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Abstract

Compartmental models that describe infectious disease transmission across subpopula-

tions are central for assessing the impact of non-pharmaceutical interventions, behavioral

changes and seasonal effects on the spread of respiratory infections. We present a Bayes-

ian workflow for such models, including four features: (1) an adjustment for incomplete case

ascertainment, (2) an adequate sampling distribution of laboratory-confirmed cases, (3) a

flexible, time-varying transmission rate, and (4) a stratification by age group. Within the

workflow, we benchmarked the performance of various implementations of two of these fea-

tures (2 and 3). For the second feature, we used SARS-CoV-2 data from the canton of

Geneva (Switzerland) and found that a quasi-Poisson distribution is the most suitable sam-

pling distribution for describing the overdispersion in the observed laboratory-confirmed

cases. For the third feature, we implemented three methods: Brownian motion, B-splines,

and approximate Gaussian processes (aGP). We compared their performance in terms of

the number of effective samples per second, and the error and sharpness in estimating the

time-varying transmission rate over a selection of ordinary differential equation solvers and

tuning parameters, using simulated seroprevalence and laboratory-confirmed case data.

Even though all methods could recover the time-varying dynamics in the transmission rate

accurately, we found that B-splines perform up to four and ten times faster than Brownian

motion and aGPs, respectively. We validated the B-spline model with simulated age-strati-

fied data. We applied this model to 2020 laboratory-confirmed SARS-CoV-2 cases and two

seroprevalence studies from the canton of Geneva. This resulted in detailed estimates of

the transmission rate over time and the case ascertainment. Our results illustrate the
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potential of the presented workflow including stratified transmission to estimate age-specific

epidemiological parameters. The workflow is freely available in the R package HETTMO,

and can be easily adapted and applied to other infectious diseases.

Author summary

Mathematical models are a central tool for understanding the spread of infectious dis-

eases. These models can frequently be fitted to surveillance data such as the number of lab-

oratory-confirmed cases and seroprevalence over time. We identified that in these

situations, four crucial features are required for a model to provide insightful information

for managing an epidemic. These features relate to the adjustment for incomplete case

ascertainment, to the choice of sampling distribution, to the variation of transmission

over time and to the stratification by age. For each feature, we identify and compare sev-

eral implementation options on simulated data. This structural comparison of methods

results in a Bayesian workflow that is optimized for modeling the transmission of SARS-

CoV-2 over a short period. We highlight the advantages and limitations of our approach

in a real situation, using real-world SARS-CoV-2 data from the canton of Geneva. In addi-

tion to providing validated solutions to important technical points, such a comprehensive

workflow helps to improve the reliability and the transparency of epidemic models.

Introduction

Epidemic theory provides mathematical expressions for biological concepts that are funda-

mental to understanding the spread of infectious diseases, such as contagion, incubation and

immunity. Compartmental models based on ordinary differential equations (ODEs) imple-

ment these concepts within a unified, manageable framework, and have taken a central posi-

tion in the field of infectious disease modeling. While initially used to formalize and develop

theoretical notions such as reproductive numbers or immunity thresholds [1], or to simulate

epidemics under specific constraints [2, 3], compartmental transmission models have been

increasingly applied to practical questions about infectious disease transmission, especially

during the COVID-19 pandemic [4–6]. These applications often rely upon fitting custom-

made models to surveillance data such as counts of laboratory-confirmed cases, and use vari-

ous methods of statistical inference. Among these, Bayesian inference with Markov chain

Monte Carlo (MCMC) is gaining ground, fueled by improvements in computing power and

sampling algorithms [7], and by efficient software implementations [8–10]. This approach

offers many advantages, including parameter inference, full propagation of uncertainty, princi-

pled integration of prior knowledge and high flexibility in model specification [11]. Still, even

the most basic situations require models of relatively high complexity, with many options

available for each model feature, and difficulties of implementation and computational ineffi-

ciency limit the widespread adoption of these tools. In such situations, it is beneficial to

describe the entire iterative process of model development, evaluation, and refinement, rather

than presenting a single Bayesian model, since the optimal model choices frequently depend

on the specifics of the real-world scenario. Gelman et al. (2020) have defined this comprehen-

sive process as the Bayesian workflow, which utilizes simulated data to verify the accuracy of

the inference and compare model efficiency [12].
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We identified four essential features for a Bayesian workflow aimed at studying the trans-

mission of SARS-CoV-2 (or other respiratory viruses) in a population over a relatively short

time period based on counts of laboratory-confirmed cases: (1) an adjustment for incomplete

case ascertainment, (2) an adequate sampling distribution of laboratory-confirmed cases, (3) a

flexible, time-varying transmission rate, and (4) a stratification by age group. First, incomplete

and unrepresentative ascertainment plays a key role in the generation of surveillance data.

Indeed, laboratory-confirmed cases are only an unrepresentative subset of the actual popula-

tion of newly infected individuals, that is highly dependent on testing activity (how many tests

are performed) and targeting (which part of the population is prioritized for or has access to

testing), both of which can vary over time [13–15]. The identification of the ascertainment

rate, however, requires additional information such as point estimates of population seroprev-

alence [11]. Second, the sampling distribution must be suitable to generate counts of labora-

tory-confirmed cases. Common options include Poisson, quasi-Poisson and negative binomial

distributions, but no systematic comparison in this context has been conducted to date

[16, 17]. The third feature, flexible time-varying transmission, is critical, as it models the varia-

tions in transmission caused by drivers such as non-pharmaceutical interventions (NPIs),

alterations of behaviors, and environmental determinants. These drivers can impact both com-

ponents of the transmission rate: the rate of contact between individuals (e.g., mandatory

work from home) and the probability of transmission upon contact (e.g., mandatory face

masks). As these factors may vary over time, any model aimed at disentangling and under-

standing the drivers of SARS-CoV-2 transmission must incorporate a time-varying transmis-

sion rate. Several approaches have been proposed using predefined functional shapes [18–21]

or more flexible approaches based on step functions [5], cubic splines [22–24] or Brownian

motion [25–27]. A systematic comparison of these methods in the context of compartmental

transmission models is currently lacking. Fourth, the stratification by age group is now consid-

ered standard practice in transmission models of respiratory infections [28]. Indeed, age influ-

ences every step of the infection course of SARS-CoV-2 and other respiratory viruses

including contact patterns, adherence to NPIs, probability of testing and probability of severe

outcome [27, 29–31]. While other individual factors like gender and socio-economic position

may certainly influence transmission [32], age is generally considered as the most important,

justifying this first choice for stratification.

