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Abstract
We present an analytical model to compute frequency-dependent relative permeability 
functions for partially saturated porous media accounting for viscous coupling effects. 
For this, we consider the oscillatory motion of two immiscible fluid phases and solve the 
Navier–Stokes equations at the pore scale using suitable interface conditions between flu-
ids. These calculations are combined with the generalized two-phase flow Darcy equations 
to obtain the corresponding upscaled macroscopic fluxes. By means of an analog pore 
model consisting of a bundle of cylindrical capillaries in which pore fluids are distributed 
in a concentric manner, we find closed analytical expressions for the complex-valued and 
frequency- and saturation-dependent relative permeability functions. These expressions 
allow for a direct assessment of viscous coupling effects on oscillatory flow for all fre-
quencies and saturations. Our results show that viscous coupling effects significantly affect 
flow characteristics in the viscous and inertial regimes. Dynamic relative permeabilities 
are affected by the pore fluid densities and viscosities. Moreover, viscous coupling effects 
may induce two critical frequencies in the dynamic relative permeability curves, a charac-
teristic that cannot be addressed by extending the classic dynamic permeability definition 
to partially saturated scenarios using effective fluids. The theoretical derivations and results 
presented in this work have implications for the estimation and interpretation of seismic 
and seismoelectric responses of partially saturated porous media.
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1  Introduction

Darcy’s law is extensively used by geophysicists, hydrologists, geologists, and reservoir 
engineers to describe fluid flow in monosaturated porous media at the macroscopic scale. 
In this context, the permeability � is a fundamental hydraulic material property that relates 
the fluid pressure gradient to the flow rate per unit area (e.g., Bear 1972). Given that many 
practical problems involve the simultaneous flow of two immiscible pore fluid phases, such 
as oil and water, or gas and water, Darcy’s law has been extended to account for the par-
ticular characteristics of this scenario (e.g., Bear 1972).

In the presence of immiscible two-phase flow in porous media, the fluid phases flow 
through different regions within the pore structure, and thus, each phase effectively senses 
a different permeability. In this context, relative permeabilities arise as an essential concept 
for understanding two-phase flow characteristics in porous media, providing valuable infor-
mation regarding the permeability reduction sensed by a given fluid phase due to the pres-
ence of a second phase in the pore space (e.g., Bear 1972; Blunt 2017). In general, relative 
permeabilities are considered to be (i) functions of the saturation state and (ii) independ-
ent of the physical properties of the pore fluids, such as viscosities or densities (Burdine 
1953; Mualem 1976). However, it has been classically argued by many authors that the 
physical properties of flowing pore fluid phases have non-negligible effects on the relative 
permeability functions (e.g., Yuster 1951; Scott and Rose 1953; Bolt and Groenevelt 1969; 
de Gennes 1983; Bachmat and Bear 1986; de la Cruz and Spanos 1983; Whitaker 1986; 
Kalaydjian 1987, 1990). A particularly interesting phenomenon, which is associated with 
deviations from the classical extension of Darcy’s law to multiphase flow, is the so-called 
viscous coupling effect.

The classic immiscible two-phase flow formulation of Darcy’s equations commonly 
assumes that each fluid phase, wetting or non-wetting, is driven by a unique pressure gradient 
acting across the corresponding phase (Peaceman 1977; Bear 1972). However, this conceptu-
alization does not account for the effects of momentum transfer across interfaces separating 
the immiscible pore fluids. To account for the fact that, for instance, a pressure gradient acting 
on one phase can induce flow of the other phase, and vice versa, the classic two-phase formu-
lation of Darcy’s equations needs to be modified. Theoretical developments, based on volume 
averaging techniques and the principles of thermodynamics, have been used to upscale the 
Stokes equations in porous media and, thus, to derive novel and more consistent macroscopic 
two-phase flow formulations (e.g., de Gennes 1983; Bachmat and Bear 1986; de la Cruz and 
Spanos 1983; Whitaker 1986; Kalaydjian 1987, 1990). The resulting mathematical expres-
sions, to which we refer in the following as the generalized two-phase flow equations, do not 
only include the “classic” relative permeability terms but, also, exhibit “cross-terms,” which 
account for interfacial coupling, which include viscous and capillary effects (Ayub and Bent-
sen 1999). In order to gain insights into the particular effects that viscous coupling has on the 
relative permeabilities, a number of researchers (e.g., Yuster 1951; Bacri et  al. 1990; Rose 
1990; Ehrlich 1993) employed simple analogous models, composed of partially saturated 
capillaries or slates, to obtain analytical solutions to the problem. Later on, interfacial cou-
pling effects on the relative permeabilities were analyzed by means of laboratory experiments 
(e.g Avraam and Payatakes 1995; Bentsen 1998; Avraam and Payatakes 1999; Roman et al. 
2020) and numerical models (e.g, Rothman 1990; Gunstensen and Rothman 1993; Rakoto-
malala et al. 1995; Huang and Lu 2009; Li et al. 2005). The corresponding results show that 
such effects produce non-negligible changes in the relative permeability curves of partially 
saturated porous media and, thus, that disregarding them may lead to interpretation errors. 
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To our knowledge, all of the above-mentioned studies were performed under steady-state and 
viscous-dominated flow conditions. However, in many pertinent scenarios in geophysics, such 
as flow generated by a passing seismic wave, pressure gradients and pore fluid velocities are 
of oscillatory nature and present inertial effects (e.g., Johnson et al. 1987; Zhou and Sheng 
1989). To date, the effects of viscous coupling on the relative permeability curves under oscil-
latory flow conditions accounting for inertial effects remain largely unexplored.

