
Compiling dynamic agent conversations1

Pierre Bonzon

HEC, University of Lausanne
1015 Lausanne, Switzerland

pierre.bonzon@unil.ch

Abstract. We consider defining executable dialogues for communicating agents.
Towards this end, we introduce agent classes whose communication primitives
are based on deduction. Their operational semantics are given by an abstract logi-
cal machine that is defined purely in sequential terms. These agents communicate
under the control of plans requiring a synchronization flag. These plans can be
rewritten as dialogues with an implicit synchronization. Reversibly, dialogues
can be compiled back into plans and then executed on the sequential machine.
Sub-dialogues can be entered from any dialogue, such achieving dynamic con-
versation structures.

1 Introduction

Communication in multi-agent systems can be exemplified using the FIPA proposal
[3]. In this approach, a set of normative communicative acts (or messages) is first de-
fined. They represent the buildings blocks of a dialogue between agents. At an aggre-
gated level, agent interaction protocols define generic sequences of messages repre-
senting a complete conversation (or dialogue) between agents. This enables agents to
anticipate each other response according to some conversation patterns. Although the
FIPA specifications contain predefined protocols, they do not impose upon agent to
follow these standards (i.e. agent developers can adopt their own protocols). Conver-
sations that are defined in this way have a fixed structure that can be laid down using
some kind of graphical representation. Formalisms that have been proposed for this
purpose include graphs generated by deterministic finite automata [3], colored Petri
nets [6], or UML sequence diagrams [7].

This approach can be qualified as static, in the sense that every possible move must
be made explicit beforehand and expressed in terms of alternative sequences of com-
municating acts (with possible feedbacks or resume). In particular, there is no provi-
sion for composing existing protocols on demand e.g., it is not possible for a given
protocol to call another protocol at run time, and thus define dynamic conversation
structures. In many ways, this situation is truly reminiscent of the early days of com-
puter programming i.e., at the time when programs were monolithic objects lacking
decomposition into procedures, function or subprograms. These programs, just like
FIPA protocols, were truly static objects, and there was no such thing as a stack of ac-
tivation records reflecting the dynamic embedding of successive procedure calls.

1 Revised version from Advances in Artificial Intelligence, LNAI, vol 2479, Springer Veralg 2002

mailto:Pierre.bonzon@unil.ch

We strongly believe that there is a definite need for dynamic conversation struc-
tures i.e., for a model of agent conversation that would include the embedding of suc-
cessive and/or nested protocol calls within a multi-agent system state. First of all, a
much higher degree of modularity and reusability could be thus achieved. Secondly,
and perhaps more importantly, this should allow for an easier diagnosis and recovery
from the various deadlocks that can occur in a conversation i.e., when one party fails
to answer as expected. We have been looking therefore for a model of dynamic con-
versation structures. Furthermore, we wanted to come up with a conversation lan-
guage that would lead to directly executable specifications.

As a prerequisite, a formal model of agent communication at the message level is
required. Recently, Hendriks and al. have advocated a new approach based on syn-
chronized pairs of communication primitives [5]. Defined as “neutral” actions enjoy-
ing a well-defined and clear semantics, these logical primitives can be used for many
different purposes, including the implementation of speech acts. In order for two
agents to communicate, both parties must first agree to an exchange (e.g., by indepen-
dently using an external exchange protocol based on these synchronized pairs). Each
exchange then involves either a deductive or an abductive task performed indepen-
dently by one of the agents. As an example (that we develop later), this can be used in
collaborative models to synchronize successive negotiation rounds as well as the suc-
cessive steps in each round.

In order to get executable specifications, the operational semantics of the complete
model must be given in sequential terms. Towards this end, we first extended a gener-
al model of individual agent with sensing [9] to include the notion of non-determinis-
tic plans (or nd-plans in short). Originally given in abstract functional terms, this
model was developed into a set of concrete procedures that represent a sequential ab-
stract machine generating runs for non-deterministic agents. We then integrated with-
in this framework a simplification of the communication model [5]. In the resulting
model [1], two agents communicate under the control of nd-plans requiring each a
synchronization flag. These plans are directly executable on our abstract machine (in
essence, a sequential machine with deductive capabilities).

Our goal in this paper is to try and obtain executable specifications of agent dia-
logues that do not require an explicit synchronization. Towards this end, we shall con-
sider a communication language that will be defined in terms of branching sequences.
This language will allow us to rewrite nd-plans as dialogues. Reversibly, dialogues
can be compiled back into nd-plans, and then executed on the original machine. Our
main result is that dialogues can be deterministically and simply sequentially executed
using a single pair of synchronization and sequencing flags. Furthermore, as sub-dia-
logues can be entered from any dialogue, we thus achieve dynamic conversation
structures.

The rest of this paper is organized as follows: in section 2, we review the definition
of deductive communicating agents. Section 3 proposes a language for writing agent
dialogues that are equivalent to nd-plans. Section 4 gives its operational semantics via
compiling functions for translating dialogues into nd-plans. This approach is finally
illustrated with an example of a multi-round negotiation.