In this work, we present a Bayesian workflow for a compartmental transmission model to

analyze the transmission of SARS-CoV-2 that includes these four essential features. To this

aim, we assess the statistical accuracy and computational efficiency of several of these model

choices, including three sampling distributions (Poisson, quasi-Poisson, and negative bino-

mial) and three methods for implementing a time-varying transmission rate (Brownian

motion, B-splines, and approximate Gaussian processes). For these assessments, we use both

simulated data and real-world data from SARS-CoV-2 in Geneva, Switzerland. We release the

scripts and functions for the different model iterations presented in this study in an R package

called HETTMO (for HETerogeneous Transmission MOdel). The code can easily be adapted

to other situations and pathogens, with the objective of promoting and facilitating access to

this type of methods and making the process of model validation and comparison insightful.

Materials and methods

We preregistered our methodology for this study on the Open Science Framework (OSF). This

pre-registration document can be accessed at https://osf.io/n73gu/?view_only=

4e469db4a58d428f99682e38c81f0d58.
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Transmission model

At its core, the compartmental infectious disease transmission model follows a Susceptible-

Exposed-Infected-Removed (SEIR) structure (Fig 1). We extended this model by allowing the

transmission rate to vary over time. The model definition is shown in Eq 1, where ρ(t) is the

time-dependent factor that describes the change in the transmission rate over time relative to a

baseline. The probability of a transmission event upon contact is β, τ is the inverse of the aver-

age latent period, γ the inverse of the average time an individual spends in the infected com-

partment (i.e. the recovery rate) and c is the average number of contacts an individual has per

day. The total population is N = S + E + I + R. Both τ and γ are fixed, such that the generation

time is 5.2 days, with this time equally distributed between the exposed and infected compart-

ments [33–35]. We have chosen to parameterize γ and τ together based on the generation time

rather than with independent estimates for the latent period and the recovery rate. The reason

is that we assume that individuals will isolate after a positive PCR test during the study period

and therefore move to the R compartment earlier than would be expected based on the recov-

ery rate. Moreover, since our study period was less than a year, we could assume that there is

no waning of immunity and that the total population size is constant.

dS
dt
¼ � brðtÞcS

I
N

dE
dt
¼ brðtÞcS

I
N
� tE

dI
dt
¼ tE � gI

dR
dt
¼ gI

ð1Þ

Fig 1. Schematic overview of the SEIR transmission model for SARS-CoV-2 and the steps to generate the number of laboratory-

confirmed cases and the observed seroprevalence.

https://doi.org/10.1371/journal.pcbi.1011575.g001
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Feature 1: Adjustment for incomplete case ascertainment using seroprevalence data

From a given set of parameter values and initial conditions, the SEIR model generates the total

number of newly recovered individuals in the population by unit of time (i.e. the true inci-

dence by our definition, see Fig 1) as follows:

HðtÞ ¼ Rðt þ 1Þ � RðtÞ:

Only a fraction of this incidence will be ascertained as a laboratory-confirmed cases by testing

positive (A(t)). The ascertainment rate π determines what fraction of the true incidence is

observed: A(t) = πH(t). It is influenced by many determinants including testing activity and

targeting, and may thus also vary over time. In this context the ascertainment rate is not statis-

tically identifiable without the support of external data, such as a seroprevalence estimate. The

seroprevalence is a measure of the number of recovered individuals in the population at a

given time (if antibody waning and vaccination can be ignored), and thus informs about the

cumulative true incidence over a period of time. Assuming that ascertainment is stable for that

period of time, seroprevalence data can be used to estimate the ascertainment rate and anchor

the model. In practice, we assume that the SEIR model also generates the cumulative number

of removed individuals in the population at time t (from the R compartment), which is linked

to seroprevalence data at time t using a simple binomial sampling distribution. We thus define

periods bounded by seroprevalence studies, and estimate one ascertainment for each period.

We also correct the seroprevalence data for imperfect testing [13].

Feature 2: Sampling distribution for weekly laboratory-confirmed cases We account for

process noise in the transmission and observational noise in the ascertainment of cases by

introducing a sampling distribution generating counts of laboratory-confirmed cases given the

ascertained incidence. Process noise results from overdispersion of cases due to stochastic pro-

cesses that are not captured by the compartmental transmission model, and observational noise

from sampling of cases. Here, we compare several options based on data from the Swiss canton

of Geneva in 2020. First, we try a Poisson distribution, where the variance is equal to the mean

λ. We then consider two distributions that include an additional overdispersion parameter θ: a

quasi-Poisson model, where the variance is a linear function of the mean (θλ) and a negative

binomial distribution, where the variance is a quadratic function of the mean (λ + λ2θ) [16].

Feature 3: Flexible, time-varying transmission In the compartmental transmission model,

time-variation in transmission is controlled by the forcing function ρ(t), which applies to the

contact rate c and the probability of transmission upon contact β at the same time. Therefore,

time variation in these two components is considered together, and it is not possible to disen-

tangle between them. We compare the performance and efficiency of three different methods

to implement the time-varying transmission: Brownian motion, B-splines, and approximate

Gaussian processes:

1. We implemented Brownian motion as a Gaussian random walk similar to Bouranis et al

(2022) with weekly time-steps; see Eqs 2 and 3, taken from Bouranis et al (2022) [27]. In

these equations, t is the discrete weekly time step, and W a random process whose elements

are normally distributed with mean 0 and variance s. This value s is estimated from the data

given a normal prior. This approach creates prior functions for ρ(t) with increasing vari-

ance over time [36]:

Zðt þ 1Þ ¼ ZðtÞ þWt and Zð0Þ ¼W0; ð2Þ

rðtÞ ¼ exp ZðtÞ ð3Þ
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2. Our implementation of the B-splines relies on the functions provided by Kharratzadeh

[37]. B-splines are uniquely defined by the degree of the polynomials and the predefined set

of knots. To be able to use the splines within the ODE system, without recomputing them

every time the ODE is evaluated (that is, multiple times per MCMC iteration), we calculated

the value of the B-splines for degree-1 points between two consecutive knots. Based on

these values, we calculated the coefficients of a polynomial based on the degree of the B-

spline using the Lagrange algorithm. These coefficients are then used as an input variable

for the ODE model. For each iteration in the MCMC, a set of coefficients is sampled that

defines how the B-splines must be combined to create the transmission rate function over

time. In addition, this approach requires setting values for the knots. We consider five dif-

ferent sets of knots (Table 1) all in combination with cubic splines.

