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Abstract

Formation and development of the human brain is initiated in utero and carries on
until young adulthood. During the prenatal period, most significant morphological
changes occur, following well-defined spatiotemporal patterns. Eventual disruption
occurring during these periods of vulnerability may have major impact later in life. It
is, therefore, of the utmost importance to get a better understanding of the fetal brain
development.

Magnetic resonance imaging (MRI) is a non-invasive technique that relies on the
tissue properties of to generate the image intensities. Towards the quantitative analy-
sis, the fetal brain MRI workflow gathers the image acquisition, the image resolution
enhancement through super-resolution (SR) reconstruction and the reduction of image
complexity with the tissue segmentation. This thesis focuses on the development and
validation of robust automated tools for the quantitative analysis of the fetal brain in
MRI. Specifically, we address two key steps that encounter fetal-specific challenges:
the SR reconstruction and the tissue segmentation. In practice, both are hindered by
the major obstacle of data scarcity of fetal brain MRI.

With the impossibility to acquire motion-free high resolution images, the valida-
tion of SR reconstruction is troublesome. Our first contribution is a multi-observer
multi-dataset study to validate the practical value of SR reconstruction in a clinical en-
vironment. We evidence that SR does not introduce spatial distortions and increases
the confidence of the observer. Furthermore, we propose a simulation-based approach
for the enhancement of the overall SR-reconstructed image intensity contrast.

Automatic tissue segmentation methods must generalize to be robust to the many
sources of variations that may be induced by the gestation-long maturation, the ac-
quisition system or the SR reconstruction method. We propose novel data augmenta-
tion strategies in order to increase the heterogeneity of the data. Our methods, either
relying on a simulation framework or a multi-reconstruction approach, increases the
generalizability of deep-learning (DL) based segmentation models. Finally, a major
methodological contribution of this thesis is the topologically-constrained DL frame-
work for the cortical plate segmentation.

Overall, our contributions in image reconstruction and tissue segmentation take a
step forward in the accuracy, generalizability and translation of methods. Although
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some limitations remain, the combination of these advanced engineering methods set
solid grounds for the study of the in utero brain development.



Résumé

La formation et le développement du cerveau humain commencent in utero et se pour-
suivent jusqu’au début de l’âge adulte. Au cours de la période prénatale les change-
ments morphologiques les plus importants se produisent selon des schémas spatio-
temporels bien définis. Les éventuelles perturbations survenant au cours de ces péri-
odes de vulnérabilité peuvent avoir un impact majeur plus tard dans la vie. Il est donc
important de mieux comprendre le développement du cerveau fœtal.

L’imagerie par résonance magnétique (IRM) est une technique non invasive qui
s’appuie sur les propriétés des tissus pour générer des variations d’intensité, et con-
struire une image. Les différentes étapes de l’analyse quantitative du cerveau fœtal
dérivé de l’IRM comprennent l’acquisition de l’image, l’amélioration de la résolution
de l’image par la reconstruction en super-résolution (SR) et la réduction de la complex-
ité de l’image par la segmentation des tissus. Cette thèse se concentre sur le dévelop-
pement et la validation d’outils automatisés robustes pour l’analyse quantitative du
cerveau fœtal en IRM. Plus précisément, nous abordons deux étapes clés qui rencon-
trent actuellement des difficultés spécifiques à l’imagerie fœtale : la reconstruction en
SR et la segmentation des tissus. En pratique, ces deux étapes sont freinées et éprou-
vées par la rareté des données IRM du cerveau fœtal.

Avec l’impossibilité d’acquérir des images haute résolution sans mouvement, la val-
idation de la reconstruction SR est difficile. Notre première contribution est une étude
multi-observateurs et multi-dataset pour valider la valeur pratique de la reconstruction
SR dans un environnement clinique. Nous démontrons que la SR n’introduit pas de
distorsions anatomique et augmente l’assurance de l’observateur. En outre, nous pro-
posons une approche basée sur la simulation pour l’amélioration du contraste global
d’intensité de l’image reconstruite par SR.

Les méthodes de segmentation automatique des tissus doivent, pour être robustes,
être généralisées aux nombreuses sources de variations qui peuvent être induites par
la maturation pendant la gestation, le système d’acquisition ou la méthode de recon-
struction SR. Nous proposons de nouvelles stratégies d’augmentation de données afin
d’en accroître l’hétérogénéité. Nos méthodes, qui s’appuient soit sur la simulation
d’images de synthèse, soit sur une approche de multi-reconstruction, augmentent la
généralisation des modèles de segmentation par apprentissage automatique. Finale-
ment, la contribution méthodologique majeure de cette thèse est l’intégration d’une
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contrainte topologique dans l’entrainement de méthode de segmentation par appren-
tissage automatique pour le plaque corticale.

Dans l’ensemble, ce travail permet une avancée majeure en terme de précision,
généralisation et implémentation des méthodes quant à la reconstruction et à la seg-
mentation des tissus en IRM. Bien que certaines limites subsistent, la combinaison de
ces méthodes d’ingénierie avancées constitue une base solide pour l’étude du dévelop-
pement du cerveau in utero.



List of Abbreviations

ASSD Average symmetric surface distance
BN Betti number
BNE Betti number error
CC Corpus callosum
CCC Concordance correlation coefficient
cGM Cortical gray matter
CNS Central nervous system
CSF Cerebrospinal fluid
dGM Deep gray matter
DL Deep-learning
DSC Dice similarity coefficient
GA Gestational age
GT Ground truth
GW Gestational weeks
HR High-resolution
ICC Intraclass correlation coefficient
LR Low-resolution
MAS Multi-atlas segmentation
MR Magnetic resonance
MRI Magnetic resonance imaging
NT Neurotypical
PSNR Peak signal-to-noise ratio
PT Pathological
SD Standard deviation
SNR Signal-to-noise ratio
SR Super-resolution
SSIM Structural similarity index
SST2W Single-shot T2-weighted
SVR Slice-to-volume
T2w T2-weighted
T2WS T2w sequences
US Ultrasound
WM White matter

xiii





Contents

Acknowledgements viii

Abstract x

Résumé xii

List of abbreviations xiii

List of Figures xxi

List of Tables xxv

1 Introduction 1

1.1 Early human brain development . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Brain growth and tissue maturation . . . . . . . . . . . . . . . . . . . 1

1.1.2 Abnormal development . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Anatomical monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Imaging the fetal brain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Ultrasound: a clinical routine . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Magnetic resonance imaging: a complementary modality . . . . . 5

1.3 Fetal brain MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Principle of structural MRI . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Fast imaging protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.3 Limitations of fetal brain MRI . . . . . . . . . . . . . . . . . . . . . . . 9

xv



xvi CONTENTS

1.4 Towards motion-robust 3D quantitative analysis . . . . . . . . . . . . . . . . 10

1.4.1 Super-resolution reconstruction . . . . . . . . . . . . . . . . . . . . . . 10

1.4.2 Fetal brain tissue segmentation . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Thesis contributions and outline . . . . . . . . . . . . . . . . . . . . . . . . . . 22

I On super-resolution reconstruction 25

2 Fetal brain MRI biometric measurements 27

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Evaluation of 3D SR reconstructions . . . . . . . . . . . . . . . . . . . 32

2.3.2 Confidence of measurements . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.3 Biometric measurements analysis . . . . . . . . . . . . . . . . . . . . . 33

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.2 Strengths and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Optimization of SR reconstruction regularization 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Simulated acquisitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.2 Super-resolution reconstruction . . . . . . . . . . . . . . . . . . . . . . 43

3.2.3 Experiment 1 – Controlled environment . . . . . . . . . . . . . . . . . 43

3.2.4 Experiment 2 – Clinical environment . . . . . . . . . . . . . . . . . . . 44



CONTENTS xvii

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Experiment 1 – Controlled environment . . . . . . . . . . . . . . . . . 45

3.3.2 Experiment 2 – Clinical environment . . . . . . . . . . . . . . . . . . . 46

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

II Domain variations-robust segmentation methods 51

4 Synthetic data augmentation for domain adaptation 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.2 Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.3 Data augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.4 Domain adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.5 Simulation brain model . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.6 Evaluation and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.1 Data augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.2 Domain adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.3 Simulation brain model . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 SR reconstruction-based domain generalization 67

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.1 Clinical MR exams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.2 In-SR domain dataset – CHUV-set . . . . . . . . . . . . . . . . . . . . . 68

5.2.3 Out-of-SR domain pure testing set – FeTA-KCL . . . . . . . . . . . . 69



xviii CONTENTS

5.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.1 SR reconstruction-based data augmentation . . . . . . . . . . . . . . 69

5.3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.3 Model and training strategy . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.1 Data augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.2 Domain generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

III On segmentation consistency 75

6 Importance of topology assessment 77

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2.1 Challenge datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2.2 Challenge results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3.1 Computational topology . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3.2 Topology metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4.1 Algorithms rankings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4.2 Label-wise topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7 Multi-dimensional topological loss 85

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.1.1 Clinical context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



CONTENTS xix

7.1.2 Related works in cortical plate segmentation . . . . . . . . . . . . . . 86

7.1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2.1 Topological loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.2.2 Segmentation framework . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2.3 Topological assessment of the fetal CP . . . . . . . . . . . . . . . . . . 93

7.3 Experiment design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.3.2 Assessment metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.4.1 λtopo hyper-parameter tuning . . . . . . . . . . . . . . . . . . . . . . . 102

7.4.2 Methods comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.4.3 Segmentation performance over gestation . . . . . . . . . . . . . . . 105

7.4.4 Topology analysis per brain lobes . . . . . . . . . . . . . . . . . . . . . 106

7.4.5 Robustness to noisy manual annotations . . . . . . . . . . . . . . . . 106

7.4.6 Out-of-domain qualitative assessment . . . . . . . . . . . . . . . . . . 107

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8 Discussion 111

References 126

IV Appendices 127

A Fetal brain MRI biometric measurements 129

B MIALSRTK BIDS App 133

B.1 Towards large scale studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134



xx CONTENTS

B.1.1 A modular pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

B.1.2 A fully automatized BIDS App . . . . . . . . . . . . . . . . . . . . . . 134

B.2 Features development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

B.2.1 User interaction reduction . . . . . . . . . . . . . . . . . . . . . . . . . 135

B.2.2 Performance optimization . . . . . . . . . . . . . . . . . . . . . . . . . 135

B.2.3 New MIALSRTK features . . . . . . . . . . . . . . . . . . . . . . . . . . 136

C Multi-atlas segmentation 139

C.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

C.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

C.3 Multi-atlas segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

C.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

D Multi-modal assessment of the corpus callosum biometry 143

D.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

D.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

D.2.1 Cohort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

D.2.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

D.2.3 Biometric measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 145

D.2.4 Image quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

D.2.5 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

D.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

D.3.1 Dataset analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

D.3.2 Gestational age analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

D.3.3 Inter-dataset intra-observer . . . . . . . . . . . . . . . . . . . . . . . . . 149

D.3.4 Inter-observer intra-dataset (SR) . . . . . . . . . . . . . . . . . . . . . 151

D.3.5 Experts inter-modality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

D.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152



List of Figures

1.1 Fetal brain maturation throughout gestation. . . . . . . . . . . . . . . . . . . 2

1.2 Spatial coverage of fetal brain MRI SST2W sequences. . . . . . . . . . . . . 8

1.3 Summary of fetal brain MR exam acquisitions. . . . . . . . . . . . . . . . . . 9

1.4 Forward acquisition model and inverse problem. . . . . . . . . . . . . . . . 11

1.5 Illustration of the fetal brain MRI sources of variation. . . . . . . . . . . . . 16

1.6 Thesis contributions with respect to the fetal brain MRI workflow. . . . . . 22

2.1 Distribution of the number of series used per patient compared to the
total available number of series. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Quality of SR reconstructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Biometric measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Inter-dataset agreement for each biometric measurement. . . . . . . . . . . 33

2.5 Inter-dataset intra-observer comparison for each biometric measurement 35

2.6 Bland-Altman plots of measurement differences between datasets for
each observer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7 Inter-observer intra-dataset comparison for each biometric measurement 37

2.8 Bland-Altman plots of measurement differences between observers for
each dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Optimal regularization parameters α∗1 using MIALSRTK and NiftyMIC. . 46

3.2 Comparison of SR-reconstructed clinical cases using default and optimal
parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Inter-method similarity with default and optimal regularization param-
eters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

xxi



xxii LIST OF FIGURES

3.4 PSNR curves for the simulated patients of Experiment 2. . . . . . . . . . . . 48

4.1 Summary of clinical datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Design of synthetic MRI-based domain adaptation experiments. . . . . . . 57

4.3 Illustration of source domain, simulation and target-like domain images. 59

4.4 Appreciation of fetal brain tissue segmentation with synthetic MRI-based
data augmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Appreciation of fetal brain tissue segmentation with synthetic MRI-based
domain adaptation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6 Domain adaptation label-wise configuration performances for neurotyp-
ical and pathological groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.7 Comparison of fetal brain models and SR-reconstructed simulations. . . . 64

4.8 Qualitative results in simulation-based domain adaptation from differ-
ent fetal brain models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.9 Label-wise performance comparison for simulation-based domain adap-
tation from different fetal brain models for neurotypical and pathologi-
cal groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 SR reconstruction-based domain generalization experiment design. . . . . 68

5.2 Qualitative variation of SR reconstruction intensity variation depending
on the regularization weight. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Qualitative results of the multi-reconstruction approach on out-of-SR
domain images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Segmentation performances in the domain generalization task as a func-
tion of GA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1 Example patches of 2D binary images with their topological properties. . 79

6.2 Average algorithm BNE1 performances per Institution for each tissue
class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.1 Illustration of persistent homology for a CP likelihood map. . . . . . . . . 89

7.2 Illustration of the topological loss computation process. . . . . . . . . . . . 90

7.3 Illustration of the computation of the hole ratio. . . . . . . . . . . . . . . . . 94

7.4 Illustration of the discrepancy between the quantification of holes. . . . . 95



LIST OF FIGURES xxiii

7.5 Overall cortical plate segmentation experimental design. . . . . . . . . . . 96

7.6 Illustration of the FeTA original manual and the corrected GT CP seg-
mentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.7 3D rendering of the CP splitted into the 5 lobes of the brain. . . . . . . . . . 101

7.8 Qualitative cortical plate segmentation results. . . . . . . . . . . . . . . . . . 104

7.9 Performance metrics as a function of the GA. . . . . . . . . . . . . . . . . . . 107

7.10 Comparison of the hole ratio in the fetal brain lobes. . . . . . . . . . . . . . 108

7.11 Comparison of the corrected GT to the original manual annotation and
our TopoCP method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.1 Thesis contributions and future perspectives with respect to the fetal
brain MRI workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

B.1 SR reconstruction in the subject’s space and in a template space. . . . . . . 136

B.2 Simplified MIALSRTK SR reconstruction pipeline. . . . . . . . . . . . . . . . 137

C.1 Subjects repartition into dataset subgroups. . . . . . . . . . . . . . . . . . . . 140

C.2 Number of atlas candidates vs. number of atlases used in the label fusion.141

C.3 Overview of the Multi-Atlas Segmentation performance. . . . . . . . . . . 142

D.1 Corpus callosum visualization on US, T2WS and SR images. . . . . . . . . 145

D.2 Schematic view of the corpus callosum biometric measurements. . . . . . 146

D.3 Summary of image quality, image availability and measurements per-
formed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

D.4 Regression according to the gestational age of the length of the corpus
callosum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

D.5 Regression according to the gestational age of each sub-segment of the
corpus callosum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150





List of Tables

1.1 Structural fetal brain MR exam characteristics at the Lausanne Univer-
sity Hospital (CHUV). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Summary of the open-source annotated fetal brain MRI atlas datasets. . . 19

1.3 Summary of the open-source annotated fetal brain MRI clinical datasets. 20

2.1 MRI acquisition parameters of the T2-weighted Half-Fourier Acquisi-
tion Single-shot Turbo spin Echo (HASTE) sequences. . . . . . . . . . . . . 29

2.2 Lin’s concordance correlation coefficient values. . . . . . . . . . . . . . . . . 34

3.1 Mean metrics for SR reconstructions using the default or the optimal
regularization parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Summary of clinical datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Summary of the data augmentation configurations. . . . . . . . . . . . . . . 58

4.3 Simulation-based datasets from different fetal brain models. . . . . . . . . 60

4.4 Data augmentation quantitative results. . . . . . . . . . . . . . . . . . . . . . 62

4.5 Domain adaptation quantitative results. . . . . . . . . . . . . . . . . . . . . . 63

4.6 Quantitative results in simulation-based domain adaptation from differ-
ent fetal brain models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 SR reconstruction-based domain generalization training configurations. . 71

5.2 Segmentation performances of the different training configurations in
data augmentation (a) and domain generalization (b) tasks. . . . . . . . . 72

6.1 FeTA 2022 challenge datasets summary. . . . . . . . . . . . . . . . . . . . . . 78

6.2 Ground truth Betti numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

xxv



xxvi LIST OF TABLES

6.3 Topology and global rankings of the submissions. . . . . . . . . . . . . . . . 81

6.4 Topology ranking of the submissions per tissue class. . . . . . . . . . . . . 82

6.5 Average of the 95th percentile k-dimensional BNE per tissue class. . . . . . 83

7.1 Summary of the data used for training and quantitative and qualitative
evaluation. NT: Neurotypical, PT: Pathological . . . . . . . . . . . . . . . . . 97

7.2 Summary of the metrics used during the training phase (for learning
monitoring) and testing phase (for evaluation). Arrows indicate whether
higher ↑ or lower ↓ scores are better. . . . . . . . . . . . . . . . . . . . . . . . . 100

7.3 Average cross-validation performance metrics. . . . . . . . . . . . . . . . . . 103

7.4 Tables of the metrics computed on the pure testing sets FeTA and CRL. . . 105

7.5 Quantitative comparison of the original manual annotation and our TopoCP
method against the corrected GT. . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.6 Table of three experts qualitative ranking evaluation. . . . . . . . . . . . . . 109

A.1 Summary table of inter-dataset intra-observer analysis for each biomet-
ric measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

A.2 Summary table of inter-observer intra-dataset analysis for each biomet-
ric measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.3 Intra-rater analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

D.1 Frequency of measurements per biometric measure. . . . . . . . . . . . . . . 148

D.2 Inter-dataset statistical comparison for obs1. . . . . . . . . . . . . . . . . . . 151

D.3 Inter-observer comparison on SR dataset . . . . . . . . . . . . . . . . . . . . . 151

D.4 Experts inter-dataset comparison. . . . . . . . . . . . . . . . . . . . . . . . . . 151



1
Introduction

1.1 Early human brain development

Description of in utero brain development appeared in the literature in 1816 [140], al-
though it really became of interest from the middle of the XXth century thanks to post-
mortem histology [20, 10, 11].

1.1.1 Brain growth and tissue maturation

Formation and development of the human brain is initiated in utero about two weeks
post-conception and carries on until young adulthood [141]. In the prenatal period,
environmental and genetic factors command the development, while after birth matu-
ration processes are additionally experience-driven (e.g. external stimuli) [31].

During the in utero development, the human brain undergoes its most signifi-
cant morphological changes, evolving from a smooth surface to a highly convoluted
one [148] and featuring a large increase of the head circumference [31]. Underlying
the undeniable drastic macrostructural changes of the in utero brain development, mi-
crostructural operations occur. Overall, maturation and growth mechanisms follow
well defined spatio-temporal patterns [10].

Microstructural changes follow a rigorous timeline of synchronized developmental
pathways [93, 86, 108]. However, structure-wise and region-wise development are
asynchronous, as each region grows at its own pace. For instance, sensory regions
develop early on, while others have delayed development which continues after birth
(e.g. frontal area develops until the end of adolescence) [31].

Figure 1.1 shows a summary of the main microstructural processes and their corre-
spondance to macrostructural milestones throughout gestation. The first trimester of
gestation features the overall organisation of the central nervous system (CNS) that is

1
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Figure 1.1: Fetal brain maturation throughout gestation. Illustration adapted from [85].

ultimately composed of the brain and the spinal cord. In the second and third trimester,
individual portions of CNS further develop, in particular the brain.

The establishment of the CNS is initiated shortly after conception. Within the first
couple of weeks of gestation, neurulation shapes the embryonic neuroepithelium into a
formed neural tube at about four weeks post-conception [10, 93, 78, 108]. In the follow-
ing week, the neural tube differentiates at one end into the forebrain that will later on
fosters the cerebral hemispheres. Subsequent portions will develop into the infraten-
torial structures (i.e. the hindbrain and midbrain) and the spinal cord. By the end of
the first trimester, cerebral hemispheres, cerebellum, pons and medulla are present.

On the forebrain side, the hollow center of the neural tube will foster the ventri-
cles. The surrounding ventricular and subventricular zones form the germinal zones,
source location of the cells proliferation [93, 86]. The produced neurons and glial cells
migrate to their finale destination i.e. towards the cortical plate [10, 86]. First cortical
neurons are in place at the beginning of the second trimester [78]. From then on, in
place neurons assembly into synapses during the synatogenesis, hence initiated during
the second trimester. Myelination of axons, i.e. the nerve fibers, initiated in the late sec-
ond trimester – between week 25 and 28 – carries on until young adulthood [67, 93, 86].

Concommitantly, these microstructural changes operated through the cell prolifer-
ation and migration, the synaptogenesis, and the myelination are closely tied to the
brain growth and morphological evolution, one of the major manifestation of which
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is the appearance of the cortical foldings [148]. The morphogenesis of the cortical fold-
ing is yet not fully understood, although multiple hypothesis view their origin in the
forces applied by the axons to the cortical plate [121, 44]. Cortical foldings consist in
the chronological appearance of sulci: (i) primary sulci – the major ones – are in place
by week 27, (ii) secondary sulci appear at about week 32 and, finally, (iii) tertiary sulci
are present by the end of gestation. Although all sulci are present at term, important
morphological evolution continues within the first two years after birth.

The many underlying complex mechanisms involved in the fetal brain maturation
are chronologically well defined and follow clear developmental pathways. Nonethe-
less, disruption or damages in their completion can occur during these periods of vul-
nerability.

1.1.2 Abnormal development

Abnormalities of the fetal brain in the prenatal period can either be developmental or
acquired [47]. The many complex asynchronous and interconnected mechanisms of
the fetal brain development are vulnerable to disruption of the development [87].

Developmental abnormalities are the consequences of defective programming of
one or multiple microstructural embryonic or fetal stages presented in Section 1.1.1 [8,
19]. The fetal brain may also incur damages of external origin resulting from punctual
or external events (e.g. stroke, injury, infection, toxic or metabolic abnormalities) [25].
Consequences and manifestation of such disruption depend on the developmental
stage and location of injury [84, 19]. In general, the earlier the "hit" (either develop-
mental or acquired), the worse the abnormalities (e.g. lissencephaly, cytomegalovirus,
alcohol). Derangements occuring later during gestation will induce mild or moder-
ate consequences. Furthermore, early disruptions will be localized in the gray matter
(GM) (e.g. basal ganglia and cortex), while later ones will appear in the white matter
(WM).

Both acquired and developmental disruption may result into severe conditions [47].
Pathological development may express as congenital disease, i.e. at birth, or later in
life. Congenital malformation are present at birth and may result into severe condition in
early childhood. For instance, polymicrogyria, caused by migrational abnormalities,
manifests in developmental delay and/or epilepsy [19]. Moreover, although isolated
congenital malformation may occur, associated malformations are frequent, such as in
corpus callosum agenesis [59].

Growing evidences of fetal programming indicate the importance of in utero devel-
opment as it may influence health later in life [36]. Indeed, many neurological disor-
ders appear to take roots in the prenatal period, as for instance autism, schizophrenia
and neurodegenerative diseases (e.g. Alzheimer’s disease, Parkinson’s disease) [35,
36, 78, 65]. Nevertheless, the manifestation and severity of disorders often remain un-
explained (unknown factors).
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1.1.3 Anatomical monitoring

Given the importance of the early brain development and the potential severe conse-
quences in case of disruption, it is therefore of the utmost importance to gain knowl-
edge on the many different pathological pathways. Underlying these open questions,
clinical motivation ultimately aims at improving the patient care for disorders of fetal
development origins.

Although it is clear that many childhood disorders relate to prenatal development,
the identification, the characterization and the potential treatment of pathology remain
to be further explored [47]. In a clinical routine, the first main objective is the earliest
possible identification of defective development, in order to provide adapted pre- and
postnatal patient care, plan appropriate treatment, and, provide support for the fam-
ily [87]. The earlier a pathological development is identified, the better guided will be
the therapy [149].

From a research perspective, it is clear that gaining knowledge on the deep devel-
opmental mechanisms and their possible deviations is crucial to better address patient
care. Understanding the pathological pathways, i.e. the relationship between the brain
development and the neurological disorders, can be divided into two intermediate
sub-links: (i) between incurred disorders and macrostructural abnormalities, and (ii)
between the macrostructural abnormalities and the underlying microstructural mech-
anisms. Macrostructural changes hence constitute a turningpoint in the pathological
timescale.

In that respect, there is an increasing interest in the study of morphological and
structural evolution throughout gestation and consequently a compelling need to
gain insights into the fetal brain structures. The aims are twofold:

1. to characterize normal development by understanding its features and varia-
tions,

2. to identify key structural and morphological biomarkers to differentiate an ab-
normal development from a normal one.

1.2 Imaging the fetal brain

In light of the above, non-invasive, safe and efficient imaging techniques are necessary
for the monitoring and follow-up of the brain development. In this section, we briefly
discuss the imaging modalities typically used for fetal brain screening.



1.2. IMAGING THE FETAL BRAIN 5

1.2.1 Ultrasound: a clinical routine

Ultrasound (US) appeared for the first time for medical imaging use in the early 1950s.
Over the following couple of decades, US has made its way in obstetrics and gynecol-
ogy as it quickly proved useful in the follow-up and diagnosis of fetal and placental
abnormalities [139]. In the last decade of the XXth century, US biometric measurements
such as the body size and length were related to fetal aging and pathological develop-
ment [136, 149]. From then on, and thanks to its cost-effectiveness, wide availability
and portability, US has established as a routine imaging modality for fetal and placen-
tal screening in clinic [128].

US examination is typically performed twice during pregnancy: during the first
trimester, fetuses are counted, aged and assessed for viability; from the second
trimester, fetal growth is assessed as well as screened for detection of potential anoma-
lies [136]. A third trimester US exam can be performed to follow-up on the fetal growth
or any upstream anomaly detected [149, 19].

Intracranial structures are only visible from the late first trimester [149]. Throughout
the course of gestation, most fetal brain structures have been characterized by normal
value ranges [116]. Common abnormal development typically characterized by out-
of-range biometric measurements are diagnosed by comparison to reference charts.

Despite its broad advantages, US presents some limitations. The main US draw-
back is its sensibility to the surrounding tissues, making the image quality eas-
ily altered by the fetal pose, the interference from the fetal skull or the maternal
morphology [136, 128]. Further, while US is superior for detecting calcifications, pseu-
docysts ans other thin membranes, it is less accurate for differentiating some structures
(e.g. lipidic structures) [128].

1.2.2 Magnetic resonance imaging: a complementary modality

The first use of magnetic resonance (MR) to image a fetus was performed in 1983 [133].
It is only from the late 1990s [72], with the development of adapted sequences for
fetuses (see details in Section 1.3.2), that fetal magnetic resonance imaging (MRI) has
become further explored [119].

The realisation of a fetal MR examination is only relevant from the mid-second
trimester to the end of gestation, following a US exam and once structures are large
enough [118, 19]. We differentiate two main medical indication for fetal brain MRI:

• US cannot be successfully performed: fetal pose or maternal morphology hampers
the image quality.

• Additional information are needed: (i) inconclusive US leads to equivocal situa-
tion where a complementary exam is required to confirm or rule out US findings,
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(ii) fetal development may be at risk in case of infection, twin pregnancy or family
history of previous brain pathologies [18].

Overall, compared to US, MRI offers a better soft tissue contrast of the developing
fetal brain without being affected by the surrounding tissues [118, 83]. Additionally
to tissue delineation, intra-tissue maturation can be visualized through the multilayer
organization in the WM, indication of the cells migration from the ventricles to the cor-
tical plate. Abnormal multilayer pattern have been related to later cortical pathologies
such as polymicrogyria after 32 weeks of gestation [19].

Despite its advantages, MRI remains a complementary-only modality, because of its
expensiveness and safety measures, even though no study could prove that contrast-
free MR at 1.5T is harmful to the fetus’ development [159]. To our knowledge, no
equivalent study was performed at higher magnetic field strength [118]. Nonetheless,
restrictions on above 4T fetal MR scanning applies [2]. Note that in clinics, the magnetic
field strength used is governed by MR scanner availability in each institution, although
3T fetal brain MRI allows better delineation of small structures such as posterior fossa
and parenchymal lesions is increasingly used [18].

In most countries such as some Swiss cantons (e.g. Vaud), fetal MR exams are only
performed on medical indications as scanning of pregnant volunteers is prohibited for
research purposes. Nonetheless, other countries do not share this constraint: for in-
stance in the United Kingdom, the Developing Human Connectome Project (dHCP)
aims at getting a broader understanding of the early brain development with the ac-
quisition of longitudinal pre- and postnatal MRI.

1.3 Fetal brain MRI

1.3.1 Principle of structural MRI

Structural, or anatomical, MRI provides information for accurate delineation of the
tissues. It is a non-invasive non-ionizing imaging technique that relies on the density
and properties of the hydrogen atoms in the tissues to construct the intensities in
the image. In a fetal examination clinical set up, the mum is placed into a scanner
where a strong static magnetic field is applied. The acquisition of MR images can be
decomposed as follows:

1. Creation of an equilibrium state. In the MR scanner, an external magnetic field
B0 (usually of 1.5 or 3T) is applied, resulting in the alignment of all nuclei of
the body along the direction of this field. A magnetization vector appears along
this direction.

2. Perturbation of the equilibrium state. Energy is added to the system through a ra-
diofrequency (RF) pulse. Excited spins are flipped over to a plane that is orthogo-
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nal to B0, causing (i) a decrease of the longitudinal magnetization component and,
(ii) the appearance of a transverse magnetization component.

3. Return to equilibrium state. In this relaxation phase, two processes are observed:
(i) a longitudinal relaxation, characterized by a regrowth of the magnetization in
the direction of B0, is described by time constant T1, and (ii) the decrease un-
til complete cancellation of the transverse magnetization is characterized by a
a time constant T2.

In this latter phase, the induced magnetic field in the plane orthogonal to B0 is
measured with receiver coils and leveraged for the reconstruction of the gray scale
images. Switchable static field gradients are used to encode the spatial position.

A significant advantage of MRI is the great flexibility offered in the generation of
image contrast. With a given acquisition set up, i.e. the sequence of MR excitation, the
strength of the signal measured and consequently the image contrast are defined for
a specific location. Nonetheless, the same tissue location relates to a different image
intensity for different acquisition parameters. Modifying the parameters of an MR se-
quence changes the tissue contrast in the images by emphasizing different aspects of
the tissue composition. For instance, T1-weighted (T1w) imaging shows hyperinten-
sity for fat tissues and, conversely, T2-weighted (T2w) imaging highlights both fat and
water.

