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ABSTRACT 19 

1. The popularity of species distribution models (SDMs) and the associated stacked 20 

species distribution models (S-SDMs), as tools for community ecologists, largely 21 

increased in recent years. However, while some consensus was reached about the best 22 

methods to threshold and evaluate individual SDMs, little agreement exists on how to 23 

best assemble individual SDMs into communities, i.e. how to build and assess S-SDM 24 

predictions. 25 

2. Here, we used published data of insects and plants collected within the same study 26 

region to test (1) if the most established thresholding methods to optimize single 27 

species prediction are also the best choice for predicting species assemblage 28 

composition, or if community-based thresholding can be a better alternative, and (2) 29 

whether the optimal thresholding method depends on taxa, prevalence distribution 30 

and/or species richness. Based on a comparison of different evaluation approaches we 31 

provide guidelines for a robust community cross-validation framework, to use if 32 

spatial or temporal independent data are unavailable.  33 

3. Our results showed that the selection of the “optimal” assembly strategy mostly 34 

depends on the evaluation approach rather than taxa, prevalence distribution, regional 35 

species pool or species richness. If evaluated with independent data or reliable cross-36 

validation, community-based thresholding seems superior compared to single species 37 

optimisation. However, many published studies did not evaluate community 38 

projections with independent data, often leading to overoptimistic community 39 

evaluation metrics based on single species optimisation. 40 

4. The fact that most of the reviewed S-SDM studies reported over-fitted community 41 

evaluation metrics highlights the importance of developing clear evaluation guidelines 42 



for community models. Here, we move a first step in this direction, providing a 43 

framework for cross-validation at the community level.  44 



INTRODUCTION 45 

Past and future environmental changes may not only lead to shifts in species distributions 46 

(e.g., Parmesan & Yohe 2003; Thuiller et al. 2005; Dullinger et al. 2012), but also to changes 47 

in species assemblages and interactions (e.g., Van der Putten, Macel & Visser 2010; Nogues-48 

Bravo & Rahbek 2011; Blois et al. 2013; Alexander et al. 2016). Information about 49 

communities, here defined as a taxonomic assemblage of distinct populations of species that 50 

co-occur in a given space at a given time (Begon, Harper & Townsend 1996), is therefore 51 

essential to make informed decisions for conservation prioritisation (D'Amen et al. 2011; 52 

Guisan et al. 2013; Mateo et al. 2013) and to create biodiversity indices (e.g., Essential 53 

Biodiversity Variables; Pereira et al. 2013) for policy decisions (Fleishman, Noss & Noon 54 

2006; Granger et al. 2015). 55 

Different approaches to model communities are available, using either correlative (e.g., 56 

Ferrier & Guisan 2006; Guisan & Rahbek 2011) or mechanistic techniques (e.g., Kearney & 57 

Porter 2009; Mokany & Ferrier 2011), with some predicting only macro-ecological properties 58 

such as species richness (e.g., Currie et al. 2004; Gotelli et al. 2009; Dubuis et al. 2011) and 59 

others also predicting community composition (see D'Amen et al. 2017b for a review). In this 60 

study, we focused on correlative approaches based on individual species distribution models 61 

(SDMs), as they are the most common technique applied to conservation strategies (Guisan et 62 

al. 2013), and to predict future patterns of biodiversity in the face of global change (Nogues-63 

Bravo & Rahbek 2011; D'Amen et al. 2017b). Niche-based SDMs quantify the relationship 64 

between available species occurrences and different environmental factors to analyse and 65 

predict distributional patterns (Guisan & Thuiller 2005; Elith & Leathwick 2009; Guisan, 66 

Thuiller & Zimmermann 2017). By additionally stacking individual SDMs (S-SDMs), one 67 

can produce spatiotemporal projections of species richness and composition (Ferrier & Guisan 68 

2006; Guisan & Rahbek 2011). 69 



While there is a vast and now long-standing literature on advances and limitations of single 70 

species predictions (e.g., Guisan & Thuiller 2005; Guisan et al. 2006; Maggini et al. 2006; 71 

Elith & Leathwick 2009; Meier et al. 2010; Zimmermann et al. 2010; Merow et al. 2014), 72 

studies exploring how to improve community predictions based on aggregated information 73 

from individual SDMs emerged more recently (e.g., Mateo et al. 2012; Benito, Cayuela & 74 

Albuquerque 2013; Cord et al. 2014; Mod et al. 2015; but see Ferrier et al. 2002). A 75 

fundamental difference among the proposed solutions is whether to maintain the information 76 

on species composition in the final predictions. For instance, the simple sum of probabilities 77 

of individual SDM predictions usually gives better estimates of species richness, but the 78 

information on species identity is lost (Dubuis et al. 2011; Calabrese et al. 2014). Therefore, 79 

predictions of community composition have mainly been achieved so far by thresholding the 80 

individual continuous SDM predictions (e.g., probability or suitability index) to obtain binary 81 

maps (Liu, White & Newell 2013) and then stacking the latter at the assemblage level (e.g., 82 

Pottier et al. 2013; D'Amen et al. 2015; D'Amen, Pradervand & Guisan 2015).  83 

There are several examples in the literature of optimizing thresholding methods for single 84 

species predictions (e.g., Liu et al. 2005; Jimenez-Valverde & Lobo 2007; Freeman & Moisen 85 

2008; Liu, White & Newell 2013). These led to a mounting consensus about the most 86 

appropriate methods, with the majority of SDM studies published nowadays using either an 87 

approach maximising the true skills statistics (Max.TSS) or based on the curve in a receiver 88 

operating characteristic plot (Opt.ROC, related to AUC) (see Guisan, Thuiller & 89 

Zimmermann 2017; Table S1). However, the threshold selection can strongly influence the 90 

reliability of the predicted richness and composition of S-SDMs assemblages (Pineda & Lobo 91 

2009; Benito, Cayuela & Albuquerque 2013). It is thus relevant to explore which thresholding 92 

approach provides the best performance in assemblage estimates, and if alternatives exist that 93 

can improve the assemblage prediction from individual SDMs. 94 



Studies focussing on S-SDMs tend to over-predict species richness when based on 95 