3. Gaussian processes (GPs) are powerful and flexible fitting tools for modeling time series

that are increasingly used in the field [38, 39]. We use a Gaussian process with an exponen-

tiated quadratic covariance function, which, to our knowledge, has not yet been applied to

compartmental transmission models. To reduce the computational cost, our implementa-

tion follows the proposition of Riutort-Mayol et al. (2020), using a basis function approxi-

mation via Laplace eigenfunctions, itself based on the mathematical theory developed by

Solin and Särkkä (2020) [40, 41]. This low-rank Bayesian approximation requires several

tuning parameters, most importantly the number of basis functions M and the boundary

factor c, that determines the interval at which the approximation of the GP is valid. This

interval is then given by the range of values at which the data is observed multiplied with

the boundary factor. Both M and c influence the accuracy and the efficiency of the algo-

rithm [40]. We test and compare the performance of the algorithm for a set of boundary

factors and increasing number of basis-functions to find optimal values for the type of func-

tion we expect in our epidemiological data. Besides the number of basis functions and the

boundary factor, the GP approximation also requires a parameter for the length scale (L,

controlling the sinuosity of the basis-functions) and the marginal variance (A). As the

length scale and the marginal variance both influence the smoothness of the function, they

are unidentifiable in our set-up. We therefore fix the marginal variance to 0.5 and estimate

the length scale from the data.

Both the Brownian motion and the B-splines are special cases of a Gaussian process given a

specific kernel. However, our implementation of these methods differs from the implementa-

tion of the approximate Gaussian processes (aGPs).

Feature 4: Stratification by age group We consider three age groups in order to limit the

computational cost: 0–19 years old, 20–64 years old and 65 and older. The stratification is

Table 1. Knot sequences.

Knot sequence identifier Location of first knot Period between knots

1: true knots 4 weeks 4 weeks

2: 8 weeks 8 weeks 8 weeks

3: 12 weeks 12 weeks 12 weeks

4: 4 weeks shifted 6 weeks 4 weeks

5: 8 weeks shifted 6 weeks 8 weeks

Overview of different sequences of knots used for the B-spline method to analyze time-dependent transmission rates

in an compartmental infectious disease transmission model.

https://doi.org/10.1371/journal.pcbi.1011575.t001
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implemented by replacing the contact rate c with a 3x3 contact matrix that indicates the aver-

age number of contacts an index case of a given age group (in the column) has with individuals

of the other age groups (rows). We use a synthetic contact matrix as our pre-COVID baseline,

as empirical data for Switzerland are lacking for this time period (S4 Table). For this, we rely

on the work of Prem et al. (2021) and rescale their suggested social contact matrix for Switzer-

land to match the age-distribution in our defined age groups in the canton of Geneva [42].

Stratification also applies to the processes of ascertainment, time-varying transmission and

sampling that now occur independently by age group, hereby multiplying the number of

parameters to estimate by three. The equation in S1 Text shows the ODE system for the strati-

fied version of the SEIR transmission model.

Bayesian inference

We consider the models in a Bayesian framework, with the objective of estimating β, ρ(t), πt,
and where relevant, θ, from two data sources: weekly counts of laboratory-confirmed cases

of SARS-CoV-2 infection (this would also apply to any other respiratory virus) and one or

more seroprevalence estimates. When relevant, these data need to be stratified by age group

in the same way. We use weakly informative prior distributions for these parameters (S1

Text). The different versions of the model are implemented in Stan, a platform for Bayesian

inference [8, 43]. Stan allows for coding a large variety of model features, relying on a few

principles to optimize computational efficiency. For a detailed description of how to imple-

ment and scale-up ODE-based models, see Grinztajn et al. (2021) [11]. A key aspect here is

the choice of the numerical ODE solver. To continue with our objective of identifying the

most optimal implementation of the model in this type of situation, we compared all forward

sensitivity solvers currently available in Stan: “rk45” (4th and 5th order Runge–Kutta-Fehl-

berg [44, 45]), “adams” (Adams-Moulton formula [46, 47]), “bdf” (backward differentiation

formula [46, 47] and “ckrk” (fourth and fifth order explicit Runge-Kutta method for non-

stiff and semi-stiff systems [45, 48]). We also compare to a simple solver that uses the trape-

zoidal rule to approximate the solution of the system as described in Bouranis et al [27]. For

the trapezoidal solver, we use twenty equidistant time steps within each (weekly) time step in

the model. Besides the solver itself, we also test different tuning values for the solver toler-

ance (1e-4, 1e-5 and 1e-6; not relevant for the trapezoidal solver) and the number of warm-

up-iterations (300 and 500). All combinations are run for 8 chains with 250 MCMC sam-

pling-iterations.

Simulated data

We validate and compare the different versions of the model with simulated data of an epi-

demic of a respiratory pathogen. The simulation study is conducted in two steps. In the first

step, we assume that the population is well-mixed, and ignore the age stratification. We simu-

late data of laboratory-confirmed cases for 45 weeks and 100, 000 individuals, with two succes-

sive epidemic waves. We also simulate seroprevalence data after 20 weeks and at the end of the

simulation, thus defining two periods with ascertainment π1 and π2, respectively. The trans-

mission process is modeled with a probability of transmission per contact of β = 8.5%, a base-

line of c = 11 contacts per day [42] and a time-varying component based on a spline of degree

3 and a knot every 4 weeks. We set ascertainment at π1 = 0.3 and π2 = 0.5. S1 Table provides an

overview of all parameter values chosen to create the simulated data. We generate one simu-

lated dataset and apply all model versions to these data. We evaluate predictive performance

by computing the root mean squared error (RMSE) between the estimated and true value of ρ
(t), an RMSE weighted by the number of laboratory-confirmed cases per week, and evaluate
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computational performance by comparing the number of effective samples per second. In a

second step, we select the best performing model version from step 1, add the stratification by

age, and validate again on stratified simulated data. We modify several parameters to simulate

a stratified dataset with three age classes (S1 Table). The simulated data are available in the

HETTMO R package.