When studying oscillatory flow scenarios, the viscous skin depth, that is, the spatial exten-
sion within the fluid with respect to the pore walls where viscous effects dominate over inertial 
effects, decreases with the angular frequency � . For sufficiently high frequencies, the viscous 
skin depth becomes smaller than the pore size, and thus, inertia affects the flow characteris-
tics. As such, Darcy’s law in its classical form is no longer valid and several researchers have 
proposed to define a complex-valued and frequency-dependent permeability (e.g., Johnson 
et al. 1987; Zhou and Sheng 1989). This parameter, usually referred to as dynamic perme-
ability �(�) , correctly accounts for (i) the out-of-phase motion of the fluid with respect to the 
pressure forcing and (ii) the flux reduction occurring at sufficiently high frequencies due to 
inertial effects. The dynamic permeability concept is of fundamental importance in the con-
text of seismic (e.g., Biot 1962; Pride 2005) and seismoelectric analyses (e.g., Pride 1994; 
Jardani and Revil 2015). Even though the behavior of �(�) has been extensively explored for 
monosaturated porous media (e.g., Johnson et al. 1987; Sheng and Zhou 1988; Charlaix et al. 
1988; Zhou and Sheng 1989; Chapman and Higdon 1992; Smeulders et al. 1992; Pride et al. 
1993; Müller and Sahay 2011; Huber and Su 2015; Li et al. 2021), the corresponding behavior 
under partially saturated conditions has not yet been rigorously explored. Revil and Mahardika 
(2013) proposed an empirical model to account for a saturation dependence in the effective 
dynamic permeability of the wetting phase in the context of seismoelectric studies. More 
recently, Solazzi et al. (2020) have proposed an approach to compute the effective dynamic 
permeability functions of partially saturated media using bundle-of-tube models and the con-
cept of capillary pressure equilibrium. However, both of these works disregard fluid–fluid 
interactions. As far as the authors know, Auriault et al. (1989) is the only work that accounts 
for dynamic permeability estimates of partially saturated media using the generalized two-
phase Darcy equations. The employed homogenization procedure is, however, highly com-
plex and the expressions for the dynamic permeabilities are not explicitly given. Consequently, 
more work is needed to provide explicit simplified solutions for the dynamic permeability of 
partially saturated media accounting for interfacial coupling in general and for viscous cou-
pling in particular.

In this work, we explore the effects of viscous coupling on dynamic relative permeability 
functions of partially saturated porous media under oscillatory flow conditions. To this end, 
we consider a simple analogous model, inspired by the work of Yuster (1951), in which con-
centric flow is assumed in cylindrical capillaries. We derive closed analytical expressions for 
the dynamic relative permeabilities, which are valid across the entire frequency range. Finally, 
we analyze the behavior of the corresponding functions for different viscosities, densities, fre-
quencies, and saturations.



	 S. G. Solazzi et al.

1 3

2 � Theoretical Background

In this section, we briefly summarize the (i) classic and (ii) generalized/extended Darcy equa-
tions for immiscible two-phase flow in porous media for viscous-dominated flow. Based on 
Darcy’s equation for single-phase flow, we introduce the concept of dynamic permeability. 
The latter will be extended to partially saturated scenarios in Sect. 3 of this paper.

2.1 � Classic Two‑Phase Flow Equations in Porous Media

The traditional two-phase flow formulation of Darcy’s law is given by (Bear 1972)

where vi denotes the Darcy velocity for phase i, being either the wetting w or non-wetting 
fluid phase n, and pi the fluid pressure. The mobilities �i respond to

where �i is the dynamic viscosity of the fluid, � the intrinsic permeability determined by 
the structure of the porous medium alone, and �ri the relative permeability of phase i. The 
latter is commonly related to the wetting fluid saturation Sw and to the pore space character-
istics (e.g., Mualem 1976; Burdine 1953).

Recall that the Darcy velocity for phase i, that is, vi , is a volume average of the corre-
sponding microscopic fluid velocity wi relative to the pore walls (e.g., Auriault et al. 1985)

where Vt is the total volume of a representative elementary volume (REV) of the porous 
medium of interest, Ωp is the dominium associated with the pore space, � is the porosity, 
and ⟨⋅⟩ denotes the average over the pore space of the REV. Note that wi is zero for the Ωp

-regions in which the i-phase is absent. As previously mentioned, if one wishes to account 
for the effects of viscous coupling in the two-phase flow equations, Eq. (1) needs to be 
modified.

2.2 � Generalized Two‑Phase Flow Equations in Porous Media

Given that, at the pore scale, flowing immiscible fluids may interact across their respec-
tive interfaces (Fig. 1), several theoretical approaches have been proposed to account for 
fluid–fluid momentum transfer in multiphase flow in porous media (e.g de Gennes 1983; 
Bachmat and Bear 1986; de la Cruz and Spanos 1983; Whitaker 1986; Kalaydjian 1987, 
1990). The generalized two-phase flow equations in porous media respond to (e.g., Dullien 
and Dong 1996)

(1)vi = −�i∇pi, for i = [w, n],

(2)�i =
�ri�

�i
, for i = [w, n],

(3)
vi =

1

Vt
∫Ωp

wi dΩp, for i = [w, n],

= � ⟨wi⟩,

(4)vw = −�ww∇pw − �wn∇pn,

(5)vn = −�nw∇pw − �nn∇pn,
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where �ij are the generalized mobilities, which are given by

with �
r
j

i

 denoting the generalized relative permeability coefficients. The off-diagonal coeffi-
cients �rn

w
 and �rw

n
 account for interfacial coupling between the fluid phases. Please note that, 

in the context of Eqs. (4) and (5), the indexes i and j in the relative permeabilities �
r
j

i

 are to 
be interpreted as follows: (i) the subindex i makes reference to the flowing phase that is 
affected by the corresponding relative permeability and (ii) the subindex j indicates the 
pressure gradient ( ∇pj ) which is modulated by the corresponding term. For instance, �rn

w
 

modulates the effect of ∇pn on vw . We remark that Eq. (3) is also behind the definition of 
vw and vn in this formulation.

As previously stated, the effects of viscous coupling on two-phase flow through 
porous media have been analyzed through laboratory (e.g Avraam and Payatakes 1995, 
1999; Roman et  al. 2016, 2020) and numerical (e.g, Gunstensen and Rothman 1993; 
Li et al. 2005) experiments. In general, it is observed that an increment in the viscos-
ity ratio M = �n∕�w leads to a significant increase in �rn

w
 and �rn

n
 . The non-wetting phase 

experiences an apparent hydraulic slip, usually referred to as lubricating slip, due to 
wetting films located near the pore walls, which increases with M. Conversely, the terms 
�rw

n
 and �rw

w
 are virtually insensitive to variations in the viscosity ratio M. Interestingly, 

some works indicate that the cross-term mobilities should be identical �rw
n
∕�w ≡ �rn

w
∕�n , 

which is known as the Onsager reciprocity (e.g., Gunstensen and Rothman 1993). It is 
important to mention that crossed mobility terms may show different values when irre-
versible processes take place, such as mobilization of isolated fluid ganglia or bubbles 
(e.g., Li et al. 2005; Avraam and Payatakes 1995, 1999). The purpose of this paper is to 
explore the effects of viscous coupling extending Eqs. (4) and (5) to the entire frequency 
range in the context of oscillatory flow. For this, we will make use of the concept of the 
frequency-dependent dynamic permeability �(�).

