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a b s t r a c t

The RV coefficient measures the similarity between two multivariate configurations, and
its significance testing has attracted various proposals in the last decades. We present a
new approach, the invariant orthogonal integration, permitting to obtain the exact first
four moments of the RV coefficient under the null hypothesis.

Our proposal can be applied to any multivariate setting endowed with Euclidean
distances between the observations. It also covers the weighted setting of observations
of unequal importance, where the exchangeability assumption, justifying the usual
permutation tests, breaks down.

The proposed RV moments express as simple functions of the kernel eigenval-
ues occurring in the weighted multidimensional scaling of the two configurations
(spectral effective dimensionality, spectral skewness and spectral excess kurtosis). The
expressions for the third and fourth moments seem original, and explain the marked
asymmetry and kurtosis of the RV coefficient. They permit to test the significance of the
RV coefficient by Cornish–Fisher cumulant expansion, beyond the normal approximation,
as illustrated on a small dataset.

The first three moments can be obtained by elementary means, but computing the
fourth moment requires a more sophisticated apparatus, the Weingarten calculus for
orthogonal groups.
© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The RV coefficient, defined in (6) and (7), is a well-known measure of similarity between two datasets, each consisting
f multivariate profiles measured on the same n observations or objects. This contribution proposes a new approach, the

invariant orthogonal integration, permitting to obtain the exact first four moments of the RV coefficient under the null
hypothesis of absence of relation between the two datasets. The main results, Theorem 1 and Corollary 1, are exposed in
Section 3.1. The approach is fully nonparametric, and allows the handling of weighted objects, typically made of aggregates
such as regions, documents or species, which abound in multivariate analysis.

In the present distance-based data-analytic approach, data sets are constituted by weighted configurations specified
by the object weights together with their pair dissimilarities, assumed to be squared Euclidean. Factorial coordinates,
reproducing the dissimilarities, and permitting a maximum compression of the configuration inertia, obtain by weighted
multidimensional scaling. The latter, seldom exposed in the literature (see however [5,15] and references therein) and
hence briefly recalled in Section 2.1, is a direct generalization of Torgerson–Gower classical scaling. The central step
is provided by the spectral decomposition of the matrix of weighted centered scalar products or kernel. It permits to
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ecompose the spectral eigenspace into a trivial one-dimensional part, determined by the object weights, common to
oth configurations, and a non-trivial part of dimension n−1, orthogonal to the square root of the weights. The weighted
V coefficient obtains as the normalized scalar product between the kernels of the two configurations (Section 2.2), and
urns out to be equivalent to its original definition expressed by cross-covariances [17,32].

After recalling the above preliminaries, somewhat lengthy but necessary, the heart of this contribution can be
ncovered: invariant orthogonal integration consists in computing the expected null moments of the RV coefficient by
veraging, along the invariant Haar orthogonal measure in the non-trivial eigenspace, the orientations of the eigenvectors
f the first configuration with respect to the second one (Section 3.2). It constitutes a distinct alternative, with different
utcomes, to the traditional permutation approach, whose exchangeability assumption breaks down for weighted objects:
ypically, the profile dispersion is expected to be larger for lighter objects [6] and the n object scores cannot follow the
ame distribution. The present approach also yields a novel significance test for the RV coefficient (Eq. (18)), taking into
ccount skewness and kurtosis corrections to the usual normal approximation.
Computing the moments of the RV coefficient requires to evaluate the orthogonal coefficients (26) constituted by Haar

xpectations of orthogonal monomials. Low-order moments can be computed, with increasing difficulty, by elementary
eans (Section 3.3), but the fourth-order moment requires a more systematic approach (Section 3.6), provided by the
eingarten calculus developed by workers in random matrix theory and free probability. Both procedures yield the same

esults for low-order moments (Section 3.7), which is both expected and reassuring.
The first RV moment (12) coincides with all known proposals. The second centered RV moment (13) is simpler than

ts permutation analog. Both expressions emphasize the effective (spectral) dimensionality of a configuration. The third
entered RV moment (14) is particularly enlightening: the RV skewness is simply proportional to the product of the
pectral skewness of both configurations, thus elucidating the often noticed positive skewness of the RV coefficient. The
xpression for the fourth centered RV moment (15) reveals an explicit relation, yet difficult to interpret, between the RV
xcess kurtosis and the spectral excess kurtosis of both configurations.
A small case study (Section 4) illustrates the theory, and demonstrates the broad applicability of the approach, apt to

ompare any two multivariate configurations (weighted or not, of numerical or categorical origin), provided that object
eights coincide for the two configurations, and that object dissimilarities are squared Euclidean for each configuration.

. Euclidean configurations in a weighted setting: a concise remainder

.1. Weighted multidimensional scaling and standard kernels

Consider n objects endowed with positive weights fi > 0 with
∑n

i=1 fi = 1, as well with pairwise dissimilarities
= (Dij) between pairs of objects. The n×nmatrix D is assumed to be squared Euclidean, that is of the form Dij = ∥xi−xj∥2

or xi, xj ∈ Rr , with r ≤ n − 1. The pair (f,D) constitutes a weighted configuration, with fi = 1/n for unweighted
onfigurations.
Weighted multidimensional scaling (where ‘‘weighted" here refers to objects and not to features), aims at determining

bject coordinates X = (xiα) ∈ Rn×r reproducing the dissimilarities D while expressing a maximum amount of dispersion
or inertia∆ (5) in low dimensions. It is performed by the following weighted generalization of the well-known Torgerson–
Gower scaling procedure [see, e.g., 8]: first, define the diagonal matrix Π = diag(f), as well as the weighted centering
atrix H = In − 1nf⊤, transforming x ∈ Rn as Hx = x − x̄1n = xc where x̄ = f⊤x. The centering matrix is a projection

H2
= H) whose null space is the set of constant vectors. Also, H⊤

̸= H, unless f is uniform.
Second, compute the symmetric matrix B of scalar products by double centering: B = −

1
2HDH⊤. Third, define the

× n kernel K as the symmetric matrix of weighted scalar products:

K =
√
Π B

√
Π , Kij =

√
fifjBij . (1)

Fourth, perform the kernel spectral decomposition with Û ∈ Rn×n orthogonal and Λ̂ diagonal

K = ÛΛ̂Û⊤ , ÛÛ⊤
= Û⊤Û = In , Λ̂ = diag(λ) . (2)

By construction, K possesses one trivial eigenvalue λ0 = 0 associated to the eigenvector
√
f (since H⊤

√
Π

√
f = H⊤f = 0n)

and n− 1 real non-negative eigenvalues decreasingly ordered as λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ 0, among which r = rank(K)
are strictly positive.