Data from the canton of Geneva in 2020

Finally, we apply the best performing model version to weekly counts of laboratory-confirmed

cases of SARS-CoV-2 infection in the canton of Geneva in 2020 (data from the Federal Office

of Public Health). During this time period, we could reasonably assume that there was no wan-

ing of immunity and that vaccination did not yet influence transmission dynamics. Moreover,

in Geneva, two seroprevalence surveys were performed during this time period: the first one

from April 6th until May 10th [13], and the second from November 23th until December 23st

[49]. The results are summarized in S3 Table. Both surveys use the EuroImmune IgG test

(Euroimmun; Lübeck, Germany #EI 2606–9601 G), which has a sensitivity of 93% and a speci-

ficity of 100% for the cutoff suggested by the manufacturer [50]. We aggregate all data accord-

ing to the age groups used in the first serosurvey (0–19 years old, 20–64 years old and 65 and

older). As the second serosurvey uses a different grouping, we reallocate the results in age

group 18–24 to age groups 0–19 and 20–59 using the age-distribution in the population of the

canton of Geneva as recorded by the Federal Office of Statistics [51]. These data are available

in the HETTMO R-package.

Data from the canton of Vaud

For an additional example of our approach, we apply the B-spline based model to data from

the canton of Vaud, Switzerland. The laboratory-confirmed SARS-CoV-2 cases are obtained

from the Federal Office of Public Health. The serosurvey was performed by the Corona Immu-

nitas Research Group in Switzerland [52]. As the seroprevalence data were collected over a

prolonged period, we decided to use monthly seroprevalence estimates for fitting the model.

We assume two distinct ascertainment rates, one for the start of the epidemic until the 27th of

July 2020 and one for after the 27th of July.

Software implementation

We use R version 4.2.1 [53]. We published a R package called HETTMO that contains all func-

tions needed to perform the analysis and run the models. HETTMO is the acronym for “het-

erogeneous transmission model” since the package can be used to model a heterogenous

population that is stratified by, for example, age. The package is based on Stan (version 2.21.7)

[43] and the cmdstanr package (version 0.5.3) [54]. HETTMO is available on GitHub at

https://github.com/JudithBouman2412/HETTMO. Calculations for Figs 2 and S1–S4 were

performed on UBELIX (https://www.id.unibe.ch/hpc), the HPC cluster at the University of

Bern.

Generality of the proposed approach

The HETTMO package includes the scripts and functions for the different model iterations

presented in this study, which form the Bayesian workflow together with the model compari-

son. This workflow is tailored to study the early spread of SARS-CoV-2, justifying the choice

of an SEIR model, the different assumptions on how model outputs are linked to the data, and

the specific parametrization. Other situations and pathogens would likely require adaptations,
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Fig 2. Result from unstratified models. (A) Posterior predictive plot for laboratory-confirmed cases (left y-axis, green ribbon) and cumulative incidence

(right y-axis, gray ribbon) of SARS-CoV-2 in the canton of Geneva, Switzerland, for three iterations of the model with different sampling distributions

(Poisson, quasi-Poisson and negative-binomial). Circles are weekly counts of laboratory-confirmed cases and pluses are estimates of seroprevalence at two

time points. (B-D) Comparison of three methods of implementation of time-varying transmission on simulated data of a SARS-CoV-2 epidemic (posterior

predictive plot, time-varying transmission ρ(t), and ascertainment rate by period). (E-F) Benchmark of different implementations of time-varying

transmission on simulated data of a SARS-CoV-2 epidemic, with performance expressed in effective sample size (ESS) per second, error defined as the

difference between the median posterior and true ρ(t), and the width of the 95% credible interval of ρ(t) as a measure for precision. See Table 1 for details

about the knot sequence.

https://doi.org/10.1371/journal.pcbi.1011575.g002

PLOS COMPUTATIONAL BIOLOGY Bayesian workflow for time-varying transmission in disease transmission models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011575 April 29, 2024 9 / 19

https://doi.org/10.1371/journal.pcbi.1011575.g002
https://doi.org/10.1371/journal.pcbi.1011575


such as additional compartments for vaccinated individuals or waning of immunity. Neverthe-

less, the presented case-study remains relevant in the wider context of infectious disease

modeling. The four crucial features that were identified are broadly applicable for modeling

many infectious diseases, and our comparisons regarding the most efficient implementations

likely apply to other situations. In addition, our workflow can be directly used as a basis for

other models, both technically, by providing easily adaptable code, and conceptually, by show-

casing the advantages of the Bayesian workflow in this context.

Results

We present a Bayesian workflow to find an optimal compartmental transmission model aimed

at analyzing the transmission of a respiratory virus, with SARS-CoV-2 as a case-study, in a

population over a time period short enough so that immunity waning can be ignored (a few

months or years). We focus on four aspects, representing four features deemed as essential in

this situation. First, we validate in a simulation study that our models, jointly fitted to both lab-

oratory-confirmed cases and seroprevalence data, are able to provide accurate and unbiased

estimates of the ascertainment rate by periods of time bounded by serosurvey estimates (fea-

ture 1). We find that the appropriate handling of uncertainty in these models is largely influ-

enced by the choice of sampling distributions (feature 2). We investigate the most adequate

sampling distributions for laboratory-confirmed cases of SARS-CoV-2 using real-world data

from the canton of Geneva (Switzerland). Whereas the Poisson and negative-binomial distri-

bution under- and overestimates the variability in laboratory-confirmed cases, respectively, we

found that the quasi-Poisson distribution, with the variance scaling linearly with the mean,

better fits the variability of the data (Fig 2A).

The next step in the Bayesian workflow is to benchmark several implementations of the

time-varying transmission in a simulation study (feature 3). These different approaches all

use flexible parameterizations of forcing functions, estimated from data. In a systematic

comparison, we confirm that implementations based on Brownian motion, B-splines, and

aGPs lead to very similar model fits (Fig 2B). The estimation of the variation in transmission

over time ρ(t) is accurate and unbiased under all three approaches (Fig 2C), but the Brown-

ian motion approach overestimates the uncertainty. The estimation of the ascertainment rate

πt is accurate under all three approaches, with a small overestimation in the first epidemic

wave (Fig 2D).