(6)�ij =
�
r
j

i

�

�j
, for i, j = [w, n],

Non-wetting phase
Wetting phase
Solid matrix

Fig. 1   Schematic illustration of two-phase flow in a porous medium and blowup of a possible flow patterns. 
Dark red and blue arrows denote the flow patterns at the macroscopic scale (left panel) and at the pore scale 
(blowup)
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2.3 � Dynamic Permeability

In most studies on Darcy flow, the permeability � is considered to be real-valued and 
frequency-independent. This is indeed valid as long as the fluid flow through the pore 
space is viscosity-dominated, that is, when the viscous skin depth is greater than the 
characteristic pore size (Johnson et  al. 1987). However, in the presence of oscillatory 
pressure forcing, inertial effects increase with frequency and viscous boundary layers 
may develop along the pore walls. This physical process is evidenced as a decrease in 
the flow rate and a phase shift between the hydraulic pressure variations and the fluid 
flow. In this context, the classic formulation of Darcy’s law is no longer valid. To cir-
cumvent this issue, several investigators have proposed to generalize the classic mon-
osaturated Darcy’s law through the introduction of a complex-valued and frequency-
dependent permeability (e.g., Johnson et  al. 1987; Sheng and Zhou 1988; Zhou and 
Sheng 1989)

where � = 2�f  is the angular frequency and f denotes the linear frequency.
The behavior of �(�) with frequency is controlled by both viscous and inertial 

forces. The transition from viscous- to inertia-dominated flow occurs at the so-called 
critical angular frequency �c , for which the characteristic pore radius Rp of the medium 
becomes comparable to the viscous skin depth (e.g.,Johnson et al. 1987)

with � = �∕� denoting the kinematic viscosity and � the fluid density (Johnson et al. 1987). 
Please note that the dynamic permeability �(�) does not only depend on the properties of 
the porous medium alone, but also depend on the physical properties of the saturating fluid 
( � and � ), and on the angular frequency �.

In the following, we employ the concept of the dynamic permeability to extend Eqs. 
(4) and (5) to the entire frequency range. As outlined below, we do so by including all 
saturation- and frequency-dependent effects in new complex-valued and frequency-
dependent relative permeability functions �

r
j

i

(�, Sw) . For the latter to be valid, the 
derived �

r
j

i

(�, Sw) functions need to converge to their real-valued counterparts for suffi-
ciently low frequencies.

3 � Model Development

In this section, we derive closed analytical expressions for the dynamic relative permeabil-
ity functions of partially saturated porous media accounting for viscous coupling effects. 
For this purpose, we use a simple pore-scale analog model and solve Navier–Stokes equa-
tions under oscillatory flow conditions at the microscopic scale, accounting for suitable 
boundary and interface conditions. Finally, we use the generalized two-phase flow Darcy 
equations to obtain the extensions of the relative permeability functions to the entire fre-
quency range.

(7)v(�) = �⟨w⟩ = −
�(�)

�
∇p(�),

(8)�c ≃
2�

R2
p

,
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3.1 � Pore‑Scale Characterization

In the presence of a fluid pressure gradient, pore fluids follow preferential flow paths through 
the pore space. These flow channels are hereby conceptualized using a capillary tube geom-
etry. Even though this pore-scale geometry constitutes an obvious oversimplification, models 
based on such an approach have a long history (Kozeny 1927) and have proved to be highly 
effective for the macroscopic description of the hydraulic characteristics of porous media (e.g., 
Guarracino 2007; Nguyen et al. 2021). In this work, we consider a porous structure composed 
of capillary tubes of a single characteristic radius R saturated concentrically with two differ-
ent fluid phases (Fig. 2a). This setup was previously proposed by Yuster (1951) and Bacri 
et al. (1990) to study the effects of viscous coupling in steady-state Poiseuille-type flow. The 
non-wetting fluid saturates the center of the capillary ( 0 ≤ r ≤ R1 ), while the wetting phase 
saturates the annular space between the non-wetting phase and the pore wall ( R1 < r ≤ R ) 
(Fig. 2b), with r being the radial coordinate. The proposed mechanistic description of oscil-
latory fluid flow processes is then upscaled to the REV scale using the generalized Darcy’s 
law. We therefore wish to extend the steady-state solutions derived by Yuster (1951) and Bacri 
et al. (1990), which are summarized in “Appendix 1,” to the entire frequency range.

In the context of the model described in Fig. 2, the expressions for the non-wetting Sn and 
wetting Sw phase saturations, the porosity � , and the permeability � respond to

(9)Sn =
R2
1

R2
,

(10)Sw =
R2 − R2

1

R2
,

(11)� =
Np��R

2

L2
,

b)a)
R1

R

L

Fig. 2   Illustration of the considered analog pore-scale model. a Representative elementary volume (REV) 
of the porous medium of interest and b a blowup of the annular saturation pattern. Within the capillaries, 
light blue denotes the wetting and dark red the non-wetting fluid phase
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respectively. In Eqs. (11) and (12), L is the sidelength of the cubic REV, � = Lp∕L is the 
tortuosity, with Lp > L denoting the length of the flow channels, and Np is the number of 
capillaries in the REV.

3.2 � Mathematical Formulation of the Problem

3.2.1 � Oscillatory Flow in a Partially Saturated Capillary

Let us consider a homogeneous, isotropic, porous solid, saturated with a Newtonian fluid. 
Any process that perturbs the pore fluid pressure, such as, the passage of a seismic wave, 
will generate fluid displacements relative to the pore walls. Hereafter, without loss of gen-
erality for the considered problem, we assume that pore walls are still. The microscopic 
motion of the fluid phase within the medium is described by the Navier–Stokes equation 
(e.g., Landau and Lifshitz 1959)

where w is the fluid velocity at the microscopic scale, p the fluid pressure, t the time, and 
� the secondary viscosity coefficient. Here, f� denotes the surface tension force, which, 
assuming constant interfacial tension � , responds to (e.g., Tryggvason et al. 2011)

where n is the unit normal vector with respect to the interface, � is the mean curvature of 
the interface, and �S is a delta function that takes a unit value on the interface between flu-
ids and is null elsewhere.

Following Johnson et al. (1987), we shall assume that the solid matrix is rigid and that 
the pore space is saturated with an incompressible ( ∇ ⋅ w = 0 ) fluid. Please note that the 
fluid can indeed be regarded as incompressible at the pore scale provided that the prevail-
ing acoustic wavelengths in the fluid are much larger than the typical pore size (Johnson 
et al. 1987; Charlaix et al. 1988; Zhou and Sheng 1989). We also assume that the fluid flow 
within the pore space is characterized by a small Reynold’s number, such that laminar flow 
prevails (Johnson et al. 1987; Smeulders et al. 1992). Then, Eq. (13) reduces to

Considering a cylindrical capillary whose axis is oriented in the direction z and assum-
ing that (i) the radial and angular components of the fluid velocity are null, that is, 
w = [0, 0, w(r)] and that (ii) capillary forces act radially, in agreement with the concentric 
flow model, Eq. (15) can be expressed in cylindrical coordinates as (Landau and Lifshitz 
1959)

(12)� =
�R2

�28
,

(13)�

[
�w

�t
+ (w ⋅ ∇)w

]
= −∇p + �Δw + (� +

1

3
�)∇(∇ ⋅ w) + f� ,

(14)f� = ��n�S,

(15)�
�w

�t
+ �(w ⋅ ∇)w = −∇p + �Δw + f� .

