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Abstract 
 
Probability theory provides the general framework within which assignments of probabilities of past, present, and 
future events are coherently modified in the light of observed events or, more generally, new information. Forensic 
scientists, as an illustrative example, routinely face tasks of reasoning under uncertainty when they seek to assist 
members of the judiciary in evaluating or interpreting the meaning of items of scientific evidence. As a 
consequence of the laws of probability theory and related concepts, Bayes’ theorem is the key rule according to 
which to conduct such reasoning in order to comply with the requirement of rationality. This quantification, 
though, does not represent the end of the matter as the forensic scientist may also be confronted with questions of 
how to make a rational choice amongst alternative courses of action. This article presents the role of Bayes’ 
theorem, and its extension to decision analysis, in categorical and continuous data analysis in forensic science 
applications. It emphasizes the importance of propositional hierarchies, the role of background information, the 
interpretation of probability as personal degrees of belief and the personal quantification of the consequences of 
decisions. The discussion also includes a sketch of some common pitfalls of intuition associated with probabilistic 
reasoning in legal contexts. 
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Key points 

• Probability is the reference framework for scientific reasoning under uncertainty 
• Bayes’ theorem, a consequence of probability theory and related concepts, provides a way to formalise 

the assessment of the value of the evidence with respect to propositions of judicial interest 
• Decision theory, an extension of probability theory, can shed light on how to use scientific evidence (in 

the form of discrete and continuous data) for coherent decision analysis under uncertainty 
 
 
  



Introduction 
 
Bruno de Finetti, a pioneering subjective probabilist, considered that the role of probability theory in inductive 
logic is to show how the evaluations of probabilities of unobserved events are to be modified in the light of 
observed events, and that this translates, in the mathematical formulation of induction, the meaning of the phrase 
‘to learn from experience’. Forensic scientists, as an illustrative example, routinely face inductive reasoning when 
they ask to assist in evaluation or interpretation the meaning of items of scientific evidence. This directs attention 
to Bayes’ theorem, which, in essence, formalizes induction. 
In Bayesian analysis, all available information is used in order to reduce the extent of uncertainty associated with 
an inferential problem. As new information is obtained, it is combined with any previous information, and this 
forms the basis for statistical procedures. The formal mechanism used to combine new information with previously 
available information is generally known as Bayes’ theorem. Bayes’ theorem involves the use of probabilities 
because probability can be thought of as the coherent language of uncertainty. At any given point in time, the 
scientist’s state of information about some uncertain event (or quantity) can be represented by a set of probabilities. 
When new information is obtained, these probabilities are revised so as to represent all the available information. 
The idea of ‘revising’ probabilities, though, is not one that should be interpreted as a ‘correction’. An updated 
probability is not a correction or a better evaluation of an initial probability, but solely a different probability, 
because it is conditioned by a new (extended) state of information. 
The statistical evaluation and interpretation of evidence thus relies on a rule that specifies the dependencies 
amongst uncertain events through conditional probabilities. This rule enables one to define the value of evidence 
in the sense of the effect that evidence has on beliefs in an issue, such as whether the person of interest is the 
person who has committed a specific crime. The underlying ideas can be applied to categorical and continuous 
data. They can also be applied to situations in which there are no, or limited, data but in which there are personal 
assessments. They are used to ensure a coherent structure in the evaluation of items of evidence.  
The Bayesian paradigm can be extended to encompass the perspective of decision making. A decision problem 
arises when there is a list of possible courses of action and there is uncertainty regarding the consequences that 
may arise from each of these courses. Bayesian decision analysis offers a transparent framework for a rational and 
coherent justification of one’s choices.   

Bayes’ Theorem 
 
The Bayesian approach is named after the Reverend Thomas Bayes, a nonconformist preacher of the eighteenth 
century. To him is attributed an important result that shows how uncertainty about an event, say 𝑅, can be changed 
by the knowledge of another event, say 𝑆: 
 