Benchmarking the tuning parameters (the type of ODE solver, tolerance of the solver, and

number of warm-up iterations) of the time-varying models in the simulation study highlights

the importance of the ODE solver (Supplementary S1–S4 Figs). The choice of the solver can

result, in some cases, in a factor of 1, 000 difference in performance (comparing the ESS per

second for Adams and trapezoidal solvers, S1 Fig). In terms of absolute error (based on

RMSE), the trapezoidal solver performs best for each time-varying model. However, the rela-

tive error (based on weighted RMSE) is either higher (Brownian motion, S1 Fig) or similar

(B-splines and aGPs, S2 and S4 Figs). Moreover, with B-splines and aGPs, the average perfor-

mance (based on ESS per second) is increased by approximately 25%, with the ckrk solver.

With aGPs, the performance also heavily depends on the choice of hyperparameters. S3 Fig

shows the performance for a selection of number of basis functions and boundary factors.

Across methods, 300 warm-up iterations appear sufficient for accurate model fits. For the

comparison of the time-varying transmission rate models, we select the trapezoidal solver

(Brownian motion) and the ckrk solver (B-splines and aGPs) and use 300 warm-up

iterations.
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While leading to similar results, the three approaches differ in their computational perfor-

mance measured by effective sample size (ESS) per second (Fig 2E and 2F). Depending on

the pre-specified knot sequence, B-splines perform up to ten times faster than GPs in our

example (average of GPs implementations compared to B-splines with knot sequence 3) and

up to four times faster than Brownian motion (average of Brownian motion implementations

compared to B-splines with knot sequence 3). While the error in the estimates is similar

between B-splines and Brownian motion (Fig 2E), the width of the 95% credible interval of

the estimation of ρ(t) is smaller for the Brownian motion model (Fig 2F). On the other hand,

the width of the credible interval for ρ(t) was similar between aGPs and B-splines (Fig 2F),

and the error in the estimate is smaller for aGPs compared to B-splines (Fig 2E). For our

model and simulated data, B-splines perform best in terms of statistical accuracy and compu-

tational efficiency.

Building on the best performing model specification identified with non-stratified simu-

lated data—ascertainment by period, quasi-Poisson sampling distribution, and B-spline

implementation of time-varying transmission with the aforementioned tuning parameters—

we consider the fourth feature of our model: age-stratification. Again, we first validate using

simulated data of an epidemic of a respiratory infection with known parameters. In this case,

both the laboratory-confirmed case data and the seroprevalence data are stratified in three

age groups: 0–19 years, 20–64 years and 65+, modeling the interactions between these age

groups with a synthetic contact matrix. We assume that each age group can have a different

ascertainment rate per period. The model correctly captures the laboratory-confirmed cases

as well as the seroprevalence data, and the estimates of the age- and time-specific ascertain-

ment rates are accurate and precise (S5 Fig). The estimation of the time-variation in the

transmission rate ρ(t) is in close correspondence with the true values when sufficient data

are available. Larger deviations occur when the observed number of laboratory-confirmed

cases is low.

In a last step, we apply the final iteration of the model, including all four essential features,

to age-stratified laboratory-confirmed cases and seroprevalence data from the canton of

Geneva, Switzerland, in 2020. The SARS-CoV-2 epidemic in Geneva in 2020, as in the rest of

Switzerland, was characterized by a first wave in spring, low case counts in summer, followed

by a severe second wave starting in the fall. Two serosurveys were conducted, once after each

wave. The model is able to capture the dynamics of laboratory-confirmed cases and seropreva-

lence in each age group (Fig 3A). The dynamics of transmission as measured by ρ(t) are very

similar across age groups during the first wave, but we observed a divergence from July 2020

onwards (Fig 3B). Around this time, transmission decreased in the 65+ while remaining high

all summer in the other age groups. There was then a temporary rise in transmission during

fall that happened simultaneously in all age groups, but was the largest in magnitude in the

20–59 age group. Looking at ascertainment rates, we observe a clear improvement between

spring and fall/winter, from 2.9% (95% CrI: 1.7–4.9%) to 23.2% (95% CrI: 18.0–31.1%) in age

group 0–19, from 12.4% (95% CrI: 10.2–15.0%) to 60.7% (95% CrI: 52.4–70.9%) in age group

20–64 and from 37.8% (95% CrI: 25.1–58.1%) to 77.5% (95% CrI: 59.9–94.4%) in age group

65+.

An additional example of the B-spline based model for non-stratified data is shown in S6

Fig. Here, the model is applied to real-world SARS-CoV-2 data from the canton of Vaud,

Switzerland.
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Discussion

Compartmental transmission models based on ODEs offer a principled and flexible way to

study epidemics, but their implementation, handling, and computational efficiency for param-

eter inference using surveillance data can be challenging. With this study, we promote and

Fig 3. Modelled SARS-CoV-2 epidemic in Geneva, Switzerland, in 2020. (A) Posterior predictive plot for laboratory-confirmed cases (left y-axis, colored

ribbon) and cumulative incidence (right y-axis, gray ribbon) per age group. Circles are weekly counts of laboratory-confirmed cases and pluses are

estimates of seroprevalence at two time points. (B) Estimates of the time-varying change in transmission rate per age group using B-splines. (C) Estimates

of the ascertainment rate per age group and time period.

https://doi.org/10.1371/journal.pcbi.1011575.g003
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facilitate access to methods that allow for reliable parameter inference, full propagation of

uncertainty and integration of prior knowledge in compartmental transmission models. For

this purpose, we developed a Bayesian workflow aimed at studying the spread of respiratory

viruses such as SARS-CoV-2 in a population over a period of time where immunity waning

can be ignored, with two commonly available data sources: laboratory-confirmed case and

point estimates of seroprevalence. The final iteration of the model in the workflow includes

four main features deemed as essential for this task: adjustment for incomplete and differential

case ascertainment across age groups, adequate sampling distribution, time-varying transmis-

sion rate and stratification by age. The exact implementation of two of these features, the sam-

pling distribution and time-varying transmission, are the result of a benchmark and

comparison of several methods using real and simulated data. We then apply this approach to

real data on SARS-CoV-2 in the canton of Geneva in 2020. We also release the various model

versions within the workflow as an out-of-the-box R package, where all model variations are

available (https://github.com/JudithBouman2412/HETTMO or https://doi.org/10.5281/

zenodo.10619448).