(thresholded) binary predictions (e.g., Pineda & Lobo 2009; Dubuis et al. 2011; Mateo et al. 96 

2012; Pottier et al. 2013; Pouteau et al. 2015), with some exceptions (e.g., D'Amen, 97 

Pradervand & Guisan 2015; Distler et al. 2015). Different factors have been proposed to 98 

explain this over-prediction: (1) a statistical bias in thresholding site-level occurrence 99 

probabilities for each species (Calabrese et al. 2014); (2) the implicit assumption of 100 

unsaturated communities not assuming an ecological limit for species numbers in assemblages 101 

(environmental carrying capacity; Guisan & Rahbek 2011); (3) the lack of considering 102 

different constraints on community composition (i.e., ecological, evolutionary, historical, or 103 

biological biodiversity drivers; see Mateo, Mokany & Guisan 2017).  104 

The commonly used approach to get binary maps from continuous SDM predictions is to use 105 

a species-specific threshold, i.e. each species has a single threshold across all sites ("species 106 

threshold", Calabrese et al. 2014). Recently, another community-based approach, called 107 

probability ranking rule (PRR), was proposed to predict assemblage composition from 108 

individual SDMs (D'Amen et al. 2015). This method does not require a species-specific 109 

threshold, therefore preventing over-prediction, but site-by-site ecological constraints (e.g., 110 

macro-ecological models) are applied to assemblages to predict species richness (“site-111 

threshold”). 112 

Surprisingly, studies aiming to test and improve S-SDM have used very different approaches 113 

to evaluate the predicted assemblages (Cord et al. 2014; Hespanhol et al. 2015; Pouteau et al. 114 

2015; Thuiller et al. 2015; Zurell et al. 2016) and this evaluation aspect of the community 115 

modelling procedure has not yet received all the attention it deserves. In most studies, 116 

assemblage predictions are not adequately evaluated because the data used for the evaluation 117 

were already used for individual model fitting, not allowing anymore a correct cross-118 

validation at the community level. Ideally, the best evaluation method should use spatial or 119 



temporal independent data (Elith et al. 2006; Guisan, Thuiller & Zimmermann 2017), but if 120 

not available, an appropriate cross-validation approach should at least be set up.  121 

Here, we used published high-resolution data of insects (butterflies and grasshoppers) and 122 

plants (forests and grasslands sites), collected within the same study region to (1) test if the 123 

most established thresholding methods for optimal single species prediction (i.e., Max.TSS 124 

and Opt.ROC) are also the best choice for species assemblages, (2) investigate if the optimal 125 

thresholding method depends on taxa, prevalence distribution (Allouche, Tsoar & Kadmon 126 

2006), and/or species richness and (3) provide guidelines for a correct community cross-127 

validation framework, to be used if spatially- or temporally- independent data are unavailable.   128 



MATERIALS AND METHODS 129 

Community data and environmental variables 130 

Study area 131 

The data on all taxa were collected within the same study area located in the western Swiss 132 

Alps of the canton Vaud (Fig. 1; 46°10´ to 46°30´ N; 6°50’ to 7°10’ E), covering an area of ca. 133 

700 km2, with elevation ranging from 375 to 3210 m a.s.l. and forested areas up to 1900 m a.s.l. 134 

For centuries, agriculture (farming and pasturing) has maintained grasslands among forests and 135 

altered the position of the treeline. The highly variable topography and diverse land use of the 136 

study area, in combination with our high-resolution environmental data (25 x 25 m cell size), 137 

provide a huge range of complex species-environment relationships to test our modelling 138 

framework. 139 

Plant data 140 

The forest data were part of a forest inventory of the canton Vaud conducted between 1988 and 141 

2002 (mostly 1990 to 1994) and consisted of 3076 sites. The forest sites were distributed on a 142 

400 m grid all across the forested area of the canton and had a circular area of 314 m2 (Fig. 1; 143 

for details see Hartmann, Fouvy & Horisberger 2009). In total, 703 plant species were recorded, 144 

but only 312 (44%) had enough occurrence data (> 20 occurrences) across the dataset for 145 

modelling purposes (see Table 1 for more detailed statistics on the datasets). 146 

The grassland dataset was collected between 2002 and 2009 following an equal random-147 

stratified sampling of non-forested areas in the study area. In total, 911 vegetation sites of 4 m2 148 

were sampled (Fig. 1; for more information see Dubuis et al. 2011). A total of 905 plant species 149 

were recorded but only the 212 most frequent (>20 occurrences) were selected for modelling 150 

(Table 1). 151 

To predict the distribution of the plant species we used five environmental variables: growing 152 



degree-day (above 0 °C), moisture index over the growing season (difference between 153 

precipitation and potential evapotranspiration), the sum of potential solar radiation over the 154 

year, slope (in degrees), and topographic position (unit-less, indicating the ridges and valleys). 155 

All these variables were at a 25 m resolution and have been shown to be useful predictors for 156 

plant species in mountain environments (see Dubuis et al. 2011; D'Amen et al. 2015; Scherrer 157 

et al. 2017 for details on predictors).  158 

Insect data 159 

Data on butterflies and grasshoppers were respectively collected in 192 and 202 squares of 50 160 

m x 50 m across all the elevational range of the study area (Fig. 1; see Pellissier et al. 2012; 161 

Pradervand et al. 2013, for more information).  In total, 131 butterfly and 41 grasshopper 162 

species were observed, but due to model limitations only the most common 67 butterfly and 163 

20 grasshopper species (>=20 occurrences) were considered for modelling (Table 1). 164 

For our SDMs we used the same predictors as D'Amen, Pradervand and Guisan (2015): four 165 

bioclimatic variables (solar radiation, summer temperature, annual degree-days and annual 166 

average number of frost days during the growing season), an index of vegetation productivity, 167 

i.e. normalized difference vegetation index (as proxies for trophic resources), and the distance 168 

to forest. These variables were selected as they are not highly correlated (<0.7; Dormann et al. 169 

