1	Caryosyntrips: a radiodontan from the Cambrian of Spain, USA and Canada
2	
3	by Stephen Pates ¹ and Allison C. Daley ^{1,2,3}
4	
5	¹ Department of Zoology, University of Oxford, Oxford, UK; e-mail:
6	stephen.pates@zoo.ox.ac.uk
7	² Oxford University Museum of Natural History, Oxford, UK
8	³ Current address: Institute of Earth Sciences, University of Lausanne, Géopolis, CH-1015,
9	Lausanne, Switzerland: e-mail: allison.daley@unil.ch
10	
11	ABSTRACT
12	
13	Caryosyntrips appendages have previously been reported from the Burgess Shale (Cambrian,
14	Stage 5), British Columbia, Canada. New specimens of the genus are here reported from the
15	Wheeler Formation (Cambrian, Drumian) and Langston Formation, Spence Shale Member
16	(Cambrian, Stage 5), Utah, USA. The original Burgess Shale specimens are re-examined
17	alongside the new specimens. Caryosyntrips is shown to have paired ventral spines on each
18	podomere. Three species of Caryosyntrips are recognised: C. serratus Daley and Budd, C.
19	camurus nov. sp. and C. durus nov. sp., differentiated by the overall shape of their
20	appendages and arrangement of dorsal and ventral spines. These differences have potential
21	implications for the feeding methods employed by different species of Caryosyntrips. A
22	specimen collected from the upper Valdemiedes Formation of Spain (Cambrian, Stage 4),
23	previously described as the lobopodian Mureropodia apae Gámez Vintaned et al., is
24	reinterpreted as a Caryosyntrips appendage. This identification is supported by the overall
25	shape of the fossil, and the presence, orientation, and height: width ratio, of ventral spines.

1	However the dorsal surface of the appendage is not well preserved, and the appendage and its
2	ventral spines are larger than other known Caryosyntrips. Therefore it is left in open
3	nomenclature as C. cf. camurus. These new finds increase the temporal range of
4	Caryosyntrips (Cambrian Series 2, Stage 4 to Series 3, Drumian) and the geographic range to
5	a new continent, Gondwana.
6	
7	Key words: Caryosyntrips, Radiodonta, Cambrian, Burgess Shale, Murero, Great Basin.
8	
9	THE study of radiodontans, soft-bodied nektonic apex predators known mostly from the
10	Cambrian, is crucial for understanding the evolution of arthropods. Recent studies have shed
11	light on the origin of the biramous limb (Van Roy et al. 2015), compound eyes (Paterson et
12	al. 2011) and the evolution of head structures (Cong et al. 2014). The evolution of
13	radiodontans and their phylogenetic relationships has been the focus of much recent work
14	increasing our knowledge of the diversity, feeding modes and ecology of these animals (e.g.
15	Daley et al. 2009; Daley & Budd 2010; Daley & Bergström 2012; Daley et al. 2013 <i>a</i> , <i>b</i> ;
16	Daley and Edgecombe 2014; Vinther et al. 2014; Van Roy et al. 2015).
17	The morphology of radiodontans consists of a body region of repeated segments with
18	lateral flaps, a head region consisting of radially arranged mouthparts (oral cone), two large
19	stalked eyes, and a pair of frontal appendages (Whittington & Briggs 1985). The paired
20	appendages are robust, and often preserved isolated or as exuviae, and rarely attached to the
21	rest of the body. Indeed many radiodontan taxa are known from frontal appendages only, for
22	example Anomalocaris pennsylvanica (Briggs 1979; Lieberman 2003), Caryosyntrips
23	serratus (Daley & Budd 2010), and Tamisiocaris borealis (Daley & Peel 2010; Vinther et al.
24	2014). Isolated <i>Caryosyntrips</i> appendages have been known for over a decade (Caron 2005)

and were first described by Daley & Budd (2010) alongside other new appendages from the
 Burgess Shale.

In this paper we present new specimens of *Caryosyntrips* from the Spence Shale (Cambrian Series 3, Stage 5) and Wheeler Formation (Cambrian Series 3, Drumian) of the Great Basin, USA. We also reinterpret the putative lobopodian *Mureropodia apae* Gámez Vintaned et al., 2011, from the upper Valdemiedes Formation (Cambrian Series 2, Stage 4) of Spain as a *Carvosyntrips* appendage, and, in light of these new findings, identify new features from the original *Carvosyntrips* material from the Burgess Shale (Cambrian Series 3, Stage 5), Canada. Information about the anatomical characters of *Carvosyntrips* allows for separation of Caryosyntrips into three distinct species (Fig. 1), and comparison of their functional morphology.

13 MATERIALS AND METHODS

The Langston Formation (Spence Shale Member) and Wheeler Formation specimens are held at the University of Kansas Natural History Museum, Lawrence, Kansas, USA (KUMIP). The Gunther Family collected KUMIP 314070 and 314071 from the Drum Mountains, Utah, and KUMIP 314275 Miners Hollow, Wellsville Mountains, Utah. An additional Wheeler Formation specimen, KUMIP 415223, was donated by Daniel Windhofer for this study. All Burgess Shale specimens are held at the Royal Ontario Museum, Toronto, Ontario, Canada (ROM). The single specimen from the Valdemiedes Formation (MPZ 2009/1241) is held at the Museo de Ciencias Naturales de la Universidad de Zaragoza, Spain (MPZ). Photographs were taken using a Canon EOS 500D camera with Canon EF-S 60 mm macro lens, controlled with EOS Utility 2 remote shooting software. Measurements were taken of all known *Caryosyntrips* specimens from photographs using ImageJ 2 software. The