(16)
�p

�r
= −���S,
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On the one hand, Eq. (16) expresses the continuity of the normal stress at the fluid–fluid 
interface which, considering the Young–Laplace equation for a cylindrical interface, is sat-
isfied if the capillary force is counteracted by a fluid pressure jump at r = R1 , that is, 
pn = pw +

�

R1

 (e.g., Coward et  al. 1995). Note that this condition implies the equality 
∇pw = ∇pn must be fulfilled for concentric flow to occur (e.g., Picchi and Battiato 2018). 
On the other hand, Eq (17) expresses the momentum conservation of the system in the 
axial direction. Let us define the external forcing exerted to the pore fluid in the z direction 
as

and consider that both the relative fluid velocity and the forcing term present an oscilla-
tory form given by w = ŵ e−i𝜔t and X = X̂ e−i𝜔t , respectively, with i denoting the imaginary 
unit. Then, Eq. (17) can be expressed in the space frequency domain as

where k =
√
i��∕� can be conceptualized as the wave number of the oscillatory process 

(Johnson et al. 1987). By taking w̃(r) = ŵ −
X̂

k2𝜂
 , the corresponding equation reduces to a 

Bessel-type differential equation

Please note that this equation holds for two immiscible fluid phases flowing concentrically 
in a cylindrical capillary (Fig. 2) and is the key expression to be solved in this work. In the 
context of the proposed model, the relative fluid velocities with respect to the pore walls 
respond to

The general solution for the Bessel equation (Eq. 20) is a combination of zeroth-order Bes-
sel functions J0 and Y0 of the first and second kinds, respectively (Abramowitz and Stegun 
1965)

where ℭj

1
 and ℭj

2
 , with j = n,w , are four integration constants that can be computed from 

the boundary conditions of the problem, which are detailed in the next section.

(17)
�

�

�w(r)

�t
= −

1

�

�p

�z
+

�2w(r)

�r2
+

1

r

�w(r)

�r
.

(18)X =
�p

�z
,

(19)
[
𝜕2

𝜕r2
+

1

r

𝜕

𝜕r
+ k2

]
ŵ(r) =

X̂

𝜂
,

(20)
[
𝜕2

𝜕r2
+

1

r

𝜕

𝜕r
+ k2

]
w̃(r) = 0.

(21)ŵ(r,𝜔) =

{
ŵn(r), for r = [0,R1],

ŵw(r), for r = [R1,R].

(22)ŵn(r,𝜔) =
X̂n

𝜂nk
2
n

+ ℭ
n
1
J0(knr) + ℭ

n
2
Y0(knr), for r = [0,R1],

(23)ŵw(r,𝜔) =
X̂w

𝜂wk
2
w

+ ℭ
w
1
J0(kwr) + ℭ

w
2
Y0(kwr), for r = [R1,R],
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3.2.2 � Boundary Conditions of the Problem

In order to obtain the relative velocities of both fluid phases (Eqs. 22 and 23) and, through 
them, derive the expressions for the Darcy velocities (Eq. 3) and dynamic relative permea-
bilities �

r
j

i

 (Eqs. 4 and 5), we need a set of suitable boundary conditions. To this end, we 
consider the following: (i) a non-diverging relative velocity at the center of the capillary; 
(ii) a no-slip condition at the pore walls; continuity of (iii) the shear stresses and of (iv) the 
velocity at the interface between fluids.

The first assumption implies that the relative velocity ŵn value at r = 0 must be 
finite. Given that second-kind Bessel functions present a singularity at the origin, that is, 
limr→0Y0(knr) = ∞ , the ℭn

2
 term has to be null for ŵn to be non-diverging in Eq. (22). Con-

versely, the no-slip assumption at the pore walls implies that ŵw|(r=R) = 0 , which, consider-
ing Eq. (22), reduces to

On the other hand, we have the continuity of the fluid shear stress 𝜏j = 𝜂jdŵj∕dr at the 
interface r = R1 , which results in

where J1 and Y1 denote the first-order Bessel functions of the first and second kinds, 
respectively.

Finally, at the interface between the immiscible fluids, we impose the continuity of fluid 
relative velocities for the phases 

(
ŵw − ŵn

)
|(r=R1) = 0 , which, using Eqs. (22) and (23), 

yields

Equations (24), (25), and (26) constitute a linear system of equations that can be solved 
analytically to obtain ℭw

1
 , ℭw

2
 , and ℭn

1
 . The inferred expressions were verified using the soft-

ware Mathematica (Wolfram Research, Inc. 2021). Once these constants are obtained, we 
can compute the relative velocities of both fluid phases (Eqs. 22 and 23).

3.3 � Analytical Solution of the Problem

The macroscopic Darcy velocities for the wetting and non-wetting phases can be obtained 
by means of Eq. (3), that is, by averaging the corresponding relative velocities ⟨ŵj⟩ over the 
cross section of the capillaries and multiplying the latter with the porosity �

Once again, these integrals can be solved analytically in the context of the proposed model. 
Comparing the corresponding results with Eqs. (4) and (5), we obtain the following expres-
sions for the dynamic mobilities

(24)ℭ
w
1
J0(kwR) + ℭ

w
2
Y0(kwR) = −

X̂w

𝜂wk
2
w

.

(25)�wkwℭ
w
1
J1(kwR1) + �wkwℭ

w
2
Y1(kwR1) − �nknℭ

n
1
J1(knR1) = 0,

(26)ℭ
w
1
J0(kwR1) + ℭ

w
2
Y0(kwR1) − ℭ

n
1
J0(knR1) =

(
X̂n

𝜂nk
2
n

−
X̂w

𝜂wk
2
w

)
.

(27)v̂w(𝜔) =
𝜙

𝜋R2
2𝜋 ∫

R

R1

rŵw(r,𝜔)dr, v̂n(𝜔) =
𝜙

𝜋R2
2𝜋 ∫

R1

0

rŵn(r,𝜔)dr.



Dynamic Relative Permeabilities for Partially Saturated Porous…

1 3

The expressions for the coefficients S , Mj , and Lj are summarized in “Appendix 2.” In 
order to simplify the interpretation of the derivation and of the corresponding analytical 
solution, we detail the notation used in this work in “Appendix 3.”