Pr(𝑅|𝑆) = Pr(𝑆|𝑅)Pr(𝑅) Pr(𝑆)⁄ , 
 
where Pr denotes probability and the vertical bar | denotes the conditioning. Thus, Pr(𝑅|𝑆)	is the probability that 
𝑅 occurs, given that 𝑅 has occurred. Probabilities are values between 0 and 1. The value 0 corresponds to an event 
that is impossible to happen, and 1 to an event that is certain to happen. Probabilities are most appropriately 
interpreted as subjective – in the sense of ‘personal’ – expressions of degrees of belief held by an individual. As 
such they reflect the degree of imperfection of an individual’s knowledge. Such belief is graduated: as evidence 
accumulates, one can believe in the truth of an event more or less than one did before, one can believe more in the 
truth of one event than in the truth of another event, etc. The fundamental principle here is that the degrees of 
belief of a rational individual obey the rules of probability. Probability thus represents the quantified judgment of 
a particular individual. Because a probability is a measure of degree of belief rather than a long-run frequency (as 
suggested by other interpretations of probability), it is perfectly feasible to assign a probability to an event that 
involves a nonrepetitive situation. This makes the interpretation of probability, based on measures of belief, 
particularly useful for judicial contexts. 
 
An alternative version of Bayes’ theorem (sometimes known as Bayes’ rule) is its odds form, where 𝑅+ denotes 
the complement of 𝑅 so that Pr(𝑅+) = 1 − Pr(𝑅). Then the odds in favor of 𝑅 are Pr(𝑅) Pr(𝑅+)⁄ , denoted O(𝑅), 
and the odds in favor of 𝑅 given that 𝑆 has occurred are denoted O(𝑅|𝑆). The odds form of Bayes’ theorem is 
then: 
 
O(𝑅|𝑆) = 01(2|3)	

01(2|3+)
× O(𝑅). 

 



In forensic science, 𝑆, 𝑅 and 𝑅+ are generally replaced by 𝐸, 𝐻7, and 𝐻8, where 𝐸 is the scientific evidence, 𝐻7	is 
the proposition1 proposed by the prosecution, and 𝐻8	is the proposition proposed by the defence. Thus, one has: 
 
O9𝐻7|𝐸: =

01(;|<=)	
01(;|<>)

× O9𝐻7:. 
 
The left-hand side of the equation is the odds in favor of the prosecution proposition after the scientific evidence 
has been presented. This is known as the posterior odds. The odds O9𝐻7:	are the prior odds (i.e., odds prior to the 
presentation of the evidence). The factor that converts prior odds to posterior odds is the ratio 
 
01?𝐸@𝐻7A
019𝐸B𝐻8:

, 
 
known as the Bayes’ factor. In forensic contexts, it is regularly termed ‘likelihood ratio’ and abbreviated by V, 
short for ‘value.’ It can take values between 0 and ∞. A value greater than one provides support for the 
prosecution’s proposition 𝐻7	(over 𝐻8), and a value less than one favors the defence’s proposition 𝐻8 (over 𝐻7). 
Evidence for which the value is one is neutral in that the evidence does not discriminate between the two 
propositions of interest. Note that if logarithms are used, the relationship becomes additive. This has a very 
pleasing intuitive interpretation of weighing evidence in the scales of justice. The logarithm of the Bayes’ factor 
is known, after the works of the statistician I. J. Good, as the ‘weight of evidence’. Note also that it is not necessary 
for the two propositions in the terms denoted O(𝑅)	and O(𝑅|𝑆)	above to be complementary; the rule still holds. 
Thus, the prosecution and defence propositions do not need to be complementary, though they need to be mutually 
exclusive.  
The probative value of scientific evidence is assessed by determining a value for the Bayes’ factor. The proper 
task of forensic scientists is the determination of that value. The role of judge and jury will be that of assessing the 
prior and posterior odds. Scientists can inform recipients of expert information on how to change their prior odds 
in the light of the evidence, but scientists cannot by themselves assign a value to the prior or posterior odds. In 
order to assign such a value, all the other evidence in a case has to be considered. 
The terms ‘evaluation’ and ‘interpretation’ are sometimes considered synonyms, but it is helpful to conceive of a 
distinction. ‘Evaluation’ is the determination of a value for the Bayes’ factor. ‘Interpretation’ refers to the meaning 
attached to this value. 
 
The Value of Evidence 
 
The evaluation of scientific evidence may be thought of as the assessment of a comparison. This comparison is 
between qualities (such as genetic traits) or results of measurements (such as refractive indices of glass fragments) 
of crime-related (recovered) material and of control (potential source) material. For the assessment of scientific 
evidence, it is widely accepted that the forensic scientist should consider at least a pair of competing propositions, 
in the context commonly denoted 𝐻7	and 𝐻8. These propositions are formalized representations of the framework 
of circumstances. Their formulation is a crucial basis for a logical approach to the evaluation of evidence. A 
classification developed mainly by researchers in the United Kingdom during the late 1990s, referred to as a 
‘hierarchy of propositions,’ considers three main categories or levels. It involves the so-called ‘source,’ the 
‘activity,’ and the ‘crime’ level. 
 