1	angles between the two edges of the appendage and from the podomere edge to the proximal
2	edge of each ventral spine were measured for each appendage and each ventral spine. The
3	mean angle from the podomere edge to ventral spine was calculated for each specimen and
4	this was plotted against the angle between the two edges of the appendage (see Fig. 2).
5	Photoshop was used to remove white paper arrows from photographs of MPZ 2009/1241.
6	The plot of length of appendage vs. length of longest spine was constructed using R Studio.
7	Lengths of incomplete appendages were reconstructed by calculating the mean length per
8	podomere, and extrapolating to 14 podomeres (see Supplementary Data).
9	
10	INSTITUTIONAL ABBREVIATIONS
11	KUMIP, University of Kansas Natural History Museum, Lawrence, Kansas, USA; MPZ,
12	Museo de Ciencias Naturales de la Universidad de Zaragoza, Zaragoza, Spain; ROM, Royal
13	Ontario Museum, Toronto, Canada.
14	
15	SYSTEMATIC PALAEONTOLOGY
16	This published work and the nomenclatural acts it contains, have been registered in
17	ZooBank: http://zoobank.org/References/XXXXXXXXX
18	
19	(stem group) EUARTHROPODA Lankester, 1904
20	Order RADIODONTA Collins, 1996
21	
22	Genus CARYOSYNTRIPS Daley & Budd, 2010
23	
24	Type species. Caryosyntrips serratus Daley & Budd, 2010
25	

1	Diagnosis. A radiodontan with 14 podomeres per frontal appendage, which are elongated and
2	tapering in outline. A pair of ventral spines extends from the ventral surface of each
3	podomere. Appendages have a convex bell-shaped proximal margin, a terminal spine
4	protrudes from the distal end in some species. (emended from Daley & Budd 2010, p. 727).
5	
6	Occurrence. Cambrian Valdemiedes Formation, Spain (Cambrian Series 2, Stage 4); Spence
7	Shale Member, Langston Formation, Utah, USA (Cambrian Series 3, Stage 5); Burgess
8	Shale, British Columbia, Canada (Cambrian Series 3, Stage 5); and Wheeler Formation,
9	Utah, USA (Cambrian Series 3, Drumian).
10	
11	Caryosyntrips serratus Daley & Budd, 2010
12	Figs. 1A, 3
13	
14	2005 'Dinocarida A' Caron, App. 2. 3G.
15	2010 Caryosyntrips serratus Daley & Budd, p. 730-1, text-figs. 5A-I, 6H (non text-figs. 6A-
16	G, I)
17	
18	Holotype. ROM 57161
19	
20	Paratypes. ROM 59497, ROM 59498, ROM 59499, ROM 59502
21	
22	Additional material. KUMIP 415223
23	
24	Diagnosis. Caryosyntrips with one pair of distally pointing ventral spines on each podomere.
25	Ventral spines are less broad than for other Caryosyntrips species. A single row of small

curved dorsal spines, spaced 1 mm apart, point distally. Distal most podomere ends in
 recurved terminal spine.

Description. The length of complete appendages (1 in Fig. 2A) varies from 64.86 mm to 108.37 mm (mean = 83.57 mm, sd = 16.18 mm, n = 5). The angle between the dorsal and ventral surface (θ in Fig. 2) varies from 11° to 18° (mean = 14.3°, sd = 3.4°, n = 6). Podomere boundaries can usually be clearly seen on the inner edge of the specimens, separated by arthrodial membrane. Appendages have a row of small dorsal spines (approximately 1 mm tall) spaced 1 mm apart, visible either as simple triangles (ROM 59499) (Fig 3B), curved spines pointing distally (ROM 57161) (Fig 3A) or as small circles interpreted as attachment points (ROM 59497, ROM 59502, ROM 59458 and KUMIP 415223) (white arrows in Fig. 3C-F). One pair of ventral spines is present on each podomere, although in most cases only one of the pair can be seen. ROM 59497 (Fig. 3F; Daley & Budd 2010, text-fig. 5C) displays three spines that appear to be on the dorsal surface of the appendage at the distal end. These are interpreted as being one of a pair ventral spines which during compression of the fossil have been preserved apparently on the dorsal surface. They are shorter and face at a different angle to the ventral spines preserved on the ventral surface. supporting this interpretation. The number of ventral spine pairs preserved per specimen for this species varies from nine in the holotype (ROM 57161) to two in KUMIP 415223 and ROM 59499 (Daley & Budd 2010, text-fig. 5G). Two specimens (ROM 57161 and 59502) display recurved terminal spines, slightly longer than the ventral spines, however for many specimens the distal end is incomplete (e.g. ROM 59498, KUMIP 415223).

24 Occurrence. Burgess Shale, British Columbia, Canada (Cambrian Series 3, Stage 5) and

25 Wheeler Formation, Utah, USA (Cambrian Series 3, Drumian).

1	
2	Caryosyntrips camurus nov. sp.
3	Figs. 1B, 4
4	
5	LSID. urn:lsid:zoobank.org:act:XXXXXXXXX
6	
7	2010 Caryosyntrips serratus Daley & Budd, p. 731, text-figs. 6A-G, I
8	
9	Derivation of name. From Latin camurus (=hooked, bent) referring to the shape of the distal
10	end.
11	
12	Holotype. ROM 59503 (Daley & Budd, 2010, text-fig. 6I)
13	
14	Paratype. ROM 59501
15	
16	Other material. ROM 59500, 59598, 59599, KUMIP 314275
17	
18	Diagnosis. Caryosyntrips with one pair of ventral spines on each podomere, and no dorsal
19	spines. Distal most three podomeres are less tall than the others. Distal most podomere ends
20	in a recurved terminal spine.
21	
22	Description. This species has 14 podomeres (shown by the only complete appendages for this
23	species, the paired appendages of ROM 59501, Fig. 4A). The measured lengths of the two
24	complete appendages (1 in Fig. 2A) are 71.74 mm and 70.69 mm. The angle between the

1 outer and inner edge of the appendages (θ in Fig. 2) varies from 13° to 17° (mean = 14.3°, sd 2 = 1.6°, n = 6).

Podomere boundaries are usually most visible on the dorsal surface and at the
proximal end of the appendage. ROM 59501, ROM 59503, ROM 59599 and KUMIP 314275
show clear boundaries on the dorsal surface, but not on the ventral surface (white arrows in
Fig. 4A-C, E). There are no dorsal spines of any size preserved, or circular spine attachment
points, on any of the specimens of this species.

Ventral spines are simple triangular shapes. One pair of ventral spines is present on each podomere, although usually only one of the pair is visible. Three specimens (ROM 59500, ROM 59501, and ROM 59503) show clear evidence for paired ventral spines. ROM 59500 has two sets of paired spines visible (black arrows in Fig. 4D). ROM 59501 has two paired spines at the proximal end of the podomere on the left side (black arrow in Fig. 4A). and ROM 59503 has two spines on one podomere at the proximal end of the appendage (black arrow in Fig. 4B). ROM 59599, and KUMIP 314275 (black arrows in Fig. 4C, E) display ventral spines at the distal end on both sides of the appendage. This is interpreted as being a pair of ventral spines, one of which, during compression of the fossil, has been preserved on the dorsal surface. They are shorter and face at a different angle to the spines on the inner edge, supporting this interpretation. The terminal spine, visible on ROM 59501, is recurved (grey arrow in Fig. 4A).