The corresponding dynamic relative permeabilities are given by

These closed analytical expressions are the essential result of this work. We present the 
equations and coefficients in terms of the characteristic radius R. However, in the context 
of our model R =

√
8�2�∕�, and thus, the corresponding equations can alternatively be 

expressed in terms of κ and � . It is important to remark here that, as evidenced in Eqs. (50) 
to (70), the kinematic viscosities of the fluids �n = �n∕�n and �w = �w∕�w play a key role in 
determining the dynamic relative permeabilities.

4 � Results

4.1 � Dependence on Saturation

Relative permeabilities are commonly analyzed as functions of the wetting phase satura-
tion (e.g., Bear 1972). Let us then analyze the behavior of the above-defined dynamic rela-
tive permeabilities �

r
j

i

(�) (Eqs. 32 to 35) as functions of Sw for different frequencies f. For 
this, we consider a simple porous medium, as described by Fig. 1, characterized by � = 1 
and R = 100 μ m. We take water and oil as the saturating fluids, the former having a density 
�w = 1000 kg m−3 , and the latter one of �n = 700 kg m−3 , thus resulting in a density ratio of 

(28)�ww(�) = −
�

�R2

M0

M1

,

(29)�wn(�) = −
�

�R2

S

M1

,

(30)�nw(�) = −
�

�R2

(
L1 − L2

)

M2

,

(31)�
nn
(�) = −

�

�R2

(
L
3

M
3

+ 1

)
L
4
.

(32)�rw
w
(�) =

�w

�
�ww(�),

(33)�rn
w
(�) =

�n

�
�wn(�),

(34)�rw
n
(�) =

�w

�
�nw(�),

(35)�rn
n
(�) =

�n

�
�nn(�).
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N = 0.7 . In the following, the water viscosity is taken as �w = 0.001 Pa s. For oil, we con-
sider two viscosities: (i) �n = 0.01 Pa s and (ii) �n = 0.001 Pa s, which, in turn, correspond 
to viscosity ratios of M = 10 and M = 1 , respectively. These two scenarios allow us to dis-
cern the effects of the viscosity ratio M on the dynamic relative permeability curves.

Figure 3 shows the real part of the relative permeabilities �
r
j

i

(�) as a function of Sw 
for different frequencies. We consider f = 1 Hz (black lines), f = 100 Hz (blue lines), 
and  f = 1000 Hz (red lines). The top row (Fig. 3a, b) corresponds to the relative per-
meabilities �rw

w
 and �rn

w
 , which modulate the Darcy velocity of water vw . The bottom 

row (Fig. 3c, d) corresponds to the relative permeabilities �rw
n
 and �rn

n
 , which modulate 

the Darcy velocity of oil vn . The left (Fig.  3a, c) and right (Fig.  3b, d) columns are 
associated with the relative permeabilities that modulate the effects of the pressure 
gradients of the wetting and non-wetting phases ∇pw and ∇pn , respectively, on the flow 
characteristics. Recall that we consider two scenarios for the oil viscosity: (i) M = 1 
(dashed lines with square markers) and (ii) M = 10 (solid lines). Let us first analyze 
the response of the medium for f = 1 Hz (black lines). In this relatively low-frequency 
range, and for the considered medium and fluid properties, fluid flow lies in the vis-
cous regime, and thus, it can be shown that the relative permeabilities replicate those 
predicted by Yuster (1951) and Bacri et al. (1990) (“Appendix 1”). We observe that �rw

w
 

for different values of M (Fig. 3a) increases with Sw and that the behavior is similar for 
different M. This shows that, for this frequency, �rw

w
 is not affected by viscous coupling 
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Fig. 3   Real part of the dynamic relative permeabilities as functions of saturation S
w
 for frequencies of f = 1 

Hz (black lines), f = 100 Hz (blue lines), and f = 1000 Hz (red lines). The wetting fluid is water and the 
non-wetting fluid is oil, which results in a density ratio of N = 0.7 . We consider two different oil viscosities, 
which result in two viscosity ratios: M = 1 (dashed lines with squared markers) and M = 10 (solid lines). 
The medium is characterized by a tortuosity and a pore radius of � = 1 and R = 100 μ m, respectively
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effects. Conversely, �rn
n
 (Fig.  3d) monotonically decreases with Sw for M = 1 (dashed 

black line) while it increases ( 0 < Sw < 0.4 ), presenting values greater than unity, and 
then decreases ( 0.4 < Sw < 1 ) for M = 10 (solid black line). This behavior is also 
expected, as the non-wetting phase experiences an apparent hydraulic slip, usually 
referred to as lubricating slip, due to the presence of a wetting film located near the 
pore walls (e.g., Li et al. 2005). The greater the value of M is, the greater is the effect 
of slip on the �rn

n
 . Also for f = 1  Hz (black lines), we note a large variation in the 

crossed term �rn
w
 (Fig. 3b) with increasing M (compare dashed and solid lines), indicat-

ing that, for M = 10 , the pressure gradient acting on the non-wetting phase increases 
its capability to drag the wetting phase into flow. Conversely, the remaining crossed 
term �rw

n
 is virtually insensitive to M for this relatively low frequency. Finally, we 

remark that even though, in the low-frequency range, the crossed terms present identi-
cal behaviors for M = 1 and their corresponding responses diverge for M ≠ 1 , the rela-
tion �rw

n
∕�w ≡ �rn

w
∕�n holds in all cases.

Let us now analyze the response of ℜ{�
r
j

i

(Sw,�)} as a function of saturation for fre-
quencies of f = 100  Hz and f = 1000 Hz, for which inertial effects start to prevail. We 
observe that ℜ{�

r
j

i

(Sw,�)} decreases with frequency, irrespective of the saturation 
(Fig. 3). Note that a similar behavior was reported by Solazzi et al. (2020), who ana-
lyzed the effective dynamic permeabilities disregarding viscous coupling effects. Fig-
ure 3 shows that, for M = 1 (dashed lines), the dynamic relative permeabilities do not 
differ significantly for f = 1 Hz (black lines) and f = 100 Hz (blue lines). However, for 
M = 10 (solid lines), the dynamic relative permeabilities present a greater change 
when the frequency increases from 1 Hz (black solid lines) to 100 Hz (blue solid 
lines). The reason for this is that we are increasing M by increasing the non-wetting 
phase viscosity. The latter shifts �c toward lower frequencies (Eq. 8), and thus, inertial 
effects arise at lower frequencies. We thus observe the effects of both inertial and vis-
cous coupling on ℜ{�

r
j

i

} for M = 10 , while we only observe viscous coupling, but not 
inertia, in the corresponding curves for M = 1 . At the same time, we note that ℜ{�rn

w
} 

(Fig. 3b) and ℜ{�rw
n
} (Fig. 3c) show negative values for f = 1000 Hz and M = 10 (red 

solid lines) for 0.6 < Sw < 1 . This is a highly interesting characteristic, which is also 
present in the work of Auriault et  al. (1989), that cannot be accounted for without a 
frequency-dependent formulation accounting for viscous coupling.