2

2 A model of deductive communicating agents

As a prerequisite for the interpretation and/or compilation of executable agent dia-
logues, we first need to define and implement a model of communicating agents. To-
wards this end, we used and simplify the proposal made by Hendriks and al. [5]. Fol-
lowing a purely logical approach, they introduced two pairs of neutral communication
primitives i.e., tell/ask and req/offer that correspond to data exchanges enjoying a
well-defined semantics and can be used for many different purposes. In each pair, r is
designated as the receiver and s as the sender. The first pair can be defined as follows:

Message tell(r,ϕ) from sender s provides r with data ϕ, and message ask(s,ψ) from
receiver r expresses his willingness to solve a query ψ using any data sent by s.
Both messages are sent without reciprocal knowledge of what the other agent
wants or does. In particular, the data ϕ volunteered by s is not given in response to
r’s asking. If these two messages are put together through some kind of external
handshake or synchronization, then by using both his own knowledge and the data
ϕ told by s, receiver r will try and answer his query ψ. Formally, receiver r will
compute the most general substitution θ such that
 lr ∪ ϕ ψθ
where lr represents the local state of the receiver. As the unknown substitution
θ stands after the deduction sign , i.e. within the conclusion, this amounts to
a classical deductive task.

According to Hendricks & al., ψ in ask(s,ψ) can contain free variables but ϕ in
tell(r,ϕ) must be closed; furthermore, ls ϕ is not required (i.e., s is not required to
be truthful or honest). We shall illustrate this type of exchange through a simple ex-
ample. Let the local state lr of r be such that

lr father(abram,isaac) ∧ father(isaac,jacob)

and let us consider the following pair of messages
message sent by s: tell(r,∀XYZ father(X,Y) ∧ father(Y,Z) ⇒ grandfather(X,Z))
message sent by r: ask(s, grandfather(X,jacob)).

In this first scenario, s tells r a closed implication, and r asks s for some data that
could allow him to find out who is the grandfather of jacob. Using the data sent by s,
r is then able to deduce the substitution X=abram.

In contrast, the second pair can be defined as follows:

Message req(r,ϕ) from sender s requests r to solve query ϕ, and message
offer(s,ψ) from receiver r expresses his willingness to use data ψ for solving any
query submitted by s. When put together, these two messages will lead the receiv-
er r to find the possible instantiations of his free variables in ψ that allow him to
deduce ϕ. Formally, receiver r will compute the most general substitution θ such
that
 lr ∪ ψθ ϕ .
As the unknown substitution θ stands before the deduction sign , i.e. within
the premises, this amounts to a non-classical abductive task.

3

According to Hendricks & al., ϕ in req(r,ϕ) must be closed but ψ in offer(s,ψ)
can contain free variables; furthermore, lr ψ is not required, but lr ¬ψ is not
allowed. To illustrate this second type of exchange, let us consider the following pair
of messages

message sent by s: req(r, ∃X grandfather(X,jacob))
message sent by r: offer(s, father(X,Y) ∧ father(Y,Z) ⇒ grandfather(X,Z)).

In this second scenario, s requests r to find out if there is a known grandfather for
jacob. Independently, r offers s to abduce a substitution for the free variables in his ψ
that would allow him to answer. In this case, using his knowledge contained in lr and
the implication he offers, r can abduce the same substitution as before.

In both of the above exchanges, no data is sent back to s, and the corresponding
formal semantics captures the processing done by r only. In other words, the sender
will not be aware of the results of the receiver’s computation. For the sender to get
this result, a reversed exchange (e.g. an ask/tell) is needed. While this is perfectly ap-
propriate for the first type of exchange (after-all, the sender who volunteers data is
not necessarily interested in the receiver’s computations), we feel that, in the second
case, the sender who expresses a need for data should automatically benefit from the
receiver’s computations. Furthermore, as abductions are difficult to achieve and im-
plement, we favor exchanges that do not rely on abduction. Giving up the req/offer
pair, we thus defined and implemented instead a simplified call/return pair that relies
on deduction only and makes the results of the receiver’s computations available to
the sender. By doing so, we did end up with a less powerful model. It is interesting to
note however that all req/offer examples given in [5] can be expressed as call/return
invocations. In particular, if the receiver’s local state includes closed forms of his of-
fer ψ, then a req(r,ϕ)/offer(s,ψ) pair reduces to a call/return pair. This new pair is de-
fined as follows:

In the call(r,ϕ)/return (s,ψ) pair, both ϕ and ψ can contain free variables. This ex-
change is then interpreted as the sender s calling on r to instantiate the free vari-
able in his query ϕ. Independently, the receiver r is willing to match his query ψ
with the sender’s ϕ and return the instantiations that hold in his own local state.
Formally, receiver r will deductively compute the substitution θ s. t.
 ϕθ = ψθ and lr ψθ.
As indicated above, this information will be made available to the sender, i.e. sub-
stitution θ will be sent back to s.