In fetal MRI, T2w is the contrast of choice for cerebral structure delineation thanks to
their high water content, while T1w contrast benefits the visualization of focal compo-
nents such as haemorrhages and tissue maturation indicated by myelination [47, 128].
Nonetheless, as the cerebral tissues mature throughout gestation, acquisition parame-
ters need to be adapted according to the fetal age for both contrasts [119, 55]. Yet, sim-
ilarly to US examination, unpredictable fetal motion is a key challenge for fetal MRI.

1.3.2 Fast imaging protocol

Nor isotropic 3D acquisition, nor 2D acquisition with a good through-plane resolution
is realistic in fetal brain MRI due to the important unpredictable motion of the patient.
Consequently, fast acquisition protocol have been proposed to prevent tampering
by stochastic fetal and maternal motion on the acquired images [119]. Single-shot
T2-weighted (SST2W) sequences are the most common method for structural imaging
of the fetal brain [55]. Following a common principle acquisition scheme, each vendor
proposes its own MR sequence design1. In addition to being MR vendor-specific,
sequences may differ in hardware and acquisition parameters between acquisitions
and institutions.

1As presented in Gholipour et al. [55]: General Electric Medical systems uses Single shot Fast Spin Echo (SSFSE), Siemens
Healthineers uses HAlf-fourier Single-shot Turbo spin Echo (HASTE), Philips uses Single-Shot half-Fourier Turbo Spin Echo
(SShTSE) and Bruker Instruments uses Rapid Acquisition with Relaxation Enhancement (RARE) .
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In a nutshell, SST2W schemes allow the acquisition of a 2D slice in one "shot", i.e.
following a single excitation pulse. A single slice is acquired in about one second, and
a stack of 2D slices covering the brain can be acquired in between 20 and 30 seconds.
Note that the number of slices, and hence the acquisition time, may vary with the size
of the brain.

Figure 1.2: Spatial coverage of fetal brain MRI SST2W sequences. (A) Interleaved slice acquisition se-
quence. (B) Theoretical spatial sampling. (C) Practical motion-corrupted sampling. Red and dark blue
arrows respectively indicate under- and over- sampled area.

Nonetheless, the cost of such speeded up acquisition lies in the final image resolu-
tion. At 1.5T, although SST2W present a good in-plane resolution of about 1 × 1mm2,
slice thickness has to remain higher, from 3 to 5mm, with a gap of +10 to 15% [55,
118]. A finer out-of-plane resolution would result in a decrease of signal-to-noise ratio
(SNR) [119]. Stacks of thick 2D slices are referred to as low-resolution (LR) images.

Another challenge going along with the time constraint is the avoidance of spin his-
tory artifacts. The latter occurs in case of successively fast acquisition of adjacent slices.
So as to keep a continuous acquisition process of the slices, an interleave approach is
often adopted. This acquisition scheme results in the acquisition of two trains of series
within one. Figure 1.2 shows the acquisition timeline of slices (A) that results into a
full stack (B).

Despite the acquisition speed-up effort, while intra-slice motion is highly mini-
mized, inter-slice and inter-stack motion artifacts remain present in the LR images
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(Figure 1.2 (C)). This motion may introduce over- and under- sampled area of the fetal
brain, as respectively indicated by the dark blue and the red arrows.

In a clinical examination, acquisitions of multiple shifted stacks in the three orthog-
onal planes are recommended in order to cover the whole brain volume [118]. In that
manner, the brain spatial coverage is hopefully increased or even up to complete. Fig-
ure 1.3 shows 2D and 3D representation of the orthogonal LR stacks.

Table 1.1 summarizes the spatial and temporal characteristics of structural T2w fetal
brain MR exams performed at the Lausanne University Hospital (CHUV). Note that
in clinical routine, typical acquisition protocols feature axial gradient echo T1w and
diffusion-weighted imaging or diffusion tensor imaging in some cases. Overall, the
whole fetal brain MR exam lasts about 30 minutes.

Figure 1.3: Summary of fetal brain MR exam acquisitions.

1.3.3 Limitations of fetal brain MRI

Notwithstanding the unpredictable fetal motion, the good in-plane tissue delineation
on fast SST2W acquisition allows accurate measurement of cerebral structures. Biome-
try, myelination and cortex gyration as a function of gestational ages (GAs) were com-
piled into textbook atlases [47]. Reference normal biometrics were further character-
ized for additional infra and supratentorial structures in [142]. To alleviate any con-
founding, textbook atlases are constructed using MR exam presenting no motion and
with orthogonal acquisitions in correct anatomical planes [47, 142]. Reference slices
characterized by view planes and anatomical landmarks are well defined for the mea-
surement of each structure [47]. In the atlas construction, structures that could not be
reliably measured due to the visualization and alignment criteria were skipped.
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Table 1.1: Characteristics of structural fetal brain MR exams at the CHUV on Siemens Healthcare MR
scanner with HAlf-fourier Single-shot Turbo spin Echo (HASTE) sequences. Note that the exam time
only considers T2w acquisitions.

Magnetic field strength (T)

1.5 T 3 T

SL
IC

E

Acquisition time (s) 1.2 1.1
Acquisition resolution (mm2) 1.12× 1.12 1.10× 1.10

Image resolution (mm2) 1.12× 1.12 0.55× 0.55
Thickness (mm) 3.0

ST
A

C
K

Nslices 20 to 30
Acquisition time (s) ∼ 26

Slice gap (mm) 3.3 3.0
Image resolution (mm3) 1.12× 1.12× 3.3 0.55× 0.55× 3.0

EX
A

M Nstacks (target) 6
Nstacks (practice) 3 - 20

Estimated time (min) < 8

Similarly, Grossman et al. [61] ventured to perform volumetric analysis on axial-
only SST2W acquired images. [34] further leveraged cortical plate volumes from
multiplanar LR images combined to 2D biometric measurement for the prediction of
intrauterine growth restriction. Although these are a good baseline for further studies,
yet an important partial volume effect due to the strong anisotropy of the stacks
remains. Therefore, volumetric analysis are not reliable.

While an extensive list of structures biometry have been characterized, not all
of them are guaranteed to be measurable within a patient MR exam (motion, sig-
nal drop), hence leading to incomplete characterization of a fetal brain growth in
clinical environment.

Due to the strong anisotropy and to the residual inter-slice motion, three-
dimensional (3D) quantitative analysis still cannot be reliably performed. Moreover,
despite the definition of reference acquisition planes for each of the anatomical orien-
tation [118], correct alignment remains challenged by fetal motion and thus, even 2D
biometric measurements may be unfeasible or corrupted.

1.4 Towards motion-robust 3D quantitative analysis

1.4.1 Super-resolution reconstruction

In order to better model the organ and provide good support for early diagnosis, the
stakes of fetal brain MRI lies in the generation of an image with good spatial resolu-
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tion while keeping a good quality, such as signal-to-noise-ratio [58]. Nonetheless, we
introduced in Section 1.3.2 the constraints that regulate the acquisition process, hence
resulting into anisotropic LR images. As a result, the objective is to enhance the image
resolution while compensating the acquisition distortions.

In practice, each of the acquired samples, i.e. image slices, represent a different
aspect of the fetal brain, thanks to the multiple shifted orthogonal acquisitions (see
Section 1.3.2) [118]. Just as a puzzle, a fetal brain MR exam can only be fully appre-
ciated once all pieces are put together. Therefore, post-processing imaging methods
called super-resolution (SR) have been proposed to estimate an isotropic volume of en-
hanced resolution by combining several images of lower resolution [58, 146]. Figure 1.4
illustrates the forward acquisition of LR images and the reverse SR reconstruction.

In order to provide the most accurate volume possible, SR algorithms must comply
with the acquisition system constraints [58]. Commonly, for a fetal brain MRI single
slice acquisition the following forward linear model is considered:

XLR
kl = Hθ

kl.X +nk (1.1)

where Hθ
kl models the distortions occurring during the acquisition of XLR

kl , the lth ob-
served slice of the kth LR image of the true target object X, and nk is the noise observed
in the kth LR image. θ indicates the underlying acquisition system parameters that will
need to be determined.

Figure 1.4: Forward model and inverse problem.

The SR reconstruction of a high-resolution (HR) volume X̂ from a set of LR obser-
vations is formulated as an inverse problem in which the underlying slice acquisition
model Hθ̂

kl is to be determined (see Figure 1.4). Nonetheless, due to the limited avail-
ability of observations, this problem is ill-posed and, therefore, no unique solution can
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be found. Consequently, regularization must be applied to constrain the problem to
having a unique optimal solution:

min
X
∑
kl

DF(Hθ
kl.X, XLR

kl )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Data Fidelity

+ α. R(X)
²

Regularization

(1.2)

where DF(.) is a data fidelity function that aims at measuring the consistency of the
observations XLR

kl and the distorted target image Hθ
kl.X, R(.) is a regularization term

that enforces constraints on the solution such as the image smoothness, and α weights
the contribution of both terms. While DF brings prior information on the acquisition
process with Hθ

kl, R features prior on the solution.

To solve the inverse problem in Equation 1.2, most – but not all – proposed SR recon-
struction methods for fetal brain MRI [125, 76, 52, 82, 124, 88, 144, 33], are decoupled
such that (1) the parameters θ of the acquisition model Hθ

kl are estimated in order to
(2) be reinjected into the inverse problem. Fogtmann et al. [42] proposed a unified
motion-reconstruction approach, in which a regularization term for motion estimation
is considered. We give here a brief overview of the steps of the two-stages approach.

Step 1: Acquisition model estimation
At scan time, two sources of distortion are identified:

• the acquisition system, i.e. the MR scanner, that can be decomposed
into (i) the downsampling Dkl and (ii) the blurring effect Bkl induced
by the slice acquisition process (point spread function and slice profile).
The acquisition system-specific distortions Dkl and Bkl can be mathemat-
ically modeled as they represent prior knowledge on the common source
imaging system [146, 144].

• the target object, i.e. the fetal brain. We note Mθ
kl the unknown 3D rigid dis-

placement, relative to the fixed space of X, of the fetal brain in the lth slice of
the kth LR image. The stochastic motion being fetus and acquisition depen-
dent, its parameters must be estimated slice-wise.

Consequently, the forward model of the slice acquisition in Equation 1.1 can be
reformulated as:

XLR
kl = Dkl.Bkl.Mθ

kl
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Hθ
kl

.X +nk (1.3)

Inter-slice inter-stack fetal brain displacement Mθ
kl is most commonly estimated

via slice-to-volume registration (SVR) [37], although methods have been proposed
based on slice intersection optimization [82] and more recently learning-based
methods for pose estimation [70]. In a nutshell, SVR aims at finding the best map-
ping function θ for each slice to be optimally registered to a target 3D volume X
[37]. An initial volume-to-volume registration is performed to roughly align the
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LR stacks in a common space. SVR iteratively registers each 2D slice to a reference
3D HR volume. In the absence of an initial reference volume, a LR stack inter-
polated onto a HR grid is considered. The reference volume is updated with the
interpolation of the current estimation of LR slices position at each iteration. SVR
is optimized until convergence based on a distance function or similarity metric.

With the estimation of the optimal motion parameters θ̂ and the approximation of
Dkl and Bkl, the acquisition system Hθ̂

kl is deemed to be known. We refer to the
latter as Ĥkl.

Step 2: Image recovery
The recovery of the target image X̂ is obtained by solving the inverse problem
Equation 1.2:

X̂ = argmin
X

∑
kl

DF(Ĥkl.X, XLR
kl )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Data Fidelity

+ α. R(X)
²

Regularization

(1.4)

The data fidelity term DF is often formulated as an error, such as the squared
norm of the difference ∥Ĥkl.X −XLR

kl ∥
2
2.

Different regularization functions have been proposed for fetal brain MRI SR re-
construction, such as Charbonnier [88], total variation (TV) [144] or first order
Tikhonov [33] regularization. Nonetheless, the absence of true reference HR vol-
ume makes the optimization of the regularization parameter difficult.

Although both stages have been widely investigated, the good quality of SR re-
constructed volumes is not guaranteed. As a matter of fact, it may occur that SR
reconstructed images are altered by remaining artifacts. Commonly, the poor SR re-
construction quality can be explained with the computer science "garbage in, garbage
out" concept. In other words, inputs of bad quality result in output of bad quality. In
SR reconstruction, the bad input may be (i) the LR images for instance due to signal
drops or (ii) a bad motion estimation that may itself be due to bad LR images. Fortu-
nately, outlier detection and rejection have been proposed in common pipeline, either
as a preprocessing step [33] or as part of the reconstruction process [52, 88, 33]

The recent review paper of Uus et al. [145] on motion correction in fetal MRI iden-
tifies three main open-source toolboxes for the SR reconstruction of the brain: SVRTK
[88], MIALSRTK [143] and NiftyMIC [33]. All three compile (i) the extraction of the
region of interest, (ii) the preprocessing of the LR images for intra- and inter- stacks
inhomogeneity correction, (iii) the estimation of the fetal brain motion and, finally, (iv)
the recovery of the HR volume. Additionally, an alignment to template space is pro-
posed. Note that amongst these pipelines, substantial inter-SR method variations are
introduced due to the broad intensity-based operations induced by the preprocessing
and regularization [111]. Thanks to these novel image processing techniques, good
HR T2w volumes can be reconstructed with isotropic spatial-resolution that often cor-
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responds to the input in-plane resolution, although SVRTK and NiftyMIC offer the
possibility to specify the target resolution of the reconstructed volume.

Furthermore, an alternative approach has been proposed at the time of the redaction
of this thesis. In contrast to existing methods, NesVoR [155] relies on deep-learning
(DL) based methods for both steps. The acquisition model – especially the motion –
is iteratively estimated using SVoRT [154], a transformers-based approach to perform
SVR into a 3D canonical space. The final 3D volume is estimated from a continuous
representation relying on an implicit neural model [102], a self-supervised approach.

Together with improved visualization, the availability of a HR isotropic volume
allows the clinicians to realign and freely navigate into one single volume for the as-
sessment of brain growth and early pathology diagnosis [115, 89]. Furthermore, re-
duced blurring due to partial volume effect and motion compensation opens up to the
possibility of morphometry- and volumetry-based quantitative analysis of improved
accuracy. Nonetheless, the baseline procedure for such quantitative analysis is the MR
image segmentation of brain tissues and structures.

1.4.2 Fetal brain tissue segmentation

Three-dimensional quantification of regional volumetry and morphometry requires an
accurate delineation of the object of interest in the image. In medical imaging, such de-
lineation is done by proceeding to the image semantic segmentation. The latter consists
in the assignment of a label to each voxel, i.e. volumetric pixel, of the image according
to what it represents. The outcome of voxel-wise image segmentation is compiled into
a labelmap. Although segmentation is performed at a voxel-level and heavily relies on
the image intensity, contextual spatial information must be considered.

In fetal brain MRI, segmentation aims at classifying the voxels according to the
tissue, structure or region they belong to. The resulting labelmaps offer support
for voxel-based morphometry and growth quantification. While morphometry is
especially explored for the developing cortical plate (e.g. surface, thickness) [147],
volumetric normative ranges were defined for the whole fetal brain [53] as well as
tissue-specific [89, 148].

Expert manual annotation is considered as the gold standard. Nevertheless, an-
notating is a tedious and time-consuming task that cannot be undertaken in a clin-
ical routine nor for large cohort studies. Furthermore, the expert subjective ap-
preciation makes the annotation process prone to intra- and inter-rater variability
and thus, poorly reproducible [98, 112]. As a result, manual segmentation is not
an enduringly reliable method and hence motivates the development of automatic
segmentation methods.
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Challenges for automatic methods

In order to be reliable, automatic segmentation methods must be robust to the many
variations that may appear in fetal brain MRI. We identify three main sources of vari-
ability that result from the different stages of the overall fetal brain MRI workflow:

1. the target population. The fetal brain undergoes drastic morphological and mi-
crostructural changes throughout gestation (see Section 1.1.1). The latter induce
significant variation of image intensity and thus tissue contrast: the older the fetal
brain, the darker the WM appears on T2w MR images [98]. Therefore, GA-specific
variations appear in the MR images (see Figure 1.5 (A)). Additionally, pathological
condition may be the cause of significant inter-patient morphological differences
(e.g. ventriculomegaly, polymicrogyria).

2. the image acquisition system. The MR scanner introduces variation that can ei-
ther be hardware- or software-related, although both are closely tied as they may
constraint one another (see Section 1.3.2). Additionally to the inhomogeneities in-
troduced during any MR exam, we recall that MR vendor- and institution-specific
variations are present in the MR sequence acquisition protocol (Section 1.3.2). One
can appreciate in Figure 1.5 (B) the substantial texture variation as well as the
image resolution. Acquired image resolution translates into different amount of
blurring and hence of partial volume effect in the image.

3. the postprocessing methods. The many intensity-based operation performed
during SR reconstruction pipeline introduces inter method variation (see Section
1.4.1). Nonetheless, we emphasize that intra-SR method variation also appears ac-
cording to the availability of LR images and choice of regularization parameters.
Figure 1.5 (C) presents inter- and intra- SR method variation.

In comparison, in adult brain MRI, sources of variations mainly come from the ac-
quisition system, as no maturation effect as strong as in fetal development is observed,
nor systematic post-processing steps. Additionally to the wide availability of anno-
tated dataset, the automatic segmentation of adult brain MRI is easier to tackle.

Here, while acquisition and post-processing variations are of low influence for
expert annotations, the upstream substantial difference they introduce may be
critical for computer-assisted segmentation methods. Consequently, robust auto-
matic segmentation methods must cope with the downstream management of fetal
brain MRI variation.
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Figure 1.5: Illustration of the fetal brain MRI sources of variation that are either (A) patient, (B) acquisi-
tion system, or (C) post-processing related.
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Automatic fetal brain MRI tissue segmentation methods

In their 2018 review paper, Makropoulos et al. [98] identified two methodology cate-
gories for automatic fetal brain MRI tissue segmentation: parametric techniques and
deformable models. Since the time of this review, the emergence of digital atlases [56]
allowed for registration-based segmentation techniques. In the same vein, the recent
release of a publicly available clinical dataset of annotated fetal brain MRI [112] al-
lowed the development of novel DL based methods. We briefly introduce here below
the principle of each category. Note that, being mainly used for single-tissue segmen-
tation, deformable models have only be used for ventricles in fetal brain MRI and will
not be detailed here [54, 29].

Parametric techniques [98]
In parametric techniques, the probability of a voxel to belong to a tissue is statisti-
cally modeled by considering both its spatial location (derived from probabilistic
atlases) and intensity value (parameterized with a Gaussian mixture model). All
proposed parametric models are fit to the data, i.e. the fetal brain to segment, with
an Expectation-Maximization approach, although variations such as Markov Ran-
dom Field penalty have been proposed [64, 7].

Atlas-based approach
Atlas-based segmentation techniques rely on the image registration processes,
which seek to find the best voxel-to-voxel alignment of two images [14]: an atlas
from which a labelmap of the structures is available, and the target patients image
to be segmented. Once the spatial transformation between the gray-level images
is found, the target labelmap is estimated with the propagation of the atlas labels
into the target space. In multi-atlas segmentation (MAS), the above-mentioned
method is repeated for a set of atlases [73]. Afterwards, label fusion strategies
allow for the combination of the propagated label maps, eventually attributing
more weights globally or locally to one or another selected atlas. Relying on the
quality of the registration step, this method is dependant on the atlas availability,
the quality of the reconstructed 3D volumes and the morphological variability of
the patients.

Deep-learning models
Over the last couple decades, novel supervised DL based methods have been
proposed to address medical image processing, including semantic segmenta-
tion [134]. In such data driven approach, DL models are optimized to fit a dis-
tribution of annotated data, to which we refer as training data, in order to learn
task-specific features. In image segmentation tasks, relevant image features are
extracted to further discriminate the class to which each voxel belongs. During
the training phase, the model is optimized by minimizing a loss function that
compares the predicted output to the target output. At inference, segmentation of
new unseen image can be predicted with the optimized model. As a result, a pre-
requisite for DL-based segmentation is the availability of large annotated datasets.
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A review of DL-based methods proposed for fetal brain MRI segmentation is pre-
sented in the next sub-section.

Automatic methods for MRI tissue segmentation require reference data either for
a model optimization (parametric and DL techniques) or for an image-to-template
matching (atlas-based methods). In the latter, the more diverse the annotated data,
the more likely the target image will be matched to similar atlas. For supervised meth-
ods, the more diverse the annotated data, the better parameterized will be the model.
Although DL methods are known to be remarkably data hungry, they have been estab-
lished as the state-of-the-art methods thanks to the different techniques to overcome
the data availability limitation.

DL models for fetal brain MRI tissue segmentation

In Khalili et al. [79], the first DL-based approach for the segmentation of intracranial tis-
sues in fetal brain MRI was proposed. In this work, seven (7) intracranial tissues were
segmented using the now widely used U-Net architecture that was originally proposed
for neuronal structure segmentation and cell tracking [122]. This model is composed of
an encoding path and a decoding one, with skipped connections. The encoding path,
also known as the contracting path, aims at capturing relevant image features. From
there, the expanding path reconstructs a predicted labelmap. Although they presented
promising results for DL-based fetal brain MRI tissue segmentation, In Khalili et al. [79]
only considered the segmentation of LR images in the coronal orientation.

In 2021, the public release of the Fetal Tissue Annotation (FeTA) dataset [112]
opened up to the possibility of developing automatic segmentation methods for in-
tracranial tissues. Together with the dataset release, a benchmark of automatic segmen-
tation methods was presented, in which all methods but one – ours, a MAS method –
are DL-based [112]. In this study, all DL-based methods relied on 2D approaches, i.e.
the input samples to the networks were subsets of the image of 2D shape (e.g. an
image slice). The overall best performing method adopted a multi-view approach,
aggregating predictions from the three orientations. Interestingly, our MAS method
outperformed the others specifically on bad quality images, hence being more robust
to the image quality than the others. Our MAS approach is presented in Appendix C.

In 2021, the first edition of the FeTA MICCAI challenge was held, relying on an
extended FeTA dataset release. All submissions were DL-based methods implement-
ing either the original or a derived version of the U-Net architecture [113]. Submis-
sions differentiated in terms of architecture (e.g. dimensionality, input size, number
of trainable parameters), training and optimization strategy (e.g. loss function, opti-
mizer, cross-validation, data augmentation) pre- and post-processing (e.g. ensemble
learning, mathematical morphology operation) and data used (e.g. neonatal images).
However, top ranking submissions unanimously agree on some parameters, such as
the consideration of 3D input samples. Despite the promising results of the automatic
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segmentation methods proposed, the scope of this challenge was limited. Indeed, the
true variability of fetal brain MRI was not widely represented, as all images – both
from the training and testing sets – were all acquired at the same institution and post-
processed with two different SR reconstruction methods.

Consequently, the second edition of the FeTA challenge held in 2022 aimed at push-
ing further the challenge by providing multi-center datasets. To assess the applicability
of such methods under real-world constraints, some institutions provided images as
pure testing sets.

Open-source annotated dataset and their limitations

Amongst the publicly available datasets of annotated fetal brain HR T2w MRI, we
differentiate the digital atlases and the clinical sets, that are respectively presented in
Table 1.2 and Table 1.3. By definition, an atlas is the combination of a template intensity
image and its segmentation labelmap [14]. Throughout this thesis, we use the term atlas
to describe normative reference pairs (template, segmentation) that are derived from
multiple clinical MR exams. In fetal brain MRI, typical spatiotemporal (4D) atlases
compile multiple 3D atlases considering the longitudinal evolution of the fetal brain
throughout gestation. As opposed to atlases, clinical dataset compile MR exams and
their manual annotation, i.e. one volume corresponds to one patient’s brain.

Table 1.2: Summary of the open-source annotated fetal brain MRI atlas datasets. GW: gestational weeks

Materials Methods Outcome

Cohort Acquisition Post-processing Construction Image Annotations

[129]
N=80

(21.7-38.7 GW)
Normal

1.5T Philips [76] Serag et al.,
2012 [130]

N=15
(23-37 GW)

1.18mm3

Tissue
probability

maps

CRL
[56]

N=81
(19-32 GW)

Normal

3T Siemens
1.5T Philips [52] Gholipour et al.,

2017 [56]

N=18
(21-38 GW)

0.83mm3

Parcellation and
tissue labelmaps

SBA
[41]

N=90
(21-35 GW)

Spina Bifida aperta
1.5T Siemens NiftyMIC

[33]
Fidon et al.,
2022 [41]

N=15
(21-34 GW)

0.83mm3

Tissue
labelmaps

CHN
[156]

N=90
(22.5-39 GW)

Normal
Chinese

3T Siemens NiftyMIC
[33]

Xu et al.,
2022 [156]

N=16
(23-38 GW)

0.83mm3

Parcellation and
tissue labelmaps

Spatiotemporal atlases provide anatomical references of the fetal brain at each ges-
tational age. However, the construction of a reference template image from multiple
clinical exams smoothes the true fetal brain MRI variability. Therefore, annotation on
patient-specific images are essential to better represent the true target population.
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Table 1.3: Summary of the open-source annotated fetal brain MRI clinical datasets.

Cohort Acquisition Post-processing Annotations

FeTA
[112]

N=80
Pathological and

Neurotypical

1.5T or 3T
GE Healthcare

MIALSRTK [143]
SVRTK [88]

FeTA
guidelines [112]

The first clinical dataset of annotated fetal brain MRI, the FeTA dataset was released
in 2021 [112]. In a nutshell, SR reconstructed clinical fetal brain MRI are provided
along with a labelmap of intracranial tissue classified into seven (7) categories: the
extra-axial cerebrospinal fluid (CSF), the cortical gray matter (cGM), the WM, the ven-
tricular system (lateral, third and fourth ventricles), the cerebellum, the deep gray
matter (dGM) and the brainstem [112]. The original FeTA dataset is under the ethi-
cal committee of the Canton of Zurich, Switzerland (Decision numbers: 2017-00885,
2016-01019, 2017-00167).

As represented in Table 1.3, the wide range of possible variation presented in the
previous Section 1.3.3 is poorly represented into the available datasets. The limited ac-
cess to patient data and the expensive cost of annotation yields to an important training
data scarcity. Consequently, the limited availability of annotated dataset jeopardizes
the development of robust segmentation methods.

In a real case scenario, one might want to segment images from a new target dataset
DT, although only annotated images from a source dataset DS are available. The up-
stream acquisition and postprocessing inter-dataset differences may result into differ-
ent data distribution [81]. We refer to these dataset-specific distribution as domains.
Consequently, as the core principle of DL is to fit a data distribution, a model trained on
a source datasetDS may poorly perform on an out-of-source distribution target dataset
DT [51]. In short, domain shift → performance shift. Fortunately, DL techniques have
been explored to improve the performance of a model in this specific problem known
as domain adaptation.

Strategies for robust DL models

Domain adaptation falls into the machine learning research fields known as transfer
learning (TL). TL aims at leveraging knowledge learned by a model for a source task,
to achieve good performance on a different but related target task [81]. For instance,
re-utilizing a fetal brain MRI tissue segmentation model in order to further segment
cortical parcellation of fetal brain MRI is within the scope of TL.

Specifically in our example of fetal brain MRI tissue segmentation, the source and
target tasks are semantically identical (fetal brain MRI tissue segmentation). However,
an intrinsic shift is induced by the domains of the source and target images, respectively
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DS and DT. In the absence of target domain annotated images, it is therefore necessary
to find ways to either adapt or generalize the model to improve the performances.

Data augmentation synthesizes new data from the available ones in order to over-
come the lack of data and prevent the model from over-fitting. As a result, the sam-
ple size is increased as well as its intrinsic diversity. Conventional data augmenta-
tion strategies apply spatial (e.g. rotation, flipping) or intensity-based (e.g. Gaussian
noise, intensity inhomogeneities) transformations to the original data. Data augmen-
tation has been broadly adopted in the field to make DL models more robust [57]. In
Khalili et al. [79], acquisition-inspired augmentations are applied with the introduc-
tion of intensity inhomogeneity in order to make the model robust to acquisition arti-
fact. Nonetheless, while the introduction of small variation to the data distribution has
proved efficient for in-domain segmentation enhancement, it may not address larger
perturbation as those induced by the domain shift.

Therefore, the challenge lies in the reduction of the inter-domain performance drop
without having to annotate more data. Recently, domain-adaptation strategies for MRI
segmentation have been proposed [107, 105]. Nevertheless, such methods are all data-
driven, hence adjustment to the target task requires optimization efforts. Moreover,
while these methods specifically aim at integrating non-linear intensity changes, these
are not directly addressing the real domain shifts induced by the acquisition and re-
construction processes.

Assessment of image segmentation

The quantitative evaluation of the performance of a segmentation method is crucial to
determine its robustness and reliability. Segmentation evaluation measures, to which
we refer to as metrics, typically compare the predicted segmentation of an algorithm
to a reference segmentation. In medical imaging, reference segmentation are typically
obtained from manual expert annotation. Despite the known inter-annotator variabil-
ity [112], reference segmentation are considered as "ground truth" (GT).

A segmentation labelmap can be (in)accurate in many ways: size, location or shape.
Such different aspects of a segmentation quality are commonly quantified by differ-
ent metrics. According to these aspects, metrics can be classified into three classes:
overlap-, size-, and boundary-distance-based. Although it is important to consider
complementary metrics for the full assessment of a segmentation quality, Metrics
Reloaded [97] recommends a problem-driven approach for the metrics selection.

In practice, segmentation performances of fetal brain MRI tissue segmentation
are usually assessed with overlap-, size- and boundary-distance-based metrics [113].
Nonetheless, we recall that the purpose of fetal brain tissue segmentation addresses
both volumetric and morphometric analysis. Voxel-based morphometry studies the
shape of the structures and therefore considers not only the spatial localisation but
also the connection of the voxels. Therefore, while both volumetry and morphometry



22 CHAPTER 1. INTRODUCTION

requires good voxel-wise segmentation, morphometry additionally requires topology
correctness in the prediction.

1.5 Thesis contributions and outline

The goal of this thesis is the development and validation of robust methods for im-
proved 3D quantitative analysis of fetal brain MRI. As evidenced throughout this
chapter, a major obstacle in these tasks is the lack of GT reference data. While the
absence of true HR fetal brain MRI hampers the validation and optimization of SR re-
construction algorithms, the development of automatic segmentation methods is held
back by the lack of annotated data representative of the true fetal brain MRI variability.
Figure 1.6 (A) summarizes the whole fetal brain MRI workflow in either a clinical or
research context.

Figure 1.6: Overview of this thesis contributions and outline (B) with respect to the overall fetal brain
MRI workflow (A).

Overall, the main contributions of this thesis can be categorized as:

1. Methodological developments

• Experimental framework for the optimization of SR
reconstruction parameters.

• Data augmentation approaches for the development of robust automatic seg-
mentation methods.

• Optimization loss function to ensure the topological consistency of DL
based automated segmentation.

• Topology-based metric to quantify the size of the segmentation
topological defects.
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2. Analysis and methods validation

• Statistical analysis of multi-dataset multi-observers
biometric measurements.

• Assessment and comparison of automatic segmentation methods.

Additional contributions are:

• the co-organization of the FeTA MICCAI challenge. Beyond the practical organi-
zation, I participated to the redaction and revision of proposals and publications,
the evaluation and revision of the submissions, and the analysis and interpreta-
tion of the results.

• the software developments related to our in-house developed MIALSRTK BIDS
App for the SR reconstruction of fetal brain MRI. Details on the maintenance, the
improvement of the user-experience and performance, and the development of
new features are briefly presented in Appendix B.

• the data management of our institution clinical dataset, following the well de-
fined Brain Imaging Data Structure (BIDS)2 way of organizing neuroimaging data.
These efforts aimed at standardizing the organization of the source images and
their derivatives to ease the navigation and communication with image process-
ing softwares. More precisely, it consisted in the retrieval, anonymization, con-
version and organization of clinical data.