Categorical Data and Discrete Propositions 

Evaluation given Source Level Propositions 

The assessment at source level depends on analyses and measurements on the recovered (of unknown origin) and 
control (of known origin) material. The value of a trace (or a stain) under source level propositions, such as ‘Mr. 
X’s pullover is the source of the recovered fibers’ and ‘Mr. X’s pullover is not the source of the recovered fibers’ 
(i.e., another clothing is the source of the trace), does not need to take account of much more than the analytical 
information obtained during laboratory examination. The probability of the evidence under the first proposition 
(numerator of the Bayes’ factor) is considered from a comparison between two items (the recovered and the 
control) assuming that they have come from the same source. The probability of the evidence under the second 
proposition (denominator of the Bayes’ factor) is considered by comparison of the characteristics of the control 

 
1 At the time of the second edition of this Encyclopedia, the word ‘hypothesis’ was used to denote theories put 
forward by the prosecution and defence. Current thinking prefers the word ‘proposition’ as ‘hypothesis’ has 
connotations with statistical hypothesis testing.  ‘Proposition’ is used throughout this article in place of 
‘hypothesis’ from the second edition. 



and recovered items in the context of a relevant population of alternative sources. The population from which the 
source may be thought to have come is called the relevant population. 
Consider a case in which 𝑛	textile fibers have been left at the scene of the crime by the person who committed the 
crime. A person, Mr. X, has been arrested and it is required to establish the strength of the evidence regarding 
competing source propositions. A forensic scientist compares the results of measurements of the physical/chemical 
characteristics of the questioned fibers and those taken from the Mr. X’s pullover. The two propositions of interest 
are 𝐻7, the questioned fibers come from Mr. X’s pullover, and 𝐻8, the recovered fibers come from some garment 
other than that of Mr. X. The evidence 𝐸 has two parts: 𝑦, the characteristic, Γ, say, of the recovered fibers, and 𝑥, 
the characteristic Γ, say, of Mr. X’s pullover. If the recovered fibers and Mr. X’s pullover have different 
(incompatible) characteristics, then Mr. X’s pullover would not be investigated in further detail. 
Let 𝐼 denote the background information. This could include (eyewitness) evidence concerning the type of garment 
worn by the criminal, for example. The value of the evidence is then 
 
01?𝐸@𝐻7, 𝐼A
019𝐸B𝐻8, 𝐼:

=
01?𝑦, 𝑥@𝐻7, 𝐼A
019𝑦, 𝑥B𝐻8, 𝐼:

=
01?𝑦@𝑥, 𝐻7, 𝐼A
019𝑦B𝑥, 𝐻8, 𝐼:

×
01?𝑥@𝐻7, 𝐼A
019𝑥B𝐻8, 𝐼:

. 
 
Consider two assumptions: (1) the characteristics of Mr. X’s pullover are independent of whether his pullover is 
the source of the recovered fibers (𝐻7) or not (𝐻8), and thus Pr9𝑥B𝐻7, 𝐼: = Pr(𝑥|𝐻8, 𝐼). (2) if Mr. X’s pullover 
was not the source of the recovered fibers (𝐻8), then the evidence about the fibers at the crime scene (𝑦) is 
independent of the evidence (𝑥) about the characteristics of Mr. X’s pullover, and thus Pr(𝑦|𝑥, 𝐻8, 𝐼) =
Pr(𝑦|𝐻8, 𝐼). 
Hence 
01?𝑦@𝑥, 𝐻7, 𝐼A
019𝑦B𝐻8, 𝐼:

. 

 
The scientist knows, in addition, from data previously collected (population studies) that fiber type Γ occurs in 
100𝛾% of some relevant population, say Ψ. 
Assuming that Mr. X’s pullover is the source of the recovered fibers, the probability that the recovered fibers are 
of characteristic Γ, given Mr. X’s pullover is of characteristic Γ, is 1. Thus, the numerator of 𝑉 is 1. Alternatively, 
it is assumed that Mr. X’s pullover was not the source of the recovered fibers. The relevant population is deemed 
to be Ψ. The true donor of the recovered fibers is an unknown member of Ψ. Evidence y is to the effect that the 
crime fibers are of characteristic Γ. This is to say that an unknown member of Ψ is Γ. The probability of this is the 
probability that a fiber donor drawn at random from Ψ has characteristic Γ, which is 𝛾. Thus 
𝑉 = N

O
. 