From now on the trivial eigenspace will be discarded: set Û = (
√
f |U), where U = (u1| . . . |un−1) ∈ Rn×(n−1) contains

the n − 1 non-trivial eigenvectors of K, and set Λ = diag(λ1, . . . , λn−1). Direct substitution from (2) yields

K = UΛU⊤ , UU⊤
= In −

√
f
√
f
⊤

, U⊤U = In−1 , U⊤
√
f = 0n . (3)

Finally, the searched for coordinates obtain as

X = Π −
1
2 UΛ

1
2 , xiα =

1
√ uiα

√
λα . (4)
fi
2
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Fig. 1. Two weighted Euclidean configurations (f,DX ) (left) and (f,DY ) (right), made of n weighted multivariate observations embedded in Rn−1 .
Their similarity attains the maximum value RVXY = 1 iff DY = cDX for some c > 0, i.e. iff the two configurations are isometric up to a dilatation.

One verifies easily that

Dij =

n−1∑
α=1

(xiα − xjα)2 , ∆ =
1
2

n∑
i,j=1

fifjDij = Tr(K) =

n−1∑
α=1

λα . (5)

The kernels considered here are symmetric, positive semi-definite and obey in addition K
√
f = 0n. We call them standard

kernels. They can be related to the weighted version of centered kernels of Machine Learning [see, e.g., 13]. To each
weighted configuration (f,D) corresponds a unique standard kernel K, and conversely.

The matrix K0 = In −
√
f
√
f
⊤

appearing in (3) constitutes a standard kernel, referred to as the neutral kernel in view of
roperty K0K = KK0 = K for any standard kernel K. The corresponding dissimilarities are the weighted discrete distances

D0
ij =

{
1
fi

+
1
fj
, for i ̸= j ,

0 , otherwise.

A note on unweighted multidimensional scaling: the latter implements the classical Torgerson–Gower scaling procedure,
which does not take into account the objects weights, when non-uniform. That is, spectral decomposition is directly
performed on the matrix of scalar products B = UΛU⊤ (instead on K in (1)), and factor 1/

√
fi is absent in the expression

or coordinates (4). The resulting dissimilarities D are exactly the same as those obtained by weighted multidimensional
caling, but the weighted inertia ∆ in (5) is no more optimally expressed by the first factors.

.2. The RV coefficient

Consider two weighted configurations (f,DX ) and (f,DY ) endowed with the same weights f, or equivalently two
tandard kernels KX and KY (Fig. 1). Their similarity can be measured by the weighted RV coefficient defined as

RV = RVXY =
Tr(KX KY )√
Tr(K2

X ) Tr(K
2
Y )

(6)

which constitutes the cosine similarity between the vectorized matrices KX and KY . As a consequence, RVXY ≥ 0 (since
KX and KY are positive semi-definite), RVXY ≤ 1 (by the Cauchy–Schwarz inequality) and RVXX = 1.

Quantity (6) is a straightforward weighted generalization of the RV coefficient introduced in [17,32] (where R did refer
to ‘‘correlation’’ and V to ‘‘vector’’): consider multivariate features X ∈ Rn×p and Y ∈ Rn×q, directly entering into the
definition of DX and DY as coordinates, or equivalently as KX =

√
ΠXcX⊤

c

√
Π and KY =

√
Π YcY⊤

c

√
Π , where Xc = HX

nd Yc = HY are the centered scores.
The weighted covariances are Σ XX = X⊤

c ΠXc and Σ YY = Y⊤
c Π Yc . The cross-covariances are Σ XY = X⊤

c Π Yc and
YX = Y⊤

c ΠXc = Σ⊤

XY . The original RV coefficient is defined in the feature space as

RVXY =
Tr(Σ XY Σ YX )√
Tr(Σ 2

XX ) Tr(Σ
2
YY )

. (7)

Proving the equivalence of (6) and (7) is straightforward.
3
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. Computing the moments of the RV coefficient by invariant orthogonal integration

.1. Main result and significance testing

Define the CV coefficient by the quantity CV = Tr(KXKY ).

Theorem 1 (Main Result). Under invariant orthogonal integration (Section 3.2), the expectation of the CV coefficient and its
entered moments of order 2, 3 and 4 are

E(CV) =(n − 1)λ µ , E(CV2
c ) =

2(n − 1)2

(n − 2)(n + 1)
λ2
c µ2

c , E(CV3
c ) =

8(n − 1)3

(n − 3)(n − 2)(n + 1)(n + 3)
λ3
c µ3

c (8)

E(CV4
c ) =

12 (n − 1)3

(n − 4)(n − 3)(n − 2)n(n + 1)(n + 3)(n + 5)

{
4 (n2

− n + 2)λ4
c µ4

c + (n4
+ n3

− 15n2
− 13n (9)

+ 98)λ2
c

2
µ2

c
2
− 4 (2n2

− n − 7) (λ4
c µ2

c
2
+ λ2

c

2
µ4

c )
}
.

where CVc = CV − E(CV). In the above, spectral moments and centered spectral moments of order q read

λq
=

1
n − 1

n−1∑
α=1

λqα =
1

n − 1
Tr(Kq

X ) = tr(Kq
X ) , λq

c =
1

n − 1

n−1∑
α=1

(λcα)
q , λcα = λα − λ (10)

here tr(A) = Tr(A)/(n−1) denotes the normalized trace. Centered spectral moments can be transformed into normalized
races, and conversely. For instance, λ3

c = tr(K3
X ) − 3 tr(K2

X ) tr(KX ) + 2 tr3(KX ) (see also (43)). The identity

RV =
CV√

Tr(K2
X ) Tr(K

2
Y )

=
CV

(n − 1)
√

λ2 µ2

(11)

irectly implies:

orollary 1 (First Cumulants of the RV Coefficient). Under invariant orthogonal integration, the first cumulants of the RV
oefficient, that is its expectation, variance, skewness and excess kurtosis are, in order,

E(RV) =
1

n − 1
Tr(KX ) Tr(KY )√
Tr(K2

X ) Tr(K
2
Y )

=
λ µ√
λ2 µ2

=

√
ν(λ) ν(µ)
n − 1

, (12)

Var(RV) =E(RV2
c ) =

2 (n − 1 − ν(λ)) (n − 1 − ν(µ))
(n − 2)(n − 1)2(n + 1)

, (13)

A(RV) =
E(RV3

c )

E
3
2 (RV2

c )
=

√
8(n − 2)(n + 1)
(n − 3)(n + 3)

a(λ) a(µ) , (14)