2013) and considered ecologically important for insects (e.g., Turner, Gatehouse & Corey 170 

1987; Hawkins & Porter 2003). 171 

The modelling framework 172 

Our modelling framework used three different S-SDM based community modelling pathways 173 

(“single species cross-validation”, “independent data” and “community cross-validation) 174 

representing the most commonly reported practices in the literature (see Fig. 2 and 175 

“Evaluating community predictions” section).  176 



Single species modelling, thresholding and evaluation 177 

Individual species models were run by generalised linear models (GLM; McCullagh & Nelder 178 

1989), generalised additive models (GAM; Hastie & Tibshirani 1990), random forest (RF; 179 

Breiman 2001) and boosted regression trees (BRT; Elith, Leathwick & Hastie 2008). Models 180 

for species with more than 50 occurrences were fitted by simple SDMs using all five selected 181 

predictors, followed by a weighted (AUC) ensemble forecast (Marmion et al. 2009). Species 182 

having only between 20 and 50 occurrence records were fitted by an ensemble bivariate 183 

approach optimised for rare or under-sampled species (Lomba et al. 2010; Breiner et al. 184 

2015): individual models were calibrated on bivariate combinations of the selected predictors 185 

with all four modelling techniques, followed by a consensus forecast from all the resulting 186 

“small models” weighted by their AUC scores. We used a repeated split-sample procedure 187 

(N=25) for model evaluation, followed by a weighted (AUC) ensemble forecast (across 188 

techniques and split-sample runs).   189 

The projected probability outputs of the ensemble models were binarised using two 190 

thresholding schemes: (1) species-specific-thresholds (a single threshold calculated for each 191 

species) and (2) site-specific-thresholds (differing for each site on the basis of additional 192 

community information, i.e. species richness predictions). We selected seven different 193 

species-specific-thresholding techniques, which can be classified in four major groups: single-194 

index based, sensitivity and specificity combined, model-building data-only-based, and 195 

predicted probability-based (see Table S1; Liu et al. 2005; Nenzen & Araujo 2011 for details 196 

on classification). As the thresholding techniques showed minimal within-group variance (see 197 

Figure S1 and S2), we decided to only present the results for one thresholding technique per 198 

group in the main manuscript. The chosen techniques were: Cohen’s Kappa maximization 199 

approach (Max.Kappa; single-index based), TSS maximization approach (Max.TSS, 200 

sensitivity and specificity combined), observed prevalence (Obs.Preval; model-building data-201 



only-based approach), and average probability approach (AvgProb; predicted probability-202 

based approach; for details on techniques see Table S1). In addition, we applied two site-203 

thresholds (community-based approaches) using species richness (SR) predictions in 204 

combination with a probability ranking rule (PRR). These methods selected a number of 205 

species equal to the predicted SR on the basis of decreasing probabilities of presence 206 

calculated by the SDMs (D'Amen et al. 2015; D'Amen, Pradervand & Guisan 2015). 207 

Therefore, the species with the highest probabilities in a site are selected (considered present) 208 

in decreasing order until the SR predicted for the site is reached. The SR predictions were 209 

derived by either summing the per site probabilities of individual SDMs, obtaining a 210 

prediction of richness for each site (pS-SDM; Dubuis et al. 2011) or by a macro-ecological 211 

model (MEM; see D'Amen, Pradervand & Guisan 2015 for details), directly modelling the 212 

richness of the sites. As results from the two site-thresholds were concordant, we only show 213 

here the former (pS-SDM+PRR).  214 

To evaluate the threshold independent performance of our individual species models, the area 215 

under the curve of a Receiver-Operating Characteristic (ROC) plot (AUC; Fielding & Bell 216 

1997) was calculated based on a repeated split sampling cross-validation (Thuiller, Georges & 217 

Engler 2013). Additionally, based on our independent/cross-validation data we calculated five 218 

threshold dependent metrics for each thresholding technique: the overall accuracy (PCC; i.e. 219 

proportion of correctly classified presence and absences; Fielding & Bell 1997), sensitivity 220 

(proportion of correctly predicted presences), specificity (proportion of correctly predicted 221 

absences), the true skill statistic (i.e. [(sensitivity + specificity) -1]; TSS; Allouche, Tsoar & 222 

Kadmon 2006) and Cohen’s Kappa (Kappa; i.e., overall accuracy but corrected for chance 223 

performance; Cohen 1968). 224 

Evaluating community predictions 225 



All the community predictions were built by stacking binary SDMs of individual species (S-226 

SDMs; Dubuis et al. 2011; Guisan & Rahbek 2011). The three modelling pathways (Fig. 2) 227 

were identical regarding the modelling procedure for single species, thresholding and 228 

community assemblage and only varied in the selection of the data for community calibration 229 

and evaluation.   230 

- The “single species cross-validation” (SSCV) approach (Fig. 2) has not fully 231 

“unused/independent” data for community evaluation (i.e. sites not used for the 232 

calibration of any single species). Here, in the process of the cross-validation of all 233 

individual SDMs (i.e. across all species), different sites are selected at each resampling 234 

iteration and for each species, so that all sites are most likely used in at least one split-235 

sampling run and their information incorporated in the final ensemble model. This 236 

approach cannot thus be considered based on fully independent data. The SSCV 237 

approach has been to date the most common way to model and evaluate communities 238 

predictions based on S-SDMs (Fig. 2; e.g., Dubuis et al. 2011; Calabrese et al. 2014; 239 

D'Amen, Pradervand & Guisan 2015; Distler et al. 2015). As no independent data is 240 

set aside for community evaluation, this approach usually gets evaluated with all the 241 

sites used for calibration. However, to avoid bias in the results due to different 242 

numbers of evaluation sites, we evaluated the SSCV approach only on 30% of the 243 

available sites (identical to the ID and CCV approach below). 244 

- The (spatial or temporal) “independent data” (ID) approach (Fig. 2) starts with two 245 

completely independent datasets. One is used for the calibration of the SDMs (i.e. 246 