The distal three podomeres of *C. camurus* are thinner than would be expected for an appendage with a simple triangular shape when flattened, and is sometimes preserved distorted. This is most visible in ROM 59500 (Fig. 4D), and less pronounced in KUMIP 314275 and ROM 59503 (Fig. 4B, C) where the distal end curves slightly ventrally.

1		
2	1	Remarks C camurus can be differentiated from the other two species as it lacks dorsal
3 4	1	Kemarks. C. <i>cumurus</i> can be differentiated from the other two species as it facks dorsar
5 6	2	spines completely. It has paired ventral spines, and podomere boundaries tend to be clearest
7 8	3	on the outer edge. The distalmost three podomeres are less tall than for the other species, and
9 10	4	is sometimes preserved distorted, giving it a hooked appearance.
11 12 13	5	Daley & Budd (2010) mention that Caryosyntrips appendages should not be confused
14 15	6	with distal ends of anterior appendages of Sidneyia (Bruton 1981; Stein 2013; Zacaï et al.
16 17	7	2016) based on segmentation, angle of inner spines and presence of dorsal spines. Although
18 19	8	this species of Caryosyntrips does not have dorsal spines, it is still possible to distinguish
20 21 22	9	them from Sidneyia on account of the segmentation of appendages and angle of ventral
22 23 24	10	spines.
25 26	11	
27 28	12	Occurrence. Spence Shale Member, Langston Formation, Utah, USA (Cambrian Series 3,
29 30 21	13	Stage 5); Burgess Shale, British Columbia, Canada (Cambrian Series 3, Stage 5).
31 32 33	14	
34 35	15	Caryosyntrips durus nov. sp.
36 37	16	Figs. 1C, 5
38 39	17	
40 41 42	18	LSID. urn:lsid:zoobank.org:act:XXXXXXXXX
43 44	19	
45 46	20	Derivation of name. From Latin durus (=hard, inflexible).
47 48	21	
49 50 51	22	Holotype. KUMIP 314071
51 52 53	23	
54 55	24	Paratype. KUMIP 314070
56 57	25	
58		
60		

Diagnosis. *Caryosyntrips* with dorsal and ventral surfaces straight, a rounded distal end and no terminal spine. Paired ventral spines on each podomere are simple triangles that end in a sharp point. A single row of small (1 mm tall), curved, distally pointing, dorsal spines spaced 1 mm apart runs along the length of the appendage. A single large dorsal spine, the same size and shape as the ventral spines, is present on each of the distal most seven podomeres.

Description. The two specimens are partial *Caryosyntrips* appendages, with 9 podomeres preserved for each (lengths: KUMIP 314070 = 41.09 mm, KUMIP 314071 = 29.05 mm). Podomere boundaries are preserved as faint, simple curved lines. The proximal shape of the appendages cannot be ascertained, as it is missing in both. The angle between the ventral and dorsal surfaces (θ in Fig. 2) is 17° for KUMIP 314070 and 15° for KUMIP 314071. The inner edge has a stepped appearance and the outer edge is straight. A row of small spines (1 mm tall, spaced 1 mm apart) run along the dorsal surface, preserved as simple triangles in KUMIP 314070 (Fig. 5A) and curved pointing distally in KUMIP 314071 (Fig. 5B). Large spines (h in Fig. 2B: 1.1—3.0mm, w in Fig. 2B: 1.2—2.0 mm) are present on both the dorsal and ventral surfaces of the appendage. The large dorsal spines are spaced evenly (3 mm apart in KUMIP 314070), with one spine on each podomere. The angle between the dorsal surface of the appendage and the large dorsal spine (β in Fig. 2B) varies from 115-160°. There is a gap of 8 mm between the proximal-most dorsal spine in KUMIP 314070 (Fig. 5A) to the sediment covered margin, indicating that large dorsal spines are present only on the distal most seven podomeres. Large ventral spines are paired, just as in other species of *Caryosyntrips*. This is most visible on the 6th—8th most distal podomeres of KUMIP 314070 (black arrows in Fig. 5A). The angle from the ventral surface of the appendage to the proximal edge of the ventral spines (α in Fig. 2B) varies from 128-152°.