`(RV) =
E(RV4

c )
E2(RV2

c )
− 3 =

3 (n − 2)(n + 1)
(n − 4)(n − 3)(n − 1)n(n + 3)(n + 5)

{
4(n2

− n + 2) γ (λ) γ (µ) + (4n2
− 8n (15)

+ 52)(γ (λ) + γ (µ)) −
4(5n3

− 57n2
+ 27n + 169)

(n − 2)(n + 1)

}
,

here RVc = RV − E(RV). Here, the quantities

a(λ) =
λ3
c

(λ2
c )

3
2
, γ (λ) =

λ4
c

(λ2
c )2

− 3 (16)

enote the spectral skewness, respectively the excess spectral kurtosis. The quantity

ν(λ) =
Tr2(KX )
Tr(K2

X )
=

(
∑

α≥1 λα)
2∑

α≥1 λ
2
α

= (n − 1)
λ
2

λ2
(17)

as appeared at times as an adjusted degrees of freedom in multivariate tests of the general linear model [see,
.g., 1,18,33,35]. It provides a measure of sphericity or effective dimensionality of configuration (f,DX ). Interestingly
nough, the first two cumulants (12) and (13) depend, in addition to n, only on the effective dimensionality of the
wo configurations. The latter also measures the similarity of the configuration with the neutral configuration in view
f identity ν(λ) = (n − 1) RV2(KX ,K0).
The minimum ν(λ) = 1 is attained for univariate configurations. The maximum ν(λ) = n − 1 is attained for uniform

ilatations of the discrete distances D0
X (Section 2.1), in which case Var(RV) = 0V since RV is then concentrated on

√
ν(µ)/(n − 1).
4
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The second-order Cornish–Fisher cumulant expansion permits to approximatively redress the normal quantiles by
taking into account the skewness and the ‘‘taildeness’’ of a non-normal distribution [see, e.g., 2,25]. The observed RV is
statistically significant at level α if (one-tailed test)

RVs =
RV − E(RV)
√
Var(RV)  
z−score

> u1−α
standard normal quantile

+
A(RV)

6
(u2

1−α − 1) +
`(RV)
24

(u3
1−α − 3u1−α) −

A2(RV)
36

(2u3
1−α − 5u1−α)  

correction to the normal distribution

.

(18)

.2. Invariant orthogonal integration

The rest of the paper is devoted to presenting invariant orthogonal integration [see, e.g., 9,10,30,36, and references
herein] and proving Theorem 1. Invariant orthogonal integration is a major theme of random matrix theory, itself
eveloped ever since the end of the XIXth Century [see 16, for an historical perspective].
Consider two standard kernels together with their spectral decomposition (3) KX = UΛU⊤ and KY = VMV⊤ with
= diag(µ), where U,V ∈ Rn×(n−1). Define the matrix W = (wαβ ) ∈ R(n−1)×(n−1) as

W = U⊤V . (19)

he numerator CV of RV in (11) reads

CV(W) = Tr(KXKY ) = Tr(UΛU⊤VMV⊤) =

n−1∑
α=1

n−1∑
β=1

λαµβPαβ =

n−1∑
α=1

n−1∑
β=1

λαµβw
2
αβ , (20)

where

Pαβ =

n∑
i,j=1

uiαujαviβvjβ = (
n∑

i=1

uiαviβ )2 = w2
αβ = cos2 ̸ (uα, vβ ) (21)

s a measure of alignment between the eigenvectors uα of KX and vβ of KY .
Identities U⊤U = In−1, U⊤

√
f = 0n and VV⊤

= In−
√
f
√
f
⊤

in (3) imply the identity WW⊤
= U⊤VV⊤U = In−1. Similarly,

W⊤W = In−1, that is W ∈ R(n−1)×(n−1) in (19) constitutes an orthogonal matrix acting in the non-trivial eigenspace. In
particular (where ‘‘•’’ denotes a sum over all values of the replaced index)

P•β =

n−1∑
α=1

Pαβ =

n−1∑
α=1

w2
αβ = 1 (22)

and, similarly, Pα• = 1: the matrix P = (Pαβ ) ∈ R(n−1)×(n−1) is non-negative, and doubly stochastic: it expresses as a
mixture of permutations of Sn−1 (Birkhoff–von Neumann theorem [7]). In particular, one gets the crude estimate∑

α≥1

λαµn−α ≤ CV ≤

∑
α≥1

λαµα .

The null hypothesis H0 states that the two configurations (f,DX ) and (f,DY ) are unrelated: under H0, any angle ̸ (uα, vβ )
n (21) is equally likely. Hence, the eigenvectors of the first configuration will be rotated and/or reflected by replacing

= (uiα) in (21) by UT, where T = (tαa) ∈ On−1, the orthogonal group of dimension n − 1. This transformation acts in
he non-trivial eigenspace only, leaving the weights f unchanged.

The transformed coordinates (4) X(T) = Π −
1
2 UTΛ

1
2 differ from the rotated-reflected coordinates XT (unless Λ is

constant). Similarly, KX (T) = UTΛT⊤U⊤ differs from KX , but Tr(K
q
X (T)) = Tr(Kq

X ) for q ∈ {1, 2, . . .} In particular, the inertia
∆ in (5) and the denominators in (11) are left unchanged by the transformation.

Also, the orthogonal matrix (19) transforms as W̃ = T⊤U⊤V = T⊤W ∈ On−1, and the CV coefficient becomes

CV(T⊤W) = CV(W̃) = Tr(ΛT⊤U⊤VMV⊤UT) = Tr(ΛW̃MW̃⊤) =

n−1∑
α=1

n−1∑
β=1

λαµβw̃
2
αβ . (23)

The idea of invariant orthogonal integration is to compute the expectation of the moments

E(CVq) :=

∫
CVq(T⊤W) dµ(T) =

∫
CVq(W) dµ(W) q ∈ {1, 2, . . .} (24)
On−1 On−1

5
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y averaging over all possible orthogonal transformations T = (taα) ∈ On−1 distributed by the invariant Haar measure
dµ(T) normalized to

∫
On−1

dµ(T) = 1. The last identity results from the Haar invariance property dµ(T) = dµ(T⊤) =

µ(T⊤W). Note that the moment generating function reads

E(exp(t CV)) =

∫
On−1

exp(t Tr(ΛWMW⊤)) dµ(W) . (25)

efine [n] = {1, 2, . . . , n}. Computing (24) involves the following integrals, we shall refer to as orthogonal coefficients,
efined in whole generality as

Ib
a = E(wa1b1 wa2b2 . . . wa2qb2q ) =

∫
On−1

dµ(W) wa1b1 wa2b2 . . . wa2qb2q , (26)

where the multi-indices a = (a1a2 . . . a2q) and b = (b1b2 . . . b2q) are elements of [n − 1]2q that is, a and b are words of
length 2q on the alphabet [n − 1].