 
This value, 1 𝛾⁄ , is the value of the evidence of the characteristics of the recovered fibers when the source garment 
belongs to a member of Ψ. Given that 𝛾 is a value between 0 and 1, the Bayes’ factor is greater than 1, and the 
evidence is said to have the value 1 𝛾⁄ . That is, it is 1 𝛾⁄  times more probable to observe this evidence if Mr. X’s 
pullover was the source of the recovered fibers than if it were not. Qualitative (i.e., verbal) scales have been 
proposed and they are intended to make it easier to convey the meaning of the numerical value of the evidence. 
However, there is ongoing discussion about the degree to which this aim has been achieved. 
 
Evaluation given Activity Level Propositions 
 
This hierarchical level relates to an activity. It requires that the definition of the propositions of interest include an 
action. Such propositions could be for example, ‘Mr. X sat on the car driver’s seat at the relevant time,’ and ‘Mr. 
X never sat on the car driver’s seat.’ The consequence of this activity – the sitting on a driver’s seat – is a contact 
between the driver and the seat of the car. Consequently, a transfer of material (i.e., fibers in this example) may be 
expected. Therefore, the scientist needs to consider more detailed information about the case under examination. 
This information will help the scientist assess aspects such as the transfer and persistence of fibers on the driver’s 
seat. This shows that findings cannot be evaluated given activity level propositions without a framework of 
circumstances.  
Consider, for the sake of illustration, the following case. A crime has been committed during which the blood of 
a victim has been shed. A person of interest (POI) has been arrested. A single blood stain of genotype Γ has been 
found on an item of the POI’s clothing. The POI’s genotype is not Γ. The victim’s genotype is Γ. There are two 
possibilities: 𝑇Q: the blood stain came from some background source; 𝑇N: the blood stain was transferred during 
the commission of the crime. 
As before, there are two propositions to consider, 𝐻7: the POI assaulted the victim, and 𝐻7: an unknown person 
assaulted the victim (i.e., the POI is not involved in any way whatsoever with the victim). 



The evidence 𝐸 to be considered is that a single blood stain has been found on the POI’s clothing and that it is of 
genotype Γ. The information that the victim’s genotype is Γ is considered as part of the relevant background 
information 𝐼. A general expression of the value of the evidence then is V = Pr9𝐸|𝐻7, 𝐼: Pr⁄ (𝐸|𝐻8, 𝐼). 
 
Consider the numerator first and event 𝑇Q	initially. This supposes that a ‘contact’ of a certain intensity and duration 
occurred between the POI and the victim, but no blood transfer to the POI. This is an event with probability 
Pr9𝑇Q|𝐻7, 𝐼:. Also, a stain of genotype Γ  must have been transferred by some other means, an event with 
probability Pr(𝐵|Γ) where 𝐵 refers to the event of a transfer of a stain from a source (i.e., a background source) 
other than the crime scene (here the victim). 
 
Next, consider 𝑇N, the event of blood transfer to the POI, an event with probability Pr9𝑇N|𝐻7, 𝐼:. Given 𝑇N, 𝐻7	and 
the genotype Γ of the victim, it is certain that the transferred stain is Γ. This assumes also that no blood has been 
transferred from a background source. 
Let 𝑡Q = Pr9𝑇Q|𝐻7, 𝐼: and 𝑡N = Pr9𝑇N|𝐻7, 𝐼: denote the probabilities of no stain or one stain being transferred 
during the course of the crime. Let 𝑏Q	and 𝑏N, respectively, denote the probabilities that a person from the relevant 
population will have zero blood stains or one blood stain on clothing. Let 𝛾	denote the probability that a stain 
acquired innocently on the clothing of a person from the relevant population will be of genotype Γ. This probability 
may be different from the proportion of individuals in the general population which are of type Γ. Then Pr(𝐵|Γ) =
𝛾𝑏N and the numerator can be written as 𝑡Q𝛾𝑏N + 𝑡N𝑏Q. This expresses that the presence of a stain of type Γ depends 
on the probability of there being no transfer (𝑡Q), times there being such a stain as background (𝛾𝑏N), plus the 
probability of transfer of such a stain (𝑡N), times the probability of there being no such stain beforehand (𝑏Q). 
 
Now consider the denominator where it is assumed that no physical interaction occurred between the POI and the 
victim. The presence of the stain is then present by chance alone. The denominator thus takes the value Pr(𝐵|Γ), 
which equals 𝛾𝑏N. In summary, the value of the evidence is thus 
 
𝑉 = WXOYZ[WZYX

OYZ
. 