Part I of this thesis combines the works related to SR reconstruction of fetal brain
MRI. Chapter 2 presents a clinical validation of SR reconstruction algorithms. Bio-
metric measurements from two observers, one experienced and one junior radiologists,
on both LR T2w and SR reconstructed images are compared to assess the practical
value of SR reconstruction in a clinical environment. In this intra- and inter-observer
agreement study, we evidence the dependence of the observer’s confidence to the im-
age observed. An extension of this work for the specific assessment the fetal corpus
callosum biometry is presented in Appendix D with the inclusion of US imaging.

Chapter 3 presents a simulation-based approach to tune the SR reconstruction
parameters, especially the regularization weight. In this study, we propose to leverage
a simulation framework to generate both LR and HR synthetic T2w fetal brain MR
images. In different acquisition settings, the HR simulated images are used as GT
to assess the quality of SR reconstructed LR simulated images. Results show that
default parameters are typically sub-optimally set. Our principled approach for the
optimization of regularization parameters translates well to real case scenarios, with
clinical SR reconstructions of qualitatively better quality.

2https://bids.neuroimaging.io

https://bids.neuroimaging.io
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Part II covers the generalization of automatic segmentation methods across dif-
ferent domains, specifically through data augmentation. In both Chapter 4 and Chap-
ter 5, we aim at increasing the training sample size and variability represented.
Chapter 4 presents a data augmentation strategy inspired from the sources of varia-
tion themselves to overcome the image domain shift. As in Chapter 3, we propose
to use a numerical simulator to generate synthetic fetal brain MRI. To replicate as
faithfully as possible the entire fetal brain MRI generation, LR T2w simulated images
are SR-reconstructed. We first prove that numerically-simulated images can comple-
ment clinical images for data augmentation in a domain shift-free application. Then,
we show that a model that was trained in a source domain can be adapted to a target
domain through fine-tuning on SR reconstructed synthetic MR images.

In Chapter 5, we propose to leverage the intra-SR reconstruction methods vari-
ability. As we evidence in Chapter 3, variations of the regularization parameter in-
troduce texture changes in the SR reconstructed volumes. In this study, multiple
reconstructions of the same fetal brain with different regularization parameters are
used as data augmentation strategy. Overall, our multi-SR reconstruction approach
significantly improves the in-SR domain segmentation performance and the gener-
alization across SR reconstruction methods.

Part III explores the importance of the consideration of the topology in segmen-
tation. In Chapter 6, we analyse the topological properties of the top fetal brain
MRI multi-tissue segmentation methods. In the context of the MICCAI FeTA chal-
lenge, we explore the inclusion of the topology assessment in the comparison of dif-
ferent methods. We further evidence the different topological consideration on a
tissue-wise analysis.

Chapter 7 presents a methodological contribution for the improvement of corti-
cal plate segmentation topological correctness and its validation. In this work, we
propose a DL segmentation framework for automatic and morphologically consistent
segmentation. First, we propose a generalized multi-dimensional topological loss
function in order to enhance the topological accuracy. Second, we introduce hole ra-
tio, a new topology-based validation measure that quantifies the size of the topo-
logical defects taking into account the size of the structure of interest. Overall, both
quantitative and qualitative results support the generalizability and added value of
our topology-guided framework for fetal cortical plate segmentation.

Chapter 8 discusses the results of this thesis and the possible future perspectives.
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On super-resolution reconstruction
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Fetal brain MRI biometric

measurements

The work presented in this chapter is originally published as "Fetal Brain Biometric
Measurements on 3D Super-Resolution Reconstructed T2-Weighted MRI: An Intra-
and Inter-observer Agreement Study" with co-authors: P. de Dumast, M. Khawam, P.
Deman, H. Kebiri, T. Yu, S. Tourbier, H. Lajous, P. Hagmann, P. Maeder, J.-P. Thiran,
R. Meuli, V. Dunet, M. Bach Cuadra and M. Koob, in Frontiers in Pediatrics, 9:639746,
doi: 10.3389/fped.2021.639746.
P. de Dumast and M. Khawam are equally contributing authors.

2.1 Introduction

Biometric measurements are good markers of fetal brain maturation and growth and
are a fundamental basis for the diagnosis of developmental and acquired brain abnor-
malities [62]. Indeed, an abnormal measurement is often the first warning of disturbed
fetal growth that requires further investigation. Quantifying brain development in
comparison to reference charts is the first routine step. The accuracy of biometric data
is essential for the evaluation of prognosis and prediction of outcome as it may influ-
ence both prenatal and postnatal management.

The level of confidence in the process of image analysis [60] is important pa-
rameter as it corresponds to the degree of certainty in the correctness of diagno-
sis and is associated with relevant decisional consequences [13, 104]. An imaging
method where measurements would be easier to perform could help in providing ac-
curate biometry with more confidence, particularly on suboptimal images and for less
experienced radiologists.

27
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In clinical practice, fetal brain biometric measurements are commonly performed
on T2w LR images. Nonetheless, we saw in Section 1.3.3 that LR-based measurements
may be corrupted by the strong image anisotropy, the oblique orientation of the image,
and the inter-slice motion.

In this study, we aim to compare 2D measurements of fetal brain biometry using
orthogonal 2D LR T2w sequences (T2WSs) vs. using one single 3D SR-reconstructed
volume for both supratentorial and infratentorial measurements. We evaluate (i) the
agreement between T2WS and SR measurements, (ii) the level of the observers’ confi-
dence on both datasets, and (iii) the concordance between a junior radiologist and an
experienced pediatric radiologist.

2.2 Materials and methods

2.2.1 Dataset

Cohort

We retrospectively collected all consecutive normal fetal brain MRI exams from Jan-
uary 2013 to October 2018 (28 patients in total: 15 males and 13 females) from the
MRI database of our institution, the Lausanne University Hospital (CHUV), Lausanne,
Switzerland. All MRI scans were conducted on medical indication (ventriculomegaly,
suspicion of corpus callosum or posterior fossa anomaly, microcephaly...) within 2
weeks of an expert fetal neurosonographic study and were finally considered nor-
mal. Early neonatal neurological clinical evaluation was normal. All images were
anonymized prior to further analysis. This retrospective study was part of a larger
research protocol at our institution approved by the local ethics committee.

MRI

Clinical MR images were acquired either at 1.5 T (MAGNETOM Aera, Siemens Health-
care, Erlangen, Germany) (88% of the patients) or at 3 T (MAGNETOM Skyrafit,
Siemens Healthcare, Erlangen, Germany) (12% of the patients). The fetal brain
MRI protocol included SST2W Half-Fourier Acquisition Single-shot Turbo spin Echo
(HASTE) sequences in the three orthogonal orientations; usually at least two acqui-
sitions were performed in each orientation, together with axial gradient echo T1-
weighted and diffusion-weighted imaging or diffusion tensor imaging in some cases.
The coronal plane was parallel to the brain stem, and the axial plane was parallel to
the corpus callosum long axis [142]. We excluded twins from the study (n=2). At this
point, 26 normal fetal brain MR images were kept for further analysis. Details on the
MRI acquisition parameters can be found in Table 2.1.
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Table 2.1: MRI acquisition parameters of the T2-weighted Half-Fourier Acquisition Single-shot Turbo
spin Echo (HASTE) sequences.

Field
strength
(Tesla)

Number
of

exams

Gestational
age

(weeks)

Number
of

series

In-plane resolution
(mm)

Slice thickness
(mm)

Echo time
(ms)

Repetition time
(ms)

min-max mean ± SD min-max mean ± SD min-max mean ± SD min-max mean ± SD

1.5 T 23 18-34
27.4± 4.2

143 1.125− 1.172 1.127± 0.009 2.42− 4.0 3.34± 0.20 82− 98 90± 1.9 832− 1200 1185± 59
3 T 3 14 0.547 - 3.0 - 101 - 1000− 1100 1090± 027

2.2.2 Methodology

3D SR reconstruction

In our study, 3D SR volumes were reconstructed from T2WSs within the PACS sta-
tion with an in-house syngo.via Frontier fetal MRI prototype [26] based on the publicly
available MIALSRtoolkit software [144, 143].

All cases were reconstructed by an engineer with 20 years of experience in medi-
cal image processing. The selection of the series used for the reconstruction was done
based on visual inspection, and T2WSs that exhibited high levels of motion distortion
and/or intensity signal dropout (thus, that were not exploitable for radiological read-
ing neither) were excluded from the 3D SR reconstruction process. On average, six
series were used per patient for SR reconstruction, with a range from 3 to 11 series
(see Figure 2.1). All 3D images were reconstructed with an isotropic spatial resolution
matching its input in-plane resolution (in average of around 1.1× 1.1× 1.1mm3).

Figure 2.1: Distribution of the number of series used per patient compared to the total available number
of series.
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(a) Examples of the three different ratings made by
the experts.

(b) Quality of SR reconstructions, with the number of
cases in each category of GA range.

Figure 2.2: Quality of SR reconstructions.

Evaluation of SR quality

The quality of the 3D SR was assessed independently, in a blinded protocol, by three
expert raters: one engineer expert in MR image analysis (rater 1, the same who per-
formed the SR reconstructions) and two experienced pediatric radiologists (rater 2 and
rater 3, with, respectively, 15 and 9 years of experience in fetal brain MRI). Recon-
structed volumes were classified into one of three categories: bad (with remaining mo-
tion, very blurred, unusable for diagnosis purposes), acceptable (overall good quality
with some blurring but still relevant for diagnosis purposes), or excellent (good qual-
ity without any blurring). Examples of SR-reconstructed volumes rated with the three
different quality measures are shown in Figure 2.2a.

Biometric measurements

Using standard tools on the PACS station (Carestream Vue PACS©, Version 12.1.6.1005,
Carestream Health Inc., NY, USA), two observers, one experienced pediatric neurora-
diologist (obs1, 15 years of experience of fetal brain MRI) and one inexperienced ra-
diologist (obs2, without any experience in fetal brain MRI) independently measured
11 fetal brain structures on both datasets (T2WS then SR) during two reading sessions
separated by 3 weeks and blinded to the results of the previous measurements.

The following biometric measurements as shown in Figure 2.3 were performed fol-
lowing previously published guidelines for fetal brain MRI biometry [118, 142, 46, 89]:
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• The skull coronal biparietal diameter (sBIP_cor) is defined as the greatest transver-
sal diameter between the inner tables of parietal bones on a coronal slice through
the temporal horns of the lateral ventricles. The brain coronal biparietal diameter
(bBIP_cor) was measured on the same slice.

• The brain axial biparietal diameter (bBIP_ax) is defined as the maximal brain di-
ameter in the transverse plane through the atria. The skull axial biparietal diam-
eter (sBIP_ax) is defined as the inner to inner table maximal skull diameter in the
transverse plane through the atria.

• The corpus callosum length (LCC), height of the vermis (HV), and anteroposterior
vermis diameter (APDV) were measured in the mid-sagittal plane.

• The transverse cerebellar diameter was measured on a coronal slice (TCD_cor)
and on an axial slice (TCD_ax).

• The fronto-occipital diameters [right fronto-occipital diameter (rFOD) and left
fronto-occipital diameter (lFOD)] were measured on a sagittal slice between the
extreme points of the frontal and occipital cortices.

On T2WS, each observer independently chose the best-quality T2W series for each
measurement. SR measurements were performed in orthogonal planes in multiplanar
reformations (MPRs) using the tools within the PACS system. Each observer rated
the confidence of each of his measurements in both T2WS and SR datasets either
as high or low.

Figure 2.3: Biometric measurements. LCC, length of the corpus callosum; APDV, anteroposterior di-
ameter of the vermis; HV, height of the vermis; bBIP_cor, sBIP_cor, bBIP_ax, sBIP_ax, brain and skull
biparietal diameter (coronal and axial); TCD_ax and TCD_cor, transverse cerebellar diameter (axial and
coronal); FOD, fronto-occipital diameter.

Statistical analysis

Statistical analysis was conducted with R software (version 3.6.3).

Evaluation of SR quality. The inter-rater reliability was measured using a weighted
ordinal Gwet’s agreement coefficient (Gwet’s AC) and interpreted according to Alt-
man’s benchmarking scale [63].

Level of confidence. Chi-square test statistics were used to evaluate the dependence
of the level of confidence of the raters on each dataset.
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Biometric measurements. The association of paired lFOD and rFOD measurements
was tested using Spearman’s rho statistic [68], and the difference was tested with
the paired Wilcoxon rank sum test. This analysis was performed for each pair of
dataset-observer. Biometric measurements were compared statistically to determine
interdataset and inter-observer significant difference, respectively, for each observer
(obs1 and obs2) or dataset (T2WS and SR), with the paired Wilcoxon rank sum test
(without and with Bonferroni multiple comparisons correction). Lin’s concordance
correlation coefficient (CCC) [95] and intraclass correlation coefficient (ICC) were
computed for the agreement on measurements obtained on the two datasets [63].
Bland-Altman plots were used to assess the agreement between the two observers
for each of the two datasets and the reliability between the two datasets for each of
the two observers. Agreement was rated as follows: poor, <0.5; moderate, 0.5-0.75;
good, 0.75-0.9; excellent, >0.90 [63]. Agreement between transverse and coronal mea-
surements was evaluated for brain (bBIP_ax, bBIP_cor) and skull (sBIP_ax, sBIP_cor)
biparietal diameters and for transverse cerebellar diameter (TCD_ax, TCD_cor) using
ICC, error rate, and paired Wilcoxon rank sum test. The p-value level for statistical
significance was set at 0.05.

2.3 Results

2.3.1 Evaluation of 3D SR reconstructions

A total of 26 cases were SR-reconstructed through MIALSRTK [26].

The estimated ordinal Gwet’s AC between the three raters was 0.85 with a standard
error of 0.06. According to Altman’s benchmarking scale, this estimated coefficient
was considered to be either Good or Very Good with a 0.99 probability.

As the inter-rater agreement was good, we considered the quality of a reconstruc-
tion as the averaged consensus between the three raters’ assessment. On average, ex-
perts rated one case as bad, nine as average, and 16 as excellent Figure 2.2b. No sig-
nificant differences were found regarding the quality of the SR reconstruction and the
GA ranges. The case rated as bad1 was discarded for further analysis; thus, 25 normal
fetal brain MRI (from 18 to 34 weeks of GA, mean ± standard deviation (SD): 27.1±4.2)
were considered for the biometric analysis.

2.3.2 Confidence of measurements

On T2WS, some measurements were made with low confidence in three out of 25 fe-
tuses (12%) by obs1, while obs2 reported a low level of confidence in 13 out of 25

1Bad SR quality was primarily due to only four series were available and brain was cut in two of them.
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fetuses (52%). Specifically, obs1 had low confidence in FOD in two fetuses and in ax-
ial measurements in DTC, sBIP, and bBIP in another fetus. In contrast, obs2 had low
confidence mostly on the LCC (in 11 fetuses) and also in FOD and axial DTC (in two
fetuses). On SR, low confidence measures were made only on the LCC in two fetuses
by obs2. All the remaining measurements made on SR and T2WS were rated with
high confidence. Overall, the level of confidence of obs2 was dependent on the dataset
used, either T2WS or SR (p = 0.002), with higher confidence using SR. Conversely, no
significant difference was found in the confidence level for obs1 (p = 0.23).

2.3.3 Biometric measurements analysis

Each observer-dataset pair showed a high correlation between right and left FOD
(Spearman’s rank correlation ρ = 0.975, p < 0.001) and no significant difference (p = 0.8).
Hence, rFOD and lFOD were averaged. Agreement between T2WS and SR for each
biometric parameter was good for both observers, with minimum Lin’s CCC esti-
mated to be 0.86. Both Lin’s CCC and ICC were on average 0.997 for both raters
(Figure 2.4; Table 2.2).

Figure 2.4: Inter-dataset [T2-weighted sequence (T2WS) vs. super-resolution (SR)] agreement for ob-
server 1 and for observer 2 for each biometric measurement. For each biometric, measurements on SR
(vertical y-axis) and on T2WS (horizontal x-axis) for each fetal brain MRI examination (point) for ob-
server 1 (light blue) and observer 2 (dark blue). The solid gray line depicts perfect concordance.

Inter-dataset (SR vs. T2WS) intra-observer (obs1 and obs2) comparisons (Fig-
ures 2.5 and 2.6) showed statistical differences (p < 0.05) for brain axial and coronal
BIP (bBIP_ax and bBIP_cor) for both observers, skull coronal BIP (sBIP_cor) for obs1,
and axial and coronal TCD for obs2 (TCD_ax, TCD_cor). After correction for multiple
comparisons, only axial brain BIP (bBIP_ax) remained significantly different for
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Table 2.2: Lin’s concordance correlation coefficient values. Obs1, obs2, observer 1 and observer 2; LCC,
length of the corpus callosum; APDV, anteroposterior diameter of the vermis; HV, height of the vermis;
bBIP_cor, sBIP_cor, bBIP_ax, sBIP_ax, brain and skull biparietal diameter (coronal and axial); TCD_ax
and TCD_cor, transverse cerebellar diameter (axial and coronal); FOD, frontooccipital diameter

obs1 obs2

bBIP_ax 0.972 0.977
sBIP_ax 0.992 0.994
bBIP_cor 0.969 0.971
sBIP_cor 0.973 0.996
LCC 0.951 0.932
FOD 0.996 0.992
TCD_ax 0.972 0.987
TCD_cor 0.992 0.992
HV 0.956 0.961
APDV 0.930 0.865

both observers, but differences were small (2.95 ± 1.73mm) (Figure 2.6). Overall, the
inter-dataset average error rate in our study was 3.3%. Additionally, Supplementary
Table A.3 shows a high intra-rater reliability for one observer on a sub-cohort of five
fetuses.

Inter-observer intra-dataset comparisons showed no significant differences (p >
0.05), except for brain axial biparietal diameter (bBIP_ax) on T2WS and for brain
and skull coronal BIP (bBIP_cor, sBIP_cor) and coronal transverse cerebellar diame-
ter (TCD_cor) on SR. Overall, differences remained small (Figure 2.7) and independent
of the measured size (Figure 2.8). After correction for multiple comparisons, none of
them remained significant.

We computed the agreement between transverse and coronal measurements within
each dataset and for both observers (ICC, percentage of error range, mean ± SD of
percentage error). Agreement was excellent without statistical differences (p > 0.05)
for TCD on T2WS (ICC = 0.983, 0.3 − 16%, 2.9 ± 2.6%) and SR (ICC = 0.997, 0 − 1%,
1 ± 1%), for bBIP on T2WS (ICC = 0.951, 0.3 − 14%, 5.2 ± 3.5%) and SR (ICC = 0.970,
0.1 − 15%, 5 ± 3.8%), and for sBIP on T2WS (ICC = 0.972, 0 − 15%, 3.4 ± 3.2%) and SR
(ICC = 0.972, 0 − 11%, 3.8 ± 3.4%). Complete results are presented in Supplementary
Tables A.1 and A.2.

2.4 Discussion

2.4.1 Summary of contributions

Our study showed a sound agreement for biometric measurements performed on
T2WS and on SR. Thus, a good-quality SR volume is as valuable as T2WS for fetal
brain biometric assessment. Our results are in line with and complement a previous
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Figure 2.5: Inter-dataset intra-observer comparison for each biometric measurement using the paired
Wilcoxon signed rank test. Vertical y-axis, value in mm of each biometric measurement for each fe-
tal brain exam (point) for observer 1 (obs1) and observer 2 (obs2) (horizontal x-axis) for T2-weighted
sequence (T2WS; orange) and super-resolution (SR; blue). Solid horizontal lines depict the median;
diamonds depict the average of measurement in mm. See Figure 2.3 for measurement abbreviations.
p < 0.05 is considered significant.

study that has also validated the use of SR for posterior fossa [115]. Our SR biometric
measures are also concordant with the normative charts of the fetal brain that have
been recently published [89].

The intra-observer agreement in 25 fetuses (both Lin’s CCC and ICC were on av-
erage 0.997 for both observers) is in line with previous work [89] that also compared
T2WS and SR measurements and reported an ICC between 0.95 and 0.99. Furthermore,
the error rate is also of the same range (3.3% in average in our study as compared to
0.2− 2.4%). However, let us note though that in the work by Kyriakopoulou et al. [89],
the comparison of T2WS vs. SR measurements was performed in a controlled sub-
cohort of 10 fetuses specifically selected with symmetrical non-rotated images.

Intra-observer comparisons between T2WS and SR measurements showed signif-
icant differences only for axial brain BIP, though differences remained small (2.95 ±
1.73mm) and acceptable in clinical practice, as age-specific reference intervals for this
biometric parameter are larger [46]. The discrepancies observed in our study for the
axial brain BIP may be explained by a different plane used for SR and T2WS and the
possibility offered by SR to change the windowing to more precisely identify anatom-
ical landmarks. In contrast to US, there are no true standardized measurement criteria
for the BIP on MRI; indeed, the chosen plane, axial or coronal, differs between authors.
For instance, measurements of brain and skull BIP reference data were performed in
the coronal plane through the temporal horns of the ventricles by some authors [142,
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Figure 2.6: Bland-Altman plots of measurement differences between datasets [inter-dataset, T2-
weighted sequence (T2WS) vs. super-resolution (SR)] for observer 1 and for observer 2 (intra-observer)
for each biometric measurement. Each point corresponds in the x-axis to the mean measure between
datasets for each observer (light blue for observer 1, dark blue for observer 2) and on the vertical y-axis
to the difference between the two measurements T2WS/SR in mm. Horizontal solid line = mean of all
measurement differences. Dashed lines = 95% limits of agreement, and shadow areas correspond to the
95% confidence interval (CI).

45], while it was made in the axial plane by others [89]. We could question if the BIP ob-
tained in the coronal plane really compares to the BIP obtained in the axial plane; how-
ever, our results still showed good agreement between transverse and coronal mea-
surements for the BIP. A similar pattern was found for axial vs. coronal TCD, but with
a shorter error interval for TCD in SR, similarly to another study [115] that also found
superior concordance in SR rather than in T2WS measurement of TCD.

Our study also showed overall good inter-observer agreement for biometric mea-
surements performed on T2WS and on SR, without any statistically significant differ-
ence after correction for multiple comparisons. This indicates that experience is not
crucial for fetal brain biometric assessment and that SR can be used for biometry even
by junior trainee radiologists without extensive expertise in fetal brain MRI. Indeed,
obs2 did not report any fetal brain MRI before the study nor received special training.
Obs1 showed obs2 how to perform the measurements on one patient and provided
schematical guidelines similar to Figure 3. This is to be compared to recent work where
the experience of the radiologist (number of previous fetal MRI exams reported) had
an influence on the diagnostic error rate, with the less experienced radiologists having
higher error rates of 11%, while experts had < 3.8% [9].

In practice, the main additional value of SR is the possibility to reorient the planes
in the standard anatomical planes using MPR. In our study, the junior radiologist had
more confidence in identifying and measuring the corpus callosum on SR compared
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Figure 2.7: Inter-observer intra-dataset comparison for each biometric measurement using the paired
Wilcoxon signed rank test. Vertical y-axis, measurement in mm for each biometric measurement for each
fetal brain MRI exam (point) for T2-weighted sequence (T2WS) and super-resolution (SR) (horizontal x-
axis) for observer 1 (light blue) and observer 2 (dark blue). Solid horizontal lines depict the median;
diamonds depict the average of measurement in mm. See Figure 2.3 for measurement abbreviations.
p < 0.05 is considered significant.

to T2WS. Indeed, it may be difficult to visualize the whole corpus callosum, particu-
larly the rostrum, on conventional LR 2D T2WS, and US is considered to have a better
resolution in this case [16, 50]. Our results suggest that SR makes it easier to identify
the whole corpus callosum. The potential benefit of SR in this indication should be
explored on larger series.

However, the 3D SR reconstruction also has some limitations. Obviously, the quality
of SR depends on the quality of the native T2WSs, which are frequently affected by mo-
tion. Indeed, due to the reconstruction process itself, small or narrow structures (e.g.,
optic chiasm or corpus callosum) can appear blurred due to partial volume effects [56].
Nevertheless, in our study, we obtained a good or excellent quality of SR images in
90% of cases, with a good visual rating concordance between three expert raters (one
senior engineer and two senior radiologists). The fact that the concordance between
T2WS and SR measurements was high indicates that the process of SR reconstruction
does not distort the fetal brain anatomy [115]. Our success ratio in SR reconstruction
is slightly higher than the one previously reported at 3T [115], where 79% of 62 cases
were successfully reconstructed.

SR reconstruction requires a minimum number of orthogonal series to ensure a good
reconstruction quality [96, 124]. In our study, six series were used on average (range
of 3 − 11) per patient’s reconstruction with an average computing time of 1h. Previ-
ous works reported a similar number of series and processing time (from 4 to 15, in
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Figure 2.8: Bland-Altman plots of measurement differences between observers (observer 1 vs. observer
2) for each dataset [intra-dataset, T2-weighted sequence (T2WS) and super-resolution (SR)] for each
biometric measurement. Each point corresponds in the x-axis to the mean measure between observers
and in the vertical y-axis to the difference in mm between the two observers on T2WS (orange point) and
SR (blue point). Horizontal solid line = mean of all measurements for T2WS (blue) and SR (red); dashed
lines = 95% limits of agreement, and shadow areas correspond to the 95% confidence interval (CI).

average eight series, 1 − 20h in Gholipour et al. [56]; and eight series and 40 min in
Kyriakopoulou et al. [89]). The processing time, the need for user interaction for the
series selection or the refinement of brain masks, and the lack of integration into the
clinical environment preclude the use of SR volumes for fetal brain exploration in daily
practice. However, current developments aim at automatizing and accelerating SR re-
construction [77, 33, 143] to facilitate its integration as a supporting tool in clinical
routine and consequently also to be adopted by non-engineer users.

The clinical adoption of SR-reconstructed fetal MRI is thus at its earliest stage [74,
106, 12, 66]. In our center, SR-reconstructed MRI is used only for certain cases, in partic-
ular to confirm or reject suspected cortical abnormalities on 2D T2WS. In our opinion,
for now, SR could be complementary to but cannot replace low-resolution 2D T2W
planes for brain parenchyma analysis, as voxel intensities in SR volumes have under-
gone many changes. Indeed, beyond the promising value of SR fetal brain biometry,
the intensity contrast of SR images still has to be evaluated for its diagnostic value
in comparison to native T2WS and eventually improved. Let us recall that voxel in-
tensities in the reconstructed SR volume are computed from the original voxel values
within the multiple series throughout many image processing steps; therefore, they are
not directly generated from the MRI scanner, and their interpretation as pathological
features has to be done with caution.
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2.4.2 Strengths and limitations

Our study is the first to compare both supratentorial and infratentorial measurements
with SR, while only posterior fossa measurements were made in Pier et al. [115]; this
latter study included only normal volunteers, while our cases were taken from clinical
workflow. We also compared SR measurements between a junior and a senior radiol-
ogist to evaluate the influence of experience on biometric results. We have shown that
even a radiologist without expertise in fetal brain MRI can perform accurate fetal brain
biometry - thanks to SR. In contrast, multiple raters who received extensive training
developed normative charts for 2D T2WS and 3D SR fetal brain measurements [89]. In
their study, the agreement analysis was performed between measurements on native
T2WS and SR in a sub-cohort of only 10 fetuses, with the same rater, and on selected
symmetrical nonrotated images. Our study on 25 fetuses comparing two raters pro-
vides additional insight into the value of SR techniques for biometry of fetal brain MRI.

A limitation of our study is the small-size cohort, and so the few patients available
per gestational week. For this reason, we cannot draw conclusions about gestational
age or sex influence on measurement quality. Finally, the reproducibility of our mea-
surements were tested only with one observer on a subcohort of five fetuses.

2.5 Conclusion

This study demonstrates that SR is a valid, reliable, and simple method for biomet-
ric measurements. SR measurements are concordant with T2WS measurements, even
when conducted by non-expert radiologists. Some biometric measurements like the
biparietal diameter show small statistically significant differences, which can be ex-
plained by poorly defined and standardized measurement criteria. As soon as full
automatization of SR is available in the clinical environment, the use of 3D SR could
initially complement conventional T2WSs by faster providing the reference planes and
further facilitating biometric measurements. Afterward, SR could provide a new stan-
dard of measurements in real orthogonal planes more than mimicking ill-defined or
incorrect 2D planes. Future studies on pathological cases will enable the evaluation of
other potential benefits of SR in clinical practice.





3
Optimization of SR reconstruction

regularization

The work presented in this chapter has been submitted to the 26th International Confer-
ence on Medical Image Computing and Computer Assisted Intervention (MICCAI), to
be held in October 2023, as "Simulation-based parameter optimization for fetal brain
MRI super-resolution reconstruction" with co-authors : P. de Dumast, T. Sanchez, H.
Lajous and M. Bach Cuadra. P. de Dumast and T. Sanchez contributed equally to this
work.

3.1 Introduction

The previous Chapter 2 presented a clinical validation of SR reconstruction practical
value. Nonetheless, a key component for high-confidence biometric measurements is
not only the enhanced image resolution but also the overall image quality and the abil-
ity to identify structures of interest. Consequently, the challenge of SR reconstruction
lies in the compromise between the image smoothness and sharpness. In the SR recon-
struction formulation presented in Chapter 1, Equation 1.4, the latter is done through
the regularization term which contribution is defined by α.

In the context of fetal brain MRI, the absence of HR reference image makes very chal-
lenging the optimization of the regularization parameter α. Indeed, while the problem
of optimizing regularization parameters has been long studied in inverse problems [43,
3], most existing approaches explicitly rely on reference data. In order to overcome the
lack of HR fetal brain MRI, some works [88, 144] proposed to degrade HR newborn
MR images to generate LR images and further assess the SR reconstruction against the
original image. Alternatively, both works considered a leave-one-out approach, where
a LR stack is used to serve as reference for quantitative evaluation [88, 144]. Similarly,
Ebner et al. [33] used a volume reconstructed from all available LR series as reference,
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to assess the quality of reconstructions using fewer LR series. However, they did not
study the influence of the regularization parameter on the quality of reconstruction.
Besides, most studies based on SR reconstruction are still carried out using pre-set de-
fault values [112, 145] (see Chapter 2).

In this study, we propose to leverage a fetal brain MRI numerical simulations frame-
work [91] to improve the setting of regularization. This numerical phantom generates
realistic LR T2w MR images of the fetal brain as well as corresponding HR volumes.
We use the pair of LR images with HR reference image to optimize the parameter α
in a data-driven manner. Our contribution is twofold. First, using numerically simu-
lated data, we study the sensitivity of the regularization parameter to three common
variables in fetal brain MRI: (i) the number of series used in the SR reconstruction, (ii)
the magnetic field strength and (iii) the GA. Second, we qualitatively assess the trans-
lation of our approach on clinical MR exams showing that optimized regularization
parameter α on simulated data echos a substantial improvement of the clinical SR re-
constructed image quality. To generalize the validity of our findings, we perform our
study using two state-of-the-art SR reconstruction pipelines, namely MIALSRTK [144]
and NiftyMIC [33], that apply different regularization terms.

3.2 Materials and methods

3.2.1 Simulated acquisitions

Fetal Brain magnetic resonance Acquisition Numerical phantom (FaBiAN) is a numer-
ical phantom for the simulation of realistic fetal brain MR images [90, 91]. From a fetal
brain model, i.e. a tissue segmentation labelmap, acquisition of SST2W sequences are
simulated, accounting for the tissue properties (T1 and T2 values) and the acquisition
process. Additionally, the level of inter-slice motion can be specified.