To ease the notations, define Aq = [n − 1]q and, for α = (α1 . . . αq) ∈ Aq, define αα = (α1α1α2α2 . . . αqαq) ∈ A2q.
Identities (23), (24) and (26) yield

E(CVq) =

n−1∑
α1...αq=1

λα1 · · · λαq  
λα

n−1∑
β1...βq=1

µβ1 · · ·µβq  
µβ

E(wα1β1 wα1β1 wα2β2 wα2β2 . . . wαqβq wαqβq )  
Iββ

αα

=

∑
α∈Aq

λα

∑
β∈Aq

µβ Iββ
αα .

(27)

Determining the orthogonal coefficients Iββ
αα will yield exact expressions for E(CVq) in terms of spectral moments of

λ and µ, or equivalently in terms of traces of integer powers of KX and KY , as demonstrated in the next sections for
∈ {1, 2, 3, 4}.

.3. Computing low-order orthogonal coefficients

Evaluating the orthogonal coefficients (26) is a major topic in random matrix theory and free probability, and its
ystematic handling is presented in Section 3.6. Yet, as observed by some authors [see, e.g., 3,9,36], well-inspired
nvariance considerations (Lemmas 1 and 2) suffice in determining more directly the values of the orthogonal coefficients
f low order.
Since dµ(−W) = dµ(W), coefficients (26) are zero unless each index in a and in b occurs an even number of times, with

total of 2q occurrences, where q defines the order of the orthogonal coefficient. Also, applying the same permutation
n the two multi-indexes, or exchanging the multi-indexes leaves the coefficients unchanged. Furthermore, the particular
alue taken by an index is irrelevant: only matters its multiplicity. For instance, in general:

Iabcd
αβγ δ = Iαβγ δabcd = Idacb

δαγ β ̸= Iadcb
δαγ β ; Iabcc

ααγ γ = Iaccb
ααγ γ = 0 , a ̸= b .

lso, for α ̸= γ and a ̸= b,

Iaabb
ααγ γ = Ibbaa

ααγ γ = I2211
1122 = I1122

1122 .

emma 1 (Proved in the Appendix). Let α ̸= γ and let ε be a multi-index not containing α, γ . For any indices a, b, c, d and
multi-index e of the same size as ε

Iabcde
ααααε = Iabcde

ααγ γ ε + Iabcde
αγαγ ε + Iabcde

αγ γαε .

In particular,

Iaacce
ααααε = Iaacce

ααγ γ ε + 2Iaacce
αγαγ ε , Iaaaae

ααααε = 3Iaaaae
ααγ γ ε . (28)

Lemma 2. For any multi-index e not containing β , and for any unrestricted multi-index ε of the same size,
n−1∑
β=1

Iββeαγ ε = δαγ Ie
ε . (29)

Proof. Eq. (29) follows directly from WW⊤
= I , that is

∑n−1
w w = δ . □
n−1 β=1 αβ γβ αγ

6



F. Bavaud Journal of Multivariate Analysis 198 (2023) 105227

3

p

w

H

a

A
m

w

H

S
i

i
t

3

a

.4. The first and second moments

The computation of the first moment, identical to the proposal of Kazi-Aoual et al. [24] who used averaging on all
ermutations between the n (unweighted) objects, is straightforward: Iβδαα = δβδ Iββαα , where Iββαα is independent of α and
β . By (29), (20) and (27)

Iββαα =
1

n − 1
, E(Pαβ ) =

1
n − 1

, E(CV) =
1

n − 1

n−1∑
α,β=1

λαµβ . (30)

The computation of the second moment involves four orthogonal coefficients, namely (all super- and sub-indices in
(31) are distinct)

E := Iββββαααα , F := Iββζζαααα = Iααγ γββββ , G := Iββζζααγ γ , H := Iββζζαγαγ . (31)

They satisfy

F
(28)
= G + 2H , E

(28)
= 3F , (n − 2)G + F

(29),(30)
=

1
n − 1

, (n − 2)H + F
(29),(30)

= 0

ith solution

E = 3(n − 2)κ , F = (n − 2)κ , G = nκ , H = −κ , κ =
1

(n − 2)(n − 1)(n + 1)
. (32)

ence (the expression is also valid for four possibly coinciding sub-indices, since E = 3F ),

Iβδζθαααα = (δβδδζθ + δβζ δδθ + δβθδδζ ) F (33)

nd, for α ̸= γ ,

Iβδζθααγ γ = δβδδζθ G + (δβζ δδθ + δβθδδζ )H . (34)

s a result, performing δαγ × (33) + (1 − δαγ ) × (34) yields the general formula, where the super- and the sub-indices
ay be distinct or not

Iβδζθααγ γ = κ [nδβδδζθ − (δδζ δδθ + δβθδδζ ) − 2δαγ δβδδζθ + (n − 1)δαγ (δβζ δδθ + δβθδδζ )]

hich finally implies from (27)

E(PαβPγ δ) = κ [n − 2δαγ − 2δβδ + 2(n − 1)δαγ δβδ] . (35)

ence, by (27) and (10)

E(CV2) = κ(n − 1)3 [n(n − 1)λ
2
µ

2
− 2λ

2
µ2 − 2λ2 µ

2
+ 2λ2 µ2] . (36)

ubtracting E2(CV) obtained in (30), substituting the value of κ in (32) and rearranging terms yields the second identity
n (8).

Expressions for the second centered moments in (8) and (13) are simpler than the corresponding quantities obtained,
n the unweighted setting, by averaging over all permutations of the n objects: the latter contain additional correction
erms, as derived in Kazi-Aoual et al. [24]. See also Heo and Ruben Gabriel [21], Josse et al. [23] and Abdi [1].