1	There are no ventral spines on the distalmost podomere, and no terminal spine. The
2	appendage tapers to a rounded point, with the inner edge extending slightly beyond the outer
3	edge. The distal region of KUMIP 314070 is not preserved, and so no comparison can be
4	made between the two.
5	
6	Remarks. Although only known from two partial appendages, C. durus is significantly
7	different from the other species to warrant a formal description. It can be differentiated as it
8	has paired large ventral spines on each podomere, and a single dorsal spine on the distal most
9	seven podomeres, in addition to a row of small dorsal spines. C. camurus and C. c.f. C.
10	camurus have no dorsal spines, and C. serratus has only a row of small dorsal spines.
11	
12	Occurrence. Wheeler Formation, Utah, USA (Cambrian Series 3, Drumian).
13	
14	Caryosyntrips cf. camurus
14 15	Caryosyntrips cf. camurus Fig. 6
14 15 16	<i>Caryosyntrips</i> cf. <i>camurus</i> Fig. 6 2011 <i>Mureropodia apae</i> Gámez Vintaned et al. figs. 12.3, 12.4, 12.5 and 12.9
14 15 16 17	<i>Caryosyntrips</i> cf. <i>camurus</i> Fig. 6 2011 <i>Mureropodia apae</i> Gámez Vintaned et al. figs. 12.3, 12.4, 12.5 and 12.9
14 15 16 17 18	<i>Caryosyntrips</i> cf. <i>camurus</i> Fig. 6 2011 <i>Mureropodia apae</i> Gámez Vintaned et al. figs. 12.3, 12.4, 12.5 and 12.9 Material: MPZ 2009/1241
14 15 16 17 18 19	<i>Caryosyntrips</i> cf. <i>camurus</i> Fig. 6 2011 <i>Mureropodia apae</i> Gámez Vintaned et al. figs. 12.3, 12.4, 12.5 and 12.9 Material: MPZ 2009/1241
14 15 16 17 18 19 20	Caryosyntrips cf. camurusFig. 62011 Mureropodia apae Gámez Vintaned et al. figs. 12.3, 12.4, 12.5 and 12.9Material: MPZ 2009/1241Description: MPZ 2009/1241 is a partial appendage of six podomeres, which measures 82.82
14 15 16 17 18 19 20 21	Caryosyntrips cf. camurusFig. 62011 Mureropodia apae Gámez Vintaned et al. figs. 12.3, 12.4, 12.5 and 12.9Material: MPZ 2009/1241Description: MPZ 2009/1241 is a partial appendage of six podomeres, which measures 82.82mm in length (giving an extrapolated length for 14 podomeres of 193 mm). The appendage
14 15 16 17 18 19 20 21 21 22	Caryosyntrips cf. camurusFig. 62011 Mureropodia apae Gámez Vintaned et al. figs. 12.3, 12.4, 12.5 and 12.9Material: MPZ 2009/1241Description: MPZ 2009/1241 is a partial appendage of six podomeres, which measures 82.82mm in length (giving an extrapolated length for 14 podomeres of 193 mm). The appendage('body' of Gámez Vintaned et al. 2011 fig. 12.4) tapers in outline towards the distal end,
14 15 16 17 18 19 20 21 22 23	Caryosyntrips cf. camurus Fig. 6 2011 Mureropodia apae Gámez Vintaned et al. figs. 12.3, 12.4, 12.5 and 12.9 Material: MPZ 2009/1241 Description: MPZ 2009/1241 is a partial appendage of six podomeres, which measures 82.82 mm in length (giving an extrapolated length for 14 podomeres of 193 mm). The appendage ('body' of Gámez Vintaned et al. 2011 fig. 12.4) tapers in outline towards the distal end, which is distorted ('proboscis' of Gámez Vintaned et al. 2011, fig. 12.4). The angle between
 14 15 16 17 18 19 20 21 22 23 24 	Fig. 6 2011 Mureropodia apae Gámez Vintaned et al. figs. 12.3, 12.4, 12.5 and 12.9 Material: MPZ 2009/1241 Pescription: MPZ 2009/1241 is a partial appendage of six podomeres, which measures 82.82 mm in length (giving an extrapolated length for 14 podomeres of 193 mm). The appendage ('body' of Gámez Vintaned et al. 2011 fig. 12.4) tapers in outline towards the distal end, which is distorted ('proboscis' of Gámez Vintaned et al. 2011, fig. 12.4). The angle between the dorsal and ventral surfaces (θ in Fig. 2) is 14°. The number of podomeres is indicated by

faint boundaries on the dorsal surface, which are visible under low angle light. The ventral
spines measure 5.1—6.9 mm in length (h in Fig. 2B). Evidence for paired ventral spines is
visible on the third most distal podomere (black arrows in Fig. 6A, B). There is no evidence
for dorsal spines, however the dorsal surface is not well preserved.

Remarks. MPZ 2009/1241 was originally described as a lobopodian, Mureropodia apae, and to date is the only member of the genus. *Mureropodia* is significantly different to the most similar lobopodian morphologically, *Paucipodia* Hou et al. (2004), as it has a different overall shape, lacks annulation, has a distinct putative 'proboscis' and its putative 'legs' have a length/trunk width ratio far lower than legs in Paucipodia. The overall shape of the specimen is very similar to other *Caryoysntrips* appendages, and the 14° angle between the dorsal and ventral surfaces (θ in Fig. 2) is similar to other *Caryosyntrips* appendages (11-18°). Radiodontan appendages do not have annulation, and faint podomere boundaries are visible under low angle light. The 'proboscis' is here interpreted as a distorted distal end of the appendage, similar to some C. camurus specimens (e.g. Fig. 4D) and the 'legs' are reinterpreted as paired ventral spines, whose height; width ratio (h and w in Fig. 2B) fits within the measurements of other *Carvosyntrips* ventral spines. These features support the reinterpretation of MPZ 2009/1241 as a partial isolated *Carvosyntrips* appendage, most similar to C. camurus. However both the ventral spines and appendage are longer than for other C. camurus specimens (Fig. 7), the dorsal surface of the appendage is not well preserved and this specimen would greatly increase the known geographic and stratigraphic range for the species. For these reasons we leave the identification in open nomenclature as C. cf. camurus.

25 Occurrence. Valdemiedes Formation, Spain (Cambrian Series 2, Stage 4).

4	Appendages described herein show that the morphological variability of Caryosyntrips, its
5	geographic and temporal ranges, and the number of species, is higher than previously known.
6	In the original description (Daley & Budd 2010), all Caryosyntrips specimens were assigned
7	to C. serratus. This study has formally described three species, differentiated by the presence
8	and size of the ventral and dorsal spines, and overall shape of the appendage (Table 1).
9	
10	Taphonomic, interspecific and intraspecific variation
11	
12	Some taphonomic effects can distinguished from true morphological variability in
13	<i>Caryosyntrips</i> . The angle between the two edges (θ in Fig. 2) varies slightly for all species of
14	Caryosyntrips (Table 1). In the C. camurus specimen ROM 59501 (Fig 4A; Daley & Budd
15	2010, text-fig. 6C-G), two appendages from the same animal have slightly different θ values
16	(15° and 17°). The θ range for the whole species (13° to 17°) or genus (11° to 18°) is not
17	significantly broader, suggesting that the variation in θ is related to angle of the appendage
18	relative to the sediment surface during preservation. C. camurus specimen ROM 59501 also
19	highlights a different type of taphonomic artefact. Only one of the appendages has a terminal
20	spine, while the other appendage from the same animal ends in a rounded point. This
21	indicates that all appendages of this species have terminal spines, and the rounded tip is a
22	taphonomic artefact. The appearance of podomere boundaries also varies between and within
23	species. C. serratus tends to preserve the podomere boundaries on the ventral surface,
24	whereas for <i>C. camurus</i> the podomere boundaries tend to be more visible on the dorsal
25	surface. The two specimens of C. durus preserve podomere boundaries as a faint line.