70% of the sites) and the other set is used (only) to evaluate the performance of the 247 

community predictions (i.e. 30% of the sites; Fig 2; e.g., Benito, Cayuela & 248 

Albuquerque 2013; Pottier et al. 2013; Cord et al. 2014; D'Amen et al. 2015; Zurell et 249 

al. 2016). 250 



- The “community cross-validation” (CCV) approach (Fig. 2) uses a repeated split 251 

sampling of sites (100 repetitions) dividing the available sites into calibration (70%) 252 

and evaluation sets (30%) to perform all the modelling procedure from the single 253 

species prediction to the community assembly (Fig. 2). In contrast to the previous ID 254 

pathway (above), which only uses one (spatial or temporal) fixed independent 255 

evaluation dataset, in the CCV approach all SDMs are fitted at each split-sample 256 

iteration using the same training and test sets for all species, thus minimizing the risk 257 

of bias in the evaluation data (i.e. if the training and test sets differ across species, as 258 

in the ID approach). This repeated cross-validation also allows the 259 

estimation/simulation of confidence intervals for community predictions instead of 260 

just a single value per community. To our knowledge, no study used this community 261 

cross-validation method so far. 262 

To compare the community model performance among thresholding techniques and 263 

modelling pathways, we calculated eight different community agreement metrics: 1) the 264 

deviation of the predicted from the observed species richness (SR.deviation), 2) the 265 

proportion of species correctly predicted as present (community sensitivity), 3) the proportion 266 

of species correctly predicted as absent (community specificity), 4) community accuracy 267 

(PCC; i.e. the percent correctly classified species, present or absent), 5) the community TSS 268 

(here measured for a site across all species, rather than for a species across all sites as in 269 

single SDM evaluation; Pottier et al. 2013) , 6) the community kappa (same as for TSS, for a 270 

site across species; Pottier et al. 2013), and 7) the Sørensen similarity (Sørensen 1948).  271 

Correlation of single species and community evaluation metrics 272 

For each combination of dataset, modelling pathway and thresholding method (4 x 3 x 9 = 273 

108) we calculated the average evaluation metric for all five single species metrics and all 274 

seven community metrics. We then calculated the Spearman correlation of all possible 275 



combinations of our five single species and seven community evaluation metrics. The 276 

resulting correlation matrix tells us if methods (modelling pathways or thresholding methods) 277 

that yield the highest scores in a certain single species metric also yield the highest score in 278 

the corresponding community evaluation metric. 279 

RESULTS 280 

Performance of individual SDMs 281 

As expected the evaluation scores of the individual SDMs were similar to earlier studies 282 

published with the same data (D'Amen et al. 2015; D'Amen, Pradervand & Guisan 2015; 283 

Scherrer et al. 2017) and their performance was not affected by the chosen community 284 

evaluation approach (Table 1, Table S3). Despite their differences in site SR, prevalence 285 

distribution and species pool the average performance of individual SDMs was similar across 286 

all taxa (Table 1, Table S3). Additionally, the often reported effect of species prevalence on 287 

model performance was only marginal in our study, with rare and common species having 288 

similar average model performance within a given taxonomic group (Fig. S3). 289 

Correlation of single species and community evaluation metrics 290 

The correlation between the single species and corresponding community metrics was highest 291 

(cor > 0.93; Table 2) for some combinations of metrics based on partial information from the 292 

contingency table comparing predictions to observations (i.e. PCC, specificity and sensitivity) 293 

and considerably lower for the metrics accounting for all dimensions of the contingency table, 294 

such as TSS and Cohen’s Kappa (cor = 0.73; Table 2). Correlations between non-295 

corresponding single species and community metrics (i.e. Sørensen and SR deviation) tended 296 

to be even lower, with the exception of Kappa versus Sørensen (Table 2).  297 

Species richness and compositional similarity 298 



The deviation in species richness between observed and predicted communities was strongly 299 

dependent on the chosen thresholding method (Fig. 3). The thresholding approach that uses 300 

the average predicted probability (AvgProb) showed the highest amount of over-prediction 301 

followed by the combined sensitivity and specificity approach (Max.TSS). The other three 302 

thresholding methods (Obs.Preval, Max.Kappa and pS-SDM+PRR) performed very similar 303 

and showed overall no tendency to over-predict species richness. There were no significant 304 

differences between the three modelling pathways for any of the studied taxa (Fig. 3). The 305 

absolute number of over-predicted species was strongly related to the average number of 306 

species per plot (SR) and therefore differed among the taxa (Fig. 3). However, when corrected 307 

for the differences in SR the over-prediction did not significantly vary anymore across taxa.  308 

The compositional similarity (Sørensen similarity index) varied significantly both among 309 

thresholding techniques and modelling pathways (Fig. 4). The compositional similarity was 310 

expectedly always much higher with the “single species cross-validation” (SSCV) pathway 311 

compared to the “independent data” (ID) or the “community cross-validation” (CCV) 312 

pathways, which both performed similarly. There was also a strong interaction between 313 

modelling pathway and thresholding technique. Using the SSCV pathway, thresholding by 314 

Obs.Preval and by Max.Kappa performed better (Fig. 4). However, if independent sites were 315 

available for the community evaluations (ID and CCV pathways), the community based 316 

approaches (pS-SDM+PRR) performed better than the Obs.Preval and Max.Kappa thresholds 317 

(Fig. 4). The similarity between predicted and observed communities was higher in the two 318 

insect datasets than in the two plant datasets (Fig. 4), which is likely due to the lower number 319 

of insect species compared to plant species modelled. Surprisingly, the most established 320 

thresholding methods for single species SDMs based on sensitivity and specificity (i.e. 321 

Max.TSS, Opt.ROC and SenSpec; Fig. 4 and Fig. S1 and S2) never ranked highest, as one or 322 



more of the other thresholding method always ranked above them, both for community 323 

composition and for species richness.  324 



DISCUSSION 325 

Do the most established thresholds for single species work as well for community 326 

predictions?  327 

In this paper, we asked if the most established methods for single species thresholding are 328 

also the optimal choice for making predictions at the community level and if there is a direct 329 

link between the individual species predictions and the corresponding community metrics. 330 