.5. The third moment

The third moment reads

E(CV3) =

n−1∑
α,β,γ ,δ,ε,ζ=1

λα λγ λε µβ µδ µζ E(PαβPγ δPεζ ) =

n−1∑
α,β,γ ,δ,ε,ζ=1

λα λγ λε µβ µδ µζ Iββδδζζααγ γ εε (37)

nd involves eleven third-order orthogonal coefficients, namely (all super- and sub-indices in (38) are distinct)

L := Iββββββαααααα , M := Iββββββααααγ γ , N := Iββββββααγ γ εε , P := Iββββδδααααγ γ , Q := Iββββδδααγ γαα , R := Iββββδδααaγ aγ

S := Iββββδδααγ γ εε , T := Iββββδδαγ εεαγ U := Iββδδζζααγ γ εε , V := Iββδδζζαγαγ εε , W := Iββδδζζαεγ εαγ . (38)

Handcrafted computations are a bit awkward, yet feasible, with the result

Lemma 3 (Proved in the Appendix).
1
κ̂

E(PαβPγ δPεζ ) = (n2
+ n − 4) − 2(n + 1)(σ + τ ) + 16(ϕ + ψ) + 8στ

2
(39)
− 8(n − 1)(σψ + τϕ) + 8(n − 1) ϕψ + 2(n − 3)(n + 3)ω
7
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here

κ̂ =
κ

(n − 3)(n + 3)
=

1
(n − 3)(n − 2)(n − 1)(n + 1)(n + 3)

(40)

nd
σ = δαγ + δαε + δγ ε , τ = δβδ + δβζ + δδζ , ω = δαγ δβδ + δαεδβζ + δγ εδδζ ,

ϕ = δαγ δαεδγ ε = δαγ δαε = δαγ δγ ε = δαεδγ ε , ψ = δβδδβζ δδζ = δβδδβζ = δβδδδζ = δβζ δδζ .
(41)

One can check with (35) that
n−1∑
ε=1

E(PαβPγ δPεζ ) =

n−1∑
ζ=1

E(PαβPγ δPεζ ) = E(PαβPγ δ)

as it must be. Inserting (39) in (37) and using (10) yields

E(CV3)
(n − 1)4κ̂

= (n2
+ n − 4)(n − 1)2λ

3
µ

3
− 6(n + 1)(n − 1)(λλ2µ

3
+ λ

3
µµ2)

+ 16(λ3µ
3
+ λ

3
µ3) + 6(n2

+ 3)λλ2µµ2 − 24(λλ2 µ3 + λ3µµ2) + 8λ3 µ3 .

(42)

The centered third moment

E(CV3
c ) = E((CV − E(CV))3) = E(CV3) − 3E(CV2)E(CV) + 2E3(CV) (43)

finally reads, by (30), (36) and (40)

E(CV3
c )

8(n − 1)4κ̂
= 4λ

3
µ

3
− 6(λλ2µ

3
+ λ

3
µµ2) + 2(λ3µ

3
+ λ

3
µ3) + 9λλ2µµ2

−3(λλ2 µ3+λ3µµ2) + λ3 µ3 = (λ3
− 3λλ2

+ 2λ
3
)(µ3 − 3µµ2 + 2µ3) = λ3

c µ3
c ,

hus proving the third identity in (8). This exact expression for the third moment seems original, and is considerably
impler than the corresponding expression derived by averaging on the n! object permutations [24]. It depends directly
n n, but only indirectly on f through the eigenvalue spectra. Expression (14) for the RV skewness (see Section 3.7 for an
lternative derivation) is particularly transparent, and elucidates the cause of the marked positive asymmetry of the RV
oefficient, often reported in the literature [see, e.g., 21,23,29,37]: plainly, a(λ) > 0 and a(µ) > 0 for typical scree plots
see, e.g., Fig. 3).

.6. The fourth moment

Computing E(RV4), or equivalently E(CV4) is clearly untractable with the former pedestrian approach, and a more
tructured strategy is needed. The latter is provided by the so-called Weingarten calculus [see 10,12,27,30,31], elaborated
s a systematic machinery to evaluate Haar integrals of the form (26) over the unitary, symplectic or (in the present case)
rthogonal compact groups. See [11] for a pedagogical and historical account of this vast topic.
Consider P2q, the set of all partitions of {1, 2, . . . , 2q} whose all blocks are of length two, also called pairings [31].

here are (2q − 1)!! = (2q − 1)(2q − 3) · · · 5 · 3 distinct pairings. For instance, for q = 4, the two partitions

σ = (13|25|46|78) , τ = (15|26|34|78)

onstitute such pairings. Their join σ ∨ τ (i.e., the finest partition coarser than both σ and τ ) is σ ∨ τ = (123456|78).
In general, the join σ ∨τ of two pairings σ , τ ∈ P2q is a partition made of N(σ ∨τ ) blocks of even sizes 2l1, 2l2, 2l3, . . .,

ith l1 ≥ l2 ≥ l3 ≥ · · · and
∑N(σ∨τ )

c=1 lc = q. The multi-index ℓ = (l1, l2, l3 . . .) constitutes an integer partition of q (noted
⊢ q), and defines the type ℓ(σ ∨ τ ) of σ ∨ τ .
For q = 4, five integer partitions or types are possible, namely

ℓ = (1, 1, 1, 1) ≡ (14) , ℓ = (2, 1, 1) , ℓ = (2, 2) , ℓ = (3, 1) , ℓ = (4) .

Any pairing σ ∈ P2q also defines a particular permutation between 2q indices, exchanging the indices belonging to
he same block of two [31]. The orthogonal coefficients (26) turn out to express [see 4,11, and references therein]

Ib
a =

∑
σ∈P2q

∑
τ∈P2q

δσ (a) δτ (b) Wg(ℓ(σ ∨ τ )) (44)

here the multi-Kronecker symbol δσ (a) is equal to 1 if the indices aσ (2r−1) and aσ (2r) (permutation notation) belonging
o the same rth block of pairing σ coincide for all blocks r ∈ {1, . . . .q}. Otherwise, δσ (a) = 0. Explicitly,

δσ (a) =

q∏
δaσ (2r−1),aσ (2r) , δτ (b) =

q∏
δbτ (2r−1),bτ (2r) (45)
r=1 r=1

8
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hich restricts the sum in (44) over the pairings σ compatible with a in the above sense (and pairings τ compatible with
b), implying in particular that all indices in a and b must occur an even number of times.

