the PostRisk-SMC method exhibit different dynamics.
While in our 1D flow example, the adaptive procedure for the exponents defining the power
posteriors leads to an exponential increase, the sequence of thresholds follows a logarithmic
progression. In Section 4, we take an initial step in addressing this distinct difference in dynam-
ics by using different numbers of MH steps for the two phases of the method. However, there
is considerable potential for further exploration and refinement in this regard. So far, we only
dealt with rare sets A = {θ ∈ RP : R(θ) ∈ T } with T = [T,∞) or T = (−∞,T ] for some real
number T . If we would consider T = [T ∗,T ∗∗], one could gradually shrink the interval from
both sides. Looking ahead, it could be interesting to incorporate surrogate modeling within the
PostRisk-SMC method to tackle more complex and realistic problems. Surrogates (e.g. Razavi
et al. 2012) in this context can serve as simplified models or approximations of the underly-
ing system, allowing for faster evaluations and reducing the computational burden. Moreover,
considering alternative approaches for the intermediate steps in both phases could be interest-
ing, such as incorporating a method based on smoothed indicator functions and thermodynamic
integration proposed by Xiao et al. (2019), in the second phase. Finally, exploring test cases
that do not rely on Gaussian assumptions would be intriguing, as previously undertaken for the
posterior part in Amaya et al. (2021) and Amaya et al. (2022).
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6 Conclusions

The combination of Bayesian inversion and rare event estimation is very helpful for understand-
ing groundwater hazards and their implications for humans and ecosystems. To overcome the
challenges of rare event estimation in an inversion setting, we present a two-stage formulation
of Sequential Monte Carlo, denoted as the PostRisk-SMC method. First, particles are generated
to approximate the posterior distribution by adaptively increasing the exponent of the likelihood
function. Second, subset sampling is employed to evaluate the probability of the rare event of
interest. To showcase the efficacy and accuracy of the PostRisk-SMC method, we present a
one-dimensional flow example and a two-dimensional flow- and transport example. The one-
dimensional example demonstrates that the PostRisk-SMC method allows us to estimate rare
event probabilities as low as one in a billion. In the two-dimensional example, we showcase the
method’s capability for rare event probability estimation in a more realistic and complex setting.
In both examples, the PostRisk-SMC method successfully reduces the coefficient of variation
of the rare event probability estimate compared to Monte Carlo estimation based on posterior
samples. In both cases, the addition of the measurement data lead to a distinctly different as-
sessment of the occurrence probability than relying on the prior only. Future work will also
consider inclusion of surrogate modeling to speed up computations and applications to actual
field settings.

Code availability

The code and test examples associated with this article are available in the following GitHub
repository: https://github.com/LeaFrie/SMC groundwater.
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