Our results confirm the existence of such a link for single-index based metrics such as 331 

sensitivity, specificity and accuracy. However, these results should be interpreted with caution 332 

as maximising sensitivity or specificity can simply be achieved by predicting the species as 333 

present or absent (respectively) everywhere. In our study system, most of the modelled 334 

species have a low prevalence (i.e. are absent at most sites), thus accuracy (PCC) can often be 335 

improved by predicting the species as “absent” nearly everywhere.  336 

The two most commonly used community evaluation metrics, Sørensen similarity index and 337 

deviation in species richness, were only weakly correlated with most evaluation metrics used 338 

for individual species. The most established thresholding methods for individual species 339 

predictions (i.e., Max.TSS, Opt.ROC, SenSpec) did show lower performance when applied to 340 

community-level predictions. This is likely due to the fact that both TSS and ROC try to find 341 

the best trade-off between sensitivity and specificity (Guisan, Thuiller & Zimmermann 2017). 342 

As most of the species have a prevalence far below 50% (i.e., are absent in many more sites 343 

than present), adding a few more presences might have a big effect on the sensitivity (by 344 

increasing the chance of finding the few real presences) but only marginally affects the 345 

specificity. By definition, increasing sensitivity also increases TSS, but with the drawback of 346 

a slight over-prediction. While this might not matter much on a single species basis, for 347 

community-level predictions the over-prediction will accumulate when summing binarised 348 

maps across all species, leading to the often observed over-estimation of species richness in S-349 



SDMs (e.g., Pineda & Lobo 2009; Dubuis et al. 2011; Mateo et al. 2012; Pottier et al. 2013; 350 

Pouteau et al. 2015; Zurell et al. 2016). It is important to remark, that in the rare case of an 351 

ecosystem mostly comprising of widespread species (i.e., prevalence >50 %) this will turn 352 

into the opposite as TSS and ROC will optimise absences leading to an underestimation of 353 

species richness. The strength of the over/under prediction bias is therefore linked to the 354 

prevalence distribution of the modelled species assemblages. However, in the vast majority of 355 

natural systems, both the site SR and the regional species pool are driven by a large number of 356 

rare (low prevalence species) compared to a few widespread species (Preston 1948; Magurran 357 

& Henderson 2003). 358 

The community-based thresholding methods based on the selection of the most probable 359 

species (through a probability ranking) up to the predicted site richness (MEM+PRR, pS-360 

SDM+PRR) can overcome this problem, because they are able to constrain species predictions 361 

based on a different value of species richness in each site (i.e. making them site-specific 362 

thresholding methods). Therefore, these methods prevent over-prediction while still allowing 363 

the analyses of species composition. Our results thus support the conclusion that, when the 364 

final goal is to optimize community composition, community-thresholding methods are the 365 

best option. Yet, as discussed in the next section, two single-species thresholding methods – 366 

maximized Kappa and observed prevalence – also showed good results for predicting 367 

communities (close to the community-based approaches). However, as community-based 368 

thresholds combine the optimisation of species richness prediction and a probability ranking 369 

rule (PRR), they would always select the species with the highest predicted probabilities in 370 

each site (D'Amen, Pradervand & Guisan 2015). This could seem logic and straightforward, 371 

but there might be a bias when the species in the community have varying prevalence 372 

(D'Amen et al. 2017a). In fact, the maximum predicted probability is depending on the 373 

prevalence of the species, thus the common species will tend to always have greater 374 



maximum predicted probabilities than rare species and, as a result, will be considered present 375 

an over-proportionate number of time in the final community compositions. This bias will 376 

produce high similarity scores (Sørensen index) in the prediction evaluation, as the most 377 

common species are correctly predicted in most sites. However, the drawback is that the rarest 378 

species will be often omitted in the community predictions, which can be for instance 379 

problematic if the final goal of the modelling exercise has conservation implications. 380 

Is there a “best” threshold for community S-SDMs? 381 

We also tested if different methods for binarising community S-SDMs could be superior 382 

depending on the taxonomic group, prevalence distribution or species richness. While we 383 

observed significant differences between the different groups (i.e. taxa), there is no simple 384 

statistical way to assess if these differences are attributable to the biology of the taxa 385 

themselves or simply to the differences in site species richness and prevalence distributions. 386 

Nevertheless, when we standardized the deviation in species richness by the total number of 387 

modelled species (regional species pool), no significant difference was any more visible 388 

among the different taxonomic groups. The differences in species richness deviation seem 389 

therefore a direct cause of the regional species pool. The same also seems correct for the 390 

Sørensen similarity index, as datasets with higher species richness and species pool have 391 

lower similarity scores. This likely results from the fact that the more species need to be 392 

predicted correctly, the more difficult it becomes to predict the whole communities. 393 

A similar ranking of thresholding methods was overall observed across taxonomic group 394 

within a given modelling pathway, while among the pathways there were clear shifts in the 395 

ranking of thresholding methods: with no independent community evaluation data (SSCV), 396 

the Obs.Preval and Max.Kappa threshold showed superior results, while the pathways using 397 

independent community evaluation data (ID and CCV) indicated the community-based 398 

thresholding to be superior (pS-SDM+PRR). This observation is in line with published 399 



literature, where studies not using independent community data usually report a good 400 

performance of single species optimisations methods (e.g. D'Amen, Pradervand & Guisan 401 

2015; Distler et al. 2015; Thuiller et al. 2015), while studies using independent data usually 402 

have better results using community constraints (e.g. D'Amen et al. 2015). Yet, it is 403 

remarkable to notice that, although previously much criticized in the literature (e.g., 404 

McPherson, Jetz & Rogers 2004; Allouche, Tsoar & Kadmon 2006), maximized Kappa 405 

(together here with the observed prevalence) did indeed perform well as a thresholding 406 

method for predicting both single species and communities, being nearly always superior to 407 

the sensitivity-specificity thresholding methods supporting earlier findings of Manel, 408 