In this study, MR images are either simulated at 1.5T, with a resolution of 1.1× 1.1×
3mm3 or 3T at 0.5 × 0.5 × 3mm3, based on the CRL spatiotemporal atlas [56] (see Sec-
tion 1.4.2) featuring one subject per week from 21 to 38 weeks of GA. We generate both
LR clinical-like images and a reference HR isotropic volume. All acquisition parame-
ters are kept fixed at a given magnetic field strength. We further detail the amplitude
of fetal motion and number of simulated series generated in the experimental settings
in Sections 3.2.3 and 3.2.4.
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3.2.2 Super-resolution reconstruction

Reconstruction frameworks

We use two widely adopted reconstruction pipelines, MIALSRTK [144] and
NiftyMIC [33], to reconstruct 3D isotropic HR images of the fetal brain from orthogonal
LR series. Both methods feature the preprocessing of the LR images, the estimation of
the fetal motion and the finale image reconstruction. In the latter step, pipelines differ
by the regularization term applied: while MIALSRTK uses total variation (TV) [144],
NiftyMIC uses first-order Tikhonov [33]. For each pipeline, we perform a grid search
approach of the regularization parameter space.

Note that, contrary to NiftyMIC [33], MIALSRTK [144] places its regularization pa-
rameter λ on the data term. For the sake of consistency, we will only use the formula-
tion of Equation 1.4, with α = 1/λ in the case of MIALSRTK.

Quality assessment

Solving Problem 1.4 yields a SR reconstructed image X̂ which quality can be compared
against the simulated reference using various metrics. We use two common metrics
for SR reconstruction assessment [88, 144, 33], namely the peak signal-to-noise ratio
(PSNR) and the structural similarity index (SSIM) [150]. The best regularization pa-
rameter α is identified as the one maximizing a given performance metric.

3.2.3 Experiment 1 – Controlled environment

In this first experiment, we study the sensitivity of the parameter α to common varia-
tions in the acquisition pipeline.

Dataset

For every CRL subject [56], we simulate nine LR series (three per anatomical orienta-
tion) at 1.5T and 3T with little amplitude of stochastic 3D rigid motion1.

Experimental setting

We define four configurations based on the number of LR series given as input to the
SR reconstruction pipeline (three or six series) and the magnetic field strength (1.5T or
3T). Note that the inter-magnetic field difference is particularly captured in the image

15% of corrupted slices, translation of [-1,1]mm in every direction, 3D rotation of [-2,2]°
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resolutions, with through-plane in-plane ratio of 3.3/1.1 = 3 for 1.5T and 3.3/0.5 = 6.6
for 3T. In each configuration, individual brains are repeatedly reconstructed (n = 3)
from a selection of different LR series among the 9 available per subject.

The grid of regularization parameter searched for NiftyMIC consists of 10 values
geometrically spaced between 10−3 and 2, plus the default parameter αdef = 0.01. For
MIALSRTK, we use α ∈ {1/0.75, 1/1.0, 1/1.5, 1/2.0, 1/2.5, 1/3.0, 1/3.5, 1/5.0} (8 values in-
cluding the default parameter αdef = 1/0.75). At the end of the experiment, the best
parameter, for either of the pipelines, is referred to as α∗1 .

Statistical analysis

The optimal regularization parameters evaluated for the different SR configurations
are compared using the Wilcoxon rank sum test. The difference between the met-
rics performance obtained with default or optimal parameters is tested with a paired
Wilcoxon rank sum test. The p-value statistical significance is set to 0.05.

3.2.4 Experiment 2 – Clinical environment

Clinical MR fetal exams are prone to substantial inter-patient variation and heterogene-
ity. In particular, the number of LR series available for reconstruction greatly varies
from patient to patient, as well as the amplitude of fetal motion [80].

Therefore, this second experiment has two purposes. First, we translate our findings
from the first experiment to clinical data using the best value α∗1 . Secondly, we study
an alternative approach to perform a tailored patient-wise regularization tuning by
simulating synthetic data for each patient that mimic the clinical acquisitions available.
We refer to the obtained value as α∗2 .

Dataset

Twenty fetal brain MR exams conducted upon medical indication were retrospectively
collected from our institution. All brains were finally considered normal. Fetuses were
aged between 21 and 34 weeks of GA (mean ± SD: 29.7 ± 3.6) at scan time. At least
three orthogonal series were acquired at 1.5T (voxel size: 1.125 × 1.125 × 3mm3). After
inspection, four to nine series (mean ± SD: 6.3 ± 1.5) were considered exploitable for
SR reconstruction.

In addition, simulated acquisitions are performed with exam-specific parameters
chosen to mimic as closely as possible the clinical acquisitions of each patient. In par-
ticular, we match the number, the orientation and the level of motion (from little to
moderate) of the LR series, as well as the GA of each patient.
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The local ethics committee of the Canton of Vaud, Switzerland (CER-VD 2021-00124)
approved the retrospective collection and analysis of MRI data and the prospective
studies for the collection and analysis of the MRI data in presence of a signed form of
either general or specific consent.

Experimental setting

We consider the same regularization parameter space as in Experiment 1 (Section 3.2.3),
and evaluate both clinical and simulated data on this parameter grid.

Statistical analysis

We compare the similarity between the reconstructed images of MIALSRTK and
NiftyMIC using both default and optimized parameters. In this experiment, no ref-
erence images are available for clinical exams. Statistical significance of the per-
formance difference is tested using a paired Wilcoxon rank sum test (p < 0.05 for
statistical significance).

3.3 Results

3.3.1 Experiment 1 – Controlled environment

Optimal regularization parameter

Figure 3.1 shows the optimal regularization parameters α∗1 of SR reconstruction
through MIALSRTK and NiftyMIC for each configuration. Regardless of the magnetic
field strength and the number of LR series used for reconstruction, the optimal regu-
larization parameters that maximize the PSNR and SSIM compared to a synthetic HR
volume greatly differ from the default values. For MIALSRTK, αdef = 1/0.75, while the
optimal range is found between 1/2.25 and 1/4.5. For NiftyMIC αdef = 0.01, whereas
the optimal range is found between 0.015 and 0.15.

We observe that for both the PSNR and the SSIM, the optimal regularization weight
increases with the number of series used in the reconstruction, and decreases with the
resolution. This is because changing the number of LR series or the magnetic field
strength changes the magnitude of the data term with respect to the regularization
term. When more series are used for reconstruction, a larger regularization parameter
must be used to keep the ratio data fidelity over regularization constant.
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Figure 3.1: Optimal regularization parameters α∗1 using MIALSRTK or NiftyMIC for the four differ-
ent configurations studied. △ indicates the mean optimal parameter. Inter-configurations p-values
(Wilcoxon rank sum test, statistical significance: p < 0.05) are indicated.

Quality improvement

The corresponding mean PSNR and SSIM values obtained with optimal α∗1 regular-
ization parameters across all subjects are displayed in Table 3.1. Overall, the quality
metrics obtained with optimal parameters are significantly improved compared to de-
fault values. This suggests that regularization parameters are highly sub-optimally set
for both reconstruction pipelines.

GA-based analysis

Since the human brain undergoes drastic morphological changes throughout gestation
(see Section 1.1), one could expect to adjust α to GA. However, in our experiments, we
do not observe an influence of GA on the value of α that yields to the best reconstruc-
tion, which was still in line with the values reported on Figure 3.1.

3.3.2 Experiment 2 – Clinical environment

In this experiment, we compare two differently optimized regularization parameters.
First, we use the optimal value α∗1 (from Figure 3.1 at 1.5T, and rounded to the clos-



3.3. RESULTS 47

Table 3.1: Mean metrics (PSNR and SSIM) for SR reconstructions using the default regularization pa-
rameters αdef or the optimal parameter α∗1 compared to the simulated reference HR volume. Paired
Wilcoxon rank sum test statistical significance (p < 0.05) is indicated as †.

MIALSRTK NiftyMIC
PSNR (↑) SSIM (↑) PSNR (↑) SSIM (↑)

Setting αdef α∗1 αdef α∗1 αdef α∗1 αdef α∗1

(1.5T; 3) 18.9 20.2† 0.78 0.80† 17.3 20.8† 0.79 0.82†

(1.5T; 6) 20.1 20.8† 0.82 0.83† 17.0 21.5† 0.80 0.84†

(3T; 3) 19.9 21.8† 0.75 0.77† 20.5 21.2† 0.77 0.77†

(3T; 6) 21.0 22.2† 0.78 0.80† 20.9 22.0† 0.80 0.80†

Figure 3.2: Comparison of SR-reconstructed clinical cases using default and optimal parameters from
Experiment 1 (α∗1 ) and Experiment 2 (α∗2 ). Top row: MIALSRTK, bottom row: NiftyMIC. Left: coronal
view of a 23 weeks-old fetal brain reconstructed using eight LR series. Right: axial view of a 32 weeks-
old fetal brain reconstructed using four LR series.

est value on the searched grid of parameters). Second, we use α∗2 estimated from the
patient-specific simulation.

Figure 3.2 shows the SR reconstruction of two patients with default and optimal pa-
rameters using both pipelines. We first observe that the qualitative difference between
the reconstruction obtained using α∗1 and α∗2 for a given pipeline is subtle. One can
also notice that the volumes reconstructed with simulation-based optimized parame-
ters from both SR methods appear more similar to each other, compared to the recon-
structions using default parameters. Indeed, the default parameters of MIALSRTK and
NiftyMIC promote opposite behaviours: the first towards smooth image (default reg-
ularization higher than optimal one), while the second makes it appear noisier (default
regularization lower than optimal).

We quantitatively confirm the closeness of the optimized SR images by computing
the PSNR and the SSIM between the reconstructed images from both methods – no
references are available for the clinical acquisitions – for αdef, α∗1 and α∗2 . The results are
shown on Figure 3.3, where we notice a net difference between the default parameters
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Figure 3.3: Inter-method similarity between MIALSRTK and NiftyMIC, with default and optimal regu-
larization parameters, using all 20 clinical exams. Inter-regularization parameters p-values are indicated
(paired Wilcoxon rank sum test, statistical significance: p < 0.05).

Figure 3.4: PSNR curves for the simulated patients of Experiment 2, reconstructed with MIALSRTK [143]
(left) and NiftyMIC [33] (right). For each SR method, light traits represent individual patients and
the bold black curve the averaged PSNR across all patients. The vertical red line recalls the de-
fault parameter values, and the purple region highlights the range of optimal parameters found in
Experiment 1 at 1.5T.

and the optimized ones, which is statistically significant for both PSNR and SSIM. In
addition, there is no significant difference between the images reconstructed with the
setting-wise optimized parameter α∗1 and the patient-wise optimized one α∗2 . This is
expected, as Figure 3.4 confirms that the optimal patient-wise parameters α∗2 lie within
the range where the optimal parameters α∗1 are found in Experiment 1.
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3.4 Conclusion

In this chapter, we quantitatively address the automated optimization of the regular-
ization weight in the inverse problem of the SR reconstruction of fetal brain MRI. We
demonstrate that our principled approach of the regularization parameter optimiza-
tion on synthetic data successfully transfers into an important qualitative gain in clini-
cal acquisitions reconstruction. Our study shows that it might not be necessary to use
patient-specific simulations, as optimization at a setting-specific level is equivalent and
can be ideally estimated beforehand. Nonetheless, the quantitatively-determined op-
timal value may not be in line with the experts perceptual appreciation. Therefore, we
recommend to use our approach as a coarse tuning method for the order of magnitude
of α rather than as a true validated optimal value. Thus our proposed method has a
high practical value in clinical settings where multi-scanner multi-sequence data are to
be dealt with. Nonetheless, extensive analysis across SR reconstruction pipelines and
diverse dataset remain to be done to validate the generalizability of our approach. We
emphasize that we did not evaluate our method on pathological cases in which the
accurate preservation of localized hypo- or hyper-intensities may be crucial.

Moreover, we recall that the quality of a HR volume generated from a whole SR
reconstruction pipeline does not only rely on the image restoration step itself, but
also on the accuracy of the prior steps (e.g. LR images intensity corrections or motion
estimation) and the quality of the input images. Common clinical acquisition artifacts,
as for instance some signal drops or surrounding tissues remaining from the gross
brain extraction, cannot be generated with the numerical simulator we use, and hence
limit its usage.

Nonetheless, we concomitantly show that our optimization approach reduces the
variability between the two reconstruction methods. This contributes to reducing the
domain-shift due to reconstruction, currently a key challenge in the development of
automated tissue segmentation methods [111]. We further address the domain-shift
between SR reconstruction methods in Part II.





Part II

Domain variations-robust segmentation
methods

51





4
Synthetic data augmentation for

domain adaptation

This chapter compiles three contributions presented as: (i) an application experiment
in the original publication "A Fetal Brain magnetic resonance Acquisition Numerical
phantom (FaBiAN)" in Scientific Reports Vol.12, p8682 (2022) with co-authors: H. La-
jous, C. W. Roy, T. Hilbert, P. de Dumast, S. Tourbier, Y. Alemán Gómez, J. Yerly, T. Yu,
H. Kebiri, K. Payette, J.B. Ledoux, R. Meuli, P. Hagmann, A. Jakab, V. Dunet, M. Koob,
T. Kober, M. Stuber, M. Bach Cuadra, (ii) a conference paper at the IEEE International
Symposium on Biomedical Imaging (ISBI) 2022 (oral communication) "Synthetic mag-
netic resonance images for domain adaptation: Application to fetal brain tissue seg-
mentation" with co-authors: P. de Dumast, H. Kebiri, K. Payette, A. Jakab, H. Lajous,
M. Bach Cuadra (H. Lajous and M. Bach Cuadra equally contributed to this work),
and (iii) a conference abstract at the 31st Annual Meeting of the International Society
for Magnetic Resonance in Medicine (ISMRM) in 2022 (oral communication) "On the
importance of fetal brain numerical models for domain adaptation strategies in fe-
tal brain MRI tissue segmentation" with co-authors: P. de Dumast, H. Kebiri, M. Bach
Cuadra, H. Lajous. M. Bach Cuadra, H. Lajous equally contributed to this work.

4.1 Introduction

The development of robust DL-based methods for fetal brain tissue segmentation in
MRI is hampered by the large variability represented in clinical images and the lack of
annotated dataset. As presented in Chapter 1, Section 1.4.2, the first non-fully patient-
dependant source of variability in fetal brain MRI is the image acquisition system,
followed by the postprocessing operations. Moreover, TL has recently proven to be ef-
fective in adapting automatic segmentation methods for fetal brain MRI from different
reconstruction methods [111].
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In this chapter, we aim to achieve domain adaptation between SR reconstruction
methods. Specifically, to overcome the lack of annotated data, we study how synthetic
MR images that are processed to mimic the acquisition and postprocessing of our target
domain can help to adapt a tissue segmentation network trained from another domain.
We hypothesize that SR reconstruction of synthetic MR images can alleviate the lack of
true target images in the development of segmentation methods.

Our contribution is threefold. First, we evaluate the practical value of numerically-
simulated MR images to serve as data augmentation in the training of automatic fetal
brain tissue segmentation methods (see Section 4.2.3). Second, we leverage the syn-
thetic MR images to further replicate the whole target domain image generation, i.e.
the acquisition and the reconstruction, in a domain adaptation task (see Section 4.2.4).
Finally, we investigate the importance of the fetal brain model used in for the numeri-
cal simulations (see Section 4.2.5).

4.2 Materials and Methods

4.2.1 Datasets

Acquisitions

Eighty (80) fetal brains were scanned at the University Children’s Hospital Zurich
(Kispi) on medical indications. Fetuses were aged from 20 to 34.8 weeks of GA
(mean ± SD: 27.0 ± 3.6). MR exams were either performed at 1.5 or 3T on GE
Healthcare scanners, resulting to LR images of 0.5× 0.5× 3mm3 resolution. In this
cohort, 33 patients were neurotypical and 47 were diagnosed with neuropatho-
logical development.

Postprocessing

All patients were SR-reconstructed either with MIALSRTK [143] (N=40) to
an isotropic resolution of 0.5mm or with SVRTK [88] (N=40) to an isotropic
resolution of 0.8594mm. The extra-axial CSF, the cGM, the WM, the ventricles,
the cerebellum, the dGM and the brainstem were manually annotated on the HR
volumes following the FeTA annotation guidelines [112]. All SR-reconstruction
and their intracranial tissue labelmap were publicly released in the FeTA dataset
v2.0 [112] (see Section 1.4.2).

The subset of MIALSRTK-reconstructed images was resampled to an isotropic
resolution of 0.8mm and annotations were refined [39]. An engineer with 20 years
of experience in medical image processing assessed the quality of all the 3D SR re-
constructions. Quality categories followed the same criteria as in Chapter 2. Only
patients with excellent and acceptable SR were considered in the rest of this study.

Furthermore, fifteen (15) clinical fetal brains of the SVRTK reconstructed subset
were provided with the LR T2w images (FeTA-lrsr). MR exams were either
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acquired at 1.5T (N=6) or 3T (N=9). We wrap up in Table 4.1 the three datasets
used in this study, based on their reconstruction method and the data available.
The provenance of each dataset is detailed in Figure 4.1.

Domains
SR reconstruction techniques apply many intensity-based operation that may
lead to different data distribution and thus different domains (see Chapter 1,
Section 1.4.2). In this Chapter, we consider the set of clinical fetal brain MRI recon-
structed with SVRTK [88] as the source domain, and the clinical fetal brain MRI
reconstructed with MIALSRTK [143] represent the target domain (see Figure 4.1).

Atlas
We consider the tissue labelmaps of the CRL spatiotemporal atlas [56] as fetal
brain model for the simulations.

4.2.2 Processing

Simulations
We introduced in Chapter 3 FaBiAN [90, 91], a numerical phantom for the simula-
tion of realistic fetal brain MR images. From a fetal brain model, i.e. a segmenta-
tion labelmap, this simulation framework generates T2w LR MR images at either
1.5T or 3T.. Additionally, automated segmentation of the fetal brain is propagated
in all LR image series from the initial fetal brain model by a nearest-neighbour
interpolation. All simulations rely on FeTA-lrsr acquisition parameters.

Reconstruction
Reconstruction of numerically simulated images are performed through the same
method than the target domain images, i.e. MIALSRTK. The SR reconstruction
method is adapted to reconstruct the associated labelmaps.

Segmentation model
All segmentation models follow the same 2D U-Net [122] architecture, as state-of-
the art fetal brain tissue segmentation methods all rely on it (see Chapter 1, Sec-
tion 1.4.2). Networks are trained on 64× 64 voxel size overlapping image patches
considering intracranial voxels only. Networks are optimized with the minimiza-
tion of a hybrid loss function defined as the sum of a categorical cross-entropy
and a Dice loss.
In the following experiments, configurations where SR reconstructed isotropic im-
ages are available (i.e. in experiments 4.2.4 and 4.2.5) are trained using a multi-
view approach: patches from the three orientations (axial, coronal and sagittal)
are used as input. At test-time, overlapping patches are inferred from the three
orientations and final prediction is reconstructed using a majority voting strategy.
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Table 4.1: Summary of clinical datasets. NT: Neurotypical; PT: Pathological.

Number
(NT/PT)

GA (weeks)
(mean ± SD)

Reconstruction
method

Data Public
LR HR

FeTA-mial 31
(15/16)

20.0-33.4
(27.5 ± 3.2) MIALSRTK [143] - T2w+annotations

(0.80× 0.80× 0.80mm3) Yes

FeTA-svrtk 37
(17/20)

20.1-34.8
(27.4 ± 4.0) SVRTK [88] - T2w+annotations

(0.86× 0.86× 0.86mm3) Yes

FeTA-lrsr 15
(13/2)

21.0-34.6
(27.5±4.4) SVRTK [88] T2w

(0.5× 0.5× 3mm3)
T2w+annotations

(0.86× 0.86× 0.86mm3) No

Figure 4.1: Summary of clinical datasets. Acquisition, postprocessing and generation of derivatives are
detailed for FeTA-mial, FeTA-svrtk and FeTA-lrsr datasets.
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Figure 4.2: Design of synthetic MRI-based domain adaptation experiments. Datasets (A), data prepa-
ration (B), supervised learning (C) and methods comparisons (D) are presented for each independent
experiment (4.2.3) data augmentation, (4.2.4) domain adaptation, and (4.2.5) simulation brain model.

4.2.3 Data augmentation

The design of the data augmentation experiment is presented in Figure 4.2, top panel.

CRL subjects from 21 to 35 weeks of GA are used as fetal brain model. For each
subject, three partially overlapping numerical simulations of SST2W sequences are
generated in axial orientation: 2 with low and 1 with moderate motion. Acquisition
parameters from FeTA-lrsr are replicated. Note that, CRL brain model does not dif-
ferentiate external CSF and ventricles. Consequently, ventricles and CSF are merged
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under a unique CSF label in the clinical exams to match the annotation tissue classes
of the simulations.

In the training phase of the segmentation frameworks, we consider three categories
of augmentation: (i) spatial augmentation (random flipping and rotation (n times, by
n × 90○, n ∈ [0, 3])), (ii) intensity-based augmentation (extensive conventional augmen-
tation strategies used including random Gaussian noise, random gamma, and random
bias field [114]), and (iii) synthetic augmentation which consists in the upstream gen-
eration of synthetic MR images with FaBiAN.

Based on these types of augmentation, we evaluate the practical value of FaBiAN
as an augmentation strategy by comparing the following two training configuration:
Baseline is trained with on-the-fly intensity-based augmentation strategy. SynthAug
is trained with synthetic images to complement the training clinical dataset. Both Base-
line and SynthAug configurations are trained with on-the-fly spatial augmentation.
Table 4.2 summarizes the data used in each configuration and the data augmentation
performed at train-time. To maintain a similar number of input samples, each patch
from configuration SynthAug is repeated once, while patches from configuration Base-
line are repeated three times. To avoid any bias coming from the number of training
samples, we ensure an equivalent number of 2D patches between a SR-reconstructed
clinical case: three shifted axial LR images are used for a given subject. Intensities of
all image patches are standardized.

We adopt a five-fold cross-validation (CV) strategy. Due to the small sample size of
the FeTA-lrsr dataset, no set is kept apart for testing purposes. Consequently, we only
present the average CV performances.

Table 4.2: Summary of the data augmentation configurations.

Amount of data
On-the-fly

augmentationConfiguration Number of Number of Total number Number of
clinical subjects simulated subjects of subjects replicates

Baseline 15 0 15 4 Spatial
Intensity-based

SynthAug 15 15 30 2 Spatial

4.2.4 Domain adaptation

In this domain adaptation experiment (Figure 4.2, middle panel), we introduce a new
domain to which we refer as target-like domain. Target-like domain images are numer-
ically-simulated fetal brain MRI reconstructed with the same SR method as the target
domain images, i.e. MIALSRTK [143].

The manual annotations of the SR reconstructions of 17 clinical cases (9 neurotypical
and 8 pathological patients in the GA range of 20.9 to 34.8 weeks) from FeTA-svrtk serve
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as fetal brain models to generate realistic synthetic images of the fetal brain throughout
development with FaBiAN. For every patient, partially-overlapping series of 2D thick
slices are simulated in each of the three orthogonal orientations with random little to
moderate rigid motion. The synthetic LR images are interpolated to 0.8594×0.8594mm2

in the in-plane direction to match the resolution of the clinical SR reconstructions FeTA-
mial and FeTA-svrtk. We refer to this target-like domain as FaBiAN-mial. Figure 4.3
shows the original FeTA-mial image, a FaBiAN-simulated LR image and the recon-
structed target-like domain FaBiAN-mial image of a 30.3 weeks of GA fetal brain.

Figure 4.3: Illustration of the source domain FeTA-svrtk, a FaBiAN-simulated LR and the target-like
domain FaBiAN-mial images for a fetus of 30.3 weeks of GA.

Three training configurations are studied in this experiment:

• A Gold Standard network is trained using 20 randomly selected patients from
FeTA-mial. This configuration represents an ideal setting where target domain
images are available during the training phase. (N=20, target domain)

• A Baseline network is trained on the full FeTA-svrtk set. Only images in the source
domain are available during the training phase to mimic a more realistic setting.
(N=37, source domain)

• DA_FaBiAN is initialized with Baseline pre-trained weights to perform TL using
the 17 FaBiAN-mial subjects. (N=17, target-like domain)
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Note that, an additional configuration was originally computed, where the fetal brains
used as models for FaBiAN simulations were not used in the training phase. For clarity,
we do not present this configuration here. All configuration are trained with spatial
and intensity-based augmentation, using a CV strategy.

A pure testing set that consists of the 11 remaining FeTA-mial subjects (five neu-
rotypical and six pathological patients) is used to compare the models.

4.2.5 Simulation brain model

In this experiment (see Figure 4.2, bottom panel), we further explore in a domain adap-
tation task the influence of the fetal brain model used for the FaBiAN simulations.
Hence, we generate two sets of target-like domain images (see Table 4.3), using either
the clinical FeTA-svrtk images or CRL. We respectively refer to these two new target-
like domain sets as FaBiAN-FeTA and FaBiAN-CRL. While simulations based on CRL
rely on an averaged anatomy, using FeTA-svrtk patients as models of the fetal brain
provides larger anatomical and annotation variability. For every patient, partially-
overlapping orthogonal series of 2D thick slices are generated with random little to
moderate motion. Similarly to Experiment 4.2.3, ventricles and CSF are merged in
FeTA images to match the annotation tissue classes of the CRL images.

Table 4.3: Simulation-based datasets from different fetal brain models.

Model Acquisition parameters Reconstruction method

FaBiAN-FeTA
FeTA-svrtk

(20.9-34.8 weeks)
(8/7)

FeTA-lrsr MIALSRTK [143]

FaBiAN-CRL CRL
(21-35 weeks) FeTA-lrsr MIALSRTK [143]

Three configurations are trained and compared. A Baseline network is trained on
the entire FeTA-svrtk dataset. Similarly to the previous domain adaptation experiment
presented in Section 4.2.4, the domain adaptation networks are initialized with the
Baseline pre-trained weights to perform TL. DA_FaBiAN_CRL and DA_FaBiAN_-
FeTA are respectively fine-tuned on FaBiAN-CRL and FaBiAN-FeTA.

All 31 target domain FeTA-mial images are used in a pure testing phase.

4.2.6 Evaluation and analysis

The performance of the networks is evaluated with the Dice similarity coefficient
(DSC) [28] between the GT manual annotations and the predicted segmentation. In
each experiment (data augmentation in Section 4.2.4, domain adaption in Section 4.2.4
and importance of simulation model in Section 4.2.5), a paired Wilcoxon rank-sum test
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is performed between each experimental configuration and the experiment-specific
"Baseline" network. For individual fetal brain tissues, p-values are adjusted for multi-
ple comparisons using Bonferroni correction. Statistical significance level is set to 0.05.

4.3 Results

4.3.1 Data augmentation

Figure 4.4 shows for an axial view slice of a 30.6 weeks-old FeTA-svrtk patient the T2w
image, and the GT, Baseline and SynthAug segmentation overlaid to the T2w images.
SynthAug presents a substantially more accurate delineation of the tissues, especially
for the cGM. The model trained with spatial and simulations based augmentations
appears more sensitive to the cortical folding than Baseline network that is only trained
on clinical images that were spatially and intensity-based augmented.

Figure 4.4: Appreciation of synthetic MRI-based data augmentation accuracy of fetal brain tissue seg-
mentation in a patient of 30.6 weeks of GA on an axial slice.

Quantitative results are presented in Table 4.4. Overall, SynthAug results in a sig-
nificantly improved mean DSC of 0.90± 0.05. Using the FaBiAN-based augmentation,
all fetal brain structures present a higher DSC, with statistical significance for the
CSF, the cGM, the cerebellum, the dGM and the brainstem. FaBiAN augmentation
is an efficient data augmentation strategy that competes with classic intensity-based
augmentation methods.

4.3.2 Domain adaptation

Figure 4.5 shows qualitative results for a FeTA-mial 31.2 weeks of GA fetus. Domain
adaptation resulting from the addition of synthetic MR images reconstructed in the
target domain (DA_FaBiAN) enhances the accuracy of segmentation compared to the



62 CHAPTER 4. SYNTHETIC DATA AUGMENTATION FOR DOMAIN ADAPTATION

Table 4.4: Data augmentation quantitative results. DSC (mean ± SD) in the configurations studied (Base-
line and SynthAug) for all segmented brain tissues and on average. The best scores between configura-
tions are shown in bold. p-values of Wilcoxon rank sum test between configuration for individual fetal
brain tissue segmentation are adjusted for multiple comparisons using Bonferroni correction. p < 0.05
(*) is considered statistically significant.

Baseline SynthAug

CSF 0.93 ± 0.01 0.95 ± 0.02 (*)
cGM 0.77 ± 0.02 0.84 ± 0.05 (*)
WM 0.92 ± 0.01 0.93 ± 0.02
Cerebellum 0.87 ± 0.06 0.92 ± 0.04 (*)
dGM 0.85 ± 0.04 0.90 ± 0.04 (*)
Brainstem 0.85 ± 0.03 0.88 ± 0.03 (*)

Overall 0.86 ± 0.06 0.90 ± 0.05 (*)

Baseline network, especially in the cGM, and the infratentorial structures, i.e. the brain-
stem and the cerebellum.

Figure 4.5: Appreciation of synthetic MRI-based domain adaptation accuracy of fetal brain tissue seg-
mentation in a sagittal view of a patient of 31.2 weeks of GA. White arrows show representative areas
where domain adaptation resulting from the addition of synthetic MR images in the target domain im-
proves the segmentation accuracy.

These results are further supported by the quantitative results presented in Table 4.5
for every segmented fetal brain tissue in each configuration studied. Overall, the per-
formance of the segmentation algorithm is significantly enhanced when fine-tuning
the Baseline network with synthetic, yet realistic fetal brain MR images reconstructed
in the target domain (DA_FaBiAN). The accuracy of the segmentation algorithm is
slightly decreased in the ventricles only, but without statistical significance. This
may be due to erroneous label propagation (after simulation and reconstruction)
resulting in neighboring areas of similar intensities at the mid-sagittal plane either
segmented as CSF or ventricles. Conversely, the segmentation of the cerebellum is
even more accurate when complementing the Baseline dataset with synthetic images
(DA_FaBiAN) than when training the network directly with the target FeTA-mial
dataset (Gold Standard).

Interestingly, our domain adaptation strategy leads to a more accurate segmentation
of the CSF, the cGM, the WM, the cerebellum, the dGM and the brainstem in patho-
logical cases than the Baseline, as shown in Figure 4.6. The trend is different in neu-
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rotypical patients, where DA_FaBiAN only results in an improved segmentation of the
dGM, the brainstem and the cerebellum. The segmentation of the latter is even more
accurate than when training the network on clinical data in the target domain (Gold
Standard). However, the performance of the segmentation algorithm is stable for the
CSF and the cGM, with a slight increase for the WM in the configuration DA_FaBiAN,
whereas it decreases for the ventricles.

Table 4.5: Domain adaptation quantitative results. DSC (mean ± SD) of different training configura-
tions. The best scores between domain adaptation (DA_FaBiAN) configurations and the Baseline are
shown in bold. The corresponding p-values (paired Wilcoxon rank sum test) are adjusted for multiple
comparisons using Bonferroni correction. p < 0.05 (*) is considered statistically significant.