 
 
Extensions to cases involving transfer in the other direction (from perpetrator to scene/victim rather than from 
scene/victim to perpetrator), for example, or generalizations involving n stains and k groups are available in the 
specialized literature on the topic. 
 
Evaluation given Crime Level Propositions 
 
At the ‘crime level’ (also known as the ‘offence level’), propositions are closest to those of interest to the jury. A 
formal development of the likelihood ratio under ‘crime level’ propositions shows that two additional parameters 
are of interest: (1) one concerns material that may be ‘relevant,’ meaning that it came from the offender (it is 
relevant to the consideration of the POI as a possible offender), (2) the other concerns the recognition that if the 
material is not relevant to the case, then it may have arrived at the scene from the POI for innocent reasons. As for 
activity level propositions, discussion of transfer in the other direction (i.e. scene/victim to perpetrator) is available 
in the specialized literature on the topic. 
Consider the following two propositions of interest: 𝐻7:	the POI is the offender, and 𝐻8: an unknown person is 
the offender. 
Notice the difference between these propositions and those of the previous sections on source or activity level. At 
source level, the propositions referred to the POI being, or not being, the donor of the recovered trace found at the 
crime scene. Now, the propositions are stronger, because they specify the POI as a possible offender. 
In the formal development of the likelihood ratio, a connection is needed between what is observed (i.e., the stain 
at the crime scene) and the propositions according to which the POI is or is not the offender. The connection is 
made in two steps. The first is the consideration of a proposition that the crime stain came from the offender and 
the alternative proposition that the crime stain did not come from the offender. If it is assumed that the crime stain 
came from the offender, the second step is the consideration of a proposition that the crime stain came from the 
POI and the alternative that the crime stain did not come from the POI. 
Developing the likelihood ratio in view of these two pairs of propositions introduces the concepts of (1) ‘relevance 
probability,’ usually denoted 𝑟, and (2) ‘innocent acquisition probability,’ usually denoted as 𝑎. The resulting 
expression of the value of the evidence takes the following form: 
 
𝑉 = _[O`(Na_)

O_[c[(Nac)O`](Na_)
. 



 
 
Note the difference between two terms 𝛾	and 𝛾e, expressing the rarity of the corresponding characteristic. In fact, 
𝛾e	is the probability that the crime stain would be of a given type, if it had been left by an unknown person who 
was unconnected with the crime. The population of people who may have left the stain is not necessarily the same 
as the population from which the criminal is assumed to have come. For DNA evidence, however, it may be 
acceptable to assume 𝛾 = 𝛾e. 
 
Continuous Data and Discrete Propositions 
 
A seminal paper in 1977 by Dennis Lindley showed how the Bayes’ factor could be used to evaluate evidence 
given by continuous data in the form of measurements. The measurements used by Lindley by way of illustration 
were those of the refractive index of glass. There were two sources of variation in such measurements, the variation 
within a window and the variation between different windows. Lindley showed how these two sources of variation 
could be accounted for in a single statistic. He was also able to account for the two factors which are of importance 
to a forensic scientist: (1) the similarity between the recovered and control materials (or items) and (2) the typicality 
of any perceived similarity. When the data are in the form of continuous measurements, the Bayes’ factor is a ratio 
of probability density functions rather than a ratio of probabilities. 
 
Consider a set 𝒙 of measurements on control material and another set 𝒚 of measurements on recovered material. 
The measurements refer to a particular characteristic, such as the refractive index of glass. For this example, 𝒙 
would be a set of measurements of refractive indices on fragments of a broken window at the crime scene and 𝒚 a 
set of measurements of refractive indices on fragments of glass found on a POI. If the POI was the person who 
broke the window at the crime scene, the expectation is to find fragments whose refractive index corresponds to 
the broken window at the crime scene. If the POI was not at the crime scene, then the fragments have come from 
some other, unknown, source. 
The quantitative part of the evidence concerning the glass fragments in this case can be denoted by 𝐸 = (𝒙, 𝒚). 
The Bayes’ factor for source level propositions is then written as follows: 
 
𝑉 = h(𝒙,𝒚|<=,i)

h(𝒙,𝒚|<>,i)
. 

 
Bayes’ theorem and the rules of conditional probability apply to probability density functions 𝑓(∙) as well as to 
probabilities. The value of the evidence 𝑉 of the evidence may be rewritten – following the argument presented in 
the section on discrete data – as 
 
𝑉 = h(𝒚|𝒙,<=,i)

h(𝒚|<>,i)
. 