The quantities Wg(ℓ(σ∨τ )) appearing in (44) are the orthogonal Weingarten functions, and depend upon the dimension
d = n − 1 as well. They have been computed up to order q = 6 [10]. For q = 4:

Wg(14) = φ (n − 3)(n + 2)(n2
+ 4n − 4) Wg(2, 1, 1) = φ (−n3

− 3n2
+ 6n + 4) Wg(2, 2) = φ (n2

+ 3n + 14)

Wg(3, 1) = φ (n − 1)(2n + 6) Wg(4) = − φ (5n + 1) (46)

here

φ =
1

(n − 4)(n − 3)(n − 2)(n − 1)n(n + 1)(n + 3)(n + 5)
. (47)

ubstituting (44) in (27) yields

E(CVq) =

∑
σ∈P2q

∑
τ∈P2q

Wg(ℓ(σ ∨ τ ))
∑
α∈Aq

δσ (αα) λα

∑
β∈Aq

δτ (ββ) µβ =

∑
σ∈P2q

∑
τ∈P2q

Wg(ℓ(σ ∨ τ )) Trσ (KX ) Trτ (KY )

=

∑
σ∈P2q

∑
τ∈P2q

(n−1)N(σ∨σ0)+N(τ∨σ0) Wg(ℓ(σ ∨ τ ))
N(σ∨σ0)∏

c=1

λlc
N(τ∨σ0)∏

c̃=1

µlc̃ , (48)

here the following lemma and definition have been used:

emma 4. Consider the reference pairing σ0 = (12|34| . . . |2q − 1, q) ∈ P2q, and consider the type ℓ(σ ∨ σ0), also called
coset-type of σ [see, e.g., 11,27]. Define

Trσ (K) =

N(σ∨σ0)∏
c=1

Tr(Klc ) , trσ (K) =

N(σ∨σ0)∏
c=1

tr(Klc ) . (49)

Then
∑

α∈Aq δσ (αα) λα = Trσ (KX ), which also reads

Trσ (KX ) = (n − 1)N(σ∨σ0) trσ (KX ) = (n − 1)N(σ∨σ0)
N(σ∨σ0)∏

c=1

λlc . (50)

roof of Lemma 4. Consider a = αα ∈ A2q. By construction, a(2r−1) = a2r , that is δσ0 (a) = 1. On the other hand, the
term δσ (αα) imposes ωσ (2r−1) = ωσ (2r). Hence all indices of a in the blocks of σ ∨ σ0 (of sizes 2l1, 2l2, 2l3 . . . , 2lN(σ∨σ0))
are identical, that is the sum on α ∈ Aq involves N(σ ∨ σ0) unconstrained indices respectively repeated exactly
(l1, l2, l3 . . . , lN(σ∨σ0)) times. □

Transforming expression (48) into an effective formula requires to determine, among the ((2q − 1)!!)2 pairings (σ , τ )
ntering into the sum, how many are jointly of type ℓ(σ ∨ τ ), ℓ(σ ∨ σ0) and ℓ(τ ∨ σ0).
For q = 4, Table 1 gives the distribution of joint counts of the 1052

= 11 025 pairings (σ , τ ), among the 53
= 125

ossible trivariate types. Those counts have, for lack of foreseeable analytical approach, been mechanically computed with
he help of the R package igraph [14], by the functions union() (determining the join of two pairings coded as binary
raphs) and components() (determining the join type).
Working with centered quantities notably simplifies the computations:

emma 5.

CVc = CV − E(CV) =

n−1∑
α=1

n−1∑
β=1

λcαµ
c
βPαβ .

Proof of Lemma 5. By the first identity in (8), (20) and Pα• = P•β = 1,

n−1∑
α=1

n−1∑
β=1

λcαµ
c
βPαβ =

∑
αβ

(λα − λ)(µβ − µ)Pαβ =

∑
αβ

λαµβPαβ − (n − 1)λ µ

− (n − 1)λ µ + (n − 1)λ µ =

∑
αβ

λαµβPαβ − (n − 1)λ µ = CV − E(CV) = CVc . □
9
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Table 1
Trivariate type counts for q = 4: each table refers to the type of σ ∨ τ . Rows refer to the type of σ ∨ σ0 , and columns to the type of τ ∨ σ0 .

σ ∨ τ = (14) σ ∨ τ = (2, 1, 1) σ ∨ τ = (2, 2)

(14) (2, 1, 1) (2, 2) (3, 1) (4) (14) (2, 1, 1) (2, 2) (3, 1) (4) (14) (2, 1, 1) (2, 2) (3, 1) (4)

(14) 1 12 12
(2, 1, 1) 12 12 12 24 96 24 24 96

(2, 2) 12 24 24 96 12 24 60 48
(3, 1) 32 96 96 192 192 192

(4) 48 96 192 288 96 48 192 240

σ ∨ τ = (3, 1) σ ∨ τ = (4)

(14) (2, 1, 1) (2, 2) (3, 1) (4) (14) (2, 1, 1) (2, 2) (3, 1) (4)

(14) 32 48
(2, 1, 1) 96 96 192 96 192 288
(2, 2) 192 192 96 48 192 240
(3, 1) 32 96 192 320 384 192 192 384 768
(4) 192 192 384 768 48 288 240 768 960

Consequently, (48) entails

E(CVq
c ) =

∑
σ∈P2q

∑
τ∈P2q

(n−1)N(σ∨σ0)+N(τ∨σ0) Wg(ℓ(σ ∨ τ ))
N(σ∨σ0)∏

c=1

λlc
c

N(τ∨σ0)∏
c̃=1

µ
lc̃
c (51)

n which, for q = 4, the contributions of σ and τ coset types (14), (2, 1, 1) and (3, 1), associated to λc = 0 or µc = 0, are
eroed: only (2, 2) and (4) survive, with contributions indicated by the boxed counts in Table 1. Explicitly, the coefficient
f λ2

c λ2
c µ2

c µ2
c in (51) is

(n − 1)4[12Wg(14) + 24Wg(2, 1, 1) + 60Wg(2, 2) + 48Wg(4)] = 12φ (n − 1)4 (n4
+ n3

− 15n2
− 13n + 98) ,

he coefficient of λ4
c µ4

c is

(n − 1)2[48Wg(14) + 288Wg(2, 1, 1) + 240Wg(2, 2) + 768Wg(3, 1) + 960Wg(4)] = 48φ (n − 1)4 (n2
− n + 2) ,

and the coefficient of λ4
c µ2

c µ2
c and λ2

c λ2
c µ4

c is

(n − 1)3[96Wg(2, 1, 1) + 48Wg(2, 2) + 192Wg(3, 1) + 240Wg(4)] = 48φ (n − 1)4 (2n2
− n − 7) .

he final expressions in the above follow from (46) and, together with (47), prove (9). They have been further checked
ith the software Mathematica. Expression (9) for the fourth moment is relatively simple, but it lacks elegance and direct

nterpretation.