Experimental configurations Gold
Standard

Baseline DA_FaBiAN

CSF 0.75 ± 0.32 0.77 ± 0.33 0.81 ± 0.30
cGM 0.57 ± 0.22 0.64 ± 0.21 (*) 0.68 ± 0.18
WM 0.77 ± 0.22 0.80 ± 0.21 (*) 0.86 ± 0.19

Ventricles 0.79 ± 0.20 0.76 ± 0.23 0.85 ± 0.17
Cerebellum 0.58 ± 0.30 0.70 ± 0.35 (*) 0.65 ± 0.32

dGM 0.48 ± 0.20 0.59 ± 0.22 (*) 0.82 ± 0.19
Brainstem 0.53 ± 0.28 0.65 ± 0.25 (*) 0.76 ± 0.26

Overall 0.64 ± 0.23 0.70 ± 0.24 (*) 0.77 ± 0.22

Figure 4.6: Domain adaptation label-wise configuration performances for neurotypical and pathological
groups.

4.3.3 Simulation brain model

Figure 4.7 highlights areas of the fetal brain that are annotated in a significantly dif-
ferent way between CRL and FeTA, leading to two different models. Particularly, the
cGM is thicker in the CRL model, with a more accurate annotation of the deep sulci.
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Figure 4.7: Comparison of fetal brain models and SR-reconstructed simulations. Representative T2-
weighted MR images (top row) of the two models from which fetal brain MR acquisitions are derived,
corresponding SR reconstructions (bottom row) and associated label maps. Left panel: CRL 30 weeks-
old subjects. Right panel: FeTA-svrtk clinical neurotypical patient of 30.3 weeks of GA. The arrows point
out discrepancies in annotations between both models of the fetal brain, mainly in the cGM, the dGM
and the CSF.

Figure 4.8 shows an appreciation of the automatic segmentation methods compared
to the GT on two representative slices of a 30.3 weeks-old fetus. DA_FaBiAN_FeTA
qualitatively presents more accurate tissue delineation. In the DA_FaBiAN_CRL seg-
mentation that was trained on CRL-based SR reconstructed simulation (Figure 4.7),
we observe that the cGM is better captured in the sulci depth, although it seems less
similar to the GR than DA_FaBiAN_FeTA .

Table 4.6 reports the mean DSC for each tissue in the different configurations stud-
ied. Overall, the performance of the segmentation algorithm is significantly improved
when supplementing clinical data (Baseline) with synthetic MR images reconstructed
in the target domain (DA_FaBiAN_X), especially with a fetal brain model close to the
target domain, i.e. DA_FaBiAN_FeTA.

DA_FaBiAN_FeTA provides statistically more accurate segmentation than the Base-
line in all the tissues but the CSF. Conversely, DA_FaBiAN_CRL is less accurate in the
CSF, the cGM and the WM than the Baseline, whereas it outperforms all other configu-
rations in the dGM. DA_FaBiAN_FeTA outperforms DA_FaBiAN_CRL in the cerebel-
lum, the brainstem, the WM and the cGM.

Figure 4.9 displays the segmentation performance separated into neurotypical and
pathological patients. Improved segmentation of WM and cGM is especially observed
in pathological patients.
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Figure 4.8: Qualitative results in simulation-based domain adaptation from different fetal brain models
on an axial (top row) and a sagittal (bottom row) view for a neurotypical fetus of 30.3 weeks of GA.
The arrows point out areas that are more accurately segmented in our domain adaptation strategy using
FeTA-svrtk patients as fetal brain models instead of HR images from CRL [56] in comparison with the
Baseline.

Table 4.6: Quantitative results in simulation-based domain adaptation from different fetal brain models.
DSC (mean ± SD) in the different training configurations. The best scores between configurations are
shown in bold. p-values of Wilcoxon rank sum test between configuration for individual fetal brain
tissue segmentation are adjusted for multiple comparisons using Bonferroni correction. p < 0.05 (*) is
considered statistically significant.

Baseline DA_FaBiAN_CRL DA_FaBiAN_FeTA

CSF 0.86 ± 0.17 0.84 ± 0.18 (*) 0.86 ± 0.17 (+)
cGM 0.66 ± 0.17 0.61 ± 0.16 (*) 0.69 ± 0.15 (*,+)
WM 0.85 ± 0.12 0.79 ± 0.18 (*) 0.86 ± 0.12 (*,+)

Cerebellum 0.61 ± 0.29 0.65 ± 0.30 (*) 0.73 ± 0.30 (*,+)
dGM 0.65 ± 0.16 0.74 ± 0.18 (*) 0.72 ± 0.17 (*,+)

Brain stem 0.57 ± 0.23 0.69 ± 0.16 (*) 0.71 ± 0.18 (*,+)

Overall 0.70 ± 0.18 0.72 ± 0.18 (*) 0.76 ± 0.17 (*,+)

4.4 Conclusion

In the context of domain adaptation for the tissue segmentation of fetal brain MRI,
we propose an augmentation pipeline that relies on a simulation framework for syn-
thetic MR images. We address the inter-dataset domain shift by replicating both the
acquisition and postprocessing steps. Specifically, we demonstrated that numerically-



66 CHAPTER 4. SYNTHETIC DATA AUGMENTATION FOR DOMAIN ADAPTATION

Figure 4.9: Label-wise performance comparison for simulation-based domain adaptation from different
fetal brain models for neurotypical (left) and pathological (right) groups.

generated synthetic MR images of the developing fetal brain can complement clinical
images in the training of automatic segmentation methods.

From there, we demonstrated the relevance of such synthetic MR images for the
generation of target-like domain images. The latter allowed a significant reduction of
the domain shift. Our approach that is free of additional expert annotations overcomes
the lack of annotated clinical data by generating synthetic images from pre-existing
labelmaps. Nonetheless, we evidence the importance of the choice of the latter as it
appears to play a key role both from the annotation procedure followed and in the
morphological variability presented to the network.

In this chapter, all experiments were conducted using 2D patch-based approaches.
Although we use a state-of-the-art U-Net architecture, 3D-based methods are known
to be better performing (see Chapter 1, Section 1.4.2). Nonetheless, we address here the
DL limitation of the fitting of a specific data distribution and would expect a similar
behaviour of our data augmentation-based adaption strategy in a 3D approach.

In the automatic segmentation methods benchmark presented in [112], the only non
DL-based method – our MAS approach – appeared to be the less altered by variations
in the image quality. We recall that MAS relies on the iterative optimization of an
image similarity metric, and not on the fitting of a data distribution. Therefore, sim-
ilarly to the image quality variation, we hypothesize that the variations induced by
the image acquisition and reconstruction may be less troublesome for such MAS ap-
proaches. Even though we specifically address in this chapter the domain shift in DL
segmentation methods, DL-free methods should be considered to further evaluate the
performance and benefit of our approach.



5
SR reconstruction-based domain

generalization

The work in this chapter is accepted for presentation at the IEEE International
Symposium on Biomedical Imaging (ISBI) 2023 as "Domain generalization in fetal
brain MRI segmentation with multi- reconstruction augmentation" with co-authors:
P. de Dumast and M. Bach Cuadra.

5.1 Introduction

As introduced in Section 1.4.2 and further studied in Chapter 4, the post-processing
variability may not only be introduced by the reconstruction method itself but also by
its parameters settings. Specifically, the contribution weight α given to the regular-
ization function in the image recovery step (see Equation 1.4) induces substantial im-
age texture changes (see Figure 1.5 (C)). In Chapter 3, we additionally evidenced that,
when the regularization weight is well chosen across methods, the inter-SR method
reconstruction variability may be reduced, as the image similarity increases.

Hence, after introducing a domain adaptation strategy relying on acquisition do-
main variations in Chapter 4, we present here an in-SR domain data augmentation
approach to increase the segmentation model generalizability. Specifically, our in-
SR domain multi-reconstruction approach aims at taking advantage of multiple SR-
reconstructed volumes of the same fetal brain obtained with different parameters, in
order to increase the intensity variability represented in the training data. We show
that our multi-reconstruction approach increases performance on in- and out- of SR
target domain datasets.

67
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Figure 5.1: Overall framework. Materials (A), data preparation (B) and supervised learning (C) are
presented for the data augmentation (a) and domain generalization (b) tasks.

5.2 Materials

5.2.1 Clinical MR exams

Forty (40) clinical fetal brain MR exams from 21 to 35 weeks of GA (mean ± standard
deviation (SD): 28.4± 4.2) were retrospectively collected from the CHUV. Acquisitions
were either performed at 1.5T (N = 37) or 3T (N = 3) on Siemens Healthcare scanners,
respectively resulting to 1.125mm and 0.5469mm in-plane isotropic, and 3.3mm and
3mm through-plane resolution.

The local ethics committee of the Canton of Vaud, Switzerland (CER-VD 2021-00124)
approved the retrospective collection and analysis of MRI data and the prospective
studies for the collection and analysis of the MRI data in presence of a signed form of
either general or specific consent.

5.2.2 In-SR domain dataset – CHUV-set

All clinical exams (presented in Section 5.2.1) were SR-reconstructed into the pa-
tient’s space through the MIALSRTK pipeline (with default regularization weight, i.e.
λ = 0.75) [143]. Volumes are aligned into a common reference space and resampled
to 1.1 × 1.1 × 1.1mm3. Following the FeTA annotation guidelines [112], the extra-axial
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CSF, the cGM, the WM, the ventricles, the cerebellum, the dGM and the brainstem
were manually annotated.

5.2.3 Out-of-SR domain pure testing set – FeTA-KCL

Forty (40) clinical fetal brain images from FeTA dataset are used as out-of-domain pure
testing set [112]. Patients were aged from 21.2 to 34.8 weeks of GA (27.1 ± 3.9). They
were reconstructed with SVRTK [88, 135]. SR volumes were resampled to an isotropic
resolution of 0.8mm. Tissue annotations of the CSF, the cGM, the WM, the ventricles,
the cerebellum, the dGM and the brainstem were manually refined and completed
with the additional corpus callosum (CC) label [39, 40]. For the remainder of this
study, CC and WM tissue classes are merged in order to match the tissue distribution
available in CHUV-set.

5.3 Methodology

Our experiment design is shown in Figure 5.1 including datasets (panels A and B), the
methods development (panel C) and their assessment (panel D). We propose a single-
pipeline multi-reconstruction approach as data augmentation for fetal brain MRI seg-
mentation. To strengthen the generalization of our findings, we assess our multi-
reconstruction approach with two different SR pipeline, namely NiftyMIC [33] and
MIALSRTK [143]. First, we assess our single-pipeline multi-reconstruction method in
a pure data augmentation set up (Task (a), Section 5.3.2). Second, we further evaluate
our augmentation approach in an out-of-domain experiment (Task (b), Section 5.3.2).

5.3.1 SR reconstruction-based data augmentation

SR reconstructions

All clinical MR exams in Section 5.2.1 are additionally reconstructed through two in-
dependent SR pipelines, such that we have the following two new independent HR
Multi-SR datasets:

Multi-MIALSRTK fetal brains are reconstructed through the MIALSRTK [143]
pipeline with the following regularization weight - including the default one -
λ ∈ {0.1, 0.75, 1.5, 3.0};

Multi-NiftyMIC fetal brains are reconstructed through the NiftyMIC [33] pipeline
with the regularization weight α ∈ {0.01, 0.02, 0.05, 0.1}.
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Figure 5.2 shows a representative patch of a 32 weeks of GA fetal brain multi-
reconstructed through MIALSRTK and NiftyMIC SR pipelines. High λ (respectively
low α), offers a better tissue contrast, although the overall image appears more
noisy. Conversely, low λ values (respectively high α) increase the overall smooth-
ness of the image. Thus, variation of the regularization weights echoes a texture
change in the SR image.

Figure 5.2: Appreciation of the intensity variation depending on the SR reconstruction regu-
larization parameters λ and α for MIALSRTK and NiftyMIC reconstructions on a 32 weeks of
GA neurotypical patient.

Weak labelling

All reconstructed brains of Multi-MIALSRTK and Multi-NiftyMIC have a tissue la-
belmap in the space of its CHUV-set reconstruction. Through a rigid registration-based
approach, manual annotations are propagated to the newly generated Multi-SR sets.

Training configurations

We define three configurations based on their training data (Table 5.1, Figure 5.1 (C)).
Baseline is trained on the 30 training patients from CHUV-set, and MIALSRTK-
augmented, respectively NiftyMIC-augmented are trained on the 120 Multi-MIALSRTK,
respectively Multi-NiftyMIC, reconstructed volumes of the same 30 fetal brains.
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Table 5.1: Summary of training configurations.

Baseline MIALSRTK-augmented NiftyMIC-augmented

Training set CHUV-set Multi-MIALSRTK Multi-NiftyMIC
# patients 30 30 30
# volumes 30 120 120
Labelling Manual Weak Weak

5.3.2 Evaluation

We compare our multi-reconstruction approach in:

(a) Data augmentation task. In this in-domain experiment, we compare the per-
formances of Baseline and MIALSRTK-augmented on the 10 left-out patients from
CHUV-set.

(b) Domain generalization task. We evaluate the performance of Baseline, MIALSRTK-
augmented and NiftyMIC-augmented on the 40 out-of-domain FeTA-KCL images.

The performance of the SR-augmented and Baseline configurations are evaluated with
the DSC [28] and the average symmetric surface distance (ASSD) [157] between the
ground truth manual annotations and the predicted segmentation. A paired Wilcoxon
rank-sum test is performed between SR-augmented configuration and the Baseline. p-
values are adjusted for multiple comparisons using Bonferroni correction in the statis-
tical analysis of individual fetal brain tissues. Statistical significance level is set to 0.05.

5.3.3 Model and training strategy

From the MONAI framework [103, 17], we use the popular 3D U-Net architecture that
performed remarkably on fetal brain MRI tissue segmentation in the 2021 MICCAI
FeTA challenge [113]. Inputs are 96× 96× 96 voxel size patches that are randomly sam-
pled from the original SR volumes. At train time, input samples are augmented, based
on the most applied and successful transformations used in the FeTA challenge [113].
Spatial (flipping, rotation, resampling) and intensity-based (bias field, Gaussian noise)
transformations are randomly applied. Lastly, image patch intensities are normalized.
We adopt a 5-folds CV. Networks are trained for 100 epochs minimizing a dice focal
loss function, where both losses equally contribute. All configurations adopt the same
training strategy.

At test-time, we proceed to an ensemble evaluation of all 5 CV networks on 50%
overlapping patches inferred through a sliding window approach.
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5.4 Results

5.4.1 Data augmentation

Table 5.2 (a) reports the DSC and ASSD performances for both tasks. Overall, the
performance of the segmentation algorithm is significantly enhanced when each fetal
brain is reconstructed multiple times through the same pipeline as the target (testing)
images, even though the weak labelling process incurred. The benefit of MIALSRTK-
augmented is further statistically significant for all tissue classes.

Table 5.2: Segmentation performances of the different training configurations in data augmentation (a)
and domain generalization (b) tasks. DSC and ASSD (mean ± SD) of the different training configurations
in data augmentation (a) and domain generalization (b) tasks. The best scores between SR-augmented
configurations and Baseline are shown in bold. Arrows indicates weither the metric is better maximized
(↑) or minimized (↓). The corresponding p-values (paired Wilcoxon rank sum test) are adjusted for
multiple comparisons using Bonferroni correction. Statistical significance (*) is p < 0.05.

(a) Data augmentation (b) Domain generalization

Baseline MIALSRTK-augmented Baseline MIALSRTK-augmented NiftyMIC-augmented

DSC (↑)

CSF 0.87 ± 0.02 0.90 ± 0.02 (*) 0.87 ± 0.17 0.90 ± 0.16 (*) 0.90 ± 0.17 (*)
cGM 0.75 ± 0.03 0.78 ± 0.03 (*) 0.76 ± 0.14 0.81 ± 0.14 (*) 0.81 ± 0.14 (*)
WM 0.86 ± 0.02 0.89 ± 0.01 (*) 0.85 ± 0.13 0.89 ± 0.12 (*) 0.88 ± 0.12 (*)
Ventricles 0.81 ± 0.05 0.84 ± 0.04 (*) 0.76 ± 0.11 0.82 ± 0.10 (*) 0.86 ± 0.10 (*)
Cerebellum 0.88 ± 0.02 0.91 ± 0.03 (*) 0.67 ± 0.28 0.79 ± 0.21 (*) 0.86 ± 0.11 (*)
dGM 0.88 ± 0.05 0.89 ± 0.03 (*) 0.79 ± 0.11 0.85 ± 0.08 (*) 0.86 ± 0.06 (*)
Brainstem 0.85 ± 0.02 0.87 ± 0.02 (*) 0.68 ± 0.20 0.76 ± 0.13 (*) 0.76 ± 0.10

Overall 0.84 ± 0.02 0.87 ± 0.01 (*) 0.77 ± 0.14 0.83 ± 0.11 (*) 0.85 ± 0.10 (*)

ASSD (↓)

CSF 0.47 ± 0.06 0.35 ± 0.05 (*) 1.0 ± 2.41 0.91 ± 2.5 (*) 0.870 ± 2.45 (*)
cGM 0.63 ± 0.09 0.55 ± 0.09 (*) 1.0 ± 0.57 0.96± 1.4 (*) 0.754 ± 0.761 (*)
WM 0.81 ± 0.1 0.64 ± 0.09 (*) 1.5 ± 1.5 1.3 ± 2.1 (*) 1.40 ± 2.23 (*)
Ventricles 0.88 ± 0.2 0.57 ± 0.09 (*) 1.5 ± 0.70 0.96± 0.521 (*) 0.797 ± 0.505 (*)
Cerebellum 0.70 ± 0.06 0.56 ± 0.07 (*) 2.5 ± 3.0 1.2 ± 0.998 (*) 0.886 ± 0.508 (*)
dGM 0.75 ± 0.2 0.66 ± 0.1 (*) 1.8 ± 1.4 1.4 ± 0.951 (*) 1.22 ± 0.729 (*)
Brainstem 0.70 ± 0.07 0.58 ± 0.07 (*) 2.1 ± 2.8 1.2 ± 0.580 1.27 ± 0.684

Overall 0.70 ± 0.07 0.56 ± 0.05 (*) 1.64 ± 1.32 1.14 ± 0.94 (*) 1.03 ± 0.80 (*)

5.4.2 Domain generalization

SR-augmented qualitatively enhance the accuracy of segmentation compared to Base-
line, especially in the infratentorial structures, namely the brainstem, the cerebellum
and the 4th ventricle (Figure 5.3, white circles). Additionally, the WM tract of the CC
are better captured with our multi-reconstruction approach, and even more than com-
pared to the ground truth.

Quantitative results (Table 5.2 (b)) show in the assessment of 10 in-domain to 40 out-
of-domain patients a loss of performances of both Baseline and MIALSRTK-augmented
configurations. Nevertheless, while Baseline shows a loss of 0.07 and 0.94, respec-
tively in DSC and ASSD MIALSRTK-augmented only drops of 0.04 and 0.58. Our multi-



5.4. RESULTS 73

Figure 5.3: Sagittal view of a 27.8 weeks-old (top) and coronal view of the 33.1 weeks-old (bottom) fetal
brain tissue segmentation obtained in the different configurations studied. White arrows and circles
show representative areas where our multi-reconstruction approach improves the segmentation accu-
racy.

reconstruction approach hence seems more robust to the inter-SR method domain gap.
Regardless of the SR method of the training data, our multi-reconstruction augmenta-
tion strategy significantly improves the segmentation performance on out-of-SRR do-
main images, both in DSC and ASSD. On a tissue-wise analysis, SR-augmented config-
urations are always significantly better performing than Baseline, except for the ASSD
in the brainstem. The benefit of our multi-reconstruction approach is even more pro-
nounced in the ventricles, the cerebellum, the dGM and the brainstem where the gain
in DSC is greater than 0.05. Specifically, the steepest improvement appears in the
cerebellum (0.67 for the Baseline vs. 0.79 and 0.86, respectively for MIALSRTK- and
NiftyMIC-augmented).

Figure 5.4: Mean DSC (plain) and ASSD (dashed) performance in the domain generalization task as a
function of GA in weeks.

From a GA-based analysis (Figure 5.4), we observe that Baseline overall performs
worse on young and old (< 25 and > 30 weeks of GA) fetuses. On the contrary, al-



74 CHAPTER 5. SR RECONSTRUCTION-BASED DOMAIN GENERALIZATION

though a similar trend is noticeable for SR-augmented methods, it is substantially less
pronounced. Consequently, in this inter-domain segmentation task, SR-augmented con-
figurations seems to better benefit the endpoint of the GA range studied.

5.5 Conclusion

In this chapter, we have demonstrated that having single-pipeline multi-reconstruction
of fetal brain MR exams (i) is an efficient intensity-based data augmentation strategy
and (ii) reduces the performance drop in target image domain shift in segmentation
task. Our multi-reconstruction approach, combined to conventional data augmenta-
tion strategies, increases the representation of fetal brain MRI variability in the training
phase of supervised segmentation method. Although we did not investigate multi-
pipeline multi-reconstruction augmentation, one can expect an even stronger benefit
of our method. Nonetheless, a proper validation of our method on larger and more
diverse datasets remains to be explored as well as a comparison against state-of-the-
art augmentation methods. In its batch processing approach, our multi-reconstruction
strategy is an out-of-the-box easy to adapt method. Future work will investigate this
multi-reconstruction augmentation at inference in order to increase the prediction ro-
bustness, as test-time augmentation had been proposed in [69].
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On segmentation consistency
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6
Importance of topology assessment

The work presented in this chapter is an analysis done in the context of the FeTA 2022
MICCAI challenge. It will be included in the paper in preparation for submission
to IEEE Transactions on Medical Imaging entitled "Multi-Center Fetal Brain Tissue
Annotation and Segmentation (FeTA) Challenge Results" with co-authors K. Payette,
C. Steger, R. Licandro, P. de Dumast, H. Li, M. Barkovich, L. Li, M. Dannecker, C. Chen,
C. Ouyang, N. McConnell, A. Miron, Y. Li, A. Uus, I. Grigorescu, P. Ramirez Gilliland,
Md. Mahfuzur R. Siddiquee, D. Xu, A. Myronenko, H. Wang, Z. Huang, J. Ye, M.
Alenyà, V. Comte, O. Camara, J.-B. Masson, A. Nilsson, C. Godard, M. Mazher, A.
Qayyum, Y. Gao, H. Zhou, S. Gao, J. Fu, G. Dong, G. Wang, Z. Rieu, H. Yang, M. Lee,
S. Potka, M K. Grzeszczyk, A. Sitek, L. Vargas Daza, S. Usma, P. Arbelaez, W. Lu, W.
Zhang, J. Liang, R. Valabregue, A.A. Joshi, K. N. Nayak, R.M. Leahy, L. Wilhelmi, A.
Dändliker, Hui Ji, A. Jakovi, M. Klai, A. Adi, P. Markovi, G. Grabari, M. Rados, L.
Vasung, M. Bach Cuadra, A. Jakab.

6.1 Introduction

The FeTA MICCAI challenge1 aims at encouraging the development of automatic fe-
tal brain MRI tissue segmentation methods. The task the participants have to solve is
the automatic segmentation of the fetal brain intracranial tissues into seven categories:
CSF, cGM, WM, Ventricles, Cerebellum, dGM and Brainstem. A training dataset is
provided to the participants and their submitted algorithms are further assessed on
non-released testing data. To identify the better performing algorithms amongst the
submissions, complementary metrics are inferred, from which a ranking of the meth-
ods is derived [112]. Typically, overlap-, boundary-distance- and size-based metrics
are considered. Nonetheless, the topology correctness is usually not considered, even
though the morphometry analysis heavily relies on it.

1https:// feta.grand-challenge.org/
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In this chapter, we propose to further analyze the importance of the topol-
ogy in the comparison of automatic segmentation methods. Specifically, we pro-
pose the integration of a global topology metric in the finale ranking of the 2022
FeTA challenge submissions.

6.2 Materials

6.2.1 Challenge datasets

Four institutions provided data for the 2022 FeTA challenge: University Childrens
Hospital Zurich, Zurich, Switzerland (Kispi), General Hospital Vienna/Medical Uni-
versity of Vienna, Vienna, Austria (Vienna), Lausanne University Hospital, Lausanne,
Switzerland (CHUV) and University of California San Francisco, CA, USA (UCSF).

Table 6.1 presents a summary of the acquisition and postprocessing steps of the
images per institution. Specifically regarding the SR reconstruction methods: Vienna
and UCSF use NiftyMIC [33], half of Kispi use SVRTK [88] and, finally, CHUV and the
rest of Kispi use MIALSRTK [143] although an additional histogram matching is done
in Kispi. Kispi and Vienna provided both training and testing data, while CHUV and
UCSF only provided testing images.

Kispi Vienna CHUV UCSF

Cohort # Patients 120 80 40 40
GA (weeks) [20-35]

Acquisition
Field strength 1.5 or 3 T 1.5T 1.5 or 3T 3T

MR vendor GE Philips Siemens GE

Resolution (mm3) 0.5× 0.5× 3 to 5 −×−× 3 to 5 1.13× 1.13× 3.3
0.55× 0.55× 3 ∼ 0.5× ∼ 0.5× 3

Post-
processing

SR reconstruction MIALSRTK [143] NiftyMIC [33] MIALSRTK [143] NiftyMIC [33]SVRTK [88]

Additional Atlas alignment
Histogram matching Atlas alignment Atlas alignment Atlas alignment

Resolution (mm3) 0.5× 0.5× 0.5 1.0× 1.0× 1.0 1.13× 1.13× 1.13 0.8× 0.8× 0.8

Splitting Train 80 40 - -
Test 40 40 40 40

Table 6.1: FeTA 2022 challenge datasets summary.

6.2.2 Challenge results

Sixteen (16) algorithms were submitted to the 2022 edition of the FeTA challenge. Pre-
diction labelmaps were inferred on the 160 testing patients through all submitted algo-
rithms. Similarly to the 1st FeTA challenge edition [113], three complementary metrics
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are assessed: the Dice similarity coefficient (DSC), the 95th percentile Hausdorff Coef-
ficient (HD95) and the volume similarity (VS).

Rankings for each metric (DSC, HD95 and VS) over all segmented labels were per-
formed through the challengeR toolkit, specifically designed to calculate and display
imaging challenge results [151]. The final FeTA2022 challenge ranking is derived from
all metric-wise rankings.

6.3 Methods

6.3.1 Computational topology

Topology defines the properties of an object that are preserved through deforma-
tion [123]. In computational topology, local features are derived to conclude on the
global properties of an object. Specifically, in a binary image, local information relies
on the connectivity of a voxel to its neighbors in an objects. Global features such as the
number of connected components or holes can be drawn by generalizing the connec-
tivity information.

Topology structures are defined in the different topological dimensions. The num-
ber of topological structures in each k-dimension is counted with the k-dimensional
Betti numbers (BNk). In the context of 3D binary images, one can count BN0 connected
components, BN1 holes (also called handles or tunnels), and finally BN2 cavities. Fig-
ure 6.1 shows three 2D binary image patches and their Betti numbers. Note that for a
2D binary image, BN2 is always 0.

Figure 6.1: Example patches of 2D binary images with the topological properties: number of connected
components BN0, number of holes BN1, and number of cavities BN2.

6.3.2 Topology metric

To quantitatively compare the topology of each segmented structure, we introduce
the k-dimensional Betti number error (BNEk) as the absolute difference of the GT ex-
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pected value and the prediction measure. BNEk are difference metrics that must be
minimized. A summary of the GT expected BN is presented in Table 6.2.

BN0 BN1 BN2

CSF 1 0 0
GM 2 0 0
WM 1 0 0
Ventricles 1 0 0
Cerebellum 1 0 0
dGM 1 0 0
Brainstem 1 0 0

Table 6.2: Ground truth k-dimensional Betti numbers (BNk) per tissue class.

In the absence of segmentation for a tissue in a labelmap predictions, it is at-
tributed twice the value of the worst performing segmentation of the same label
over all submissions.

Similarly than in Section 6.2.2, a ranking for each BNEk is computed through the
challengeR toolkit [151]. We infer a global topology ranking BNE as the ranking of the
sum of all three BNEk rankings.

6.3.3 Analysis

Algorithms ranking

We first analyze the topology rankings: each BNEk and the derived global BNE
ranking. Then, we propose a topology-integrative ranking of the methods. Specif-
ically, while the FeTA2022 ranking considers the DSC, the HD95 and the VS, our
Topo-aware will additionally consider the global BNE topology ranking.

We further investigate the global BNE ranking in each the seven tissue labels.

Label-wise analysis

Over all submissions, we aim at exploring the topological correctness on a tissue-
wise basis. In each of the k-dim BNE, we compute the average of the 95th per-
centile per tissue and algorithm. In this analysis, we discard the missing tissue
segmentation that were penalized (see Section 6.3.2).



6.4. RESULTS 81

6.4 Results

6.4.1 Algorithms rankings

Overall

Table 6.3 (a) presents the topology rankings of the submissions for each dimension
k ∈ {0, 1, 2} (BNEk) and global (BNE). We observe that the methods seem to rank sim-
ilarly across the three k-dimensional BNE, with a maximum rank difference of less
than three, despite some exceptions. FMRSK presents a relatively big delta in its BNE
rankings of dimension 1 (rank=4) and 2 (rank=13). We hypothesize that such inter-
dimension variation may come from tissue-specific errors. Interestingly, hilab that does
not perform well in BNE0 (rank=10) and BNE1 (rank=11) is the best performing sub-
mission in BNE2. Nonetheless, the good BNE2 performance is not sufficient to pass on
to the global BNE ranking.

Changes in the global ranking (see Table 6.3 (b) Topo-aware vs. FeTA2022) are small:
maximum one rank difference except for Blackbean that goes from rank 5 in FeTA2022
to rank 3 in Topo-aware thanks to its good and steady topology-related performances
(ranks 3, 3 and 4). The winner and second submissions remain the same.

(a) Topology (b) Global

k-dim BNE BNE Topo-aware FeTA2022
BNE0 BNE1 BNE2

ajoshiusc 16 15 16 16 17 17
Blackbean 3 3 4 3 3 5
BlueBrune 2 2 3 2 2 2
deepsynth 17 16 17 17 16 16
dolphines 5 7 7 5 8 9
FIT (nnUnet) 1 1 2 1 1 1
FIT (Transformers) 7 8 5 6 7 7
FMRSK 9 4 13 9 4 3
fudan_zmic 8 10 9 10 10 10
hilab 10 11 1 8 11 11
Institut_Pasteur_DBC 11 12 11 12 9 8
Neurophet 14 14 15 14 12 12
NVAUTO 6 6 8 7 5 4
Sano 13 13 12 13 13 13
symsense 4 5 6 4 6 6
Uniandes 12 9 10 11 14 14
xinlab-scut-iai-ahu 15 17 14 15 15 15

Table 6.3: Topology (a) and global (b) rankings of the submissions. (a) Betti number errors (BNE) per
dimension and overall. (b) Comparison of the FeTA challenge ranking (FeTA2022) and our topology-
integrative ranking (Topo-aware). Top 3 submissions are shown in bold.
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Label-wise ranking

Table 6.4 presents the global topology BNE ranking of the submissions per tissue class.
While overall BNEk rankings (Table 6.3 (a)) remained steady, the inter-tissue topology
ranking are relatively inconsistent. For instance, hilab that is the better performing
submission in the CSF ranks 13 out of 17 in the WM.