 
This formulation of the expression for 𝑉 shows that for the numerator the distribution of the measurements on the 
recovered items, conditional on the measurements on the control items as well as 𝐼, is considered. For the 
denominator, the distribution of the measurements on the recovered items is considered over the distribution of 
the whole of the relevant population. The denominator is called the ‘marginal distribution’ of the measurements 
on recovered items in the relevant population. 
In a Bayesian approach, the characteristic of interest is parameterized, for example by the mean. Denote the 
parameter by 𝜃. This parameter may vary from source (window) to source (another window). 
 
Consider that the two source level propositions to be compared are 𝐻7: the recovered material is from the same 
source as the control material, and 𝐻8: the recovered material is from a source other than the control material. 
The measurements 𝒙  are from a distribution with parameter 𝜃N, say and the measurements 𝒚 are from a distribution 
with parameter 𝜃m, say. If 𝒙 and 𝒚 come from the same source, then 𝜃N = 𝜃m, otherwise 𝜃N ≠ 𝜃m. In practice, the 
parameter 𝜃 is not known and the analysis is done with the marginal probability densities of 𝒙 and 𝒚. The above 
equation for 𝑉 can be rewritten as: 
 
𝑉 = ∫h(𝒚|p)h(𝒙|p)q(p)rp

∫h(𝒙|p)q(p)rph(𝒚|p)q(p)rp
. 

 
For those unfamiliar with these kinds of manipulations, Bayes’ theorem applied to conditional probability 
distributions is used to write 𝑓(𝜃|𝒙) as 𝑓(𝒙|𝜃)𝜋(𝜃) 𝑓(𝑥)⁄ . The law of total probability with integration replacing 
summation is used to write 𝑓(𝑥) as 𝑓(𝒙|𝜃)𝜋(𝜃)d𝜃.	Note that 𝜋(𝜃)	represents the prior distribution on the 



unknown parameter. Therefore, the Bayes’ factor does not depend only upon the sample data. It is the ratio of two 
weighted likelihoods. 
Often, the distributions of (𝒙|𝜃)and (𝒚|𝜃)	are assumed to be Normal, with 𝜃 representing the mean, varying from 
source to source, and the variance is assumed to be constant from source to source. Those assumptions can be 
relaxed and (a) various possibilities can be assumed for the distribution of (𝒙|𝜃), (𝒚|𝜃), and 𝜃 and (b) a three-
level hierarchical model (variance assumed not constant) can be considered. Moreover, developments for 
multivariate data are also possible. 
 
Principles of Evidence Evaluation 
 
Three principles arise from the application of the ideas outlined so far. 
First, an evaluation is meaningful only when at least one alternative proposition is considered. So, the distribution 
of the data has to be considered under (at least) two propositions, typically that of the prosecution and that of the 
defence. 
The second principle is that evaluation is based on consideration of probabilities of the evidence 𝐸, given a 
particular issue, 𝐻7, is assumed true, Pr9𝐸|𝐻7:	and, given an alternative issue, 𝐻8, is assumed true, Pr(𝐸|𝐻8). 
The third principle is that the evaluation and interpretation of the evidence is carried out within a framework of 
circumstances. It has to be conditioned on the background information 𝐼. 
The application of those principles guarantees some desiderata in the scientist’s attitude in evaluating and offering 
evidence, such as balance, transparency, robustness, and added value. The degree to which the scientist succeeds 
in meeting these criteria depends crucially on the chosen inferential framework which may be judged by the criteria 
of flexibility and logic. 
 
Interpretation 
Continuous Data and Continuous Variables (Propositions) 
 
So far, the outline focused on categorical (or continuous) data and discrete propositions, but Bayesian analysis 
also deals with situations involving continuous variables. A typical instance of this is the situation where a 
parameter, such as a mean, needs to be estimated. As an example, suppose that a random sample, x = (𝑥N, … , 𝑥x), 
is available. For example, this may be the case when a scientist is interested in blood alcohol concentration on the 
basis of a series of 𝑛	measurements taken from a given individual arrested by traffic police. 
Suppose further that the data follow a Normal distribution with unknown mean, 𝜃, and known variance, 𝜎m. 
Suppose also that there is some background information available so that some values of 𝜃 seem more likely a 
priori. Then, assuming a conjugate Normal prior distribution for the parameter of interest, that is the mean 𝜃, 
having a mean 𝜇 and a variance 𝜏m, it can be shown that the posterior density is still a Normal distribution, 
𝑁(𝜇}, 𝜏}m), with  

mean 𝜇} =
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~�
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�
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~�
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�
𝑥̅, and variance 𝜏}m =
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�
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The posterior mean is a weighted average of the prior mean 𝜇 and the sample mean 𝑥̅, with weights proportional 
to the variances corresponding to the prior distribution and the sampling distribution. Comparable lines of 
reasoning can be invoked to approach situations involving unknown variances, alternative distributions and data 
distributions. 
 