The Bayesian workflow, including the model comparisons we present, offers critical meth-

odological insights into fitting compartmental transmission models to surveillance data. First,

we find that the variability in laboratory-confirmed case counts for SARS-CoV-2 was best

described with a quasi-Poisson distribution, which is more commonly used in ecology to

describe overdispersed data [16, 17]. The correct choice of this sampling distribution is critical

for both inference and short-term forecasting of epidemic dynamics and can depend on the

epidemiological situation. Further research could provide additional insights into how the pro-

cess noise due to stochastic transmission and superspreading in combination with the observa-

tional noise from variations in testing results in this particular distribution. Second, we add to

the existing literature on time-varying transmission rates for infectious diseases, by bringing

empirical evidence that forcing functions based on B-splines appear to be the most effective

way to implement flexible time-varying transmission in such models, with a clear advantage

over Brownian motion and aGPs [25, 27]. Choosing suitable tuning parameters can increase

performance by up to a factor of 1, 000 in some cases. Our comparison includes many different

specifications regarding tuning parameters, allowing us to conclude with high confidence on

this open question. Third, we demonstrate that a compartmental transmission model imple-

mented in a Bayesian framework combined with MCMC is able to handle relatively high levels

of complexity, with time-varying transmission and age-stratification, thereby highlighting its

potential for future methodological developments.

The application of the optimal model suggested by our workflow to the situation of the

SARS-CoV-2 epidemic in the canton of Geneva, Switzerland, in 2020 highlights the practical

advantages of our proposed approach. In the rather specific but critical situation of a newly-

emerging respiratory pathogen circulating in a population, understanding the true level of

transmission over time is of crucial importance to inform the public health response, but is

generally concealed by the incomplete and unrepresentative ascertainment of cases. By com-

bining information from laboratory-confirmed cases and serosurveys, our approach allows to

estimate the ascertainment rate per age group by period bounded by seroprevalence estimates

(or the emergence where seroprevalence is assumed to be null), and simultaneously to remove

the effect of the ascertainment bias and determine the actual incidence of infection (with full

uncertainty propagation). In the canton of Geneva, the overall ascertainment rate was esti-

mated to be 8.6% during the first wave and 37% (95% CrI: 32–43%) during the second wave

[13, 49]. These estimates from seroprevalence studies are somewhat lower than the across age

group estimates from our model; (12% (95% CrI: 10–15%) and 55% (95% CrI: 47–64%)),

respectively, because our second estimate includes all data since the end of the first serosurvey,
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whereas Stringhini et al. (2021) calculate ascertainment for the second wave based on data

between September first and December 8th only. The large differences in age-specific case

ascertainment during different periods of the pandemic highlight the importance of consider-

ing age-stratified models to monitor the epidemic dynamics of viral respiratory infections.

Our estimates of the time-varying change in transmission allow us to compare variation in

transmission due to changes in behavior, environment and NPIs across age groups while

accounting for all other aspects included in the model (such as under-ascertainment and the

accumulation of natural immunity). We found a consistent reduction in the transmission rate

in all age groups after the implementation of strong NPIs in spring 2020. During summer

2020, the relative transmission in 65+-year-olds was somewhat lower compared to the other

age groups which could be a result of more careful social contact behavior as reported labora-

tory-confirmed cases numbers started to increase. At the beginning of the second wave in fall

2020, the comparatively higher transmission in 20–64 year olds compared to 0–19-year-olds is

in favor of an epidemic relapse that can be attributed more to working people. The applica-

tions presented in this study rely on historical (SARS-CoV-2) data. If we can assume that the

ascertainment of cases has been constant since the last available seroprevalence study, the

methodology could also be used for near-real-time surveillance.

This work also has a number of limitations. First, the benchmark results are specific to our

simulated data and our choice of prior distributions. We chose weakly-specific priors, only

limiting the range of possible observations to plausible values [55, 56]. A prior predictive check

is shown in S5 Fig. Second, our observation that the quasi-Poisson distribution best describes

the noise in the ascertainment of laboratory-confirmed SARS-CoV-2 cases is specific to the

data reported in the canton of Geneva. For other diseases and regions, an alternative distribu-

tion could be more appropriate. Third, it is possible that the relative performance of the three

presented methods differs for distinct datasets, for instance for data collected during a longer

time-period, different epidemic dynamics or a different infectious disease. The publication of

our workflow in the HETTMO R package allows users to apply all presented methods and

evaluate which one is the most suitable for their data. Fourth, for the approximate Gaussian

process model, performance depends heavily on the choice of the hyperparameters (S3 Fig).

Additionally, when applying the B-spline based method from this package, one should be

aware that the performance of this method depends on the choice of the knots (Fig 2). A suffi-

cient number of knots can be identified by subsequently increasing their number until the esti-

mate of the transmission rate does not change any more. Fifth, our benchmark focuses on the

ability of the different methods to estimate the time-varying transmission rate during the

period for which data were available. We did not compare the precision for short-term fore-

casting, which could be done with a leave-future-out analysis. However, based on the charac-

teristics of the methods, we would advise to use either the Brownian motion or aGP model for

prediction, because for these method the variance increases with time. In contrast, B-splines

are known to be at risk of error in extrapolations. Sixth, the current version of HETTMO is

only useful in a limited range of situations, i.e. in a relatively short period of time following the

emergence of a respiratory virus, in order to fulfill different assumptions (entirely susceptible

population at the start, no vaccination, no waning of immunity and negligible changes in pop-

ulation sizes). The model parametrization and the way in which the incidence is coupled to the

removed compartment is specific for SARS-CoV-2. However, we emphasize that the four cru-

cial features that are the main focus of the Bayesian workflow are central for a broad range of

infectious diseases. Our study provides a starting point for extensions relaxing these assump-

tions and in the method section we describe how the framework can be adapted to other situa-

tions and diseases.
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While enormous amounts of data have been generated during the early stages of the SARS--

CoV-2 pandemic, the complexity involved, with differential under-ascertainment, transmis-

sion and immunity all varying in time, creates various challenges in their interpretation.