To illustrate this, let us suppose that we now have

lr father(abram,isaac)∧father(isaac,jacob)∧
 ∀XYZ father(X,Y) ∧ father(Y,Z) ⇒ grandfather(X,Z)

message sent by s: call(r, grandfather(X,jacob))
message sent by r: return(s, grandfather(X,Y)).

This exchange is to be interpreted as s calling on r to find out the grandfather of ja-
cob i.e., to instantiate the free variable in his query. Independently, r is willing to
match the sender’s call and to return the substitutions that hold in his local state. Once

4

again the substitution X=abram will be found. In contrast to the previous exchanges
however, this information will be sent back to the sender.

3 A language for agent dialogues

In order to first get an intuitive feeling for the language we have implemented, we
shall start with an illustrating example. Towards this end, let us consider a simplified
version of the two-agent meeting-scheduling example of [5]. In this application, one
agent is designated as the host and the other one as the invitee. Both agents have free
meeting slots e.g.,

lhost meet(13) ∧ meet(15) ∧ meet(17)
linvitee meet(14) ∧ meet(16) ∧ meet(17)

and they must find their earliest common slot (in this case, 17). We shall make use of
a predicate epmeet(T1,T) meaning “T1 is the earliest possible meeting time after T ”,
defined as

meet(T1)∧(T1>=T)∧¬(meet(T′)∧(T′>=T)∧(T′<T1)) ⇒ epmeet(T1,T).

The solution involves successive negotiation cycles. The host has the responsibility
of starting each cycle with a given lower time bound T. A cycle comprises three steps,
each step involving a exchange of messages. In the first step, the host initializes a
call/return exchange calling on the invitee to find out his earliest meeting slot T1 after
T. In the second step, roles are swapped: the invitee initializes a call/return calling on
the host to find out his earliest meeting slot T2 after T1. In the third step, the host ei-
ther confirms an agreement on time T2 (if T1=T2) by initializing a tell/ask exchange,
or starts a new cycle with T2 as his new lower bound.

This solution can be informally expressed as follows:

“start with a call/return exchange,
 proceed with a return/call exchange,
 conclude with a tell/ask exchange or resume”

A formal rewriting under the form of two synchronized dialogues is then

dialog(invite(Invitee, T), [T1,T2],
 [call(Invitee,epmeet(T1,T)),
 return(Invitee,epmeet(T2,T1)),
 ((T1=T2 | [tell(Invitee,confirm(T2)),
 execute(save(meeting(T2)))]);
 (T1\=T2| [resume(invite(Invitee,T2))]))])

dialog(reply(Host),[T,T1,T2],
 [return(Host,epmeet(T1,T)),
 call(Host,epmeet(T2,T1)),
 ((T1=T2 | [ask(Host,confirm(T2)),
 execute(save(meeting(T2)))]);
 (T1\=T2| [resume(reply(Host))]))])

5

where “,” and “;” are sequence (or conjunctive) and alternative (or disjunctive) opera-
tors , respectively. Variables start with capital letters, and variables that are local to a
dialogue are listed before the messages. As it is quite apparent in this example, each
dialogue consists of a branching sequence of messages i.e., a sequence with an end al-
ternative. Similarly to lists, branching sequences can have an embedded structure. Un-
less they are resumed (with a resume message), dialogues are exited at the end of each
embedded branching sequence. Actions interleaved with messages can be executed
with an execute message. Although this simple example does not make use of this
possibility (for a more complex example, see section 5), sub-dialogues can be entered
(with an enter message) from any dialogue, such achieving dynamic conversation
structures. The corresponding BNF syntax is given below in fig. 1

<dialog> ::= dialog(<dialogName>(<dialogParams>),<varList>,<branchSeq>)

<varList> ::= [] || [<varName>|<varList>]

<branchSeq> ::= [] || [<alt>] || <seq>

<alt> ::= <guardMes> || (<guardMes>;<alt>)

<seq> ::= [<mes>|<branchSeq>]

<guardMes> ::= (<guard>|<branchSeq>)

<mes> ::= <messageName>(<messageParams>)

<messageName> ::= ask || tell || call || return || execute || enter || resume

Fig. 1. BNF productions

As usual, “|” separates the head and tail of a list i.e., [m1|[m2|…[]]]=[m1,m2,…].
We also use “|” to isolate the guard in a guarded message. To avoid confusion, we use
“||” as metasymbol for representing choices. We leave out the definitions for names,
parameters and guards, these being identifiers, first order terms and expressions, re-
spectively. Branching sequences permit end alternatives, but do not allow for starting
or middle alternatives i.e., cannot contain the list pattern [<alt>|<branchSeq>].