DISCUSSION

1	However within C. serratus not all specimens clearly show podomere boundaries (Fig. 3B,
2	E) suggesting that the differences in preservation of podomere boundaries is also affected by
3	taphonomy. The distal end of C. camurus and C. cf. camurus is often preserved distorted (e.g.
4	Figs. 4D; 6). This is interpreted as a taphonomic artefact, however it may be more common in
5	C. camurus and C. cf. camurus because the distalmost three podomeres are less tall compared
6	to C. durus and C. serratus, and so more susceptible to taphonomic stretching and
7	deformation. Ventral spine length (h in Fig. 2B) also varies within all species of
8	Caryosyntrips (Fig. 7). It does not correlate clearly with appendage length, although the
9	limited number of appendages longer than 100 mm means that this is difficult to test. The
0	variation of longest ventral spine lengths for appendages of similar lengths suggests that the
1	range of ventral spine lengths is not solely due to the size of the animal. Ventral spines are
2	not always preserved on every podomere of appendages, particularly C. serratus (see Fig. 3).
3	C. serratus may be more affected than the other species as ventral spines tend to be
4	proximally pointing, and so require a smaller rotation of the appendage to be concealed after
5	compression.
6	
7	Geographic and temporal range
8	
9	Caryosyntrips, previously only known from the Burgess Shale (Cambrian Series 3,
20	Stage 5), is here reported from the older Valdemiedes Formation (Cambrian Series 2, Stage

4) and Spence Shale Member, Langston Formation (Cambrian Series 3, Stage 5), as well as
the younger Wheeler Formation (Cambrian Series 3, Drumian). *Caryosyntrips* cf. *camurus*from the Valdemiedes Formation is the oldest *Caryosyntrips* known, the first radiodontan
reported from this Lagerstätten, and the first *Caryosyntrips* from outside Laurentia. All three

25 species of *Caryosyntrips* are now known from Utah Lagerstätten (Spence Shale and Wheeler

1	Formation), increasing the faunal overlap in radiodontans between the Burgess Shale and
2	Utah. Anomalocaris (Briggs et al. 2008; Lerosey-Aubril et al. 2014), Hurdia victoria, Peytoia
3	nathorsti (Conway Morris & Robison 1982; Pates et al. in press), and Stanleycaris (Pates et
4	al. submitted) are all known from both the Burgess Shale and Utah Lagerstätten.
5	Caryosyntrips cf. camurus is added to the other Gondwanan Radiodonta:
6	Anomalocaris cf. canadensis and A. briggsi from the Emu Bay Shale (Cambrian Series 2,
7	Stage 4), Australia (Nedin 1999; Daley et al. 2013b; Paterson et al. 2016); and Hurdia from
8	the Jince Formation (Cambrian Series 3, Drumian), Czech Republic (Chlupáč & Kordule
9	2002; Daley et al. 2013 <i>a</i>). The discovery of <i>Caryosyntrips</i> in the Cambrian Series 2, Stage 4
10	of Gondwana shows that its global distribution is much wider than initially thought.
11	Caryosyntrips is only known from the high latitude Valdemiedes Formation, not the
12	equatorial Emu Bay Shale. This suggests that Caryosyntrips originated at a high latitude in
13	Gondwana during the Cambrian Series 2, and expanded its range to more equatorial
14	Laurentia, where it is known from the Cambrian Series 3. Appendages of Caryosyntrips are
15	found in much lower abundance in the Burgess Shale (12) than Anomalocaris (385), Peytoia
16	(229) and Hurdia (290) (Daley & Budd 2010; Daley et al. 2013a). This suggests that
17	Caryosyntrips may have been a part of Laurentian communities older than the Series 3, Stage
18	5 Spence, such as the Series 2, Stage 4, Eager, Kinzers, Latham and Pioche Formations
19	(Briggs 1979; Briggs & Mount 1982; Lieberman 2003), but it has not yet been discovered
20	either because of low numbers in the original population, or because it may have a lower
21	fossil preservation potential than other radiodontan appendages.
22	

23 Ecological interpretation

l	The large appendages of radidontans were located at the front of the head adjacent to the
2	mouthparts, as indicated by taxa known from full body specimens such as Anomalocaris,
3	Peytoia, and Hurdia (Whittington & Briggs 1985; Collins 1996; Daley et al. 2009; Daley &
1	Edgecombe 2014), and were involved in feeding. In other radiodontan taxa, the functional
5	morphology of frontal appendages has been used to distinguish between the dextrous
6	grasping motion of the actively durophagous Anomalocaris (Briggs 1979; Collins 1996;
7	Nedin 1999) and the less specialised prey trapping or sediment sifting motion of taxa with
3	longer ventral spines, such as Hurdia and Peytoia (Daley & Budd 2010). Filter feeding has
)	been suggested for the giant Ordovician radiodontan Aegirocassis because of the presence of
)	dense setae on its frontal appendage (Van Roy et al. 2015). Caryosyntrips was previously
l	interpreted as an actively durophagous predator similar to Anomalocaris, based on the
2	elongated nature of the frontal appendage and its relatively short ventral spines, however the
3	movement differs between the two taxa. Caryosyntrips is thought to have moved its stiffer
1	frontal appendage by pivoting at the bell-shaped basal attachment joint (see Fig. 3A, C-F) to
5	create as scissor-like grasping or slicing motion between the opposing appendage pair (Daley
5	& Budd 2010). Anomalocaris displays greater flexibility along the appendage as indicated by
7	its more prominent arthrodial membranes and preservation exhibiting 180° of motion, but
3	appears to have had an immobile basal attachment joint (Whittington & Briggs 1985; Daley
)	& Edgecombe 2014). Both Caryosyntrips and Anomalocaris may have relied on suction
)	created by the mouthparts to bring prey items towards the mouth, after crushing and slicing
l	by the appendages. While the mouthparts of Caryosyntrips are unknown, the flexible oral
2	cone of Anomalocaris has been suggested to provide suction rather than a chewing or
3	crushing motion (Hagadorn et al. 2010; Daley & Bergström 2012). The newly discovered
1	material of Caryosyntrips allows for further elaboration of the ecological interpretation of
5	this taxon, supporting a durophagous predatory nature and suggesting that morphological

differences between taxa indicate different feeding behaviours and access to different prey
 items.