.7. The third moment, revisited

Let us apply the steps of the previous Section for q = 3 to verify the coincidence of the Weingarten and pedestrian
pproaches. Three types occur for q = 3, namely ℓ = (1, 1, 1), ℓ = (2, 1) and ℓ = (3). The contribution of coset-types
1, 1, 1) and (2, 1) for σ or τ is zero by consequence of centration. Hence, only the coset-types (3) contribute to (51),
hich is therefore simply proportional to λ3

c µ3
c . The conciseness of the last identity in (8) and (14) is thus elucidated. The

roportionality coefficient is determined by the boxed components of Table 2 as

(n − 1)2[8Wg(13) + 24Wg(2, 1) + 32Wg(3)] =
8(n − 1)3

(n − 3)(n − 2)(n + 1)(n + 3)
(52)

hich is exactly the third identity in (8), obtained much more indirectly in Section 3.5. The values of the Weingarten
oefficients in (52) were obtained from Collins and Śniady [12]. They read with the present notations (d = n−1 and (40))
s

Wg(13) = κ̂ (n2
+ n − 4) , Wg(2, 1) = −κ̂ (n + 1) , Wg(3) = 2κ̂ .

hose coefficients coincide, in order, with the values U , V and W defined in (38) and determined in (53) in the Appendix,
as they must in view of (44). Hence, for q = 3, the pedestrian approach of Sections 3.3, 3.4 and 3.5 exactly matches
10
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Table 2
Trivariate type counts for q = 3: each table refers to the type of σ ∨ τ . Rows refer to the type of σ ∨σ0 ,
and columns to the type of τ ∨ σ0 .

σ ∨ τ = (13) σ ∨ τ = (2, 1) σ ∨ τ = (3)

(13) (2, 1) (3) (13) (2, 1) (3) (13) (2, 1) (3)

(13) 1 6 8
(2, 1) 6 6 6 24 24 24
(3) 8 24 24 8 24 32

Fig. 2. Left: weighted MDS of the political configuration (f,DX ), whose first factor expresses mainly a political right-left gradient. Right: weighted
MDS of the social configuration (f,DY ), whose first factor opposes ageing departments (left) to departments with a strong foreign population and
natural balance (right).

the systematic Weingarten approach of Sections 3.6 and 3.7: a circumstance both expected and relieving, apt to boost
confidence in the results obtained so far.

4. Illustration: comparing political and social configurations of french departments

Consider the n = 94 continental French departments, together with the n × p contingency table N = (nik) counting
he number of votes nik obtained in department i for candidate k, among the p = 10 candidates of the 2012 presidential
rimary election [22]. The first weighted configuration (f,DX ) of the n objects is defined by fi = ni•/n•• (proportion of
oters in the ith department), with a squared Euclidean political distance DX defined by the chi-square dissimilarity [see,
.g., 19,26]:

DX
ij =

p∑
k=1

n••

n•k

(
nik

ni•
−

njk

nj•

)2

.

Weighted MDS on the corresponding kernel KX turns out to be equivalent to the Simple Correspondence Analysis of N.
Fig. 2 left depicts the resulting MDS coordinates in dimensions α ∈ {1, 2}.

The above configuration will be compared to a rudimentary social configuration (f,DY ), where f still represents the
department share of voters, and DY is the squared Euclidean dissimilarity constructed from the n × q departmental
profiles Y = (yik) made of the q = 5 standardized proportions of ‘‘natural demographic balance’’, ‘‘migratory demographic
balance’’, ‘‘population over 65’’, ‘‘foreign population’’ and ‘‘unactive young people’’ around 2015 [22], namely

DY
ij =

q∑
(yik − yjk)2 .
k=1

11
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Fig. 3. Scree plots of the political kernel KX (left) and of the social kernel KY (middle), together with the values for effective dimensionality, spectral
asymmetry and spectral excess kurtosis. Right: significance threshold (r.h.s. of (18), thick line) and normal approximation u1−α (thin line) for the
standardized RV (l.h.s. of (18)).

Weighted MDS on the corresponding kernel KY turns out to be equivalent to the Principal Component Analysis of the
(weighted) q × q correlation matrix R. Fig. 2 right depicts the resulting MDS coordinates in dimensions α ∈ {1, 2}.

Fig. 3 depicts the scree plots of the eigenvalues of KX (left) and KY (middle), together with the associated values for
ffective dimensionality ν, spectral asymmetry a and spectral excess kurtosis γ .
The value (6) of the coefficient turns out to be RV = 0.2496. Expected moments obtain from the spectral moments by

eans of formulas (12) to (15), with the result

E(RV) = 0.02707 , Var(RV) = 0.0002166 , A(RV) = 1.644 , `(RV) = 4.497

yielding a standardized value (z-score) as high as RVs = 15.12. Fig. 3 (right) depicts the significance threshold (r.h.s. of
18)) as a function of α (thick curve), as well as its normal approximation u1−α (thin curve). As expected, the similarity
etween the political and social configurations is extremely significant, with a resulting p-value (i.e., the α for which both
ides of (18) coincide) as low as p = 3.3·10−7 (Cornish–Fisher expansion), yet much larger than the p-value p = 6.0·10−52

obtained under normal approximation.

5. Discussion and conclusion

The weighted RV coefficient measures the similarity between two weighted Euclidean configurations, and this
contribution proposes exact expressions for the first four moments of the RV. Considering weighted objects extends the
traditional uniform framework. It also provides precious guidance for separating the trivial and non-trivial eigenspaces
resulting form the spectral decomposition of the standard kernels occurring in the weighted multidimensional scaling of
both configurations.

Our approach, invariant orthogonal integration, is nonparametric, and consists in averaging the relative orientation of
the kernel eigenvectors of both configurations by performing Haar integration on orthogonal matrices W ∈ On−1 acting
in the non-trivial eigenspace only. The resulting expressions are simpler and easier to interpret than their traditional
counterparts obtained by averaging on permutation matrices S between n objects. In view of SS⊤

= In, permutations
also do constitute orthogonal transformations, but in On, and their undiscriminate use is furthermore questionable in the
weighted setting. Comparing the present approach to parametric approaches, typically postulating a multivariate normal
distribution for the object features, is left open for future investigations.

Also, our approach is object-oriented, as in traditional Data Analysis and Machine Learning, rather than variable-
oriented as in Mathematical Statistics. Its use requires to dispose of squared Euclidean dissimilarities between objects,
possibly weighted, and some of its numerous applications (including spatial autocorrelation and network clustering) will
be illustrated in forthcoming publications. This contribution underlines in particular the key role played by the standard
kernel, central to weighted multidimensional scaling, and whose spectrum governs the values of the RV moments.
Correlatively, it appears that the humble scree plot should deserve more consideration, beyond its limited role in selecting
the number of factors: mentioning and interpreting its effective dimensionality, spectral skewness and spectral excess
kurtosis could arguably become more systematic in practice.