4 Compiling dialogues into nd-plans

In order to define the operational semantics of our language, we shall first implement
a multi-agent system under the form of an abstract machine. In this system, agents us-
ing the primitive messages defined in section 2 will communicate under the control of
non-deterministic plans using a synchronization flag. These plans are equivalent to di-
alogues with an implicit synchronization. Reversibly, dialogues can be compiled back
into plans and then executed on the sequential machine. As it is common, we shall
not distinguish here (at least until the end of section 6) between the term dialogue and
conversation.

6

4.1 An abstract machine for communicating agents with plans

Let us consider a multiagent system consisting of a class of identical agents. Similarly
to classical objects, we shall distinguish the class itself, considered as an object of
type “agent class”, and its class members i.e., the objects of type “agent instance”.
The class itself will be used both as a repository for the common properties of its
members (including the definition of the abstract machine), and as a blackboard for
agent communication. We shall consider purely communicating agents i.e., the envi-
ronment will be ignored, and thus there will be no agent sensing. We will also delay
the dynamic embedding of plans until we introduce the compilation of dialogues.
There will thus be no need yet to consider local variables, or to maintain stacks of ac-
tivation records. The local state of a class of agents will be defined by a vector l =
[lClass,l1…ln], where the components lClass and li are the local state of the class and its
members identified by an integer i=1…n, respectively. We will make use of a predi-
cate agent and assume that lClass agent(i) whenever agent i belongs to the class.

Messages exchanged between class members must use a data transport system. We
shall abstract this transport system as follows: any message sent by an agent (this
message being necessarily half of an exchange between a sender and a receiver, as in-
troduced in the previous section, with the exception of the resume message to be used
to reenter the same plan) will be first posted in the class. The class itself will then in-
terpret the message’s contents, wait for the second half of the exchange (thus achiev-
ing synchronization), and finally perform the computation on behalf of the receiver.
Each message will be blocking until the exchange’s completion i.e., no other ex-
change of the same type will be allowed between the sender and the receiver before
the exchange is completed.

Let us assume that the language defining each li includes a set P = {p1, p2, …} of
non-deterministic plan names (nd-plan in short) and four predicates plan, priority, do
and switch. For each agent i, its current plan pi ∈ P refers to a set of implications
“conditions” ⇒ do(pi, a), where a is an action. In the case of communicating agents,
actions will be identified with messages, and conditions will include a synchroniza-
tion flag sync referring to the successful execution of the preceding message. As an
example, let us consider the plans corresponding to the dialogues of section 3. In or-
der for the first cycle in each plan to be started, we will assume that flags
sync(dialog(invite(Invitee,T))) and sync(dialog(reply(Host))) have been raised before-
hand. The corresponding host and invitee plans i.e., invite(Invitee,T)) and reply(Host)),
are defined as follows

sync(dialog(invite(Invitee, T)))⇒
 do(invite(Invitee,T),call(Invitee,epmeet(T1,T)))

sync(call(Invitee,epmeet(T1,T))) ⇒
 do(invite(Invitee,T),return(Invitee,epmeet(T2,T1)))

sync(return(Invitee,epmeet(T2,T1)))∧ T1=T2 ⇒
 do(invite(Invitee,T),tell(Invitee,confirm(T2)))

sync(return(Invitee,epmeet(T2,T1)))∧ ¬(T1=T2) ⇒
 do(invite(Invitee,T),resume(invite(Invitee,T2)))

sync(dialog(reply(Host))) ⇒

7

 do(reply(Host),return(Host,epmeet(T1,T)))

sync(return(Host,epmeet(T1,T))) ⇒
 do(reply(Host),call(Host,epmeet(T2,T1)))

sync(call(Host,epmeet(T2,T1)))∧ T1=T2 ⇒
 do(reply(Host),ask(Host,confirm(T2)))

sync(call(Host,epmeet(T2,T1)))∧ ¬(T1=T2) ⇒
 do(reply(Host),resume(reply(Host)))

Message resume, used by an agent to reenter a plan, is interpreted by a state trans-
former function τi defined as

τi([lClass,… li,…], resume(p)) = [lClass, …li -{plan(_),sync(_)}∪ {plan(p),sync(dialog(p))},…]

Similarly, processes of priority n encompass implications “conditions” ⇒ do(n, a).
Let us further assume that each agent’s initial nd-plan p0

i and the class highest priority
n0 can be deduced from l, i.e. li plan(p0

i) and lClass priority(n0). The abstract ma-
chine that defines the run of a class as a loop interleaving individual agent run cycles
is then defined by the following procedure

procedure runClass(l)
loop for all i such that lClass agent(i) do

 if li plan(p0
i)

 then reacti(l,p0
i);

 if l Class priority(n0)
 then processClass(l,n0)

In each cycle, initial plans p0
i are activated by a procedure reacti. Synchronization

occurs though a procedure processClass. These procedures are defined as:

procedure reacti(l,pi)
if li do(pi, a)
then l ← τi(l,a)
else if li switch(pi, pi′)
 then reacti(l,pi′)

procedure processClass(l,n)
if l Class do(n, a)
then l ← τClass(l,a)
else if n > 0
 then processClass(l,n-1)