Pitfalls of Intuition 
 
The Bayesian approach to the interpretation of evidence enables various errors and fallacies to be exposed. The 
most well-known of these are the prosecutor’s and defence attorney’s fallacies. As an example, consider a crime 
where a blood stain is found at the scene and it is established that it has come from the criminal. Only for sake of 
illustration, consider that the stain has a profile which is present in only 1% of the population. It is also supposed 
that the size of the relevant population is 200 000. A POI is identified by other means and their blood is found to 
be of the same profile as that found at the crime scene. 
The prosecutor argues that, because the blood profile is present in only 1% of the population, there is only a 1% 
chance that the POI is not the offender. There is a 99% chance that he is the offender. The defence attorney argues 
that, because 1% of 200 000 is 2000, the POI is only one person in 2000 who have a corresponding blood profile. 
There is a probability of 1/2000 that he is the offender. This is then used to argue that the blood group is, therefore, 
of little probative value and not very helpful in the case. 



Consideration of the odds form of Bayes’ theorem explains these fallacies. Denote the blood evidence by 𝐸 and 
let the two competing propositions be 𝐻7, the POI is the offender, and 𝐻8, an unknown person is the offender. 
Then the odds form of Bayes’ theorem is that (omitting I from the notation) 
 
01(<=	|;)
01(<>	|;)

= 01(;|<=)	
01(;|<>)

× 01(<=	)
01(<>	)

. 
 
The Bayes’ factor is Pr9𝐸|𝐻7: Pr(𝐸|𝐻8)⁄ = 1 0.01⁄ = 100. The posterior odds are increased by a factor of 100. 
Consider the prosecutor’s statement. It claims that the probability of the POI being the offender, after presentation 
of the evidence, is 0.99. In formal terms, this corresponds to Pr9𝐻7|𝐸: = 0.99 and, hence, Pr(𝐻8|𝐸) = 0.01. The 
posterior odds are 99, which is approximately 100. 𝑉 is also 100. Thus, the prior odds are 1 and Pr9𝐻7: =
Pr(𝐻8) = 0.5. For the prosecutor’s fallacy to be correct the prior belief is that the POI is the offender is just the 
same as an unknown person being the offender. 
 
The defence argues that the posterior probability Pr9𝐻7|𝐸:	equals 1 2000⁄  and, hence, Pr(𝐻8|𝐸)	equals 
1999 2000⁄ . The posterior odds are 1 1999⁄ , which is approximately 1 2000⁄ . Since the posterior odds are bigger 
by a factor of 100 than the prior odds, the prior odds are 1 200	000⁄ , or the reciprocal of the population size. The 
defence is arguing that the prior belief in the POI being the offender is approximately 1 200	000⁄ . This could be 
expressed as a belief that the POI is just as likely to be liable as anyone else in the relevant population. The fallacy 
arises because the defence then argues that the evidence is not relevant. However, before the evidence was led, the 
POI was one of 200 000 people, after the evidence was led he is only one of 2000 people. Evidence which reduces 
the size of the pool of potential criminals by a factor of 100 is surely relevant. 
 
Other errors have been identified. The ‘ultimate issue error’ is another name for the prosecutor’s fallacy. It 
confuses the probability of the evidence if a POI is not the offender with the probability that the POI is not the 
offender, given the evidence. The ultimate issue is the issue proposed by the prosecution of which it is asking the 
court to find in favour. The ‘source probability error’ is to claim the person of interest is the source of the evidence. 
This would place the POI at the scene of the crime but would not, in itself, be enough to show that he was the 
offender. The ‘probability (another match) error’ consists in equating the rarity of a characteristic with the 
probability that another person has this characteristic. The ‘numerical conversion error’ equates the reciprocal of 
rarity of the corresponding characteristic to the number of people that have to be examined before another person 
with the same characteristic is found. 
More generally, high values for the evidence provide strong support for the prosecution’s case. They are not, 
however, sufficient in themselves to render a guilty verdict. The prior odds have to be considered as well. Very 
high values for the evidence, when combined with very small values for prior odds, may produce small values for 
the posterior odds. This may be the case when the suspect has been selected as a result of a database search and 
when there is little or no other evidence against the POI. 
 