Apart from the unquestionable top 2 teams, FIT (nnUnet) and BlueBrune, only Black-
bean and dolphines manage to rank in the upper part of the table for all tissue class.
Specifically, the average tissue topology ranking of Blackbean is 3.3, while FMRSK ranks
on average 9.1. Consequently, Blackbean per-tissue steadiness is rewarded with its ap-
pearance on the podium with our topology-integrative ranking (see Table 6.3 (b)) at
the expense of FMRSK.

Tissues

CSF cGM WM Ventricles Cerebellum dGM Brainstem Average

ajoshiusc 10 15 5 17 16 17 14 13.4
Blackbean 4 4 1 2 4 6 2 3.3
BlueBrune 5 7 2 3 1 1 3 3.1
deepsynth 14 16 7 15 17 16 17 14.6
dolphines 7 8 3 8 2 5 6 5.6
FIT (nnUnet) 2 5 4 1 3 2 1 2.6
FIT (Transformers) 3 2 6 10 8 7 5 5.8
FMRSK 12 10 9 9 6 8 10 9.1
fudan_zmic 9 11 8 11 9 9 8 9.3
hilab 1 6 13 5 11 12 12 8.6
Institut_Pasteur_DBC 15 13 11 12 7 10 11 11.3
Neurophet 16 12 14 14 15 14 16 14.4
NVAUTO 11 1 12 6 5 3 7 6.4
Sano 13 14 15 13 12 13 9 12.7
symsense 8 9 10 4 10 4 4 7.0
Uniandes 6 3 16 7 14 11 15 10.3
xinlab-scut-iai-ahu 17 17 17 16 13 15 13 15.4

Table 6.4: Topology (BNE) ranking of the submissions per tissue class and on average.

6.4.2 Label-wise topology

Table 6.5 presents the average of the 95th percentile k-dimensional BNEs. We first ob-
serve that the least well segmented structure varies across dimensions: the CSF for
BNE0 and BNE2, and the cGM for BNE1. Regardless of the dimension, the CSF, the
cGM and the WM are always the worst 3 segmented structures. In dimension 1, we
observe the greatest variation across structures (from 0.6 in the brainstem to 136.4 in
the cGM), and the worst two structures are by far the cGM and the CSF. Both CSF and
cGM are thin structures that are only a few voxels-wide in SR images, and are therefore
prone to 1-dimensional topological errors.
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BNE0 BNE1 BNE2

CSF 41.8 106.0 0.8
cGM 23.1 136.4 0.3
WM 37.7 28.0 0.5
Ventricles 5.6 3.8 0.2
Cerebellum 14.5 0.8 0.1
dGM 5.7 1.4 0.1
Brainstem 5.4 0.6 0.1

Table 6.5: Average of the 95th percentile k-dimensional BNE per tissue class. Worst scores are shown in
red.

Figure 6.2 presents 95th percentile of BNE1 of the submissions prediction per tissue
and institution. The CSF, the cGM and the WM are undeniably and regardless of the
dataset the worst segmented structures,

In the cGM, we observe a strong variation of BNE1 across the subsets: the worst
results being obtained on CHUV images, followed by Vienna. We hypothesize this
performance drop is due to the image resolution: CHUV and Vienna images have re-
spectively isotropic resolutions of 1.13mm3 and 1mm3, while other others have lower
resolutions (0.5mm3 for Kispi and 0.8mm3 for Vienna).

The thickness of the cGM increases from 1 to 2mm for fetuses between 21 and 40
weeks of GA [147]), Consequently, the low image resolution (> 1mm isotropic) and the
strong partial volume effect hamper the accurate segmentation of this thin structure.

6.5 Conclusion

In this Chapter, we evidence the importance of the consideration of the topology in the
assessment and comparison of automatic segmentation methods. In the algorithms
ranking, the inclusion of a topology-based metric does not drastically change the final
results, although minor updates are observed. Specifically, the across-tissue steadiness
in topological accuracy is rewarded. Furthermore, over all submissions, we observe
that the CSF, the cGM and the WM are always the most affected structures by topolog-
ical defects, especially the cGM. As we relate the image resolution - and hence partial
volume effect - to the segmentation accuracy, we evidence that topology metric must be
considered, yet with care, depending on the data properties and structure of interest.
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Figure 6.2: Average algorithm BNE1 performances per Institution for each tissue class.



7
Multi-dimensional topological loss

The work presented in this chapter is in preparation for submission to NeuroImage
as "Multi-dimensional topological loss for cortical plate segmentation in fetal brain
MRI" with co-authors P. de Dumast, H. Kebiri, V. Dunet, M. Koob and M. Bach Cuadra.

7.1 Introduction

7.1.1 Clinical context

During in utero development, the human fetal cortical plate (CP) that is the future cor-
tex undergoes drastic changes (see Chapter 1, Section 1.1.1), in particular with the ap-
pearance of the cortical gyrifications (see Chapter 1, Figure 1.5 (A)). Jointly, the surface
area and the volume of the future cortex are respectively increased 50 and 40 times
during the 2nd and 3rd trimesters of pregnancy [147, 148].

Cortical gyrification is considered to be a relevant marker of fetal brain maturation,
as the chronological sequence of appearance of sulci is well known during the fetal
period [49] (see Chapter 1, Section 1.1.1). Conversely, abnormal fetal sulcation and
gyration indicate disruption of one of the three main fetal stages of normal cortical
development (i.e. cell proliferation, migration and cortical organization) [8, 92].

Altered cerebral cortex formation, induced either by genetic mutations, vascular in-
juries, metabolic diseases, fetal infection or teratogenic causes, may lead to malforma-
tions of cortical development. An updated classification of this group of heterogenic
disorders has been recently published in a consensus statement [131]. Those rare dis-
orders usually manifest with developmental delay, seizures, and motor and sensory
deficits [94]. Given the consequences of abnormal brain gyrification, early diagnosis is
crucial, for which the analysis of cortical maturation is an asset.
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Quantitative analysis of imaging biomarkers has defined cortical development for
the typically developing brain [120, 22, 152, 153], while other works evidenced dis-
crepancies in cortical volumes and sulcal patterns in the pathological brain [21, 34, 75,
138]. Nevertheless, these analyses require prior additional segmentation processing
steps that must be efficiently automatized to be continuously performed (see Chap-
ter 1, Section 1.4.2). Nonetheless, in contrast to adult brain segmentation, fetal brain
segmentation remains challenging as to provide an age-invariant method [98].

7.1.2 Related works in cortical plate segmentation

Segmentation of the CP is particularly challenging as it undergoes significant changes
throughout gestation due to brain growth and maturation, respectively modifying the
morphology and the image contrast (see Chapter 1, Figure 1.5 (A)). Furthermore, the
cortex being a thin structure (from 1 to 2 mm for fetuses between 21 and 40 weeks of
GA [147]) that is strongly affected by partial volume effects, anatomical topology is
prone to be incorrectly captured by automatic segmentation methods (see Chapter 6).

In Caldairou et al. [15], they introduced the first topological-based segmentation of
the fetal cortex based on geometrical constraints along with anatomical and topological
priors. However, the sample size in that study was small (i.e. six fetuses) and topolog-
ical correctness was not evaluated for the provided segmentations. More recently, DL
methods have also focused on fetal brain MRI cGM segmentation. Based on a neona-
tal segmentation framework, a recent study introduced a hybrid segmentation process
that minimizes the need for human interaction in the segmentation of the developing
cortex [38]. Also with DL models, a multiple-predictions approach with a test-time
augmentation to improve the robustness of the method was suggested [69]. Finally, a
two-stage segmentation framework with an attention refinement was proposed [30].
Nevertheless, while the segmentation accuracy of these recent DL-based methods is
promising, none of these CP segmentation works includes topological constraints nor
assesses the topology. Overall, these studies of automatic segmentation frameworks
report high similarity, as for overlap (DSC of 0.87 in [30] and 0.90 in [69]), and low dif-
ference, as for the boundary distance-based metrics (ASSD of 0.28 mm in [30] and mean
surface distance of 0.18 mm in [69]), compared to the GT segmentation, but illustrated
results show a lack of topological consistency with notably discontinuous/broken cor-
tical ribbons (see Fig. 5 in [30], Figures 5 and 6 in [38]).

Here, we propose to integrate a topological constraint in a deep image segmenta-
tion framework to overcome the limitation of disjoint CP segmentation in fetal MRI.
To our knowledge, only two works previously explored the topological fidelity of the
semantic medical image segmentation with DL. First, Hu et al. [71] proposed to use
a topological loss for neuronal membrane segmentation. Second, a study presented
topological constraints for MR cardiac image segmentation [23] based on prior topo-
logical knowledge, such as the number of connected components or handles present in
the structure of interest. Although theoretical CP topological features are known, such
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prior information could only be valid in a whole 3D volume analysis. Therefore, we
inspired from [71] that does not share this limitation to build a prior-free framework.

7.1.3 Contributions

In this chapter, we incorporate topological constraints and assess the topology of the
CP segmentation in fetal brain MRI. To this end, our first contribution is the gener-
alization of a topological loss function based on persistent homology into a multi-
dimensional (in topological spaces) formulation. Using the public FeTA dataset [112]
along with the spatiotemporal CRL atlas [56], we compare our topology-integrative
optimization method (TopoCP) to the original topological loss function we built-on
(Hu2019) [71] and other widely used loss functions (Baseline and Hybrid) [113] with a
state-of-the-art U-Net segmentation network. We further assess our proposed method
compared to semi-automatic manual annotations. For the first time, the topological
correctness of the segmentation is assessed in the evaluation of automatic CP segmen-
tation. In that respect, our second contribution is a new topology-based metric for the
quantification of the CP segmentation defects not only in number but also in size. We
quantitatively compare automatic and semi-automatic segmentation with complemen-
tary metrics on two independent pure testing sets. As a complement, three fetal brain
MRI experts further visually compare automatic segmentation on an additional out-of-
distribution clinical dataset. The results evidence an overall significant improvement
in the segmentation using our proposed topological loss function.

In Section 7.2 we introduce our multi-dimensional topological loss function, the
overall segmentation framework and our original topology hole ratio assessment met-
rics; in Section 7.3, we describe the experimental design, along with materials and
description of the experiments performed; in Section 7.4, we describe and discuss the
results; and finally, we conclude on this work in Section 7.5.

7.2 Methodology

We propose a topologically-guided DL framework for the CP segmentation of the fetal
brain MRI. This is done by including a topological constraint in the optimization of
state-of-the-art DL image segmentation strategies. First, we will introduce our custom
loss function that we adapted for generalization from Hue et al. [71] (see Section 7.2.1).
Second, we present the segmentation framework in which our custom loss function is
integrated (see Section 7.2.2). Finally, we present topology-based metrics for further
assessment of our method (see Section 7.2.3).
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7.2.1 Topological loss

In semantic image segmentation, conventional optimization loss functions (e.g. the
cross-entropy) often proceed to a pixel-wise comparison of the class-prediction that is
summarized in a likelihood function f to the one-hot encoded target vector. In this
work, we aim at integrating the analysis of the global shape correctness of the predic-
tion through the study of topology during the model optimization.

Persistent homology

Persistent homology offers a workaround to analyze the topology of a continuous-
valued n-dimensional image function. In the context of our semantic image segmen-
tation, we consider the likelihood map f ∶Ω ⊂ Rn → [0, 1] of a voxel to belong to the
CP that is predicted from a DL-based model (Figure 7.1 (A)). In order to reduce the
problem to a binary analysis as presented in the previous chapter (see Chapter 6, Sec-
tion 6.3.1), persistent homology tracks the topological structures of f through filtration
gγ to different thresholds γ ∈ [0, 1]:

gγ∶ [0, 1]Ð→ {0, 1}

x z→ gγ(x) = {
1 if x ≥ γ,
0 otherwise.

(7.1)

Snapshots of the topology are reported into a persistence barcode (Figure 7.1 (B)).
Each bar corresponds to a topological structure (e.g. connected components, han-
dles) which is characterized by its appearance and disappearance threshold values
(γbirth; γdeath). The persistence barcode can be filtered based on the structures persis-
tence. The persistence of a structure is defined by its life time ∆γ = γdeath − γbirth. In
persistent homology, the minimum persistence (mp) is the minimum lifetime accepted
in the topological structures filtration. Figure 7.1 (B) shows an example of a likeli-
hood image binarized at different thresholds γ ∈ [0, 1]. Two persistence barcodes with
mp = 0.001 (top) and mp = 0.1 (bottom) are presented. With a lower mp, we observe
the presence of a considerable amount of irrelevant structures. Indeed, the CP is a thin
cerebral tissue (only a few voxels-wide in SR volumes), and is therefore sensitive to
broken connections. In the barcode, this turns into the appearance of many connected
components (blue) with short life time, i.e. low persistence.

Finally, the structure pairs (γbirth; γdeath) extracted from the persistence barcodes
are considered as coordinates. These coordinates define critical points, transcribed in
the associated persistence diagram (see Figure 7.1 (C)). With low mp (top) we observe
many critical points close to the diagonal. This diagonal corresponds to γbirth = γdeath,
i.e. the structure does not exist.
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The choice of the mp must be set to avoid noise structures without being too strict.
Note that for a binary image, all topological structures have a persistence ∆γ = 1, with
coordinates (0; 1) in the persistent diagram representation.

Figure 7.1: Illustration of persistent homology for a CP likelihood map f (A). Panel (B) illustrates the
progressive filtration of f with minimum persistence (mp) of 0.001 (top) and 0.1 (bottom). Topological
structures are reported into a persistence barcode. Panel (C) shows the persistence diagram for both
mp. In the persistence barcode, respectively diagram, blue bars, respectively blue dots, represent the
connected components. Similarly, red elements represent the 1-dimensional holes.

In practice, and similarly to [71], prior to the computation of topology, we pad the
image patches twice with constant values (see Figures 7.1 (A) and 7.2 (A)). We per-
form a first padding with the maximal value of the patch in order to work with closed
structures. Then, we pad the patch with 0 value voxels to define a background.

Topological loss function for fetal brain MRI

The topological loss function aims at directly comparing the persistent homology of the
predicted likelihood map f to the target true topology. We propose a topological loss
function Ltopo that is adapted from [71]. Our contribution lies in the multi-dimensional
approach of the topological loss computation. While our focus in this work is on the 1-
dimensional holes, we observed in Chapter 6, Section 6.4.2 the importance to consider
all topological dimensions. Additionally, we evidence in Section 7.2.1 the importance
the connected components can have in the persistent homology of the fetal CP. There-
fore, differently from [71] that only considered 1-dimensional structures (i.e. 2D holes),
our topological loss for the fetal CP segmentation will additionally integrate the anal-
ysis of 0-dimensional homology structures.
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We detail here the process of the computation of Ltopo between two 2D image
patches, the target segmentation and the predicted likelihood map f (see Figure 7.2
(A)), hence the dimensions involved are k ∈ {0; 1}. First, persistent homology is com-
puted tracking all k-dimensional structures in both images (see in Figure 7.2 (B), the
persistence barcodes partitioned by dimension). Second, the per-dimension persis-
tence diagrams are matched between the GT and the prediction (Figure 7.2 (C)). All
k-dimensional structures are matched such that, the N-greater persistence structures
are matched to the N true GT elements. Note that a sufficiently accurate likelihood is
needed to prevent structures mismatch. Others are matched to the diagonal. Based
on the implementation in [71]1, we compute a total squared distance [24], from the
matched pairs of critical points in each dimension. The k-dimensional distance is our
Ltopo−k, the k-dimensional topological loss function. Ultimately, Ltopo−k are combined
such that :

Ltopo =
K
∑
k=0

ωkLtopo−k (7.2)

where Ltopo−k is the topological loss of the k-dimensional space with a contribution
weight of ωk.

Figure 7.2: Illustration of the topological loss computation process between a GT binary image and a
likelihood map f (A). (B) shows their corresponding persistence barcodes in each dimension (k = 0 and
k = 1). (C) illustrates a per-dimension persistence diagram matching. (D) shows how the final Ltopo is
inferred, with ω0 = ω1 = 1. In the persistence barcode, respectively diagram, blue bars, respectively blue
dots, represent the connected components. Similarly, red elements represent the holes.

1https://github.com/HuXiaoling/TopoLoss

https://github.com/HuXiaoling/TopoLoss
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7.2.2 Segmentation framework

Our topological loss is an architecture-agnostic optimization function. In other words,
it is independent of the deep-learning network architecture. In our segmentation
framework, we use a state-of-the-art architecture, U-Net [122], to compare different
optimization methods. Three reference loss functions (Baseline, Hybrid and Hu2019)
are implemented to evaluate the added value of our topological loss function (TopoCP)
(see configurations in Section 7.2.2).

Model architecture

The well established U-Net [122] architecture is selected as it has recently proved its
good accuracy in fetal brain MRI tissue segmentation [79, 112, 113]. We use a 2D U-
Net architecture that is composed of an encoding and a decoding paths with skipped
connections. The encoding path in our study is composed of 5 repetitions of the follow-
ings: two 3x3 convolutional layers, followed by a rectified linear unit (ReLU) activation
function and a 2x2 max-pooling downsampling layer. Feature maps are hence doubled
after each block, starting from 32 to 512. In the expanding path, 2x2 upsampled en-
coded features concatenated with the corresponding encoding path are 3x3 convolved
and passed through ReLU. The network prediction is computed with a final 1x1 con-
volution. The number of network trainable parameters is 7,852,002.

Multiview patch-based approach

First, T2w images are masked in order to only consider intracranial space voxels in
the CP segmentation. Second, to alleviate the computational cost due to the topolog-
ical loss, 64 × 64 voxel size sub-image patches are extracted from the 3D volume in
the three orthogonal planes (axial, coronal and sagittal). Bringing information from
the three dimensional orientations, our method thus implements a 2.5D, or multi-
view, patch-based approach. To increase the number of predictions per voxel, over-
lapping patches are extracted. Empirically, the sliding window’s step size for the
patch extraction is set 16 voxels. Finally, intensities of all patches are standardized
to have mean 0 and variance 1.

Training and optimization strategies

Input samples are randomly augmented at each epoch of the training phase. Exten-
sive augmentations are performed spatially (flipping and elastic deformation) and
intensity-based (bias, blurring, gamma and noise). All augmentation have a proba-
bility of occurrence of 0.5, except flipping occuring with a probability of 0.2. Augmen-
tation are performed with the TorchIO python package (v0.18.75) [114].
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Two reference segmentation methods (Baseline and Hybrid) are trained with fetal
brain MRI state-of-the-art optimization loss function, in order to compare with our
method (TopoCP). Thus, we evaluate the following three configurations:

• Baseline is trained using the distribution-based binary cross-entropy
loss function Lbce.

• Hybrid is trained with an hybrid loss function combining the dice loss Ldice and
the binary cross-entropy loss Lbce such that:

L = Lbce +Ldice (7.3)

Such hybrid loss function proved efficient in multi-tissue fetal brain MRI segmen-
tation, as it has been used by the Top 5 teams of the 2022 edition of the MICCAI
FeTA challenge [113].

• Hu2019 is trained with the original topological loss function proposed in [71], such
that:

L = Lbce +λHu2019LHu2019 (7.4)
Note that LHu2019 equates to our Ltopo−0. λHu2019 is set to 0.0001.

• TopoCP is trained with the following loss combination:

L = (1−λtopo)Lbce +λtopoLtopo (7.5)

where Lbce is the binary cross-entropy loss and Ltopo is the topological term pre-
sented in Section 7.2.1. λtopo defines the weight of the contribution of Ltopo in the
final loss.

As the computation of the topological losses is expensive and need sufficiently
accurate probability maps to perform a relevant matching of the structures (see
Section 7.2.1), we adopt the training strategy presented in [71]: 1) a common warm-up
network is trained over 15 epochs using the binary cross-entropy loss L = Lbce;
2) Baseline, Hybrid, Hu2019 and TopoCP are initialized with the pretrained warm-up
weights. An early stopping strategy monitors the global validation loss L, respectively
the topological validation losses LHu2019 and Ltopo, for the Baseline and Hybrid config-
urations, respectively for Hu2019 and our TopoCP configuration. All learning rates are
set to 0.01. Training and evaluation were performed with Tensorflow v2.7 [1] and a
GeForce RTX 2080TI GPU.

A 4-folds cross-validation approach is adopted to assess the learning performances
of the different methods. In this way, we will assess multiple λtopo in order to determine
an optimal value (see Section 7.3.3).

Ensemble learning

In order to reduce the variance and increase the generalization power of our model, we
adopt ensemble learning. In the final testing inference phase of each configuration, we
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perform a majority voting on the summed likelihoods from all 4 cross-validation net-
works. Finally, despite cortex would theoretically be two connected components (left
and right hemispheres), in practice, partial volume in the mid-sagittal plane most often
leads to having one single component. Thus, only the biggest connected component of
the whole cortical volume ensemble prediction is kept.

TopoCP parameters setting

As introduced in Section 7.2.1, persistent homology structures are filtered on a min-
imum persistence criteria. This criteria tunes the sensitivity of our loss to the noisy
structures out of the filtration step. Empirically, we observed that the higher minimum
persistence is the tougher filtration of the structures and thus may discard relevant
ones. Reducing the persistence threshold leads to having an increasingly large forma-
tion of noisy irrelevant structures to be matched. Based on these empirical analysis, we
set our minimum persistence to 0.01 for all experiments.

Equation 7.2 presents our global topological loss in which different contributions
can be assigned to each dimension. We analyzed the importance of both 0-dimensional
and 1-dimensional topological terms on a reduced set of randomly sampled patches.
Empirically, we observe that the importance of 0-dimensional and 1-dimensional topo-
logical terms is patch-dependent. In some patches, Ltopo−0 is more affected than Ltopo−1,
and vice versa in others. We therefore decided to give equal contribution to both terms,
as they are undoubtedly both important. In other words, all k dimension had the same
weighting ωk = 1.

Finally, the contribution of our global topological loss is valued with the λtopo. We
describe in Section 7.3.3 the cross-validation approach implemented to determine an
optimal value.

7.2.3 Topological assessment of the fetal CP

Recent works [157, 97] evidenced the importance of considering complementary met-
rics for the assessment of semantic segmentation methods. Additionally, we observed
in Chapter 6 the relevance of considering the topological correctness in the assessment
and comparison of automatic segmentation methods.

Similarly to Chapter 6, Section 6.3.2, we consider BNEk to quantitatively compare
the topology of the predicted segmentation and the GT expected value features. As
the CP segmentation is filtered for its biggest connected component (see Section 7.2.2),
BNE0 is incidentally irrelevant to consider. Additionally, this work specifically focuses
on the presence of 1-dimensional holes. In this way, we only consider BNE1. Besides,
considering that the human cortex is a closed structure with no obstruction, its GT
expected BN1 is 0.
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While BNE1 focuses on the count of occlusions on the CP surface, this score is not
providing any information on the holes themselves. Indeed, we often observe that the
number of holes that is a discrete value is not necessarily correlated to the size of the
broken connections (i.e. the obstruction) nor to the size of the structure of interest (i.e.
the fetal CP).

In that respect, we introduce a new metric that aims at quantifying the size of the
hole. The hole ratio (HoR) is the ratio of false negative voxels that are connected to a
hole (FNholes) over the true voxels of the region of interest, which are represented by
the true positives (TP) and false negatives (FN).

HoR = FNholes
TP + FN

(7.6)

Our in-house implementation2 illustrated in Figure 7.3 successively:

1. identifies the location of one voxel per 1-dimensional hole, using the cubical com-
plex representation of the open-source GUDHI library3

2. propagates these voxels into the mask of holes candidates, i.e. the FN,

3. computes the volume ratio presented in Equation 7.6.

Let us note that this measure strongly relies on the topological correctness of the GT.

Figure 7.3: Illustration of the workflow for the computation of the Hole Ratio (HoR).

2https://github.com/Medical-Image-Analysis-Laboratory/FetalCP_segmentation
3https://gudhi.inria.fr/

https://github.com/Medical-Image-Analysis-Laboratory/FetalCP_segmentation
https://gudhi.inria.fr/
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Figure 7.4a shows (B) and (C), two 3D rendering of the same image patch CP seg-
mentation. (A) shows the 3D rendering of the GT, enlighting the region of interest. One
can easily observe that the (B) segmentation has a main hole compared to the (C) seg-
mentation that presents multiple medium-size holes. Additionally, quantitative results
(see Table 7.4b) confirm the discrepancy between the quantity of holes as a number and
the quantity of holes as a ratio of the region of interest.

Albeit BNE1 must be used with caution, it is still a relevant score to assess the CP
topology in the absence of topologically accurate GT segmentation. Nonetheless, we
promote the use of an additional quantitative metric relative to the size of the occlu-
sions to undertake a robust quantitative analysis of the broken connections in the CP
segmentation.

Both topology-based measures (BNE1 and HoR) rely on the cubical complex imple-
mentation of the GUDHI library (v3.5.0) [27].

(a) 3D rendering of (A) GT subject CP (dark green) and region of interest (light green), and
two different segmentation (B) and (C).

(B) (C)

BNE1 1 4
HoR 0.36 0.33

(b) Table of the topology-based metrics (BNE1: 1-dimensional Betti number error; HoR:
Hole ratio) for the example cortical plate segmentation (B) and (C) shown in Figure 7.4a.

Figure 7.4: Illustration of the discrepancy between the quantification of holes as a number and its quan-
tification as a ratio over the region of interest.

7.3 Experiment design

The overall experiment design to compare the four segmentation frameworks Baseline,
Hybrid, Hu2019 and our TopoCP is outlined in Figure 7.5.
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Figure 7.5: Illustration of the overall experiment design. Panel (A) illustrates the different datasets and
their splitting for training/testing purposes (see Section 7.3.1). Panel (B) illustrates the training phase. A
common warm-up network is trained to initialize the three configurations Baseline, Hybrid, Hu2019 and
TopoCP, each optimized with its own optimization loss function (see Section 7.2.2). A cross-validation
approach is used to determine an optimal hyperparameter λtopo (see Section 7.3.3). Panel (C) illustrates
the testing phase. Predictions are inferred through the cross-validation networks and combined in a
majority voting step. Methods are assessed and compared quantitatively with complementary perfor-
mance metrics and qualitatively by three experts (see Section 7.3.3).

7.3.1 Datasets

A summary of clinical and atlas datasets is shown in Table 7.1.



7.3. EXPERIMENT DESIGN 97

Dataset
Number

of subjects
(NT/PT)

Gestational
age (weeks) SR reconstruction

Image resolution
(mm3)

TRAINING FeTA
[112]

24
(13/11)

[20.9-34.8]
(28.2±3.6)

SVRTK
[88] 0.86× 0.86× 0.86

TE
ST

IN
G

FeTA
[112]

9
(4/5)

[22.9-34.8]
(27.4±3.6)

SVRTK
[88] 0.86× 0.86× 0.86

CRL
[56]

18
(18/0) [21-38] Gholipour et. al, 2017

[56] 0.80× 0.80× 0.80

CHUV 33
(24/9)

[21-35]
(29.6±3.6)

MIALSRTK
[143] 0.80× 0.80× 0.80

Table 7.1: Summary of the data used for training and quantitative and qualitative evaluation. NT: Neu-
rotypical, PT: Pathological

Clinical dataset: FeTA

We use the subset of the public FeTA v2.0 Dataset [112] of fetal brains reconstructed
with SVRTK [88] at isotropic resolution of 0.86mm. After visual inspection of the im-
ages, seven volumes were excluded due to bad SR quality (3) and severe pathology
(7) (e.g. major ventriculomegaly). The remaining 33 fetal brains were composed of
17 neurotypical and 16 pathological subjects, in the GA range of 20.9 to 34.8 weeks.
Twenty-four (24) subjects (13 neurotypical and 11 pathological subjects in the GA range
of 20.9 to 34.8 weeks, 28.2±3.6) were randomly selected for the method development
and the remaining nine (9) subjects (4 neurotypical and 5 pathological subjects in the
GA range of 22.9 to 34.8 weeks, 27.4±3.6) were retained for pure testing purposes. Note
that details on the fetal brain pathologies are not disclosed in the dataset information.

In this chapter, we exclusively consider the cGM label – i.e. the CP. Annotations
were manually performed following an optimized protocol. Two experts respectively
annotated the external border of the cortex cerebri and the external border of the white
matter, on every 2nd to 3rd slice of the axial view. Individual structure annotations are
post-processed with interpolation and smoothing prior to merging into a final label
maps. Ultimately, sparse interpolated annotations result in noisy label maps often
showing topological inconsistencies. Figure 7.6 shows the extracted cGM from the
final label maps (left) for (A) Subject 1, a 34.8 weeks of GA neurotypical subject and (B)
Subject 2, a 28.1 weeks of GA pathological subject. Three-dimensional (3D) rendering
evidences the presence of apertures in the final CP annotations.

As motivated in Section 7.2.3, topologically accurate GT segmentation are necessary
to perform a valid topological assessment of an automatic method. In this respect, we
perform further manual correction of the CP FeTA manual annotations. Four engineers
refined the CP label maps of the 9 fetal brains of the clinical pure testing set. Editing of
the label maps were performed using the ITK-SNAP [158] software with a specific fo-
cus on the topological correctness and contour refinement of the label maps. Finally, all
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CP manual corrections were checked (and corrected if needed) by a pediatric radiolo-
gist with 17 years of experience. Right columns of panel (A) and (B) of Figure 7.6 show
the corrected tissue annotations overlaid to the T2w image and their 3D rendering. In
our further experiments, we refer to the corrected manual annotations as the GT.

Figure 7.6: Illustration of the FeTA original manual and the corrected GT CP segmentation for (A) Subject
1, a 34.8 weeks of GA neurotypical subject and (B) Subject 2, a 28.1 weeks of GA pathological subject.
T2w images and CP segmentation overlaid (top) are respectively shown on an axial and coronal view
for Subject 1 and Subject 2. 3D rendering is presented for all segmentations (bottom).

Atlas dataset: CRL

We use the CRL spatiotemporal atlas of the fetal brain [56] that provides 3D high-
quality isotropic volumes for all GA between 21 and 38 weeks (see Chapter 1, Sec-
tion 1.4.2). Each atlas subject is constructed with the contribution of 6 to 23 SR-
reconstructed individual fetal brains. The integration of multiple subjects per GA re-
duces the morphological variability. Therefore, the T2w atlas images appear smoother
than clinical acquisitions.

The atlas comes with two label maps, respectively containing the cerebral tissue
and structure labels, and a regional cortex parcellation. The initial tissue label maps of
more than 50 classes are converted into a 7-tissue label maps, matching those defined
in the FeTA dataset. Minor adjustments are performed while synchronizing tissue and
regional maps. For instance, voxel labelled as cortex in one map and as corpus cal-
losum in the other are dumped in WM class. As opposed to the clinical dataset, atlas
labels do not require further manual corrections as they were already manually refined
and present decent topology [56].
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Out-of-domain clinical dataset: CHUV

Thirty-three fetal brain clinical MR examination conducted at the Lausanne University
Hospital (CHUV), Lausanne, Switzerland, were SR-reconstructed with the MIALSRTK
pipeline [144, 143]. SR volumes are further resampled to an isotropic resolution of
0.8mm and an engineer coarsely realigned the volumes to the anatomical plane. This
clinical set is composed of 24 neurotypical and 9 pathological subjects in the GA range
of 21 to 35 weeks (29.6±3.6). The quality of the SR reconstructions was assessed sim-
ilarly as in Chapter 2 into three categories [80]: bad (non usable, very blurred), aver-
age (overall good with remaining partial volume effect/blurring), and excellent (good
quality with no blurring). Overall, none of the clinical SR reconstruction is bad, 17 are
average 14 are excellent. No reference segmentation are available for this dataset.