In each reacti call, the agent’s first priority is to carry out an action a from its cur-
rent plan pi. Otherwise, it may switch from pi to pi′, a recursive call to reacti leading in
turn to the same options. In any case, the next run cycle will again deduce and acti-
vate (possibly different) initial plans p0

i. If the switch predicate defines directed
acyclic graphs rooted at each possible p0

i, corresponding thus to a hierarchy of plans
with decreasing priorities and thus ensuring termination, then reacti will always select
the applicable nd-plan that has the highest implicit priority. This feature allows di-
recting an agent to adopt a new plan whenever a certain condition occurs. It is how-
ever not required to implement purely communicative agents and the else branch of

8

react will thus be ignored in the sequel. Similarly, processClass will execute the process
that has the highest explicit priority.

The state transformer function τs used to interpret message tell(r, ϕ) sent by s is

τs([lClass,…ls,…], tell(r,ϕ)) =
 if busy(tell(r,ϕ)) ∉ ls

 then [lClass∪ {ack(s,tell(r,ϕ))},… ls∪ {busy(tell(r,ϕ))},…]
 else [lClass,… ls,…]

The functions for messages ask(s,ψ), call(r,ϕ) and return(s,ψ) are similarly de-
fined. According to these functions, each message is thus first posted in the class, a
busy flag is raised in the agent state, and the message waits to be synchronized. Syn-
chronization occurs when two messages belonging to the same pair have been ac-
knowledged. This synchronization is triggered by two priority processes defined as

ack(s,tell(r,ϕ)) ∧ ack(r,ask(s,ψ))) ⇒ do(2, tellAsk(s,r,ϕ,ψ))
ack(s,call(r,ϕ)) ∧ ack(r,return(s,ψ)) ⇒ do(1, callReturn(s,r,ϕ,ψ))

The state transformer function τClass achieving synchronization is:

τClass([lClass,…ls,…lr,…],tellAsk(s,r,ϕ,ψ)) =
 if lr ∪ ϕ ψθ
 then [lClass - {ack(s,tell(r,ϕ)), ack(r,ask(s,ψ))},…
 ls-{busy(tell(r,ϕ)), sync(_)}∪{sync(tell(r,ϕ))},…
 lr-{busy(ask(s,ψ)), sync(_)}∪{sync(ask(s,ψθ))},…]
 else [lClass,… ls,…lr,…]

τClass([lClass,…ls,…lr,…],callReturn(s,r,ϕ,ψ)) =
 if ϕθ=ψθ and lr ψθ
 then [lClass - {ack(s,call(r,ϕ)), ack(r,return(s,ψ))},…
 ls-{busy(call(r,ϕ)), sync(_)}∪{sync(call(r,ϕθ))},…
 lr-{busy(return(s,ψ)), sync(_)}∪{sync(return(s,ψθ))},…]

 else [lClass,… ls,…lr,…]

In short, all the flags are removed and a new sync flag carrying the computation re-
sults is raised. To ensure a simple execution scheme, a single such synchronization
flag is used at any time.

 4.2 Compiling dialogues

The concrete operational semantics for the complete language of fig. 1 are finally giv-
en below in fig. 2. This definition takes the form of compiling functions for translat-
ing dialogues into nd-plans. It closely follows the BNF syntax given above, with an
exit message being automatically added at the end of each branching sequence. Each
compiled message is assigned a unique sequence number. This number is used to de-
fine the sequencing flag seq(D(I)) that will be raised when message with sequence
number I from dialogue D is executed. This flag in turn will be used as a sequencing
condition for the next message (recall that our abstract machine does not have a pro-

9

gram counter, and that execution is triggered by deduction). Sequencing conditions
are required to serialize successive messages that may have the same synchronizing
conditions and thus could otherwise not be distinguished (recall also that synchroniza-
tion occurs when the two messages belonging to a primitive pair have been acknowl-
edged: two distinct messages whose preceding pairs are identical will thus have the
same synchronizing condition). As an alternative solution, the sequence number
could be introduced in the synchronization flag.