Computing the fourth RV moment did require to recourse to the Weingarten calculus, whose apparatus, arguably
demanding for the neophyte, turned out decisive for the pursuit of our objective. One may reasonably hope that future
developments along that line will enrich the present results, replacing in particular the mechanical computation of
Tables 1 and 2 by true mathematical arguments. However, determining the analytical, exact null distribution of RV, may
reveal itself out of reach: as a matter of fact, the moment generating function (25) is an orthogonal analog of the celebrated
12
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arish-Chandra trace integral for the unitary group, whose analytical expression has been determined ever since the
ifties [20] (see also, e.g., Tao [34] and McSwiggen [28]). Yet, discovering a corresponding expression for the orthogonal
ase, precisely, has not been achieved so far.
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ppendix

roof of Lemma 1. Let W = (wαa) ∈ On−1. Let α ̸= γ and consider the matrix W̃ with components

w̃αa = cos ξ wαa − sin ξ wγ a , w̃γ a = sin ξ wαa + cos ξ wγ a , w̃βa = wβa , β ̸= α, γ ,

or any a, where ξ is an arbitrary, fixed angle. Then W̃ is an orthogonal matrix, as likely as W , that is dµ(W̃ ) = dµ(W ).
To ease the notations, take ε and e in Lemmas 1 and 2, playing no active role in what follows, as empty. Then, by (26)

Iabcd
ααγ γ = E([cos ξ wαa − sin ξ wγ a][cos ξ wαb − sin ξ wγ b][sin ξ wαc + cos ξ wγ c][sin ξ wαd + cos ξ wγ d])

= 2 cos2 ξ sin2 ξ Iabcd
αααα + (cos4 ξ + sin4 ξ ) Iabcd

ααγ γ − 2 cos2 ξ sin2 ξ Iabcd
αγαγ − 2 cos2 ξ sin2 ξ Iabcd

αγ γα .

ultiplying the l.h.s. by cos4 ξ + sin4 ξ + 2 cos2 ξ sin2 ξ = 1 and simplifying yields

Iabcd
αααα = Iabcd

ααγ γ + Iabcd
αγαγ + Iabcd

αγ γα . □

roof of Lemma 3. Lemmas 1 and 2 entail the following relations between orthogonal coefficients (38)

S
(28)
= U + 2V , T

(28)
= V + 2W , M

(28)
= 3N , P

(28)
= 3S , R

(28)
= 3T , E

(29)
= (n − 2)M + L ,

E
(29)
= (n − 2)P + M , F

(29)
= (n − 3)N + 2M , F

(29)
= (n − 3)S + 2Q , F

(29)
= (n − 2)Q + M ,

G
(29)
= (n − 3)U + 2S , H

(29)
= (n − 3)V + 2T , 0

(29)
= (n − 2)R + M , 0

(29)
= (n − 2)T + N ,

0
(29)
= (n − 3)W + 2T

ith solution (recall that E, F ,G,H in (32) are already known)

L =
15(n − 2)
n + 3

κ , M =
3(n − 2)
n + 3

κ , N =
n − 2
n + 3

κ , P =
3(n + 2)
n + 3

κ ,

Q =
n

n + 3
κ , R =

−3
n + 3

κ , S =
n + 2
n + 3

κ , T =
−1

n + 3
κ ,

U =
n2

+ n − 4
(n − 3)(n + 3)

κ , V =
−(n + 1)

(n − 3)(n + 3)
κ , W =

2
(n − 3)(n + 3)

κ .

(53)

Consider first α = γ = ε, and assume the sub-indices of the orthogonal coefficients to be matched into three distinct
airs. There are 5 × 3 = 15 such pairings, namely

Iabcdef
αααααα =N{δabδcdδef +δac δbdδef +δadδbc δef +δaeδcdδbf +δaf δcdδbe+δabδceδdf +δabδcf δde

+ δac δbeδdf +δac δbf δde+δadδceδbf +δadδcf δbe+δaeδbc δdf +δaeδbdδcf +δaf δbc δde+δaf δbdδce} .
(54)

n (54), the first term preserves the three pairs in the reference partition (ab|cd|ef ), the next six terms preserve one pair
only, and the eight remaining terms mix all pairs. It turns out that (54) also holds for coinciding pairs in view of M = 3N
nd L = 5M . By (26)

E(PαβPαδPαζ ) = (1 + 2δβδ + 2δβζ + 2δδζ + 8δβδδβζ δδζ )N . (55)

Consider now α = γ ̸= ε. Distinguishing between cases preserving or not the pair (ef ) yields

Iabcdef
ααααεε =S{δabδcdδef +δac δbdδef +δadδbc δef } + T {δaeδcdδbf +δaf δcdδbe+δabδceδdf +δabδcf δde

+δac δbeδdf +δac δbf δde+δadδceδbf +δadδcf δbe+δaeδbc δdf +δaeδbdδcf +δaf δbc δde+δaf δbdδce}

which also holds for three preserved pairs since 3S + 12T = M . By (26)

α = γ ̸= ε , E(PαβPγ δPεζ ) = (1 + 2δβδ)S + (2δβζ + 2δδζ + 8δβδδβζ δδζ )T (56)

α = ε ̸= γ , E(PαβPγ δPεζ ) = (1 + 2δβζ )S + (2δβδ + 2δδζ + 8δβδδβζ δδζ )T (57)

γ = ε ̸= α , E(P P P ) = (1 + 2δ )S + (2δ + 2δ + 8δ δ δ )T . (58)
αβ γ δ εζ δζ βδ βζ βδ βζ δζ

13
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n the remaining case α ̸= γ ̸= ε, the same reasoning yield

Iabcdef
ααγ γ εε =U{δabδcdδef } + V {δac δbdδef +δadδbc δef +δaeδcdδbf +δaf δcdδbe+δabδceδdf +δabδcf δde}

+ W {δac δbeδdf +δac δbf δde+δadδceδbf +δadδcf δbe+δaeδbc δdf +δaeδbdδcf +δaf δbc δde+δaf δbdδce}

also valid for three preserved pairs since U + 6V + 8W = N , and finally for α ̸= γ ̸= ε

E(PαβPγ δPεζ ) = U + (2δβδ + 2δβζ + 2δδζ )V + 8δβδδβζ δδζW . (59)

o ease notations, use definitions (41), multiply both sides of (55) by ϕ, of (56) by δαγ (1 − δαε)(1 − δγ ε) = δαγ − ϕ, of
57) by δαε − ϕ, of (58) by δγ ε − ϕ, of (59) by (1 − δαγ )(1 − δαε)(1 − δγ ε) = 1 − σ + 2ϕ, and add the whole to obtain the
nrestricted expression (39). □
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