The local ethics committee of the Canton of Vaud, Switzerland (CER-VD 2021-00124)
approved the retrospective collection and analysis of MRI data and the prospective
studies for the collection and analysis of the MRI data in presence of a signed form of
either general or specific consent.

7.3.2 Assessment metrics

Although our segmentation framework infers CP segmentation in a 2.5D multi-view
strategy (2D image patches from the three orthogonal planes), we proceed to the quan-
titative evaluation in 3D that is of the whole cortical volume. Automatic medical image
segmentation requires the use of complementary metrics for the assessment of differ-
ent aspects of the segmentation [157, 97]. Most commonly, overlap-based (e.g. DSC,
Jaccard similarity coefficient, Intersection over union) and distance-based (e.g. Xth per-
centile Hausdorff distance, ASSD) metrics are reported [157]. However, in this work
we aim at assessing the segmentation not only in terms of overlap and distance ac-
curacy to the GT but also in terms of shape correctness. Therefore, we also consider
topology-based metrics. Table 7.2 summarizes the metrics used in the training (for
learning monitoring) and testing (for final evaluation) phases.

The DSC [28] is an overlap-based similarity metric. Robust to outliers, it is a widely-
used metric to assess medical image segmentation accuracy. ASSD is the mean of the
directed average surface distances [157]. The latter is defined as the average of the
distances of points from one surface to their closest points on the other object boundary.
The ASSD is computed using the python MedPy 4 implementation (v0.4.0).

In the case of absence of topologically accurate GT (i.e. see Section 7.3.3 for cross-
validation details), we consider BNE1 to quantitatively assess the topology, while our
proposed hole ratio HoR is used in the pure testing phase (see details on topology
metrics in Section 7.2.3).

4https://loli.github.io/medpy/
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Arrows in Table 7.2 indicate whether each metric is better maximized or minimized.
Taking values between 0 and 1, DSC is a similarity metric that is better maximized (↑).
Difference metrics (ASSD, BNE1 and HoR) must be minimized (↓).

Overlap Boundary-distance Topology

Training DSC ↑ ASSD ↓ BNE1 ↓
Testing DSC ↑ ASSD ↓ HoR ↓

Table 7.2: Summary of the metrics used during the training phase (for learning monitoring) and testing
phase (for evaluation). Arrows indicate whether higher ↑ or lower ↓ scores are better.

7.3.3 Experiments

Ltopo parameter settings

Our first experiment consists in the setting of the TopoCP λtopo parameter that quanti-
fies the contribution of our topological loss. As mentioned in the prior Section 7.2.2, we
use a cross-validation approach by means of which we assess multiple λtopo in order
to determine an optimal value. The ideal λtopo is a dataset dependant hyperparameter.
According to [71], λtopo must be chosen to avoid the risk of over-weighting of Ltopo
over Lbce. Indeed, while Lbce is defined at every voxel of the image, Ltopo is only
defined at some critical points. The values 0.0002, 0.005, 0.001, 0.05, 0.1 and 0.2 are
the N λtopo evaluated in the training phase. TopoCPn define the set of 4 networks
trained for cross-validation with λn. We consider the DSC, the ASSD and the BNE1 for
evaluation. The average performances over the folds are computed for each TopoCPn
networks and ranked for each metric. TopoCPn are finally ranked, based on the sum
of metric-wise ranking, to elect the optimal λtopo. The latter is then selected in the
following experiments.

Methods comparison

We compare our TopoCP method to the three reference segmentation methods Baseline,
Hybrid and Hu2019 on both the clinical and atlas test sets. We assess the three com-
plementary metrics DSC, ASSD and HoR. We perform paired Wilcoxon rank-sum tests
to assess the statistical significance between TopoCP and the three reference configura-
tions. Significance level is set to 0.05.

GA analysis

The CRL set presents a large and steady range of GA with one subject per week from
18 to 38 weeks. We observe the quantitative performances of the DSC, the ASSD and
the HoR along gestation, i.e. as a function of the subject GA.
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Spatial topological analysis

From the CRL set, we group the regional labels into 5 classes corresponding to the brain
lobes, namely the frontal lobe, the occipital lobe, the parietal lobe, the temporal lobe,
and the insula lobe. Figure 7.7 shows 3D rendering of the final maps of the brain lobes
for the subject atlas of 21, 30 and 38 weeks of GA.

We proceed to a lobe-based analysis of the topology HoR metric to analyze if TopoCP
benefits in one, some, all or none of them. We perform a paired Wilcoxon rank-sum
test to assess the statistical significance between TopoCP method and the reference con-
figurations. Statistical significance level is set to 0.05.

Figure 7.7: 3D rendering of the CP for CRL subjects of 21, 30 and 38 weeks of gestation. The cortical
volumes are split into the 5 lobes of the brain: the frontal lobe (red), the occipital lobe (green), the
parietal lobe (dark blue), the temporal lobe (yellow), and the insula lobe (light blue).

Manual annotations comparison

Ultimately, we evaluate the performances of TopoCP compared to the original FeTA
manual annotations, using the topologically corrected segmentations as GT.

Let us note that these original FeTA annotations are sparse and interpolated, hence
resulting in noisy references. Nevertheless, they are still used for training, as manual
topological correction of 24 volumes would not be realistic (time/expertise effort). We
quantitatively assess these segmentation with the DSC, the ASSD and the HoR. The
segmentation correctness difference was tested with the paired Wilcoxon rank-sum.
The p-value level for statistical significance was set at 0.05.

Experts evaluation

Three experts in fetal brain MRI (two radiologists and one engineer) perform an in-
dependent and blind assessment of the three automatic segmentation methods on the
clinical CHUV dataset. Each fetal brain MR exam is provided with the SR reconstructed
volume, the subject’s GA at scan time, the subject’s group (i.e. Neurotypical or Patho-
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logical) and the three segmentation (from configurations Baseline, Hybrid and TopoCP)
that are randomly anonymized with labels A, B and C.

The experts are asked to rank the segmentation masks A, B and C as Best, Medium
and Worst. Visualization of the images and their segmentation are done with the open-
source ITK-SNAP [158] software. Specifically, binary segmentation are both visualized
in 2D, as an overlay to the T2w gray-scale SR images, and in 3D, with the ITK-SNAP
integrated 3D viewer.

We assess the inter-rater reliability with the percentage agreement and an ordinal
Gwet’s agreement coefficient (Gwet’s AC) that we interpret according to Altman’s
benchmarking scale [63]. We further consider a consensus evaluation as the majority
voting of the experts’ evaluation.

7.4 Results and Discussion

7.4.1 λtopo hyper-parameter tuning

Table 7.3 shows the averaged validation scores of all three configurations, and specifi-
cally for each λtopo assessed in the TopoCP configuration. Our first observation is that,
regardless of the value of the λtopo parameter, TopoCP is better performing than all
three reference methods, as we reach the state of the art performances in all the three
complementary metrics. Overall, all TopoCPn give similar DSC (mean: 0.76) and ASSD
(mean ± standard deviation: 0.27 ± 0.01) performances, although λtopo = 0.01 is of the
highest rank for both overlap and boundary-distance based scores. An increased inter-
TopoCPn variability appears for the topology-based metric (BNE1) with mean score
from 20.6 to 22.5. Counting the number of bores in the CP segmentation, λtopo = 0.005
is giving the best performances. We observe large BNE1 standard deviation for all
TopoCPn. Nonetheless, the finest topology-relative λtopo is not only giving the mini-
mum averaged BNE1, but is also noticeably presenting a smaller BNE1 standard de-
viation of 7.8 (BNE1 range: from 7.8 to 10). Therefore, λtopo = 0.005 is the most ac-
curate and precise of the λtopo assessed as for the topology fidelity. The substantial
fluctuation in the topological metric shows the importance of the choice of the λtopo
hyper-parameter.

Finally, our global ranking that is derived from metric-wise rankings evidences the
ideal value λtopo = 0.005. We observe that none of the extreme values considered (i.e.
0.0002 and 0.2) are in the Top 3 best performing λtopo. Therefore, we can say that
although λtopo = 0.005 might not be the exact optimal λtopo, it certainly falls in a relevant
range and in the right order of magnitude.
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Configuration DSC ↑ ASSD ↓ BNE1 ↓ Ranking ↓

Baseline 0.748 ± 0.009 0.292 ± 0.02 29.8 ± 14.5
Hybrid 0.744 ± 0.004 0.297 ± 0.01 31 ± 13.4
Hu2019 0.753 ± 0.006 0.282 ± 0.01 26.6 ± 12.1

To
po

C
P

λ
to

po

0.0002 0.758 ± 0.007 (5) 0.274 ± 0.01 (5) 22.1 ± 10 (4) 5
0.001 0.761 ± 0.007 (2) 0.270 ± 0.01 (3) 21.0 ± 8.5 (2) 2
0.005 0.760 ± 0.007 (3) 0.269 ± 0.01 (2) 20.6 ± 7.8 (1) 1
0.01 0.762 ± 0.007 (1) 0.268 ± 0.01 (1) 22.5 ± 9.0 (5) 2
0.2 0.760 ± 0.005 (4) 0.272 ± 0.01 (4) 21.6 ± 7.9 (3) 4

Table 7.3: Table of the validation scores (mean ± SD) of the DSC, the ASSD and the BNE1. Arrows
indicate whether the metric is better maximized ↑ or minimized ↓. The best scores between all λtopo are
shown in bold. A ranking for each metric is shown in parenthesis. The final ranking is formulated from
the sum of metric-wise ranking scores.

7.4.2 Methods comparison

Figure 7.8 illustrates the accuracy of the fetal CP segmentation for a pathological sub-
ject of 26.6 (Subject 1) and a neurotypical subject of 34.8 (Subject 2) weeks of GA. The
topologically corrected GT and the four configurations segmentation with Baseline, Hy-
brid, Hu2019 and TopoCP, are compared. Qualitative 2D assessment (top rows) of the
segmentation are presented as an overlay on the T2w image on an axial, respectively
coronal, view for Subject 1, respectively Subject 2. Additionally, 3D rendering of the CP
segmentation are presented in the bottom rows. Overall, we observe that all configu-
rations generates a thinner ribbon than the corrected GT. Specifically, TopoCP presents
fixed cortical connections that are broken in the Baseline, Hybrid and Hu2019 segmenta-
tions (white arrows). The CP TopoCP segmentation 3D rendering seems to present less
bores than the three reference configurations Baseline, Hybrid and Hu2019. In particular,
the segmentation appears, equivalently for the young and the old fetuses, more chal-
lenging, for all methods, in the lower parts of the frontal and temporal lobes, although
TopoCP seems to exhibit a more sensitive segmentation in these areas. TopoCP appears
to be more sensitive to the complexity of the CP morphology in older fetuses. White cir-
cles evidence in Subject 2 an improved segmentation in the hippocampal area and the
depth of a gyrification. White arrows show area where the topological correctness re-
covered with TopoCP, compared to the Baseline. In Subject 1, two connections are fixed
in the frontal lobe, although one of them is already fixed in the Hybrid configuration.

Quantitative results for both test sets (total of 27 cases), FeTA and CRL, are respec-
tively presented in Table 7.4a and Table 7.4b. Tables show the mean ± SD of the CP seg-
mentation for each testing metric (DSC, ASSD and HoR) in each configuration. Overall,
the performance of the segmentation framework is improved when trained with our
optimal TopoCP configuration (i.e. λtopo = 0.005) for all metrics in both datasets. TopoCP
is always performing significantly better than all three reference methods Baseline, Hy-
brid and Hu2019.
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Figure 7.8: Segmentation results and 3D rendering of the CP on FeTA subjects: (A) a neurotypical subject
of 34.8 weeks of GA, and (B) a pathological subject of 28.1 weeks of GA. Comparison of the manually
corrected GT segmentation (top), and the results of automatic segmentation (bottom) with the Baseline,
Hybrid, Hu2019 and our custom TopoCP configurations. White circles show representative area where
cortical gyrification have a better in-depth segmentation with TopoCP method. White arrows show fixed
connections using our TopoCP method compared to the reference segmentations.
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Furthermore, while all analyzed aspects of the segmentation, namely the overlap,
the boundary-distance and the topology are improved with TopoCP compared to the
reference methods, we observe a drop in the performances between FeTA and CRL
evaluation. Indeed, DSC goes from 0.85 in FeTA to 0.79 in CRL, ASSD from 0.19 to 0.41
and HoR from 0.06 to 0.23. We believe this is due to the domain shift between FeTA and
CRL images (different reconstruction pipelines, different intensity-based processing,
etc) generating an inter-dataset variation in the data distribution. Such domain gap
between the two sets of images is not learned from the training data that are only
composed of FeTA images. Still, DL can generalize to some extent. Further training
with multi-dataset images or the use of domain adaptation strategies can partially fit
the domain gap. Let us note that we do not address the data distribution generalization
in this paper as it is beyond its scope. Furthermore, such performance drop occurs also
in Baseline and Hybrid approach.

Table 7.4: Tables of the metrics computed on the pure testing sets FeTA 7.4a and CRL 7.4b. Mean ±
SD for the DSC, the ASSD and the HoR are presented. Arrows indicate whether the metric is better
maximized ↑ or minimized ↓. The best scores between all three configurations are shown in bold. p-
values of Wilcoxon rank sum test between TopoCP and the reference configurations, Baseline (⋆), Hybrid
(+) and Hu2019 (★), are considered statistically significant for p < 0.05.

DSC ↑ ASSD ↓ HoR ↓

Baseline 0.82 ± 0.02 0.22 ± 0.05 0.093 ± 0.03

Hybrid 0.82 ± 0.02 0.23 ± 0.06 0.10 ± 0.04

Hu2019 0.83 ± 0.02 0.21 ± 0.05 0.08 ± 0.04

TopoCP 0.85 ± 0.01
(⋆, +, ★)

0.19 ± 0.04
(⋆, +, ★)

0.06 ± 0.03
(⋆, +, ★)

(a) FeTA

DSC ↑ ASSD ↓ HoR ↓

Baseline 0.77 ± 0.05 0.42 ± 0.14 0.25 ± 0.10

Hybrid 0.77 ± 0.05 0.42 ± 0.15 0.26 ± 0.11

Hu2019 0.78 ± 0.05 0.40 ± 0.015 0.29 ± 0.14

TopoCP 0.79 ± 0.05
(⋆, +, ★)

0.41 ± 0.18
(⋆, +,)

0.23 ± 0.10
(⋆, +, ★)

(b) CRL

7.4.3 Segmentation performance over gestation

Taking advantage of the steady GA-distribution in the CRL set, we perform an analy-
sis of the metrics throughout gestation. Figure 7.9 shows the performance metrics as
a function of the GA for 18 cases from 21 to 37 weeks of GA. Regardless of the config-
uration, we observe a trend in the performances based on the GA. Indeed, all metrics
reach better performances for subjects younger than 30 weeks of GA. From week 23
to 31, all four methods (Baseline, Hybrid, Hu2019 and TopoCP) seem to give equivalent
scores. Outside this range (i.e. GA< 23 and GA> 30 weeks), TopoCP is always perform-
ing better than the other two methods, except for one outlier subject of 38 weeks of GA.

We visually inspect the TopoCP segmentation mask of the CRL 38-weeks-old sub-
ject to better understand the origin of this outlier. Specifically in the cerebellum, we
observe the presence of false positives that are connected to the main cortical segmen-
tation through brainstem false positives. The cerebellum is a "little brain" composed of



106 CHAPTER 7. MULTI-DIMENSIONAL TOPOLOGICAL LOSS

white matter encased in the cerebellar cortex. In terms of fetal brain T2w MR contrast
and similarly to the CP, the cerebellar cortex expresses as a thin dark ribbon surround-
ing white matter. Therefore, it is a challenging area to accurately differentiate in the
segmentation of the fetal CP at a patch-level. Similar mis-segmentations appear in
younger fetuses, nevertheless our post-processing step to keep the biggest connected
component filters out most of it. In this oldest subject, cerebellum errors are worsened
with brainstem mis-segmentation. We hypothesize such false positive errors in the
cerebellum are due to mis-leading contextual information, due to the reduced field of
view of the patches. Therefore, we believe that increasing the patch size could help to
overcome these mis-segmentation. Nevertheless, while the performances are particu-
larly damaged in the distance metric, TopoCP still performs better in terms of DSC and
HoR compares to the other configurations.

Overall, it is in the second half of the third trimester GAs (i.e. GA>30 weeks) that
we observe an increased benefit from TopoCP, compared to other methods. Our topo-
logical loss has a stronger positive effect on the topological errors for old subjects with
more complex topology, although the whole range of GA consistently presents benefits
from TopoCP.

We derive two hypothesis on the variation of the performances throughout gesta-
tion. First, we recall that the training data present subjects in the range 20.9 to 34.8
weeks of GA with mean 28.2 and standard deviation 3.6. Therefore, variation of young
and old fetal brains are less represented in the learning process. Additionally, third
trimester subjects present advanced sulcal patterns, resulting in a substantially more
complex topology. Therefore, we postulate this accentuate the unstable evolution of
segmentation accuracy over gestation.

7.4.4 Topology analysis per brain lobes

Figure 7.10 presents a comparison of HoR at a lobe-level between the configurations.
This boxplot evidences the significant benefits (p < 0.05) of TopoCP in most areas
(frontal, occipital, temporal and insula lobes) compared to the Baseline configuration.
In the parietal lobe, TopoCP is on average performing better than the Baseline although
without statistical significance. Compared to either the Hybrid or Hu2019 configura-
tion, TopoCP presents a significantly lower HoR in all brain lobes. Regardless of the
configuration, the parietal lobe is always the better segmented lobe in terms of HoR as
opposed to the insula lobe.

7.4.5 Robustness to noisy manual annotations

Figure 7.11 (top) shows a comparative T2w axial view of the GT topologically corrected
segmentation (A), the original manual annotation provided in FeTA (B) and the TopoCP
predicted segmentation (C). Overall, we observe an improved accuracy with the auto-
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Figure 7.9: Evolution of the performance metrics (DSC, ASSD and HoR) on the CRL images as a function
of the GA (from 21 to 38 weeks of gestation).

matic method. Specifically, white arrows indicate cortical location where TopoCP fixes
topological inconsistencies, compared to the original manual annotations. The white
circle focuses on the hippocampal area where the manual annotations are confused.
Figure 7.11 (bottom) shows 3D rendering of the true cortical volume (green). In the
manual and automatic TopoCP segmentation, the 1-dimensional holes are evidenced
with the false negatives connected to 1-dimensional holes (light camel).

Table 7.5 shows a comparison of the performance metrics of the original FeTA man-
ual annotations on 9 subjects and our TopoCP method. TopoCP is significantly better (*)
than the original manual annotations in all metrics (DSC, ASSD and HoR).

The automatic TopoCP segmentation method is able to learn segmentation fea-
tures from noisy annotations. This improvement is conveyed in all three similarity,
boundary-distance and topology -based metrics.

7.4.6 Out-of-domain qualitative assessment

Table 7.6 summarizes the classification results of the segmentation masks according to
each expert into Worst, Medium or Best. A consensus of the three experts assessment
is presented in the bottom row.
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Figure 7.10: Comparison of the hole ratio (HoR) in the fetal brain lobes (frontal, occipital, parietal,
temporal and insula) on the CRL dataset for all configurations (Baseline, Hybrid, Hu2019 and TopoCP).
Dashed horizontal lines indicate the per-lobe mean HoR for each configuration. p-values of paired
Wilcoxon rank-sum tests are displayed comparing TopoCP to each reference methods.

Table 7.5: Table of the metrics computed on the pure testing sets FeTA. Mean ± sd for the DSC, the ASSD
and the HoR are presented. Arrows indicate whether the metric is better maximized ↑ or minimized ↓.
The best scores between our TopoCP method and the original annotations are shown in bold. p-values
of Wilcoxon rank sum test between TopoCP and the original annotations are considered statistically
significant (*) for p < 0.05.

DSC ↑ ASSD ↓ HoR ↓

TopoCP 0.85 ± 0.01 (*) 0.19 ± 0.04 (*) 0.062 ± 0.03 (*)Manual 0.82 ± 0.02 0.23 ± 0.04 0.23 ± 0.06

The estimated Gwet’s AC between the three experts was 0.68 (standard error (SE):
0.10) for Worst, 0.68 (SE: 0.10) for Medium and 1 for Best segmentation classifications.
According to Altman’s benchmarking scale, the estimated coefficients for Worst and
Medium segmentations are considered to be either Moderate, Good or Very Good with
a probability of 0.99. The Best segmentation classification has a Very good agreement
between the experts with a probability of 1. With a percentage agreement of 100 %,
the consensus of experts classifies TopoCP as the Best segmentation method in 100% of
the cases. Inter-rater discrepancies are observed in the choice of Worst and Medium
between Baseline and Hybrid segmentation.
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Figure 7.11: Qualitative 2D and 3D assessment of CP segmentation on a 31.5 weeks of GA neurotyp-
ical subject. Comparison of (A) the corrected GT to (B) the original manual annotation and (C) our
TopoCP automatic segmentation method. Segmentations are overlaid on a T2w axial view (top). Seg-
mentation 3D renderings (bottom) highlight the true positives (green) and false negatives connected to
1-dimensional holes (light red).

Although TopoCP is ranked as Best segmentation in all cases, predictions still present
many segmentation errors. We emphasize that the distribution of this clinical set dif-
fers from the FeTA training set as they were generated with different SR methods.
Nevertheless, while all three configurations present altered segmentation due to the
domain shift, still, TopoCP remains the better performing method.

Table 7.6: Table of the three experts (two radiologists and one engineer) qualitative ranking of the three
segmentation configurations (Baseline, Hybrid and TopoCP) as Best, Medium and Worst. Percentage
agreement between experts and Gwet’s AC with standard error (SE) are presented for each ranking
category. Finally, a consensus ranking is presented in the bottom row as a majority voting of the experts’
evaluation.

Best Medium Worst

Baseline Hybrid TopoCP Baseline Hybrid TopoCP Baseline Hybrid TopoCP

Radiologist 1 0 0 31 25 6 0 6 25 0
Radiologist 2 0 0 31 26 5 0 5 26 0

Engineer 0 0 31 23 8 0 8 23 0

Percentage agreement 100 % 78 % 78 %
Gwet’s AC (SE) 1 (-) 0.68 (0.10) 0.68 (0.10)

Consensus 0 0 31 26 5 0 5 26 0
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7.5 Conclusion

In this work, we developed a topological loss function for the optimization of DL based
segmentation methods of the fetal CP in MRI. Our core contribution lies in the multi-
dimensional approach of this generalized loss function. Jointly, we presented an orig-
inal topology-based metric to quantify the 1-dimensional topological errors both in
terms of count and size. We presented extensive quantitative and qualitative validation
on a total of 58 fetal brains of a wide range of GA (from 21 to 38 weeks of GA), includ-
ing both neurotypical and pathological subjects. We compared our TopoCP method to
(i) state-of-the-art methods and (ii) semi-automatic noisy reference segmentation. Ex-
periments have shown that the integration of a topological constraint in the segmen-
tation framework of the CP in fetal brain MRI significantly benefits not only the shape
correctness – as it first aims, but also the overlap and distance accuracy. Although
our segmentation framework is implemented for 2D image patches, 3D information is
integrated thanks to the multi-view pipeline with the extraction of patches from the
three orthogonal orientations (axial, coronal and sagittal). While our approach cannot
be considered to be 3D, yet the benefit of our multi-dimensional topological loss is con-
veyed in the 3D metrics, including the topology-based one. Nevertheless, we believe
that the adoption of a real 3D-based framework could only improve the overall per-
formances, although we acknowledge that the computational cost of the topological
loss in this process is an important shortcoming. Moreover, results evidence that the
generalization of the learned topology is not hampered by the noisiness of the manual
annotations used for training.

This study is the first to address both the specific improvement of the topological
correctness of the CP segmentation, and the definition of a topological assessment.
The reduced gap in the topological and shape correctness accuracy is ultimately asso-
ciated with minimal manual refinement needed for further quantitative surface-based
analysis. Future work will focus on a wider generalization of our method application.
Indeed, while our method is formulated to consider multiple dimensions, we only
present a 2D application. The overall framework can be generalized for a 3D-based
approach. Similarly, we focused here on a single-tissue, namely the cGM segmenta-
tion, segmentation problem, although generalization to a multi-tissue segmentation
approach could be applied.
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Discussion

The success of the fetal brain MRI workflow (see Figure 8.1 (A)) lies in the accurate and
robust quantitative analysis as it will ultimately condition the understanding of the
brain development and, the clinical diagnosis and patient care. Therefore, each of the
upstream steps of this well-defined sequence, i.e. the acquisition, the reconstruction
and the segmentation, is crucial as the inaccurate achievement of any of these may
propagate errors to all the subsequent ones.

In this context, this thesis addressed the development and validation of robust au-
tomated tools for the quantitative analysis of the fetal brain in MRI. Specifically, this
work focused on the two main computer-assisted preprocessing steps: the generation
of a good image through SR reconstruction, and the automatic semantic segmentation
of the fetal brain tissues. However, in practice, the data scarcity of fetal brain MRI is a
major obstacle for both the development and validation of such algorithms.

In this Chapter, we first summarize and discuss the contributions and limitations
of this thesis to the existing pipeline (Figure 8.1 (B)). Second, we evoke some future
perspectives of this work (Figure 8.1 (C)).

Summary of contributions

Super-resolution reconstruction

The accuracy of the SR reconstruction cannot be quantified as it is not possible to ac-
quire a motion-free HR reference image. Nonetheless, we presented in Part I two stud-
ies that aimed at (i) validating that SR reconstruction preserves the brain morphology
with no distortion and (ii) proposing an approach for optimizing the parameters of the
SR reconstruction. In Chapter 2, our intra- and inter-observer agreement study on bio-
metric measurements from both T2WS and SR reconstructed images highlighted that
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Figure 8.1: Overview of this thesis contributions (B) and future perspectives (C) with respect to the
overall fetal brain MRI workflow (A).

SR does not introduce anatomical distortions and increases the confidence of the
observer compared to T2WS [80]. However, good tissue contrast and delineation are
essential for this task and can be achieved by finding a good compromise between the
image smoothness and noisiness. Specifically, this is achieved by balancing the contri-
bution of the data fidelity and the regularization terms in the resolution of the inverse
problem (see Chapter 1, Equation 1.4). In Chapter 3, we proposed – in the absence of
GT reference image – to adopt a simulation-based approach for the optimization of
the regularization weight. Our principled approach allows an overall enhancement of
the inter-tissue contrast.

Beyond the development, optimization and validation of such image reconstruc-
tion tools, translation to either the clinical or research environment is the last, not to
underestimate, step. Over the time span of this thesis, we invested efforts towards the
release of a BIDS App for the reconstruction of fetal brain MRI (see Appendix B). The
establishment of such open-source portable and reproducible tools is a solid ground
to possible large scale multi-centric analysis.
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Fetal brain tissue segmentation

In the development of DL-based automatic tissue segmentation methods, pairs of (SR-
reconstructed T2w image, GT annotation) are necessary to train and optimize models.
However, neither type of data is widely available nor easy to obtain. FeTA [112] is
the unique dataset of SR reconstructed clinical fetal brain MR exams that is publicly
available. Additionally, the tediousness and the time consumption of manual labelling
are major bottlenecks to the overall data scarcity problem.

As the principle of DL methods is to fit a data distribution, it is of the utmost im-
portance to have a wide representation of the true data variability, in order to develop
variation-robust methods that adapt and generalize well across domains. In Part II
of this thesis, we proposed methods to mitigate two out of three sources of variations
as (i) in Chapter 4, we replicated the whole imaging pipeline [91, 32] and (ii) in Chap-
ter 5 we took advantage of the inherent variability of the last step of the pipeline, the
reconstruction. With the generation of multiple HR volumes from a single subject, we
evidenced that the imaging pipeline can be leveraged to minimize the data scarcity
limitation and further reduce the influence of the domain shift. Additionally, we
confirmed their data augmentation usage as multiple SR volumes of the same fetal
brain can benefit the training of automatic segmentation methods.

Following this "one brain, multiple volumes" principle and extrapolating the usage
of the imaging workflow inherent variations, we believe the complexity of fetal brain
MRI segmentation could be further reduced. Specifically, without investing much ef-
forts in the acquisition, reconstruction and annotation of new clinical fetal brain MR
exams, many more HR annotated fetal brains could be synthesized by modifying
the inputs and/or parameters of either the numerical simulator [91] (e.g. GA, MR se-
quences), the SR reconstruction pipeline (e.g. custom preprocessing, SR reconstruction
parameters), or both.

As observed in the benchmark of automatic segmentation methods presented in
Payette et al. [112], a drawback of DL-based methods is the lack of robustness to the
input image quality, as all were outperformed by our MAS approach (Appendix C)
when input images were considered bad. Similarly to the domain shift robustness
that we addressed by increasing the representation of the variations, we propose to
generate multiple reconstructions of the same brain using different combination of LR
images. We hypothesize that this larger heterogeneity of the data could benefit the
model robustness to the SR image quality, although this remains to be explored.

Besides the burden of SR reconstructed images diversity for the development of
variation-robust methods, the burden of manually annotated images remains the ma-
jor bottleneck to larger datasets. To overcome this limitation, optimized manual anno-
tation protocols relying on the interpolation of sparse manual tissue annotations are
used, even though reference annotations may become unreliable. In Part III of this
thesis, we specifically focused on the topology correctness of the automatic segmenta-
tion methods. In Chapter 6, we showed the importance of considering the topology
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correctness in the evaluation of recent segmentation methods that were submitted to
the 2nd edition of the FeTA challenge (2022). In Chapter 7, we proposed a method to
enforce the topological correctness of the segmentation of the developing fetal cor-
tical plate (CP) throughout training. This method successfully yields to topologically
more consistent segmentations, even when trained on data that presented topologi-
cally inconsistent labels due to the optimized procedure. Our proposed method was
validated with an original metric hole ratio (HoR) that was defined as to quantify the
size of the topological error.

Limitations

Despite the promising results observed throughout this thesis, some limitations still
require further work.

Regarding SR reconstruction, while the assessment of the conservation of the brain
morphology and the overall tissue delineation by SR reconstruction has been ad-
dressed, there is a lack of assessment of the intensity correctness. Beyond the use of SR
reconstruction as a preprocessing for morphometric and volumetric analyses, the con-
servation of subtle intensity variations is essential for clinical assessment as it may
correspond to an abnormal development (e.g. diffuse white matter abnormalities).
Specifically, the many preprocessing and reconstruction-specific intensity-based oper-
ation may alter or even subside inhomogeneities. While the assessment of the intra-
and inter-tissue contrast and the conservation of inhomogeneities would be needed to
widely use SR in clinical environment, this remains unexplored so far.

On the side of segmentation, despite all the efforts invested by the community to-
wards the development of better performing automatic segmentation methods, per-
formances seem to reach a plateau [113]. Overall, the methods used in this thesis and
in the FeTA challenges (2021 and 2022 editions) are direct adaptations of supervised
DL strategies from previous biomedical imaging tasks. However, some challenges
in fetal brain MRI segmentation are different. Specifically, methods do not consider
the evolving morphology and image intensities throughout gestation, the increased
partial volume effect, neither the data scarcity and the lack of consistency in the ref-
erence annotations that is more pronounced than in other applications. Additionally,
the validation against noisy ground truth images hampers the true accurate assessment
of the methods.