For completeness, we illustrate the imaginary part of �
r
j

i

(
Sw,�

)
 (Fig. 4) as a function of 

saturation for frequencies of f = 1 Hz (black lines), f = 100 Hz (blue lines), and 
f = 1000 Hz (red lines). As previously shown in Fig. 3, we take M = 1 (dashed lines) and 
M = 10 (solid lines) by considering different non-wetting phase viscosities. We remark 
that the imaginary part in the dynamic permeability is associated with an out-of-phase 
motion between the pressure forcing and the resulting flux due to inertial effects (e.g., 
Johnson et al. 1987). As expected, ℑ{�

r
j

i

(Sw,�)} is virtually null for f = 1 Hz (black lines) 
for both M = 1 and M = 10 (Fig. 4). Also, we observe that, in the case of M = 1 (dashed 
lines), ℑ{�

r
j

i

} tends to increase with frequency. However, when M = 10 (solid lines), this is 
not the case. For example, Fig.  4a shows that, for M = 10 and saturations such that 
Sw < 0.9 , the values of ℑ{�rw

w
} associated with f = 100 Hz (blue solid lines) are greater 

than those associated with f = 1000 Hz (red solid lines). Conversely, for Sw > 0.9 the 
ℑ{�rw

w
} values for f = 1000 Hz (blue solid lines) are greater than those associated with 

f = 100 Hz (red solid lines). These effects are better appreciated analyzing the responses 
as functions of the frequency, which is done in the following.
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4.2 � Dependence on Frequency

The dynamic permeability in monosaturated porous media is commonly defined as a func-
tion of the frequency (e.g., Johnson et al. 1987; Sheng and Zhou 1988; Zhou and Sheng 
1989). In the following, we therefore analyze the real and imaginary parts of dynamic rela-
tive permeability curves as functions of frequency (Figs. 5 and 6). For this, we consider 
the fluids and porous media defined in the previous subsection. We depict the behavior for 
three saturations Sw of 0.3 (green lines), 0.6 (blue lines), and 0.9 (red lines).

Figure 5 shows the real part of the dynamic relative permeabilities as functions of 
frequency for different wetting phase saturations. We consider the dynamic relative per-
meabilities for M = 1 (dashed lines) and M = 10 (solid lines). As expected, we note that 
ℜ{�rw

w
} (Fig. 5a) increases with Sw while ℜ{�rn

n
} (Fig. 5d) decreases with Sw , for both 

M = 1 (dashed lines) M = 10 (solid lines). As predicted by the model of Yuster (1951) 
(Eqs. 46 and 49), we note that changing M has no effects on the low-frequency behavior 
of ℜ{�rw

w
} and ℜ{�rw

n
} , which are the terms that modulate flow induced by the water 

pressure gradient ∇pw . Conversely, we evidence a large increase in the values of ℜ{�rn
w
} 

(Fig. 5b) and ℜ{�rn
n
} (Fig. 5d) with increasing M. These terms modulate flow by ∇pn . A 

general characteristic of all dynamic relative permeabilities is that the onset of inertial 
effects is evidenced by the inflection of the curves occurring at �c . For increasing val-
ues of �n and, thus, of M, �c moves toward to lower frequencies. Figure 5a shows that, 
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Fig. 4   Imaginary part of the dynamic relative permeabilities as functions of saturation for frequencies of 
f = 1 Hz (black lines), f = 100 Hz (blue lines), and f = 1000 Hz (red lines). The wetting fluid is water and 
the non-wetting fluid is oil, which results in a density ratio of N = 0.7 . We consider two different oil vis-
cosities, which result in two viscosity ratios: M = 1 (dashed lines with square markers) and M = 10 (solid 
lines). The medium is characterized by a tortuosity and a pore radius of � = 1 and R = 100 μ m, respectively
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when considering M = 10 , two inflection points arise, which are not present for M = 1 . 
This implies that the effects of viscous coupling might generate deviations from the 
seemingly universal scaling law of the monosaturated dynamic permeability, which was 
proposed in several classical works (Johnson et al. 1987; Sheng and Zhou 1988; Zhou 
and Sheng 1989). This is an important feature, not present in the effective dynamic per-
meability curves in partially saturated porous media analyzed by Solazzi et al. (2020), 
which disregarded viscous coupling effects. Finally, we observe, once again, that non-
diagonal relative permeability terms may present small negative values in a restricted 
frequency range, located approximately between 80 and 200 Hz.

Figure 6 shows the imaginary part of the dynamic relative permeabilities as functions 
of frequency for different wetting phase saturations. We observe that the imaginary part 
of the dynamic relative permeabilities for M = 1 (dashed lines) shows a peak where 
the corresponding real parts showed an inflection in Fig. 5. Comparing the imaginary 
part of the dynamic permeabilities for M = 1 (dashed lines) and M = 10 (solid lines), 
we see, for all dynamic permeabilities, that the peak value shifts to lower frequencies 
for increasing M. Interestingly, in Fig. 6a, when considering M = 10 , we observe two 
peaks, whereas only one is present when disregarding viscous coupling effects ( M = 1 ). 
This feature was evidently depicted in Fig. 5a as two inflection points. We also evidence 
a large increase in the values of ℑ{�rn

w
} (Fig. 6b) and ℑ{�rn

n
} (Fig. 6d) for M = 10 (solid 
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Fig. 5   Real part of the dynamic relative permeabilities as functions of frequency for different wetting phase 
saturations S

w
 . We consider water and oil as saturating fluids, and saturations of 0.3 (green lines), 0.6 (blue 

lines), and 0.9 (red lines). We consider two different oil viscosities, which result in two viscosity ratios: 
M = 1 (dashed lines) and M = 10 (solid lines). The density ratio is taken as N = 0.7 . The medium is char-
acterized by a tortuosity and a pore radius of � = 1 and R = 100 μ m, respectively
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lines) compared to M = 1 (dashed lines), which is expected as the viscosity of the non-
wetting phase is increased tenfold to increase M.

5 � Discussion and Conclusions

We have presented an analytical model to compute viscous coupling effects on the relative 
permeability functions in the presence of oscillatory flow. For this, we have extended the 
dynamic permeability concept to porous media saturated by two immiscible fluid phases. 
The proposed model provides saturation- and frequency-dependent relative permeability 
functions, which account for momentum transfer between fluids.