While all *Carvosyntrips* taxa are considered to be durophagous predators, the differences in frontal appendage morphology between the species (Fig. 1; Table 1) indicate that the behaviour and prey choice may have differed. The ventral spines in C. serratus are the most slender, and generally point distally. Ventral spines in C. camurus and C. durus tend to point more proximally, and C. durus has the most robust ventral spines. This suggests that C. durus sought out the most robust prev items. Although the preservation of arthrodial membrane is likely to have been affected by taphonomy, the current evidence suggests that flexibility along the appendage may have varied between taxa. C. durus had the most rigid frontal appendage, as indicated by its overall shape and membranes preserved as simple lines, whereas C. serratus and C. camurus have visible arthrodial membrane between all podomeres along the length of the appendage and so appear more flexible. The thin distalmost three podomeres in C. camurus may also have provided additional flexibility. The unique presence of large dorsal spines in C. durus (in addition to the smaller dorsal spines present in C. serratus and C. durus) may have provided additional strength and protection to the frontal appendages of this taxon as its sought out more robust prey items than the other two *Caryosyntrips* species, which would have been more able to manipulate prey items, and so would have sought out less robust, but more difficult to catch, prey.

The study of *Caryosyntrips* has implications for understanding Cambrian ecosystems and ecology. Its putative durophagous predatory lifestyle makes it a potential culprit for Cambrian trilobite repaired injuries that have previously been attributed to *Anomalocaris* (e.g. Rudkin 1979; Babcock 1993). While these damages were thought to have been inflicted by *Anomalocaris* using the dextrous nature of the claw to create fracture lines by repeated bending and twisting (Nedin 1999), the robust ventral spines and strong crushing motion

implied for *Caryosyntrips* could provide another way to break mineralized trilobite exoskeletons and cause these injuries. The variation seen between the morphology of the three *Caryosyntrips* species and their corresponding ecological interpretations suggests that this taxon may have been an important factor driving community composition in the Cambrian. Acknowledgements. B. Lieberman provided access to specimens at the KUMIP. S. Zamora provided access to and photographs of specimen MPZ 2009/1241. J-B. Caron provided original access to Burgess Shale material at the ROM. Daniel Windhofer donated specimen KUMIP 415223. We thank P. Selden for use of photographic equipment at the KUMIP. We acknowledge Parks Canada for permission to collect Burgess Shale material through research permits granted to D. Collins. Funding was provided by a Palaeontological Association Sylvester-Bradley Award (PA-SB201503), a Santander Travel Award and an Oxford-St Catherine's Brade-Natural Motion Scholarship to SP, and by the OUMNH to ACD. We thank the editor X-G. Zhang, and the reviewers J. Ortega-Hernández and G. Edgecombe for their positive, thorough and helpful reviews, which greatly improved the manuscript. REFERENCES BABCOCK, L. E. 1993. Trilobite malformations and the fossil record of behavioral asymmetry. Journal of Paleontology, 67, 217–229. BRIGGS, D. E. G. 1979. Anomalocaris, the largest known Cambrian arthropod. Palaeontology, 22, 631-664.

1	and MOUNT, J.D. 1982. The occurrence of the giant arthropod Anomalocaris in the
2	Lower Cambrian of southern California, and the overall distribution of the genus. Journal of
3	Paleontology, 56, 1112-1118.
4	
5	LIEBERMAN, B.S., HENDRICKS, J.R., HALGEDAHL, S.L. and JARRARD, R.D.
6	2008. Middle Cambrian arthropods from Utah. Journal of Paleontology, 82(2), 238-254.
7	
8	BRUTON, D.L. 1981. The arthropod Sidneyia inexpectans, Middle Cambrian, Burgess Shale,
9	British Columbia. Philosophical Transactions of the Royal Society of London. Series B,
10	Biological Sciences, 18, 619–653.
11	
12	CARON, J. B. 2005. Taphonomy and community analysis of the Middle Cambrian Greater
13	Phyllopod Bed, Burgess Shale. Unpublished Ph.D. Thesis, University of Toronto, Toronto,
14	316 pp.
15	
16	CHLUPÁČ, I., and KORDULE, V. 2002. Arthropods of Burgess Shale type from the Middle
17	Cambrian of Bohemia (Czech Republic). Bulletin of the Czech Geological Survey, 77, 167-
18	182.
19	
20	COLLINS, D. 1996. The "evolution" of Anomalocaris and its classification in the arthropod
21	class Dinocarida (nov.) and order Radiodonta (nov.). Journal of Paleontology, 70, 280–293.
22	
23	CONG, P., MA, X., HOU, X., EDGECOMBE, G. D. and STRAUSFIELD, N. J. 2014. Brain
24	structure resolves the segmental affinity of anomalocaridid appendages. Nature, 513, 538-
25	542.

1	
2	CONWAY MORRIS, S., and ROBISON, R. A. 1982. The enigmatic medusoid Peytoia and a
3	comparison of some Cambrian biotas. Journal of Paleontology, 56, 116-122.
4	
5	DALEY, A. C., and BUDD, G. E. 2010. New anomalocaridid appendages from the Burgess
6	Shale, Canada. Palaeontology, 53, 721–738.
7	
8	and PEEL, J. S. 2010. A possible anomalocaridid from the Cambrian Sirius Passet
9	lagerstätte, North Greenland. Journal of Paleontology, 84, 352-355.
10	
11	and BERGSTRÖM, J. 2012. The oral cone of Anomalocaris is not a classic
12	"Peytoia". Naturwissenschaften, 99, 501–504.
13	
14	and EDGECOMBE, G. D. 2014. Morphology of Anomalocaris canadensis from the
15	Burgess Shale. Journal of Paleontology, 88, 68-91.
16	
17	BUDD, G. E., CARON, J. B., EDGECOMBE, G. D., and COLLINS, D. 2009. The
18	Burgess Shale anomalocaridid Hurdia and its significance for early euarthropod
19	evolution. Science, 323 , 1597–1600.
20	
21	and 2013a. Morphology and systematics of the anomalocaridid arthropod Hurdia
22	from the Middle Cambrian of British Columbia and Utah. Journal of Systematic
23	Palaeontology, 11, 743–787.
24	