As stated by the implication compiled by compmes, the condition for the execution of
message P(X) is var(Var)∧Sync∧seq(D(I)), where Sync is its synchronizing condition,
seq(D(I)) its sequencing condition (with I referring to the preceding message), and
Var is the list of local variables from the current dialogue. When this condition is

compdialog(dialog(D,Var,BranchSeq)) = {dialog(D,Var)} ∪
 compbranchSeq(D,Var,BranchSeq,sync(dialog(D)),0,0,N)

compbranchSeq(D,Var,[],Sync,I,J,J+1) = {var(Var)∧Sync∧seq(D(I)) ⇒ do(D,save(seq(D(J
+1))))∧

 do(D,save(var(Var)))∧
 do(D,exit(D))}

compbranchSeq(D,Var,[Alt],Sync,I,J,N) = compalt(D,Var,Alt,Sync,I,J,N)

compbranchSeq(D,Var,Seq,Sync,I,J,N) = compseq(D,Var,Seq,Sync,I,J,N)

compalt(D,Var,GuardMes,Sync,I,J,N) = compguardMes(D,Var,GuardMes,Sync,I,J,N)

compalt(D,Var,(GuardMes;Alt),Sync,I,J,N) = compguardMes(D,Var,GuardMes,Sync,I,J,K) ∪
 compalt(D,Var,Alt,Sync,I,K,N)

compseq(D,Var,[Mes|BranchSeq],Sync,I,J,N) = compmes(D,Var,Mes,Sync,I,J,K) ∪
 compbranchSeq(D,Var,BranchSeq ,sync(Mes),K,K,N)

compguardMes(D,Var,(Guard|BranchSeq),Sync,I,J,N) =
 compbranchSeq(D,Var,BranchSeq,Sync∧Guard,I,J,N)

compmes(D,Var,P(X),Sync,I,J,J+1) = if P ∈ {tell,ask,call,return,execute,enter,resume}
then {var(Var)∧Sync∧seq(D(I)) ⇒ do(D,save(seq(D(J

+1))))∧
 do(D,save(var(Var)))∧

 do(D,P(X))}

Fig. 2. Compiling functions

checked, the variables in the list Var will be unified with the corresponding variables
in Sync. Before P(X) is actually executed, the sequencing condition for the next mes-
sage will be updated into seq(D(J+1)), with J+1 referring to the current message. The
local variables will be similarly updated. As possible instantiations will be carried
over from Sync, this will allow for the result of the previous message to be taken into
account.

The last argument of each compiling function returns the last sequence number as-
signed by the function. Two input arguments i.e., I and J, provide the sequence num-
bers that are required to compile the sequencing conditions for the current and next
messages. When compiling end alternatives in function compalt, I keeps its value while
J is set to K, the current last sequence number. When compiling sequences in function

10

compseq, both I and J are set to K (globally, both I and J work similarly to the split sec-
ond hand of chronograph i.e., they eventually fly back to K, but under different condi-
tions).

When compiling end alternatives, function compalt similarly keeps its synchroniza-
tion flag Sync. In contrast, when compiling sequences [Mes|BranchSeq], function
compseq introduces a new synchronization flag sync(Mes). The exclusion of starting or
middle alternatives in branching sequences precludes the compilation of complex syn-
chronization flags of the form sync(Sync1)∨sync(Sync2)∨… that otherwise would prop-
agate in parallel and then possibly lead to backtracking on execution. Similar remarks
apply for sequencing flags i.e., like pure sequences, branching sequences can be seri-
alized using a single sequencing flag. In other words, this means that messages may
have at most one direct predecessor message. But, contrary to pure sequences, they
may have multiple successors. A simple sequential execution scheme can thus be
achieved by updating a single pair of sync and seq flags at each step. We have the fol-
lowing result, whose proof intuitively follows from the preceding remarks:

Proposition Dialogues based on branching sequences can be simply sequentially
executed (i.e. by using a single pair of synchronization and sequencing flags). Fur-
thermore, if all the guards in a given alternative are mutually exclusive, then this
execution will be deterministic.

Turning now to the interpretation of primitive messages (recall that tell, ask, call,
and return have been defined earlier), we have the following new state transition
functions, where a stack ti is used to store agent’s i current active dialogue embed-
ding:

τi([…<li,ti>,…], execute(a)) =
 if τi([…<li,ti>,…], a) = […<li′,ti>,…]
 then […<li′-{sync(_)}∪{sync(execute(a))},ti>,…]
 else […<li,ti>,…]

τi([…〈li,ti〉,…], resume(q)) =
 if dialog(q,v)∈ li
 then […〈li-{plan(_),var(_),seq(_), sync(_)}
 ∪{plan(q),var(v), seq(q(0)),sync(dialog(q))},ti〉,…]
 else {undefined}

τi([…〈li,ti〉,…], enter(q)) =
 if dialog(q,v)∈ li
 then if {plan(p),var(w),seq(p(s))}⊂ li
 then […〈li-{plan(_),var(_),seq(_),sync(_)}
 ∪{plan(q),var(v), seq(q(0)), sync(dialog(q))},
 push(ti,{p,w,s})〉,…]
 else […〈li-{sync(_)}∪{plan(q),var(v),seq(q(0)),sync(dialog(q))},ti〉,…]
 else {undefined}

τi([…〈li,ti〉,…], exit(q)) =
 if not empty(ti) and top(ti) = {p,w,s}
 then […〈li-{plan(_),var(_),seq(_),sync(_)} ∪{plan(p),var(w), seq(p(s)), sync(enter(q))},
 pop(ti)〉,…]
 else […〈li-{plan(_),var(_),seq(_),sync(_)},ti〉,…]

11

Contrary to entered dialogues, resumed dialogues are not stacked. They can thus be
used to implement reentrant monitors (see below in section 6).