Our results show that the real parts of the dynamic relative permeabilities decrease 
with frequency, with inflection frequencies that depend on the fluid viscosities and densi-
ties. Also, non-diagonal relative permeability terms may present small negative values in 
a restricted frequency range, an observation also made by Auriault et  al. (1989). These 
frequency-dependent effects are also visible in the imaginary parts of the dynamic relative 
permeabilities. In particular, the relative permeability terms �rn

w
 and �rn

n
 , which modulate 

the effects of the non-wetting fluid pressure gradient ∇pn on the flow, are very sensitive 
to the viscosity ratio, exhibiting variations with regard to the amplitudes and the critical 
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Fig. 6   Imaginary part of the dynamic relative permeabilities as functions of frequency for different wetting 
phase saturations S

w
 . We consider water and oil as saturating fluids, and saturations of 0.3 (green lines), 

0.6 (blue lines), and 0.9 (red lines). We consider two different oil viscosities, which result in two viscosity 
ratios: M = 1 (dashed lines) and M = 10 (solid lines). The density ratio is taken as N = 0.7 . The medium is 
characterized by a tortuosity and a pore radius of � = 1 and R = 100 μ m, respectively
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frequencies. On the other hand, the dynamic relative permeability terms �rw
w
 and �rw

n
 that 

modulate the effects of the wetting phase pressure gradient ∇pw on the flow may, on top of 
the latter effects, exhibit two characteristic frequencies due to viscous coupling effects for 
sufficiently high M values. When analyzed as a function of saturation Sw , we observe that 
the dynamic relative permeabilities may result in complex curves for increasing frequen-
cies, presenting values larger than unity for �rn

n
 and �rn

w
 for sufficiently large values of M.

A number of uncertainties arise as a consequence of the assumptions made in our ana-
lytical model. One obvious simplification adopted in this work is the capillary bundle 
assumption, which is motivated by the possibility of obtaining closed analytical expres-
sions for the dynamic relative permeabilities. As such, our model does not account for 
axial variations in pore cross sections associated with pore throats nor for multiple pore 
interconnections, which are known to produce deviations in monophasic dynamic perme-
ability functions (e.g., Pride et al. 1993; Huber and Su 2015). On the other hand, the con-
centric flow assumption implies that a (i) continuous interconnection exists between fluid 
phases and (ii) that capillary tension acts only in the radial direction. In this sense, research 
shows that the fluid–fluid interfacial area as well as the presence of isolated fluid ganglia 
is important parameters to account for when computing the relative permeability functions 
(e.g, Rakotomalala et al. 1995; Li et al. 2005; Roman et al. 2020). When fluid ganglia are 
present, capillary forces play a predominant role in the flow of the fluid phases, oppos-
ing the non-wetting fluid displacement and invalidating the concentric-type flow conditions 
(e.g., Badchin and Yuan 1997; Ayub and Bentsen 1999; Bentsen 2001). Such capillary 
coupling effects cannot be accounted for in the proposed analytical model, which focuses 
on viscous coupling effects alone. Further research is certainly needed to account for both 
viscous and capillary coupling effects when estimating the dynamic relative permeability 
estimates. Following classic two-phase flow extensions of Biot’s poroelasticity theory (e.g, 
Santos et al. 1990; Tuncay and Corapcioglu 1997; Lo et al. 2005; Jardani and Revil 2015), 
the proposed model disregards oscillatory saturation changes. However, we remark that 
this is an interesting process associated with drainage and imbibition characteristics, which 
merits further research.

Oscillatory flow characteristics play a key role in determining seismic and seismoelec-
tric signatures of partially saturated media. In this context, most works employ the classic 
theories of Biot (1956a, 1956b) and Pride (1994), developed for monosaturated scenar-
ios, using effective fluid properties (e.g., Barrière et al. 2012; Rubino and Holliger 2012; 
Bordes et  al. 2015; Solazzi et  al. 2017). As shown by Solazzi et  al. (2020), the use of 
effective fluids in Biot’s theory of poroelasticity may lead to errors in the estimation of the 
energy dissipated due to viscous flow. Our results further stress this point, showing that it 
is not possible for an effective fluid to account for the complexities associated with vis-
cous coupling effects, which, for example, may induce two inflection points in the dynamic 
permeability curves. In this context, experimental evidence shows that dissipation due to 
momentum transfer between immiscible fluid phases at the microscopic scale can have 
large effects on the macroscopic flow characteristics (Roman et al. 2020). Such effects are 
further enhanced when relatively small globules of trapped wetting phase fluids interact 
with a non-wetting phase.

A number of classical papers deal with extensions of Biot’s (1956a; b) theory to 
account for the effects of two immiscible fluid phases (e.g, Santos et  al. 1990; Tun-
cay and Corapcioglu 1997; Lo et al. 2005; Jardani and Revil 2015). Even though some 
of these works doconsider inertial coupling between saturating fluid phases by means 
of a coupling parameter (Santos et  al. 1990; Lo et  al. 2005), these models disregard 
cross-terms associated with interfacial coupling. As a result, biphasic extensions of 
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Biot’s (1956a; b) theory rely on Eq. (1) and, thus, on relative permeabilities which do 
not account for viscous coupling and, thus, are functions of the saturation only. Further 
research is needed to combine these formulations with an extended Darcy formulation 
(Eqs. 4 and 5), where dynamic relative permeability terms accounting for viscous cou-
pling can be employed. In this context, the proposed model may help to develop new 
and more consistent seismic and seismoelectric theories for partially saturated porous 
media. This possibility is of particular interest for studying the vadose zone, as uncon-
solidated soils are characterized by high permeabilities and, thus, present a transition 
from viscous- to inertia-dominated flow occurring at relatively low frequencies.

Appendix 1: Steady‑State Flow: Yuster’s Problem

Yuster (1951) and Bacri et  al. (1990) proposed an analogous model consisting of a 
porous structure composed of capillary tubes of a single characteristic radius saturated 
concentrically with two different fluid phases as the one described in Fig. 2. Recall that 
the non-wetting fluid saturates the center of the capillary ( 0 ≤ r ≤ R1 ) while the wet-
ting phase saturates the annular space between the non-wetting phase and the pore wall 
( R1 < r ≤ R ). Under the assumption that the relative fluid velocities are dependent upon 
the radial coordinate only, the steady-state flow responds to (Bacri et al. 1990)

where Ai and Bi are integration constants and are Xi =
�pi

�z
 . The boundary conditions are the 

same as the ones imposed in our approach, that is,

These equations, in combination with Eqs. (4), (5), and (27), allow us to determine the 
steady-state Darcy velocities

where the non-wetting phase saturation, the wetting phase saturation, the fluid viscosity 
ratio, and the permeability are given by

(36)wi =
1

4�i
Xir

2 + Ai log(r) + Bi, with i = w, n,

(37)wn|r=R1
=wn|r=R1

,

(38)ww|r=R =0,

(39)�n
�wn

�r
|r=R1

=�w
�ww

�r
|r=R1

,

(40)
�wn

�r
|r=0 =0.