(Bayesian) decision theory 
 
Decision theory specifies how to make choices between courses of action (also called decisions) when there is 
uncertainty about some event (propositions) or parameter (quantity), called states of nature, and about the 
consequences of these choices. Thus, the basic elements characterizing decision theory are the states of nature 
denoted by 𝜃 (which may be discrete or continuous) in the parameter space Θ, the list of exclusive and exhaustive 
decisions denoted by letter 𝑑 in a decision space 𝐷, and the consequences 𝑐 that represent the combination of a 
decision 𝑑 taken when the state of nature is 𝜃. Consequences are described, in mathematical terms, as 𝑐(𝑑, 𝜃) and 
the set of all consequences is denoted 𝐶. 
 
Uncertainty about the states of nature is quantified through a probability distribution over the parameter space. 
This is done through Bayes’ theorem as new evidence is acquired. 
The desirability of each consequence is quantified. Values for consequences are assigned on a numerical scale by 
the decision maker through a function called the utility function, denoted by U(∙). It associates a utility value 
U(𝑑, 𝜃)	to each one of the possible consequences 𝑐(𝑑, 𝜃). The utility values clarify which consequence is more 
desirable than others, and which consequences are considered equivalent. Finally, by combining the utilities 
U(𝑑, 𝜃) associated to each consequence and the probabilities associated to the states of nature, one can quantify a 
measure of the desirability of each potential decision in terms of what is known as expected utility. The value of 
the expected utility is the criteria for the rational decision maker’s choice between courses of action. The decision 
with the largest expected utility value represents one’s best choice, because it is the decision with the highest 
probability of obtaining the most favorable consequence. 
 



The expected utility value is computed as follows in situation involving discrete states of nature 𝜃: 
 
EU(𝑑) = ∑ U(𝑑, 𝜃)Pr(𝜃|𝐸, 𝐼)p∈� . 
 
Under situations involving continuous states of nature 𝜃, the probability mass function is replaced by a probability 
density function on the parameter space. The expected utility is given by: 
 
EU(𝑑) = ∫ U(𝑑, 𝜃)𝑓(𝜃|𝐸, 𝐼)d𝜃p∈� . 

Specialised statistical, legal and forensic literature introduced formal decision theoretic developments for a variety 
of decisions arising in legal contexts, such as making decisions about ultimate issues, forensic identification 
(individualization), sampling and classification, among several others. 
 
Conclusion 

This chapter emphasises three fundamental aspects. The first is the consideration that probability is the reference 
framework for scientific reasoning under uncertainty. Second, Bayes’ theorem – a result following from the 
definition of probability and related concepts – provides a way to formalise the assessment of the value of scientific 
evidence with respect to propositions of judicial interest. Finally, as an extension of probability theory, decision 
theory provides a framework that can shed light on how to use scientific evidence in coherent decision analysis 
under uncertainty. 

See also 
 
BIOLOGY/DNA | Bayesian Networks; BIOLOGY/DNA | DNA – Statistical Probability; 
FOUNDATIONS | Overview and Meaning of Identification/Individualization. 

Glossary 
 
Bayes’ theorem: Bayes’ theorem is a consequence of the basic laws of probability and can be applied for revising 
beliefs about uncertain propositions in the light of new evidence. In legal contexts, reasoning according to Bayes’ 
theorem is used in order to examine whether particular evidence strengthens or weakens a case. More generally, 
Bayes’ theorem provides a standard for logically correct reasoning under uncertainty. 
 
Likelihood ratio: A likelihood ratio is defined by a ratio of two conditional probabilities: the probability of the 
evidence given each of two mutually exclusive and competing propositions. In forensic science applications, the 
likelihood ratio is used as an expression for the meaning of scientific evidence and as a measure for its probative 
value. 
 
Probability: Probability is a measurement device for uncertainty. In one of its most widespread interpretations, it 
serves the purpose of expressing an individual’s personal degrees of beliefs about uncertain propositions. The laws 
of probability can be derived in serval different ways, not merely axiomatic considerations, thus constituting a 
fundamental framework for inductive logic. 
 
Decision theory: A normative theory of decision making that allows decision makers to assess the consequences 
of alternative courses of action, compare them and ensure coherent (decision) behaviour. 
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