Williams and Ormerod (2001). 409 

It is important to notice that the shift in ranking between modelling pathways was likely due 410 

to a lower degree of overfitting and therefore a lower decrease in performance when 411 

predicting to independent data.  412 

Summing up: How to evaluate community predictions correctly? 413 

Our results show that the “single species cross-validation” approach (SSCV), the most 414 

commonly used in the literature to evaluate community predictions (e.g., Dubuis et al. 2011; 415 

Calabrese et al. 2014; Distler et al. 2015), yields overoptimistic and thus not fully realistic 416 

measures of predictive power. While this approach is usually able to provide satisfying 417 

evaluation for single species, as revealed by the cross-validation of individual species runs, it 418 

shows a clear degradation of predictions when measured at the level of communities. This 419 

occurs likely because “all” sites are used at least once at some stage across all modelling runs 420 

of the split-sampling procedure, and thus no observation (or very few in the best cases) 421 

remains fully independent (i.e. unused) for the final evaluation at the community level. 422 

Additionally, the sets of training sites used at each run differ among the species, making the 423 

results not entirely comparable across species. 424 



The second approach found in the literature builds on the first one (SSCV; thus including an 425 

internal cross-validation evaluation), but uses spatially or temporally independent data (ID) 426 

for the assessment (thus an external evaluation), thus (unlike SSCV) using the same set of 427 

evaluation sites for all species (e.g., Benito, Cayuela & Albuquerque 2013; Pottier et al. 2013; 428 

Cord et al. 2014). When such independent data are available, this method provides the best 429 

possible evaluation, provided that the evaluation data are representative of the area where the 430 

models apply. This approach – with both internal and external evaluation - is also the one 431 

considered as optimal in James et al. (2013), and recently promoted in the field of SDMs by 432 

Guisan, Thuiller and Zimmermann (2017). 433 

The third approach (CVV), newly presented here, repeats the ID approach a large number of 434 

times within a cross-validation procedure at the community-level (no example of this 435 

approach known in the literature). By doing this, the risk of bias in the evaluation data, 436 

inherent to the selection of a single evaluation data set, is minimized compared to the simple 437 

ID approach. Additionally, the repeated cross-validation allows the assessments of uncertainty 438 

and confidence intervals around the community predictions’ performance metrics. However, 439 

as this approach selects the same sites for all species, its application is only possible under 440 

specific circumstances. First, all the species data need to be collected in the same sites (i.e. 441 

true ‘community data’). Second, as this approach leads to an unequal number of 442 

presences/absences between different cross-validation runs for the same species, it can lead to 443 

models failing for very rare (low sample size) species in some of the cross-validation runs if 444 

not enough presence sites are selected in the training set.  445 

According to our results and despite the potential limitations we advise the use of the 446 

proposed community cross-validation approach (CCV) to evaluate community models in 447 

future studies. In fact, we clearly showed that the common practice of evaluating the 448 

community predictions on the same dataset used for calibration process (SSCV) leads to 449 



overoptimistic estimations of model performance. In the commonest case of unavailability of 450 

truly spatial (i.e., different region) or temporal (i.e., different sampling period) independent 451 

data, often independent datasets are “created” by randomly splitting the initial dataset in two 452 

parts. However, we advocate against this practise and instead promote the community cross-453 

validation approach, which minimizes the artefacts of randomly splitting the initial data and 454 

allows the estimation of uncertainty associated with the community evaluation metrics.  455 

  456 



Acknowledgements 457 

This study was supported by the Swiss national Science Foundation (SESAM’ALP project, 458 

grant nr 31003A-1528661) to AG and by the European Commission, Marie Skłodowska-459 

Curie Research Fellowship Programme (SESAM-ZOO project) to MDA and AG. R.G.M. was 460 

funded by a Marie Curie Intra-European Fellowship within the 7th European Community 461 

Framework Programme (ACONITE, PIEF-GA-2013-622620). The computations were 462 

performed at the Vital-IT (http://www.vital-it.ch) Center for high-performance computing of 463 

the SIB Swiss Institute of Bioinformatics. 464 

Authors’ contributions 465 

DS and AG conceived the ideas; RF and MD analysed the plant and insect data; DS and RGM 466 

developed the modelling framework; DS led the writing and all authors contributed critically 467 

to the drafts and gave final approval for publication. 468 

Data Accessibility 469 

A generalised version of the community cross-validation algorithm is available in the ecospat 470 

R package (Cola et al. 2016) on GitHub (ecospat.CCV; 471 

https://doi.org/10.5281/zenodo.1287805). All species and environmental data are available on 472 

Dryad: https://doi.org/10.5061/dryad.28d4k (Grassland species and environmental predictors 473 

for plants; Guisan, Dubuis & Vittoz 2011) and https://doi.org/10.5061/dryad.nf925ps (forest, 474 

insect species and environmental predictors for insects; Guisan et al. 2018). 475 

REFERENCES 476 

Alexander, J.M., Diez, J.M., Hart, S.P. & Levine, J.M. (2016) When climate reshuffles competitors: a call for 477 

experimental macroecology. Trends in Ecology & Evolution, 31, 831-841. doi: 478 

10.1016/j.tree.2016.08.003 479 

https://doi.org/10.5061/dryad.28d4k


Allouche, O., Tsoar, A. & Kadmon, R. (2006) Assessing the accuracy of species distribution models: prevalence, 480 

kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223-1232. doi: 481 

10.1111/j.1365-2664.2006.01214.x 482 

Begon, M., Harper, J.L. & Townsend, C.R. (1996) Ecology: individuals populations and communities, Third 483 

edition edn. Blackwell Science Inc, Oxford. 484 

Benito, B.M., Cayuela, L. & Albuquerque, F.S. (2013) The impact of modelling choices in the predictive 485 

performance of richness maps derived from species-distribution models: guidelines to build better 486 

diversitymodels. Methods in Ecology and Evolution, 4, 327-335. doi: 10.1111/2041-210x.12022 487 