Topology consistency is also crucial for the study of cortical folding, a key biomarker
of the brain development. So far, few works attempted to include topological priors
in the tissue segmentation of the fetal brain. In this thesis, we integrated a topological
constraint in a DL framework for the segmentation of the developing CP. However, our
proposed method remains to be computationally optimized to be suitably extended
either to multi-tissue segmentation or to 3D frameworks. Moreover, to fully validate
our topology-integrative training strategies, a clinical validation on subjects known
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to present cortical pathology remain to be explored. We also proposed a relevant new
metric HoR for the assessment of the segmentation accuracy. However, its usage is
limited by its strong dependency on the GT correctness. Alternatively, the topological
defects can be counted, albeit with care.

Perspectives

Throughout the development of decision support tools based on automatic processing
methods, the engineering point of view often adopts a top-down approach in which
from the data available the aim is to generate results that are as accurate as possible.
However, the original clinical motivation that is the patient care must be kept in sight.
Therefore, beyond the overall accuracy and robustness of such decision support tools,
one should ask: "how much can we trust/rely on their outcomes?".

In such a complex workflow, the trustworthiness of the system is especially chal-
lenging as a failure at any stage would propagate to any subsequent ones. Just as a
human, our system can be wrong, but the acknowledgment of its uncertainty is crucial
in order to prevent any downstream conclusion unwarranted by data. It is, there-
fore of decisive importance to quantify the quality and the trustworthiness – the (un-
)certainty – of all the stages of our workflow. The need of such measures is amplified
with the wide adoption of DL strategies.

In SR reconstruction, the quality and the aspect of the generated HR volume can
be altered – globally or locally – in different ways. For instance, we know that SR
is an ill-posed problem where the solution is recovered from under-sampled data.
As illustrated in Figure 1.2, the acquisition scheme and the fetal motion may lead to
under- or un-sampled regions. Additionally, cut field-of-view or discarded slices due
to signal drops or motion artifact may amplify the phenomenon. Consequently, in the
reconstructed volumes under-sampled areas would be estimated from interpolation
of neighboring information rather than by consideration true acquired data. Similarly,
despite the optional outliers rejection in SR reconstruction pipelines, misregistration
may occur in the motion estimation step. In both cases, uncertainty maps could
be generated as (i) a sampling heatmap that could be computed from the amount
of data available at each voxel and/or (ii) an average registration similarity metric
map from the motion estimation step. As a result, even though the overall SR image
quality might be good, such maps could inform the clinician on the unreliable area
and therefore prevent him from drawing conclusion or diagnosis based on localized
and unsure observations.

Over the last years, many efforts have been invested in the field of medical imaging
towards the quantification of uncertainty in the image semantic segmentation [101,
99]. Two types of uncertainty can be considered: the uncertainty related to the
input data and the uncertainty related to the system. Typically, an estimation of the
segmentation system uncertainty is provided as a voxel-wise map. In our workflow,
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the data-related uncertainty of our segmentation block could be quantified from our
SR reconstruction definition maps.

As for now, most fetal brain MR exams are performed either at 1.5T or 3T de-
pending on the hardware available at each institution [18]. Nonetheless, low-field
MRI (<1T) has recently aroused a growing interest thanks to its cost effectiveness
and wider accessibility [126, 100]. However, lower field strengths lead to loss of SNR
and image resolution (in-plane of about 1.5mm isotropic and slice thickness from 4 to
5mm) [6]. Consequently, a wider imaging data variability will progressively appear
in the field and, adaptation and transfer of knowledge from methods at higher field
strengths will be necessary. Furthermore, the democratization of MRI technique will
bring additional variations from the target population from a broader horizon, such as
from developing countries. Despite the emergence of these new challenges, the wider
access to low-field MRI will ease the possibility of large scale studies for the general
understanding of the human brain development.

Overall, the on-going research and development in the field of fetal brain MRI are
promising towards the better understanding of in utero development. Inevitably,
ethical questions are raised about these methods and how their outcome may be used.
Nonetheless, one should keep in mind that the ultimate goal of these works, notably
the one presented in this thesis, is to ultimately improve the patient care, and here, the
patient is the baby.
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A
Fetal brain MRI biometric

measurements

The following tables were presented as supplementary materials of the paper pre-
sented in Chapter 2, "Fetal Brain Biometric Measurements on 3D Super-Resolution
Reconstructed T2-Weighted MRI: An Intra- and Inter-observer Agreement Study"
with co-authors: P. de Dumast, M. Khawam, P. Deman, H. Kebiri, T. Yu, S. Tourbier, H.
Lajous, P. Hagmann, P. Maeder, J.-P. Thiran, R. Meuli, V. Dunet, M. Bach Cuadra and
M. Koob, in Frontiers in Pediatrics, 9:639746, doi: 10.3389/fped.2021.639746.
P. de Dumast and M. Khawam are equally contributing authors.
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Table A.1: Summary table of inter-dataset intra-observer analysis for each biometric measurements:
mean and standard deviation, agreement analysis (Lin’s concordance Correlation Coefficient and Intr-
aclass Correlation Coefficient), comparison using paired Wilcoxon’s rank sum test (without correction
(bold: significant p-values) and with Bonferroni multiple comparisons correction (red: significant p-
values after correction)) and measurement error (in bothmm and in percentage).
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Table A.2: Summary table of inter-observer intra-dataset analysis for each biometric measurements:
mean and standard deviation, agreement analysis (Lin’s concordance Correlation Coefficient and Intr-
aclass Correlation Coefficient), comparison using paired Wilcoxon’s rank sum test (without correction
(bold: significant p-values) and with Bonferroni multiple comparisons correction (red: significant p-
values after correction)) and measurement error (in both mm and in percentage).
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LCC HV APDV DTC_cor DTC_ax sBIP_cor sBIP_ax bBIP_cor bBIP_ax DFO ALL

T2WS 0.83 0.87 0.77 0.97 0.97 0.87 0.81 0.91 0.88 0.88 0.97
SR 0.85 0.88 0.85 0.96 0.96 0.85 0.85 0.90 0.86 0.88 0.97

Overall 0.84 0.87 0.79 0.96 0.96 0.86 0.83 0.90 0.87 0.88 0.97

Table A.3: Intra-rater analysis. To ensure the reliability of the measures, we have performed a com-
plementary intra-rater variability analysis with obs1. This additional analysis was performed in a sub-
cohort of five fetuses (gestational ages: 18, 22, 26, 30 and 34 weeks). For each subject, obs1 repeated
3 times the measurement of all the biometrics (measurements 2 and 3 were done one week apart, ap-
proximatively a year after measurement 1), on both T2WS and SR datasets. We present in this table the
intra-class correlation (ICC) of the repeated measures by obs1 for each biometric and dataset. Overall,
the intra-rater reliability is excellent with ICC = 0.97. Similarly for each dataset, ICC= 0.97 and 0.97 re-
spectively for T2WS and SR dataset. For SR, this is in line with (Kyriakopoulou et. al [89]) that presents
an ICC of 0.99.



B
MIALSRTK BIDS App

MIALSRTK 1 is originally a library of C++ and Python algorithms, that are successively
called from a script to generate an end-to-end SR reconstruction pipeline. A syngo.via
Frontier prototype of the MIALSRTK pipeline was further implemented in order to
ease the user interaction (e.g. LR images selection, brain extraction) [26]. This version
allowed the reconstruction of clinical exam within the PACS system and was used in
the study presented in Chapter 2. Nonetheless, as mentioned in Chapter 2, the ne-
cessity for repeated user interaction, the means of dissemination and the computation
time of our MIALSRTK tool hamper a wider use of our reconstruction pipeline.

Over my PhD thesis, we, in a joint work with Dr Sébastien Tourbier2, Hamza Ke-
biri3and Dr Thomas Sanchez3, invested efforts in the reorganizaion of MIALSRTK and
integration of new features.

In this appendix, we first present the software development related to the refactor-
ing into an interaction-reduced and self-contained application being compliant with
the well dened Brain Imaging Data Structure (BIDS)4, a community effort that de-
scribes a way of organizing neuroimaging data. Second, we briefly introduce the de-
velopments that aimed at optimizing the performance, improving the user experience
and further integrating new features.

1https://github.com/Medical-Image-Analysis-Laboratory/mialsuperresolutiontoolkit
2Connectomics Lab, Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL),

Lausanne, Switzerland
3MIAL, Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne,

Switzerland
4https://bids.neuroimaging.io
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B.1 Towards large scale studies

B.1.1 A modular pipeline

The Neuroimaging in Python Pipelines and Interfaces (Nipype)5 dataflow offers the
possibility to encapsulate each algorithm into a well defined interface. As a result,
each step of the processing is being instantiated as a module which are connected in
a pipeline graph. This design architecture offers, among others: 1) flexibility as con-
nection can dynamically be set, allowing to add/skip processing steps; 2) modularity
as interaction are not restricted to our own software library, e.g. one could imagine
replacing one or another processing steps by the one of another toolbox; and 3) an im-
proved management of the resources, allowing to fasten the process by running steps
in parallel.

From this, we designed and built the graph of a whole end-to-end SR reconstruction
pipeline with options to either run or not specific steps. One should note that this new
version of our toolbox makes it easier for a user to design his own workflow using, not
exclusively, our modules, as long as they are wrapped into Nipype node.

B.1.2 A fully automatized BIDS App

A frequent conflict in neuroimaging is the way to store data, which, in turn, is often
different between research groups. Consequently, an inherent issue is the waste of time
in either rearranging data to meet specific software requirement or in rewriting scripts
to make the interface between data and software. The lack of well defined standard
makes the development of robust image processing software to any data organization
scheme difficult. Regrettably, it might additionally prevent groups from using tools
due to extensive efforts needed for rearrangement.

The BIDS architecture provides guidelines in the way of organizing neuroimaging
data. A multi-level organization and a well defined nomenclature makes this new stan-
dard easy to use and easy to share. Along with the emergence of this new standard,
have also been defined the BIDS Apps, defined as "portable neuroimaging pipelines
that understand BIDS datasets". These BIDS Apps are built such that they are self-
contained, easy to install and compliant with BIDS data formatting while still user-
friendly. The MIALSRTK pipeline refactoring described in the previous Section has
been containerized such that it is now disseminated as a BIDS App. Both Singularity
and Docker encapsulations6 are publicly available, following the Open Science guide-
lines of Swiss National Science Foundation, allowing for other research groups to per-
form large-scale studies with a fully automatized pipeline.

5https://nipype.readthedocs.io
6https://mialsrtk.readthedocs.io/en/latest/
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B.2 Features development

B.2.1 User interaction reduction

In the syngo.via Frontiers prototype version of MIALSRTK, user-interaction were nec-
essary for (i) the choice of LR stacks, (ii) the choice of the reference stack (needed in the
motion estimation step), and (iii) the localization of the brain. In order to minimize the
need for user interaction, two new modules have been developed and integrated:

BrainExtraction is a DL-based automatic segmentation method that outputs a bi-
nary mask of the fetal brain. This development of this module was lead by Hamza
Kebiri and presented in the European Congress of Magnetic Resonance in Neuro-
pediatrics (ECMRN) in 2020, as "Automated fetal brain segmentation of 2D mag-
netic resonance images: transfer learning and 3D topology correction" with co-
authors H. Kebiri, P. de Dumast, T. Yu, H. Lajous, J.-Ph. Thiran, R. Meuli, M.
Koob and M. Bach Cuadra.

StacksOrdering ranks the LR stacks based on a motion index computed from the
brain masks. The less motion-corrupted stack is defined as the stack of refer-
ence. The development of the motion index computation was lead by Thomas
Yu7 and was presented at ECMRN 2020 as "Translating fetal brain magnetic
resonance image super-resolution reconstruction into the clinical environment",
with co-authors: P. de Dumast, P. Deman, M. Khawam, T. Yu, S. Tourbier, H.
Lajous, P. Hagmann, P. Maeder, J.-Ph. Thiran, R. Meuli, V. Dunet, M. Koob
and M. Bach Cuadra.

Note that, although these two modules are aimed to eliminate the user interaction
from the MIALSRTK pipeline, validation or correction may be necessary. Indeed, bi-
nary masks may need refinement either for (i) intra-slice correction (due to over- or
under-segmentation) or (ii) full-slice rejection (e.g. brain does not appear, poor qual-
ity due to motion or signal drop). Additionally, while the StacksOrdering module
ranks the LR stacks, it is only used for the selection of the reference. Therefore, by de-
fault all LR stacks available are used. The optional pre-selection of the LR input images
remains at the user discretion.

B.2.2 Performance optimization

In MIALSRTK, the most computationally expensive step is the motion estimation, fol-
lowed by the image recovery. The motion estimation that is performed though SVR
registration is a voxel-based operation. Consequently, its complexity and hence com-
putation time heavily depends on the number and size of LR images.

7Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
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To address this limitation, we developed the ReduceFOV preprocessing module
that aims at cropping the LR images around the region-of-interest. The latter is deter-
mine with the binary mask of the brain that is either provided as input or computed
with the previously introduce BrainExtraction module.

B.2.3 New MIALSRTK features

Anatomical alignment
By default, the SR reconstruction of a fetal brain MRI exam is done in the sub-
ject’s space. We integrated into our pipeline a module for the realignment into the
anatomical planes (axial, coronal, sagittal) based on the NiftyMIC principal brain
axis (PBA) implementation8 [33]. The computation and application of the align-
ment transformation are applied in the postprocessing stage postproc_stage.
Figure B.1 shows the SR reconstruction of a 29.3 weeks of GA subject pre- and
post-alignment to the template’s space.

Labelmap HR reconstruction
The recon_labelmap_stage allows the optional reconstruction of LR la-
belmaps when available. One HR reconstruction is computed per label and per-
label reconstructed maps are combined through a majority voting step. This fea-
ture was particularly used in the work presented in Chapter 4.

SR reconstruction assessment
The srr_assessment_stage allows the optional computation of quality met-
rics against a HR reference image when available. This feature was used in the
work presented in Chapter 3.

Figure B.1: SR reconstruction of a 29.3 weeks of GA neurotypical subject in the subject’s space (top) and
in a template space (bottom).

8https://github.com/gift-surg/NiftyMIC
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Figure B.2 shows a simplified diagram of the overall MIALSRTK reconstruction
pipeline.

Figure B.2: Simplified representation of the overall MIALSRTK reconstruction pipeline. Dotted elements
are optional.





C
Multi-atlas segmentation

The work presented in this chapter is part of the originally published work "An auto-
matic multi-tissue human fetal brain segmentation benchmark using the Fetal tissue
annotation Dataset" with co-authors: K. Payette, P. de Dumast, H. Kebiri, I. Ezhov, J.C.
Paetzold, S. Shit, A. Iqbal, R. Khan, R. Kottke, P. Grehten, H. Ji1, L. Lanczi, M. Nagy, M.
Beresova, T. D. Nguyen, G. Natalucci, T. Karayannis, B. Menze, M. Bach Cuadra and
A. Jakab, in Scientific Data, doi: 10.1038/s41597-021-00946-3.

On the occasion of the release of the Fetal Tissue Annotation and Segmentation
Dataset (FeTA) v1.2, I participated to the benchmark of automatic multi-tissue fetal
brain MRI segmentation.

C.1 Dataset

The 1st Fetal Tissue Annotation and Segmentation Dataset (FeTA) 1 release was com-
posed of fifty (50) SR-reconstructed volumes of T2w images, splitted into two groups:
training (40) and testing (10). The cohort is composed of 18 neurotypical and 32 patho-
logical pre- or post-operative spina bifida subjects. Gestational age repartition of sub-
jects into the subgroups is presented in Figure C.1.

Training subjects are provided along with manual annotation of the following tis-
sues: extra-axial cerebrospinal fluid (CSF) spaces, gray matter (GM), white matter
(WM), ventricles, cerebellum, deep gray matter (deep GM) and brainstem.

1DOI: 10.5281/zenodo.4541606
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Figure C.1: Subjects repartition into dataset subgroups.

C.2 Evaluation

Evaluation are performed with the EvaluateSegmentation tool [137] for the measure-
ment of the Dice similarity coefficient (DSC), the 95th percentile of the Hausdorff dis-
tance (Hausdorff95) and the volume similarity (VS).

C.3 Multi-atlas segmentation

As introduced in Section 1.4.2, registration-based segmentation techniques aim to es-
timate the best image-to-template transformation in order to further propagate the
labelmap. In case of multi-atlas segmentation, propagated labelmaps from multiple
atlases are combined.

In our approach, all 40 training subjects - hence with manual annotations - are ini-
tially considered as atlases, although a more specific criteria-based selection of atlas
candidates is performed. Each of the atlas’ SR image is classified into one of the three
categories: bad, acceptable or excellent and those estimated as bad were considered
not good enough for registration purposes and thus discarded. In fetal brain segmen-
tation, the selection of appropriate atlases is challenging due to the major morpho-
logical development of the fetal brain that is happening along the course of gestation.
Intuitively, atlas candidates that are selected are the ones more likely to present similar
morphology than the target subject. Therefore, in our approach only those within two
weeks younger or older were registered to the subject’s space. Finally, the limitation
on the number of available atlases did not allow for pathology-based discrimination
criteria, hence both normal developing and spina bifida subjects were used as atlases
(see Figure C.2 for an overview of atlases used in label fusion).
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Figure C.2: Number of atlas candidates vs. number of atlases (5 best ranked NCC and NCC ≥ 0.8) used
in the label fusion step, for the training dataset, using a leave-one-out approach..
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Figure C.3: Overview of the Multi-Atlas Segmentation performance.

To proceed from global alignment of MR volumes to local deformation, a three-
level registration is performed, using the Advanced Normalization Tools (ANTS)[5],
in the following order, increasing the freedom of the transformation: rigid, affine and
finally non-linear symmetric diffeomorphic. We used the intensity-based normalized
cross-correlation (NCC) as similarity registration metric. Consequently, we define reg-
istration as being sufficiently good for being part of the label fusion when its NCC is
equal to or higher than 0.8 and the atlases that do not reach this NCC value are dis-
carded. We use the NiftySeg implementation for NCC computation2. We limit the
maximum number of atlases used for the label fusion to 5 (having the highest NCC).
A local weighted voting algorithm is used for the final label fusion step [4] in which
weighting is based on the NCC computed on a Gaussian kernel of size 10 voxels.

C.4 Results

We present partial results of our MAS approach from [112]. Methods were ranked
based on the following three metrics: the DSC, the HD95 and the VS. Figure C.3
presents the performance of our method for each label. Overall, our MAS method
ranked 4th out of 10 benchmarked.

2https://github.com/KCL-BMEIS/NiftySeg

https://github.com/KCL-BMEIS/NiftySeg


D
Multi-modal assessment of the corpus

callosum biometry

The work presented in this appendix gathers the preliminary results of the original
paper in preparation for submission to Frontiers in Medicine, as "Assessment of fetal
corpus callosum and sub-segments biometry by 3D super-resolution reconstruction
of brain MRI" with co-authors: S. Lamon, P. de Dumast, V. Dunet, L. Pomar, Y. Vial,
M. Koob and M. Bach Cuadra.

D.1 Introduction

The corpus callosum (CC) is the largest white matter commissure structure that allows
interhemispheric connections [110]. Agenesis of the CC (ACC) is the developmental
absence, either partial or complete, of the CC. ACC is amongst the most common brain
malformation, with a prevalence of more than 1 per 1000 individuals [110]. Such mal-
formation may be isolated of associated with other congenital anomalies [132]. ACC
may cause neuropsychological disorders, however, cognitive functions are not neces-
sarily hindered [127, 132]. Given such heterogenous prognosis, the clinical assessment
of ACC is challenging and a better understanding of its development is necessary.

Similarly to other cerebral structures, the CC benefits from the imaging techniques,
namely US and MRI, to quantify its biometry. However, CC assessment is the greatest
source of discrepancies between US and MRI [59], and US remains the gold standard.

In this study, we focus on the biometric analysis of the fetal corpus callosum (CC) in
a multi-modal multi-dataset analysis. We aim to assess SR reconstruction of fetal brain
MR exams against US, compared to T2WS.

143
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D.2 Materials and methods

D.2.1 Cohort

We retrospectively collected fetal brain MR exams from the Lausanne University Hos-
pital (CHUV). All MR exams were performed on medical indication. Fifty-seven (57)
fetal brain MRI exams were selected: 46 normal subjects – including those with minor
ventriculomegaly (<12mm), and 11 subjects with a partial ACC. To minimize the time
difference between exams, we only consider US exams performed within maximum
two weeks difference from the MR one.

The local ethics committee of the Canton of Vaud, Switzerland (CER-VD 2021-00124)
approved the retrospective collection and analysis of MRI and US data.

D.2.2 Datasets

Ultrasound imaging: US
US images were acquired on General Electric (ZIPF, Austria) Voluson 730, E8, E10
machines. The brain volumes containing the CC were acquired from the mid-
sagittal plane, using the anterior fontanelle and the sagittal suture as an acoustic
window [109]. Of all the US image used, the majority of them were 3D-US (93%)
and only 7% were 2D-US.

MR acquisitions: T2WS
Clinical MR images were either acquired at 1.5T or 3T on Siemens Healthcare
(Erlangen, Germany) scanners. The fetal brain MRI protocol included T2w Half-
Fourier Acquisition Single-shot Turbo spin Echo (HASTE) sequences in three or-
thogonal orientation.

Super-resolution reconstruction: SR
All MR exams were SR reconstructed by an engineer using the MIALSRTK [144]
BIDS App (see Appendix B). In a first round, all exams were reconstructed using a
fully automatic pipeline (selection of the reference, brain extraction). After a visual
inspection, a second round of reconstruction was done if necessary after a manual
refinement of the masks, and a finer selection of the reference and stacks used.
All SR images were reconstructed with an isotropic spatial resolution matching
its input in-plane resolution (in average of around 1.1mm for 1.5T and 0.5mm for
3T exams).

Figure D.1 illustrates the three dataset images on a subject of about 32 weeks of GA.
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Figure D.1: Visualization of the corpus callosum of a 32 weeks old subject on US, T2WS and SR images.

D.2.3 Biometric measurements

Two observers, one junior (obs1) with little experience in fetal brain MRI (<6 months)
and one experienced pediatric neuroradiologist (obs2) performed CC biometric mea-
surements. Obs1 performed measurements on all three datasets (US, T2WS and SR).
US measurements were made under supervision of a midwife specialized in fetal brain
sonography with 10 years of experience and a skilled obstetrician with 35 years of ex-
perience. Both supervisors reviewed obs1’s measures at multiple time and validated
them. Obs2 only measured on MR datasets (T2WS and SR).

Measurements of the outer-outer length, the heights of the rostrum, the genu, the
body and the splenium were made, all in triplicates and averaged, following the
guidelines defined by Pashaj et al. [109]:

• the rostrum is the most anterior part which is oriented postero-inferiorly,

• the genu is defined as the segment situated anteriorly to a line passing through
the anterior fornix and parallel to another line passing through the posterior fornix
and the quadrigeminal plate,

• the body is situated between the splenium and the genu, and

• the splenium corresponds to the posterior 20% of the CC,

Figure D.2 schematically illustrates the measurements performed.

For all subjects, CC measurements were performed on the best midsagittal image
available. On US, measurements were directly performed on the US device, which
allowed the observer to travel in the planes to find the best mid-sagittal view. On
T2WS, the free-resource ITK-SNAP software was used. The best acquisition for each
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Figure D.2: Schematic view of the corpus callosum biometric measurements: the length, the heights of
the rostrum, the genu, the body and the splenium.

orthogonal plane was chosen after a visual examination. On SR, the reconstructed
volumes were re-oriented to fit in the anatomical orthogonal axis and reach an accurate
mid-sagittal view.

D.2.4 Image quality

Quality scores are given to each dataset exam, based on the precise criteria:

• On US, five items were considered, as defined in [117]: (i) strict sagittal plane
with clear visibility of the cerebellar vermis, the brain stem, the fourth ventricle
and the CC, (ii) the four parts of the CC can be seen, (iii) zoom is sufficient, (iv) CC
from the cavum septum pellucidum is clearly distinguable, and (v) the calipers
are correctly placed.

• On T2WS, seven items are considered: (i) quality of the visualization of the CC,
(ii) the whole CC can be visualized on the same cut, (iii) blurring of the CC, (iv)
stack is oblique, (v) quality of the stack, (vi) motion-corruption of the stack, and
(vii) blurring of the stack.

• On SR, five of the seven T2WS are considered: (i) quality of the visualization of
the CC, (ii) the whole CC can be visualized on the same cut, (iii) blurring of the
CC, (iv) quality of the stack, and (v) blurring of the stack.

On US, each item was rated as 1=yes, 0=no and the sum of all is considered as the
final quality score. On T2WS and SR datasets, each item is rated from 0 to 3 (0=un-
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usable, 1=bad, 2=average, 3=good). The round mean of all items is considered as the
final quality score.

D.2.5 Statistical analysis

Gestational age
Regression analysis of each measure according to the GA were performed. For
quality control, we compare them to published reference charts. ACC subjects are
not included in this analysis. US measurements are compared to Pashaj et al. [109]
for all biometric measurements. T2WS length is compared to Tilea et al. [142]. To
our knowledge, nor T2WS sub-segments, nor SR reference measurements exist.

Inter-subset agreement
We evaluate the discrepancies between the subsets of the measurements per-
formed:

• We assess the discrepancies between the inter-dataset (US, T2WS, and SR)
measurements of obs1.

• We further compare the inter-observer agreement between obs1 – junior – and
obs2 – experienced – on the SR dataset.

• To remove the confounding of the experience, we assess the inter-modality
agreement (US vs. T2WS, and US vs. SR), in which US measurements are
those performed by obs1 that are validated by two experts, and MR measure-
ments (T2WS and SR) are from obs2.

For each of these subset comparisons, a paired Wilcoxon rank sum test is per-
formed, with statistical significance set to p < 0.05. p-values are adjusted for mul-
tiple comparisons using Bonferroni correction.

D.3 Results

D.3.1 Dataset analysis

Amongst the 57 fetal brain exams considered (T2WS), 43 had a US exam available with
a maximum time difference of two weeks. Finally, SR reconstruction was successful
for 51 subjects.

Figure D.3 shows for each subject the images available, the measurements that could
or could not be performed and the quality score D.3. Overall, it appears that SR dataset
presents less missing value that others (only 2 in rostrum). In T2WS, missing values
seem to be mostly localized in the anterior segments (mainly rostrum, and genu), while
in US they span over the CC. While T2WS only present acceptable and excellent exams
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according to the quality score, it does not seem to ensure the possibility to measure the
different sub-segments of the CC, especially the rostrum.

Table D.1 summarizes the frequency of each of the measurements per dataset. The
length could be measured on all the images available for each subject. Although US is
considered to be the gold standard for CC analysis, it is in this dataset that we observe
the more missing values, for each of the sub-segments. We recall that this study is ret-
rospective. Therefore, measurements were made on volumes that were not expressly
acquired for the analysis on CC sub-segments.

Overall, regardless of the dataset, the rostrum that is the thinner sub-segment (see
Figure D.2) has the more missing values.

Figure D.3: Summary of image quality, image availability and measurements performed for each subject.

Table D.1: Frequency of measurements per biometric measure.

LCC Rostrum Genu Body Splenium

US 100% 72% 86% 86% 81%
T2WS 100% 82% 96% 100% 98%
SR 100% 96% 100% 100% 100%

D.3.2 Gestational age analysis

Figure D.4 presents a GA-based regression of the length of the CC for each dataset,
in which US and T2WS are respectively compared to Pashaj et al. [109] and Tilea et
al. [142]. We observe that the regression of SR measurements is closer than the T2WS
measurements to the US regression that is considered the gold standard.



D.3. RESULTS 149

Figure D.4: Regression according to the gestational age of the length of the corpus callosum for each
dataset compared to literature. US reference charts: Pashaj et al. [109]. T2WS reference charts: Tilea et
al. [141].

Similarly, Figure D.5 presents a GA-based regression for each sub-segment of the
CC in each dataset. All datasets are compared to the reference US measurements from
Pashaj et al. [109]. On US, we observe that all measurements seem to be in the lower
half of the reference range.

D.3.3 Inter-dataset intra-observer

Table D.2 shows the inter-dataset statistical comparison for the measurements of obs1
along with the number of exams considered. Significant differences are observed for
the genu and the splenium between US and T2WS, for the rostrum and the genu be-
tween T2WS and SR, and only for the genu between US and SR.

We observe that the genu is a source of disagreement in all inter-dataset analysis.
We know that US and MR exams were not performed on the same day. Moreover, we
observe in the reference charts from [109] that the genu has the biggest growth through-
out gestation, while the rostrum and splenium seem steady from about 25 weeks (see
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Figure D.5: Regression according to the gestational age of each sub-segment of the corpus callosum for
each dataset compared to US reference charts from Pashaj et al. [109].

Figure D.5). Therefore, we may explain the discrepancies in the genu between US and
MR datasets by the influence of the GA.

Additionally, T2WS and SR show a disagreement in the rostrum. From Figure D.3
and Table D.1, we recall that this segment seemed to be a challenging one to measure
and is the shorter of all, hence being more prone to partial volume effect alteration.
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Table D.2: Inter-dataset comparison using the Wilcoxon rank sum test adjusted for multiple comparisons
using Bonferroni correction for obs1. p < 0.05 (*) is considered statistically significant.

Length Rostrum Genu Body Splenium

US vs. T2WS 1.0 1.0 6.3e-03* 1.0 0.0067*
(N=43) (N=25) (N=35) (N=37) (N=34)

T2WS vs. SR 0.25 0.027* 1.1e-07* 0.071 0.41
(N=51) (N=43) (N=49) (N=51) (N=50)

US vs. SR 0.12 0.30 1.8e-02* 0.086 0.14
(N=38) (N=26) (N=32) (N=32) (N=30)

D.3.4 Inter-observer intra-dataset (SR)

Table D.3 shows inter-observer agreement on the SR dataset. Statistical significance is
observed for the heights of the genu and the rostrum.

Table D.3: Inter-observer measurements comparison using the Wilcoxon rank sum test adjusted for mul-
tiple comparisons using Bonferroni correction on the SR dataset. p < 0.05 (*) is considered statistically
significant.

Length Rostrum Genu Body Splenium

SR 1 9e-05* 0.011* 0.094 0.086
(N=51) (N=48) (N=50) (N=51) (N=51)

D.3.5 Experts inter-modality

Table D.4 shows the inter-modality comparison (US vs. MR datasets), considering for
each dataset the expert’s measurements (i.e. obs1 in US, and obs2 in T2WS and SR). In
both US vs T2WS and US vs. SR comparisons, significant difference is only observed
for the rostrum.

Table D.4: Experts inter-dataset comparison using the Wilcoxon rank sum test adjusted for multiple
comparisons using Bonferroni correction. p < 0.05 (*) is considered statistically significant.

Experts Length Rostrum Genu Body Spleniuminter-dataset

US vs. T2WS 1.0 1.6e-04* 0.11 1.0 0.23
(N=38) (N=28) (N=34) (N=35) (N=34)

US vs. SR 0.16 9.1e-05* 1.0 0.066 1.0
(N=38) (N=25) (N=31) (N=32) (N=30)
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D.4 Discussion

The results presented in this appendix are preliminary and will require further analysis
to conclude on the potential added value of SR as compared to T2WS in the biometric
analysis of CC. Nonetheless, SR seems to help in the visualization of the entire CC,
which is in line with our previous findings presented in Chapter 2 [80]. Again, we
hypothesize that the possibility to freely navigate in the HR volumes plays a key role.
Moreover, the rostrum stands out of all subset paired comparison. Although we do
not have an explanation at the moment, such observation had already been made [48,
16, 80].
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