(41)
vw = −

�

�w

[
Sw − 3SwSn − 2S2

n
log(Sn)

]
Xw −

�

�n
2MSn

[
Sw + Sn log(Sn)

]
Xn,

vn = −
�

�w
2Sn

[
Sw + Sn log(Sn)

]
Xw −

�

�n
S2
n

[
1 − 2M log(Sn)

]
Xn,



Dynamic Relative Permeabilities for Partially Saturated Porous…

1 3

respectively. Note that this formulation does not account for the tortousity, which is, how-
ever, accounted for in the proposed formulation. The relative permeabilities are therefore 
given by (Bacri et al. 1990)

Figure 7 shows a comparison between Yuster’s low-frequency solution (Eqs. 46 to 49) 
and the proposed frequency-dependent solution (Eqs. 28 to 31) for f = 1 Hz. We consider 
water as the wetting phase, while the non-wetting phase is chosen such that the viscosity 
ratio M and the density ratio N are both equal to unity M = N = 1 (Fig. 7a) and M = 1.5 
and N = 1 (Fig. 7b). The agreement between the curves proves that the model proposed 
in this work collapses to that of Yuster’s (1951) in the low-frequency viscosity-dominated 
regime.

Appendix 2: Coefficients of the Proposed Analytical Model

In the following, we give the expressions of the coefficients S , Mj , and Lj associated with 
Eqs. (282930) to (31). We do so in terms of the characteristic radius R. Please do, however, 
note that in our model the characteristic radius is defined as R =

√
8�2�∕�, and hence, the 

coefficients can alternatively be expressed in terms of κ and � . The coefficients respond to

(42)Sn =
R2
1

R2
,

(43)Sw =
R2 − R2

1

R2
,

(44)M =
�n

�w
,

(45)� =
�R2

8
,

(46)�rw
w
=
[
Sw − 3SwSn − 2S2

n
log(Sn)

]
,

(47)�rn
w
=2MSn

[
Sw + Sn log(Sn)

]
,

(48)�rn
n
=S2

n

(
1 − 2M log(Sn)

)
,

(49)�rw
n
=2Sn

(
Sw + Sn log(Sn)

)
.

(50)M0 = A + B + C +D + E + F,

(51)A =�wknk
2
w
�J0[knS

1∕2
n

R]
(
A1 +A2

)
,
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(52)A1 =J1[kwS
1∕2
n

R]
(
kwR

2SwY0[kwR] − 2RY1[kwR]
)
,

(53)A2 =Y1[kwS
1∕2
n

R]
(
−kwR

2SwJ0[kwR] + 2RJ1[kwR]
)
,

(54)B =�nk
2
n
kw�(kwR

2SwJ0[kwR] − 2RJ1[kwR])J1[knS
1∕2
n

R]Y0[kwS
1∕2
n

R],

(55)C =�nk
2
n
kw�J0[kwS

1∕2
n

R]J1[knS
1∕2
n

R](−kwR
2SwY0[kwR] + 2RY1[kwR]),

(56)D = − 2�nk
2
n
kw�S

1∕2
n

RJ1[knS
1∕2
n

R]J1[kwS
1∕2
n
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(57)E =2�nk
2
n
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n
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n

R],

(58)F =8�nk
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Fig. 7   Illustration of the relative permeability terms as functions of the wetting phase saturation S
w
 . We 

illustrate the predictions of the proposed approach at a frequency of f = 1 Hz (solid lines) and those given 
by the analytical solution of Yuster (1951) (crosses). We consider a pore radius of 100 μ m, water as the 
wetting phase, while the non-wetting phase is such that the viscosity ratios M and the density ratios N are a 
M = N = 1 and b M = 1.5 and N = 1
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and

where, once again, Jm and Ym the mth-order Bessel functions of the first and second kinds, 
respectively.

Appendix 3: Notation

f Linear frequency
f� Surface tension force
Jm Bessel function of the first kind of order m
ki Wave number of the oscillatory process
L Sidelength of the REV
Lp Pore length
M Viscosity ratio between the pore fluids
N Density ratio between the pore fluids
Np Number of pores in the REV
pi Pressure of the fluid phase i
Si Saturation of the fluid phase i
r Radial coordinate
R Pore radius for the annular flow model
Rp Characteristic pore radius
R
1

Inner radius for the annular flow model
vi Darcy velocity of the fluid phase i
v̂i Fourier transform of the Darcy velocity of phase i
Vt Volume of the REV

(63)L2 =
2�SnR
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n
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,

(64)L3 =2�wkwJ1[knS
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n

R]
(
J1[kwS

1∕2
n

R]Y0[kwR] − J0[kwR]Y1[kwS
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n

R
)
,

(65)L4 =
�SnR

2

(�nk
2
n
)
,

(66)M1 = − �wknk
4
w
(Q +R),

(67)M2 =kwS
1∕2
n

R(Q +R),

(68)M3 =knS
1∕2
n

R(Q +R),

(69)Q =�nknJ1[knS
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n

R]
(
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R]Y0[kwR] − J0[kwR]Y0[kwS
1∕2
n

R]
)
,
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R]
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n

R] − J1[kwS
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n

R]Y0[kwR]
)
,
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wi Pore-scale velocity of the fluid phase i
ŵi Fourier transform of the pore-scale velocity of phase i
Ym Bessel function of the second kind of order m
z Axial coordinate
� Mean curvature of the fluid–fluid interface
�S Delta function defined at the fluid–fluid interface
� Secondary viscosity coefficient
�i Dynamic viscosity of the fluid phase i
κ Absolute permeability
�ri Relative permeability of fluid phase i
�
r
j

i

Relative permeability of fluid phase i with respect to phase j
�i Mobility of the fluid phase i
�ij Generalized mobility of fluid phase i with respect to phase j
�i Kinematic viscosity of the fluid phase i
�i Density of the fluid phase i
� Capillary tension
� Tortuosity
� Porosity
� Angular frequency
�c Biot’s characteristic frequency
Ωp Dominium associated with the pore space
ℭ

w
1
 , ℭw

2
 , ℭn

1
 , ℭn

2
, Integration constants

L
1
 , L

2
 , L

3
 , L

4
Coefficients of the analytical model

M
0
 , M

1
 , M

2
 , M

3
Coefficients of the analytical model

S Coefficient of the analytical model
Xi Pressure gradient of phase i with respect to the axial direction
X̂i

Fourier transform of pressure gradient of phase i
w Subindex indicating wetting fluid association
n Subindex indicating non-wetting fluid association
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