Blois, J.L., Zarnetske, P.L., Fitzpatrick, M.C. & Finnegan, S. (2013) Climate Change and the Past, Present, and 488 

Future of Biotic Interactions. Science, 341, 499-504. doi: 10.1126/science.1237184 489 

Breiman, L. (2001) Random forests. Machine Learning, 45, 5-32. doi: 10.1023/A:1010933404324 490 

Breiner, F.T., Guisan, A., Bergamini, A. & Nobis, M.P. (2015) Overcoming limitations of modelling rare species 491 

by using ensembles of small models. Methods in Ecology and Evolution, 6, 1210-1218. doi: 492 

10.1111/2041-210x.12403 493 

Calabrese, J.M., Certain, G., Kraan, C. & Dormann, C.F. (2014) Stacking species distribution models and 494 

adjusting bias by linking them to macroecological models. Global Ecology and Biogeography, 23, 99-495 

112. doi: 10.1111/Geb.12102 496 

Cohen, J. (1968) Weighted kappa: nominal scale agreement with provision for scaled disagreement or partial 497 

credit. American Psycological Association, 70, 213-220.  498 

Cola, V.D., Broennimann, O., Petitpierre, B., Breiner, F.T., D'Amen, M., Randin, C., . . . Dubuis, A. (2016) 499 

ecospat: an R package to support spatial analyses and modeling of species niches and distributions. 500 

Ecography.  501 

Cord, A.F., Klein, D., Gernandt, D.S., la Rosa, J.A.P. & Dech, S. (2014) Remote sensing data can improve 502 

predictions of species richness by stacked species distribution models: a case study for Mexican pines. 503 

Journal of Biogeography, 41, 736-748. doi: 10.1111/jbi.12225 504 

Currie, D.J., Mittelbach, G.G., Cornell, H.V., Field, R., Guégan, J.F., Hawkins, B.A., . . . O'Brien, E. (2004) 505 

Predictions and tests of climate‐based hypotheses of broad‐scale variation in taxonomic richness. 506 

Ecology Letters, 7, 1121-1134.  507 



D'Amen, M., Bombi, P., Pearman, P.B., Schmatz, D.R., Zimmermann, N.E. & Bologna, M.A. (2011) Will 508 

climate change reduce the efficacy of protected areas for amphibian conservation in Italy? Biological 509 

Conservation, 144, 989-997. doi: 10.1016/j.biocon.2010.11.004 510 

D'Amen, M., Dubuis, A., Fernandes, R.F., Pottier, J., Pellissier, L. & Guisan, A. (2015) Using species richness 511 

and functional traits predictions to constrain assemblage predictions from stacked species distribution 512 

models. Journal of Biogeography, 42, 1255-1266. doi: 10.1111/jbi.12485 513 

D'Amen, M., Mateo, R.G., Pottier, J., Thuiller, W., Maiorano, L., Pellissier, L., . . . Guisan, A. (2017a) 514 

Improving spatial predictions of taxonomic, functional and phylogenetic diversity. Journal of Ecology.  515 

D'Amen, M., Pradervand, J.N. & Guisan, A. (2015) Predicting richness and composition in mountain insect 516 

communities at high resolution: a new test of the SESAM framework. Global Ecology and 517 

Biogeography, 24, 1443-1453. doi: 10.1111/geb.12357 518 

D'Amen, M., Rahbek, C., Zimmermann, N.E. & Guisan, A. (2017b) Spatial predictions at the community level: 519 

from current approaches to future frameworks. Biological Reviews, 92, 169–187. 10.1111/brv.12222 520 

Distler, T., G., S.J., Velasquez-Tibata, J. & Langham, G.M. (2015) Stacked species distribution models and 521 

macroecological models provide congruent projections of avian species richness under climate change. 522 

Journal of Biogeography, 42, 1-13. doi: 10.1111/jbi.12479 523 

Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carre, G., . . . Lautenbach, S. (2013) Collinearity: a 524 

review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36, 525 

27-46. doi: 10.1111/j.1600-0587.2012.07348.x 526 

Dubuis, A., Pottier, J., Rion, V., Pellissier, L., Theurillat, J.P. & Guisan, A. (2011) Predicting spatial patterns of 527 

plant species richness: a comparison of direct macroecological and species stacking modelling 528 

approaches. Diversity and Distributions, 17, 1122-1131. doi: 10.1111/j.1472-4642.2011.00792.x 529 

Dullinger, S., Gattringer, A., Thuiller, W., Moser, D., Zimmermann, N.E., Guisan, A., . . . Hulber, K. (2012) 530 

Extinction debt of high-mountain plants under twenty-first-century climate change. Nature Climate 531 

Change, 2, 619-622. doi: 10.1038/Nclimate1514 532 

Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., . . . Zimmermann, N.E. (2006) Novel 533 

methods improve prediction of species' distributions from occurrence data. Ecography, 29, 129-151. 534 

doi: 10.1111/j.2006.0906-7590.04596.x 535 



Elith, J. & Leathwick, J.R. (2009) Species Distribution Models: Ecological Explanation and Prediction Across 536 

Space and Time. Annual Review of Ecology Evolution and Systematics, 40, 677-697. doi: 537 

10.1146/annurev.ecolsys.110308.120159 538 

Elith, J., Leathwick, J.R. & Hastie, T. (2008) A working guide to boosted regression trees. Journal of Animal 539 

Ecology, 77, 802-813. doi: 10.1111/j.1365-2656.2008.01390.x 540 

Ferrier, S., Drielsma, M., Manion, G. & Watson, G. (2002) Extended statistical approaches to modelling spatial 541 

pattern in biodiversity in northeast New South Wales. II. Community-level modelling. Biodiversity and 542 

Conservation, 11, 2309-2338. doi: 10.1023/A:1021374009951 543 

Ferrier, S. & Guisan, A. (2006) Spatial modelling of biodiversity at the community level. Journal of Applied 544 