1	PATERSON, J. R., EDGECOMBE, G. D., GARCÍA-BELLIDO, D. C., and JAGO, J. B.
2	2013b. New anatomical information on Anomalocaris from the Cambrian Emu Bay Shale of
3	South Australia and a reassessment of its inferred predatory habits. Palaeontology, 56, 971-
4	990.
5	
6	GÁMEZ VINTANED, J. A., LIÑÁN, E., and ZHURALEV, A. Y. 2011. A new Early
7	Cambrian lobopod-bearing animal (Murero, Spain) and the problem of the ecdysozoan early
8	diversification. In Editors: PONTAROTTI, P. (ed). Evolutionary Biology-Concepts,
9	Biodiversity, Macroevolution and Genome Evolution. Springer Berlin Heidelberg, 193-219
10	pp.
11	
12	LEROSEY-AUBRIL, R., HEGNA, T.A., BABCOCK, L.E., BONINO, E. and KIER, C.
13	2014. Arthropod appendages from the Weeks Formation Konservat-Lagerstätte: new
14	occurrences of anomalocaridids in the Cambrian of Utah, USA. Bulletin of Geosciences,
15	89 (2), 269—282.
16	
17	LIEBERMAN, B.S., 2003. A new soft-bodied fauna: the Pioche Formation of Nevada.
18	Journal of Paleontology, 77, 674—690.
19	
20	HAGADORN, J., SCHOTTENFELD, M. T. and McGOWAN, D. 2010. Putting
21	Anomalocaris on a soft-food diet? Geological Society of America, Abstracts with Programs,
22	42 , 320.
23	

1	HOU, X.G., MA, X.Y., ZHAO, J. and BERGSTRÖM, J. 2004. The lobopodian Paucipodia
2	inermis from the lower Cambrian Chengjiang fauna, Yunnan, China. Lethaia, 37(3), 235-
3	244.
4	
5	LANKESTER, E.R. 1904. The structure and classification of Arthropoda. Quarterly Journal
6	of Microscopical Science, 47, 523—582.
7	
8	NEDIN, C. 1999. Anomalocaris predation on nonmineralized and mineralized
9	trilobites. Geology, 27, 987–990.
10	
11	PATERSON, J. R., GARCÍA-BELLIDO, D. C., LEE, M. S., BROCK, G. A., JAGO, J. B.
12	and EDGECOMBE, G. D. 2011. Acute vision in the giant Cambrian predator Anomalocaris
13	and the origin of compound eyes. Nature, 480, 237–240.
14	
15	JAGO, J. B., GEHLING, J. G., LEE, M. S., and EDGECOMBE, G. D. 2016. The Emu
16	Bay Shale Konservat-Lagerstätte: a view of Cambrian life from East Gondwana. Journal of
17	the Geological Society, 173 , 1–11.
18	
19	PATES, S., DALEY, A. C., and LIEBERMAN, B. S. in press. Hurdiid radiodontans from the
20	middle Cambrian (Series 3) of Utah. Journal of Paleontology.
21	
22	and ORTEGA-HERNÁNDEZ, J. submitted. Aysheaia prolata from the Wheeler
23	Formation (Cambrian, Drumian) is a frontal appendage of the radiodontan Stanleycaris. Acta
24	Palaeontologica Polonica.
25	

1		
2 3 4	1	RUDKIN, D. 1979
4 5 6	2	Cambrian of Britis
7 8	3	
9 10	4	STEIN, M. 2013. C
11 12	5	inexpectans. Zoolog
13 14 15	6	
16 17	7	VAN ROY, P., DA
18 19	8	homology revealed
20 21	9	
22 23	10	VINTHER, J., STE
24 25 26	11	feeding anomaloca
27 28	12	
29 30	13	WHITTINGTON,
31 32	14	Anomalocaris, Bur
33 34 35	15	Society of London.
36 37	16	
38 39	17	ZACAÏ, A., VANN
40 41	18	505-million-year-o
42 43	19	Arthropod structur
44 45 46		
47 48		
49 50		
51 52 53		
53 54 55		
56 57		
58 59		
60		

1	RUDKIN, D. 1979. Healed injuries in Ogygopsis klotzi (Trilobita) from the Middle
2	Cambrian of British Columbia. Royal Ontario Museum Occasional Paper, 32, 1-8.
3	
4	STEIN, M. 2013. Cephalic and appendage morphology of the Cambrian arthropod Sidneyia
5	inexpectans. Zoologischer Anzeiger-A Journal of Comparative Zoology, 253, 164–178.
6	
7	VAN ROY, P., DALEY, A. C. and BRIGGS, D. E. G. 2015. Anomalocaridid trunk limb
8	homology revealed by a giant filter-feeder with paired flaps. Nature, 522, 77-80.
9	
0	VINTHER, J., STEIN, M., LONGRICH, N. R., and HARPER, D. A. 2014. A suspension-
1	feeding anomalocarid from the Early Cambrian. Nature, 507, 496-499.
2	
3	WHITTINGTON, H. B., and BRIGGS, D. E. 1985. The largest Cambrian animal,
4	Anomalocaris, Burgess Shale, British Columbia. Philosophical Transactions of the Royal
5	Society of London. Series B, Biological Sciences, 569–609.
6	
7	ZACAÏ, A., VANNIER, J. and LEROSEY-AUBRIL, R. 2016. Reconstructing the diet of a
8	505-million-year-old arthropod: Sidneyia inexpectans from the Burgess Shale fauna.
9	Arthropod structure and development, 45, 200–220.