5 Example: a multi-round negotiation

As an example of the complete language, let us consider the extension to n agents of
the meeting-scheduling problem. This solution involves successive rounds, each
round involving in turn successive cycles. The host dialogue initializes each round, di-
rectly followed by a general agreement or recursively by a new round. In each round,
the host will tell in turn each of the invitees (again through recursion) to reply and
then invite him for a negotiation cycle. Each such cycle will be initialized with the bi-
lateral agreement just reached between the host and the previous invitee. The round it-
self will end up with a tentative proposal handed over to the main host dialogue.

In their guest dialogue, invitees will ask for instructions and then either reply and
recursively ask for new instructions, or ask for the general agreement. In contrast to
the solution involving only two agents, the agreement phase (i.e., ask for confirmation
and then save the information) cannot directly follow a bilateral agreement, and thus
is not included in the invite/reply but in the host/guest dialogues. The dialogues are:

dialog(host(Att,T), [T1],
 [enter(round(Att,T,T1)),
 ((T=T1 | [enter(tellAll(Att,turn(end))),
 enter(tellAll(Att,confirm(T1))),
 execute(save(meeting(T1)))]);
 (T\=T1|[enter(host(Att,T1))]))])

dialog(round([Att1|AttR],T,T2), [T1],
 [tell(Att1,turn(reply)),
 enter(invite(Att1,T,T1)),
 ((AttR=[] | [execute(equals(T2,T1))]);
 (AttR\=[] | [enter(round(AttR,T1,T2))]))])

dialog(tellAll([Att1|AttR],C), [],
 [tell(Att1,C),
 ((AttR=[] | []);
 (AttR\=[] | [enter(tellAll(AttR,C))]))])

dialog(invite(Invitee,T,T3), [T1,T2],
 [call(Invitee,epmeet(T1,T)),
 return(Invitee,epmeet(T2,T1)),
 ((T1=T2 | [execute(equals(T3,T2))]);
 (T1\=T2 | [enter(invite(Invitee,T2,T3))]))])

dialog(guest(Host),[Turn,T],
 [ask(Host,turn(Turn)),
 ((Turn=reply |[enter(reply(Host)),
 enter(guest(Host))]);
 (Turn=end | [ask(Host,confirm(T)),
 execute(save(meeting(T)))]))])

12

dialog(reply(Host), [T,T1,T2],
 [return(Host,epmeet(T1,T)),
 call(Host,epmeet(T2,T1)),
 ((T1=T2 | []);
 (T1\=T2 | [enter(reply(Host))]))])

6 Conclusion and possible extensions

We proposed a formal language for modeling dynamic agent conversation. The corre-
sponding operational semantics is given by compiling functions that maps dialogues
onto non-deterministic plans executable on a sequential abstract machine. The under-
lying protocol for the exchange of information relies on a flag mechanism to ensure
synchronization. One could object that this specification is too low level. We might
well try and describe it in a more abstract way, for example by using a transition se-
mantics as done in [5]. We would however be left short of true executable specifica-
tions. A number of useful extensions to the basic model are reviewed below.

6.1 Recovering from failures

A simple failure to answer (because the deduction involved in a communication prim-
itive did not succeed) or a synchronization that did not occur (because the expected
agent was not available, did not anticipate the request, or simply failed) are examples
of deadlocks that could prevent dialogues to proceed as expected. We have already
implemented a mechanism for catching a simple failure to answer. By default, this
failure will propagate through embedded dialogues via a forced exit. It can be caught
on demand in the first calling dialogue where it can be appropriately processed. Time-
outs could be similarly handled. As an example, let us consider below the following
extension for the host dialogue, in which a successful and an unsuccessful deduction
lead to catch a status equal to end and fail, respectively.

dialog(host(Att,T), [T1,Status],
 [enter(round(Att,T,T1)|catch(Status)),
 ((Status=end |[((T=T1 | [enter(tellAll(Att,turn(quit))),
 execute(save(meeting(T1)))]);
 (T\=T1 |[enter(host(Att,T1))]))]);
 (Status=fail |[enter(tellAll(Att,turn(quit))),
 execute(save(failed(meeting)))]))])

6.2 Monitoring external commands

The overall behavior of any agent should allow for entering any dialogue on demand.
This behavior could be defined as a reentrant dialogue monitoring external interrupts:

13

dialog(monitoring(I), [Act,P,X],
 [ask(I, command(Act(P(|X)))),
 ((Act=enter |[enter(P(|X)),
 resume(monitoring(I))]);
 (Act=execute|[execute(P(|X)),
 resume(monitoring(I))]))])

14

Each agent i would have to be associated with a sensing procedure implemented as

procedure sensei(l)
if “the interrupt handler coupled with i receives the command Act(P(|X)))”
then l ← τi(l, tell(i, command(Act(P(|X)))))

Calls to sensei could then be interleaved with calls to reacti within each run cycle.
In this implementation, each agent i will thus first engage in a tell(i,ϕ)/ask(i,ψ)

“auto exchange” with its sensing procedure. After retrieving a command i.e., after
ψ=ϕ=command(Act(P(|X))), it will then either enter a dialogue or execute an action,
and then resume its monitoring task.