Approaches from the field of infectious disease modeling can bring invaluable insights in situa-

tions of epidemics, but require adequate, validated and efficient tools. By combining the struc-

ture of ODE-based compartmental transmission models and the power of full Bayesian

inference, the presented Bayesian workflow, and its functionality in the HETTMO package

provides such a tool for relatively simple situations: a newly-emerging respiratory virus spread-

ing in a population before vaccination and immunity waning can play a role. While individual

features of our workflow have been described in the literature, prior studies have not con-

ducted a comprehensive comparison of various implementation methods to develop a com-

plete Bayesian workflow for this specific problem. The further development of infectious

disease models that can be fitted to various data sources in a Bayesian framework will promote

their use for real-time monitoring, short-term forecasting, and policy making.

Supporting information

S1 Fig. Benchmark for Brownian motion model. Comparison of computational performance

for the Brownian motion model of the time-varying transmission rate of SARS-CoV-2 for sim-

ulated, non-stratified data for various tuning parameters: tolerance, ODE solver and number

of warm-up iterations. (A) The root mean square error (RMSE) in estimating the time-varia-

tion in the transmission. (B) The RMSE weighted by the number of laboratory-confirmed

cases per week. (C) The sharpness (size of the 90% confidence interval) of the time-variation

in the transmission.

(TIF)

S2 Fig. Benchmark for B-spline model. Comparison of computational performance for the

B-spline model of the time-varying transmission rate of SARS-CoV-2 for simulated, non-strat-

ified data for various tuning parameters: tolerance, ODE solver and number of warm-up itera-

tions. (A) The root mean squared error (RMSE) in estimating the time-variation in the

transmission. (B) The RMSE weighted by the number of laboratory-confirmed cases per week.

(C) The sharpness (size of the 90% confidence interval) of the time-variation in the transmis-

sion.

(TIF)

S3 Fig. Benchmark for hyper-parameters approximate Gaussian processes model. Analysis

of the optimal number of basis functions and boundary factor for the approximate Gaussian

Processes based time-varying transmission model of SARS-CoV-2 using simulated data. The

number of warm-up and sampling iterations are both fixed to 300 and the trapezoidal solver is

used.

(TIF)

S4 Fig. Benchmark for approximate Gaussian processes model. Comparison of computa-

tional performance for the approximate Gaussian processes model of the time-varying trans-

mission rate of SARS-CoV-2 for simulated, non-stratified data for various tuning parameters:

tolerance, ODE solver and number of warm-up iterations. (A) The root mean squared error

(RMSE) in estimating the time-variation in the transmission. (B) The sharpness (size of the

90% confidence interval) of the time-variation in the transmission.

(TIF)
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S5 Fig. Model results for stratified simulated data. (A) Posterior predictive plot for labora-

tory-confirmed cases (left y-axis, colored ribbon) and cumulative incidence (right y-axis, gray

ribbon) per age group using the B-spline based age-stratified model applied to simulated data.

Crosses are weekly simulated counts of laboratory-confirmed cases and pluses are simulated

estimates of seroprevalence at two time points. (B) Estimates of the time-varying change in

transmission rate per age group using B-splines. Crosses represent the true, simulated values.

(C) Estimates of the ascertainment rate per age group and time period. Crosses represent the

true, simulated values.

(TIF)

S6 Fig. Modelled SARS-CoV-2 epidemic in Vaud, Switzerland. (A) Posterior predictive plot

for laboratory-confirmed cases (left y-axis, orange ribbon) and cumulative incidence (right y-

axis, gray ribbon). Green circles are weekly counts of laboratory-confirmed cases and red trian-

gles show monthly seroprevalence estimates from data. (B) Estimates of the time-varying change

in transmission rate using B-splines. (C) Estimated ascertainment rates for first and second wave.

(TIF)

S1 Table. Parameters for simulating unstratified data using the B-splines model.

(TIF)

S2 Table. Parameters adapted from the unstratified model for simulating stratified data

using the B-splines.

(TIF)

S3 Table. Seroprevalence data from the canton of Geneva, obtained from Stringhini et al

(2020) and Stringhini et al (2021) [13, 49].

(TIF)

S4 Table. Contact matrix indicating the average number of contacts per day of an index

case (column) with individuals in three defined age groups. This matrix is constructed using

Prem et al (2021) and adjusted for the population structure of the canton of Geneva [42]. This

matrix is used both for simulating stratified SARS-CoV-2 data and for analysing the data from

the canton of Geneva.

(TIF)

S1 Text. A description of the age-stratified version of the SEIR transmission model and a

definition of the priors used within the Bayesian analysis.

(PDF)

Acknowledgments

We thank the Corona Immunitas consortium for allowing us to use their data for S6 Fig.

Author Contributions

Conceptualization: Judith A. Bouman, Anthony Hauser, Samir Bhatt, Elizaveta Semenova,

Andrew Gelman, Christian L. Althaus, Julien Riou.

Formal analysis: Judith A. Bouman, Anthony Hauser, Christian L. Althaus, Julien Riou.

Funding acquisition: Christian L. Althaus, Julien Riou.

Methodology: Judith A. Bouman, Anthony Hauser, Simon L. Grimm, Martin Wohlfender,

Christian L. Althaus, Julien Riou.

PLOS COMPUTATIONAL BIOLOGY Bayesian workflow for time-varying transmission in disease transmission models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011575 April 29, 2024 16 / 19

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011575.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011575.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011575.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011575.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011575.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011575.s010
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011575.s011
https://doi.org/10.1371/journal.pcbi.1011575


Supervision: Christian L. Althaus, Julien Riou.

Visualization: Judith A. Bouman, Christian L. Althaus, Julien Riou.

Writing – original draft: Judith A. Bouman, Anthony Hauser, Christian L. Althaus, Julien

Riou.

Writing – review & editing: Judith A. Bouman, Anthony Hauser, Simon L. Grimm, Martin

Wohlfender, Samir Bhatt, Elizaveta Semenova, Andrew Gelman, Christian L. Althaus,

Julien Riou.

References

1. Kermack WO, McKendrick AG. A contribution to the mathematical theory of epidemics. Proceedings of

the royal society of london Series A, Containing papers of a mathematical and physical character. 1927;

115(772):700–721.

2. Arino J, Brauer F, Van Den Driessche P, Watmough J, Wu J. A model for influenza with vaccination and

antiviral treatment. Journal of theoretical biology. 2008; 253(1):118–130. https://doi.org/10.1016/j.jtbi.