1	Figure captions
2	FIG 1. Idealised sketch of each Caryosyntrips species. A. C. serratus Daley and Budd, 2010,
3	small spines along outer edge preserved as either circular attachment points or as spines; B.
4	C. camurus nov. sp., proximal boundary inferred as it is not preserved in any specimen; C. C.
5	durus nov. sp., proximal five podomeres inferred as these are not preserved in either
6	specimen.
7	
8	FIG 2. Explanation of measurements. A. length (1) and angle between edges (theta); B. angle
9	between large spine and inner edge (alpha), angle between large spine and outer edge (beta),
10	length of large spine (h) and width of large spine (w); C. how angle between edges (theta) is
11	measured for specimens with a bent end.
12	
13	FIG 3. Caryosyntrips serratus specimens. A. ROM 57161 (holotype); B. ROM 59499; C.
14	ROM 59502; D. ROM 59498; E. KUMIP 415223; F. ROM 59497. White arrows indicate
15	circular small spine attachment points. All scale bars 10 mm.
16	
17	FIG 4. Caryosyntrips camurus specimens. A. ROM 59501; B. ROM 59503 (holotype); C.
18	KUMIP 314275; D. ROM 59500; E. ROM 59599. White arrows indicate podomere
19	boundaries, black arrows indicate paired spines mentioned in text, grey arrow indicates
20	terminal spine. All scale bars 10 mm.
21	
22	FIG 5. Caryosyntrips durus specimens. A. KUMIP 314070 (paratype), black arrows indicate
23	paired spine on lower level of rock; B. KUMIP 314071 (holotype). All scale bars 10 mm.
24	

FIG 6. Caryosyntrips cf. camurus, MPZ 2009/1241. A. dry; B. underwater. Scale bars 10
mm.
FIG 7. Plot of length of appendages against length of longest spine. Circles = <i>Caryosyntrips</i>
<i>serratus</i> , diamonds = C . <i>camurus</i> , triangles = C . cf. <i>camurus</i> , squares = C . <i>durus</i> . Complete
appendage length measurements in black, extrapolated lengths from incomplete appendages
in grey. Raw data in Supplementary Files.
Table captions
TABLE 1. Comparison of Caryosyntrips species. Measurements for individual specimens in
Supplementary Data.

FIG 1. Idealised sketch of each Caryosyntrips species. A. C. serratus Daley and Budd, 2010, small spines along outer edge preserved as either circular attachment points or as spines; B. C. camurus nov. sp., proximal boundary inferred as it is not preserved in any specimen; C. C. durus nov. sp., proximal five podomeres inferred as these are not preserved in either specimen.!! +

80x81mm (300 x 300 DPI)

FIG 2. Explanation of measurements. A. length (I) and angle between edges (theta); B. angle between large spine and inner edge (alpha), angle between large spine and outer edge (beta), length of large spine (h) and width of large spine (w); C. how angle between edges (theta) is measured for specimens with a bent end.

36x16mm (300 x 300 DPI)

FIG 3. Caryosyntrips serratus specimens. A. ROM 57161 (holotype); B. ROM 59499; C. ROM 59502; D. ROM 59498; E. KUMIP 415223; F. ROM 59497. White arrows indicate circular small spine attachment points. All scale bars 10 mm.

172x369mm (300 x 300 DPI)

FIG 4. Caryosyntrips camurus specimens. A. ROM 59501; B. ROM 59503 (holotype); C. KUMIP 314275; D. ROM 59500; E. ROM 59599. White arrows indicate podomere boundaries, black arrows indicate paired spines mentioned in text, grey arrow indicates terminal spine. All scale bars 10 mm.

143x124mm (300 x 300 DPI)

FIG 6. Caryosyntrips cf. camurus, MPZ 2009/1241. A. dry; B. underwater. Scale bars 10 mm.!! + 62x48mm (300 x 300 DPI)

FIG 7. Plot of length of appendages against length of longest spine. Circles = Caryosyntrips serratus, diamonds = C. camurus, triangles = C. cf. camurus, squares = C. durus. Complete appendage length measurements in black, extrapolated lengths from incomplete appendages in grey. Raw data in Supplementary Files.

177x177mm (300 x 300 DPI)

Table 1: Comparison of Caryosyntrips species					
	Caryosyntrips serratus	Caryosyntrips	Caryosyntrips durus	Caryosyntrips cf.	
Number of specimens	6 isolated appendages	5 isolated appendages, 1 pair of	2 isolated appendages	1 isolated appendage	
		appendages			
Row of dorsal spines	Yes	No	Yes	No	
Other dorsal spines	No	No	Yes: same size as ventral spines. One on podomeres 8- 14.	No	
Ventral spines	One pair per podomere	One pair per podomere	One pair per podomere	One pair per podomere	
α range	11-18°	13-17°	15-17°	14°	
l range	65-108 mm	28-72 mm	45-64 mm	193 mm	
Stratigraphic occurrence	Burgess Shale; Wheeler Formation	Spence Shale; Burgess Shale	Wheeler Formation	Valdemiedes Formation	
Age range	Stage 5 - Drumian	Stage 5	Drumian	Stage 4	
Continent	Laurentia	Laurentia	Laurentia	Gondwana	
References	This study; Daley & Budd 2010	This study; Daley & Budd 2010	This study	This study; Gámez Vintaned et al. 2011	
Measurements for individual specimens in Supplementary Data.					

1 2	Carvosyntrins serratus	I	h of longest spine	h of shortest spine	theta	n nods
3	ROM 57161	76.55	5.71	2.74	11	14
4 5	ROM 59499	61.64	2.84	5.78	16	12
6	ROM 59502	108.37	7.90	2.85	11	14
7 0	ROM 59498	80.05	2.38	1.71	12	14
9	KUMIP 415223	88.02	2.21		18	14
10	ROM 59497	64.86	3.04	2.20	18	14
11	Caryosyntrips camurus					
13	ROM 59501 (A)	71.74	3.44	2.22	15	14
14	ROM 59501 (B)	70.69	2.83	2.53	17	14
15 16	ROM 59503	40.84	4.67	3.05	13	10
17	KUMIP 314275	17.99	2.12	1.88	15	9
18	ROM 59500	27.35	3.09	2.33	13	6
19	ROM 59599	37.26	3.25	2.27	13	9
20	Caryosyntrips durus					
22	KUMIP 314070	41.09	2.38	1.50	17	9
23	KUMIP 324071	29.05	2.46	1.86	15	9
24	Caryosyntrips cf. camurus					
26 27	MPZ 2009/1241	82.82	6.90	4.29	14	6

1		
2	extrapolated length	
3	76.55	
4	71 91	
5	108.27	
0 7	108.37	
8	80.05	
9	88.02	
10	64.86	
11		
12	71 74	
13	/1./4	
14	70.69	
15 16	57.18	
10	27.98	
18	63.82	
19	53.62	
20	57.90	
21		
22	63.92	
23	45.19	
24 25		
20	103 25	
27	195.25	
28		
29		
30		
31		
32		
33		
35		
36		
37		
38		
39		
40		
41		
4Z 43		
44		
45		
46		
47		
48		
49		
5U 51		
52		
53		
54		
55		
56		
57		
58		
59		
00		