6.3 Engaging in multiple conversations

Agents should be allowed to engage in multiple conversations. Instead of providing a
conversation language with a parallel (or concurrency) operator that could be used at
the message level i.e., to interleave possible concurrent messages (as put forward in
the languages 3APL [5] and ConGolog [4], among others), we favor the simpler so-
lution whereby each agent is a multithreaded entity interleaving concurrent conversa-
tions.

Just as a multi-agent system was implemented as a multi-threaded entity of agents
using predicate agent, a multi-threaded agent can be implemented within an extended
abstract machine using an additional predicate conversation as follows

procedure runClass(l)
loop for all i such that lClass agent(i) do
 sensei(l);
 for all j such that li conversation(j) do

 if lij plan(p0
ij)

 then reactij(l,p0
ij);

 etc …

A new primitive message concurrent could then be used by any dialogue (such as
the monitoring dialogue itself) to create a new conversation thread when required i.e.,
we would then have

dialog(monitoring(I), [Act,P,X],
 [ask(I, command(Act(P(|X)))),
 ((Act=enter |[concurrent(P(|X)),
 resume(monitoring(I))]);
 etc …

In this new implementation, dialogues are considered as syntactic entities that can
be attached to multiple conversations implemented as independent threads. To ensure
consistency of this extended formalism, the monitoring dialogue itself must be at-
tached to each agent’s initial conversation thread.

15

7 Related work

The subject of modeling agent conversation is relatively new. Apart form the work al-
ready mentioned in the introduction i.e., [3] [6] and [7], which concentrates on defin-
ing graphical frameworks for representing static conversation patterns, earlier contri-
butions include [2] and [8]. None of this work however seems to address the issue of
modeling dynamic conversation structures. Furthermore, as the underlying communi-
cation models are either left unspecified or made to rely on speech acts, there is no
simple ways to define the corresponding operational semantics leading to directly ex-
ecutable specifications. Finally, if conversations are to be used for modeling the so-
cial ability of agents, then (as already argued by Hendricks and al [5]) computational
equivalents for speech acts should not be included in an agent communication lan-
guage, as done in KQML or FIPA ACL. Communications primitives should instead
be kept neutral, and mental attitudes should be allowed to emerge eventually as intel-
ligent behavior.

References

1. P. Bonzon, An Abstract Machine for Communicating Agents Based on Deduction, in: J.-J.
Meyer & M.Tambe (eds), Intelligent Agents VIII, LNAI vol. 2333, Springer Verlag (2002)

2. R. Elio, A. Haddadi and A. Singh, Task Models, Intentions and Agent Conversation Policies,
in: Proc. PRICAI-2000, LNAI vol. 1886, Springer Verlag (2000)

3. FIPA Specifications, available on line at http://www.fipa.org

4. G. de Giacomo, Y.Lespérance and H. Levesque, ConGolog, a Concurrent Programming
Language Based on the Situation Calculus, Artificial Intelligence, vol. 121 (2000)

5. K.V. Hendricks, F.S. de Boer, W.van der Hoek and J.-J. Meyer, Semantics of Communica-
ting Agents Based on Deduction and Abduction, in: F.Dignum & M.Greaves (eds), Issues in
Agent Communication, LNAI vol. 1916, Springer Verlag (2000)

6. M. Nowostawski, M. Purvis and S. Cranefield, A Layered Approach for Modelling Agent
Conversations, in: E T. Wagner and O.F. Rana (eds), Proc. 2nd Int. Workshop on Infrastruc-
ture for Agents, MAS, and Scalable MAS, 5th Int. Conf. on Autonomous Agents, Montreal
(2001)

7. J.J. Odell, H.V.D. Parunak and B. Bauer, Representing Agent Interaction Protocols in UML,
in: P. Ciancarini and M. Wooldridge (eds), Agent-Oriented Software Engineering, Springer
Verlag (2001)

8. R. Scott, Y. Chen, T. Finin, Y. Labrou and Y. Peng, Modeling Agent Conversations with
Colored Petri Nets, in: Working Notes of the Worshop on Specifying and Implementing Con-
versation Policies, 3rd Int. Conf. On Autonomous Agents, Seattle (1999)

9. M. Wooldridge and A. Lomuscio, Reasoning about Visibility, Perception and Knowledge,
in: N.R. Jennings and Y. Lespérance (eds), Intelligent Agents VI, LNAI vol. 1757 , Springer
Verlag (2000)

16

http://www.fipa.org/