2008.02.026 PMID: 18402981

3. Ferguson NM, Cummings DA, Fraser C, Cajka JC, Cooley PC, Burke DS. Strategies for mitigating an

influenza pandemic. Nature. 2006; 442(7101):448–452. https://doi.org/10.1038/nature04795 PMID:

16642006

4. Viboud C, Bjørnstad ON, Smith DL, Simonsen L, Miller MA, Grenfell BT. Synchrony, waves, and spatial

hierarchies in the spread of influenza. science. 2006; 312(5772):447–451. https://doi.org/10.1126/

science.1125237 PMID: 16574822

5. Keeling MJ, Hill EM, Gorsich EE, Penman B, Guyver-Fletcher G, Holmes A, et al. Predictions of COVID-

19 dynamics in the UK: Short-term forecasting and analysis of potential exit strategies. PLoS computa-

tional biology. 2021; 17(1):e1008619. https://doi.org/10.1371/journal.pcbi.1008619 PMID: 33481773

6. Tepekule B, Hauser A, Kachalov VN, Andresen S, Scheier T, Schreiber PW, et al. Assessing the poten-

tial impact of transmission during prolonged viral shedding on the effect of lockdown relaxation on

COVID-19. PLoS computational biology. 2021; 17(1):e1008609. https://doi.org/10.1371/journal.pcbi.

1008609 PMID: 33513139

7. Hoffman MD, Gelman A, et al. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian

Monte Carlo. J Mach Learn Res. 2014; 15(1):1593–1623.

8. Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, et al. Stan: A probabilistic pro-

gramming language. Journal of statistical software. 2017; 76. https://doi.org/10.18637/jss.v076.i01

PMID: 36568334

9. Phan D, Pradhan N, Jankowiak M. Composable Effects for Flexible and Accelerated Probabilistic Pro-

gramming in NumPyro. arXiv preprint arXiv:191211554. 2019;.

10. Ge H, Xu K, Ghahramani Z. Turing: a language for flexible probabilistic inference. 2018; p. 1682–1690.

11. Grinsztajn L, Semenova E, Margossian CC, Riou J. Bayesian workflow for disease transmission model-

ing in Stan. Statistics in medicine. 2021; 40(27):6209–6234. https://doi.org/10.1002/sim.9164 PMID:

34494686

12. Gelman A, Vehtari A, Simpson D, Margossian CC, Carpenter B, Yao Y, et al. Bayesian workflow. arXiv

preprint arXiv:201101808. 2020;.

13. Stringhini S, Wisniak A, Piumatti G, Azman AS, Lauer SA, Baysson H, et al. Seroprevalence of anti-

SARS-CoV-2 IgG antibodies in Geneva, Switzerland (SEROCoV-POP): a population-based study. The

Lancet. 2020; 396(10247):313–319. https://doi.org/10.1016/S0140-6736(20)31304-0 PMID: 32534626

14. Perez-Saez J, Lauer SA, Kaiser L, Regard S, Delaporte E, Guessous I, et al. Serology-informed esti-

mates of SARS-CoV-2 infection fatality risk in Geneva, Switzerland. The Lancet Infectious Diseases.

2021; 21(4):e69–e70. https://doi.org/10.1016/S1473-3099(20)30584-3 PMID: 32679085

15. Russell TW, Golding N, Hellewell J, Abbott S, Wright L, Pearson CA, et al. Reconstructing the early

global dynamics of under-ascertained COVID-19 cases and infections. BMC medicine. 2020; 18

(1):332. https://doi.org/10.1186/s12916-020-01790-9 PMID: 33087179

16. Ver Hoef JM, Boveng PL. Quasi-Poisson vs. negative binomial regression: how should we model over-

dispersed count data? Ecology. 2007; 88(11):2766–2772. https://doi.org/10.1890/07-0043.1 PMID:

18051645

17. Lindén A, Mäntyniemi S. Using the negative binomial distribution to model overdispersion in ecological

count data. Ecology. 2011; 92(7):1414–1421. https://doi.org/10.1890/10-1831.1 PMID: 21870615

PLOS COMPUTATIONAL BIOLOGY Bayesian workflow for time-varying transmission in disease transmission models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011575 April 29, 2024 17 / 19

https://doi.org/10.1016/j.jtbi.2008.02.026
https://doi.org/10.1016/j.jtbi.2008.02.026
http://www.ncbi.nlm.nih.gov/pubmed/18402981
https://doi.org/10.1038/nature04795
http://www.ncbi.nlm.nih.gov/pubmed/16642006
https://doi.org/10.1126/science.1125237
https://doi.org/10.1126/science.1125237
http://www.ncbi.nlm.nih.gov/pubmed/16574822
https://doi.org/10.1371/journal.pcbi.1008619
http://www.ncbi.nlm.nih.gov/pubmed/33481773
https://doi.org/10.1371/journal.pcbi.1008609
https://doi.org/10.1371/journal.pcbi.1008609
http://www.ncbi.nlm.nih.gov/pubmed/33513139
https://doi.org/10.18637/jss.v076.i01
http://www.ncbi.nlm.nih.gov/pubmed/36568334
https://doi.org/10.1002/sim.9164
http://www.ncbi.nlm.nih.gov/pubmed/34494686
https://doi.org/10.1016/S0140-6736(20)31304-0
http://www.ncbi.nlm.nih.gov/pubmed/32534626
https://doi.org/10.1016/S1473-3099(20)30584-3
http://www.ncbi.nlm.nih.gov/pubmed/32679085
https://doi.org/10.1186/s12916-020-01790-9
http://www.ncbi.nlm.nih.gov/pubmed/33087179
https://doi.org/10.1890/07-0043.1
http://www.ncbi.nlm.nih.gov/pubmed/18051645
https://doi.org/10.1890/10-1831.1
http://www.ncbi.nlm.nih.gov/pubmed/21870615
https://doi.org/10.1371/journal.pcbi.1011575


18. Chowell G, Hengartner NW, Castillo-Chavez C, Fenimore PW, Hyman JM. The basic reproductive

number of Ebola and the effects of public health measures: the cases of Congo and Uganda. Journal of

theoretical biology. 2004; 229(1):119–126. https://doi.org/10.1016/j.jtbi.2004.03.006 PMID: 15178190
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