Ecology, 43, 393-404. doi: 10.1111/j.1365-2664.2006.01149.x 545 

Fielding, A.H. & Bell, J.F. (1997) A review of methods for the assessment of prediction errors in conservation 546 

presence-absence models. Environmental Conservation, 24, 38-49. doi: 10.1017/S0376892997000088 547 

Fleishman, E., Noss, R.F. & Noon, B.R. (2006) Utility and limitations of species richness metrics for 548 

conservation planning. Ecological Indicators, 6, 543-553. doi: 10.1016/j.ecolind.2005.07.005 549 

Freeman, E.A. & Moisen, G.G. (2008) A comparison of the performance of threshold criteria for binary 550 

classification in terms of predicted prevalence and kappa. Ecological Modelling, 217, 48-58. doi: 551 

10.1016/j.ecolmodel.2008.05.015 552 

Gotelli, N.J., Anderson, M.J., Arita, H.T., Chao, A., Colwell, R.K., Currie, D.J., . . . Willig, M.R. (2009) Patterns 553 

and causes of species richness: a general simulation model for macroecology. Ecology Letters, 12, 873–554 

886. doi: 10.1111/j.1461-0248.2009.01353.x 555 

Granger, V., Bez, N., Fromentin, J.M., Meynard, C., Jadaud, A. & Merigot, B. (2015) Mapping diversity indices: 556 

not a trivial issue. Methods in Ecology and Evolution, 6, 688-696.  557 

Guisan , A., Dubuis, A., Pellisser, L., Pradervand, J.N., Meier, S., Scherrer, D., . . . Vittoz, P. (2018) Data from: 558 

How to best threshold and validate stacked species assemblages? Community optimisation might hold 559 

the answer. Dryad Digital Repository. https://doi.org/10.5061/dryad.nf925ps 560 

Guisan, A., Dubuis, A. & Vittoz, P. (2011) Data from: Predicting spatial patterns of plant species richness: 561 

acomparison of direct macroecological and species stacking modelling appraoches. Dryad Digital 562 

Repository. https://doi.org/10.5061/dryad.28d4k 563 

Guisan, A., Lehmann, A., Ferrier, S., Aspinall, R., Overton, R., Austin, M. & Hastie, T. (2006) Making better 564 

biogeographic predictions of species distribution. Journal of Applied Ecology, 43, 386-392.  565 

https://doi.org/10.5061/dryad.28d4k


Guisan, A. & Rahbek, C. (2011) SESAM - a new framework integrating macroecological and species 566 

distribution models for predicting spatio-temporal patterns of species assemblages. Journal of 567 

Biogeography, 38, 1433-1444. doi: 10.1111/j.1365-2699.2011.02550.x 568 

Guisan, A. & Thuiller, W. (2005) Predicting species distribution: offering more than simple habitat models. 569 

Ecology Letters, 8, 993-1009. doi: 10.1111/j.1461-0248.2005.00792.x 570 

Guisan, A., Thuiller, W. & Zimmermann, N.E. (2017) Habitat suitability and distribution models. Cambridge 571 

University Press. 572 

Guisan, A., Tingley, R., Baumgartner, J.B., Naujokaitis-Lewis, I., Sutcliffe, P.R., Tulloch, A.I.T., . . . Buckley, 573 

Y.M. (2013) Predicting species distributions for conservation decisions. Ecology Letters, 16, 1424-574 

1435. doi: 10.1111/Ele.12189 575 

Hartmann, P., Fouvy, P. & Horisberger, D. (2009) L'Observatoire de l'écosystème forestier du canton de Vaud: 576 

espace de recherche appliquée| The Forest Ecosystem Observatory in Canton Vaud: a field of applied 577 

research. Schweizerische Zeitschrift fur Forstwesen, 160, s2-s6.  578 

Hastie, T.J. & Tibshirani, R. (1990) Generalized Additive Models. Chapman & Hall, London. 579 

Hawkins, B.A. & Porter, E.E. (2003) Water–energy balance and the geographic pattern of species richness of 580 

western Palearctic butterflies. Ecological Entomology, 28, 678-686. doi: 10.1111/j.1365-581 

2311.2003.00551.x 582 

Hespanhol, H., Cezón, K., Felicísimo, Á.M., Muñoz, J. & Mateo, R.G. (2015) How to describe species richness 583 

patterns for bryophyte conservation? Ecology and evolution, 5, 5443-5455.  584 

James, G., Witten, D., Hastie, T. & Tibshirani, R. (2013) An introduction to statistical learning. Springer. 585 

Jimenez-Valverde, A. & Lobo, J.M. (2007) Threshold criteria for conversion of probability of species presence 586 

to either-or presence-absence. Acta Oecologica-International Journal of Ecology, 31, 361-369. doi: 587 

10.1016/j.actao.2007.02.001 588 

Kearney, M. & Porter, W. (2009) Mechanistic niche modelling: combining physiological and spatial data to 589 

predict species' ranges. Ecology Letters, 12, 334-350. doi: 10.1111/j.1461-0248.2008.01277.x 590 

Liu, C., White, M. & Newell, G. (2013) Selecting thresholds for the prediction of species occurrence with 591 

presence‐only data. Journal of Biogeography, 40, 778-789.  592 

Liu, C.R., Berry, P.M., Dawson, T.P. & Pearson, R.G. (2005) Selecting thresholds of occurrence in the 593 

prediction of species distributions. Ecography, 28, 385-393. doi: 10.1111/j.0906-7590.2005.03957.x 594 



Lomba, A., Pellissier, L., Randin, C., Vicente, J., Moreira, F., Honrado, J. & Guisan, A. (2010) Overcoming the 595 

rare species modelling paradox: A novel hierarchical framework applied to an Iberian endemic plant. 596 

Biological Conservation, 143, 2647-2657. doi: 10.1016/j.biocon.2010.07.007 597 

Maggini, R., Lehmann, A., Zimmermann, N.E. & Guisan, A. (2006) Improving generalized regression analysis 598 

for the spatial prediction of forest communities. Journal of Biogeography, 33, 1729-1749. doi: 599 

10.1111/j.1365-2699.2006.01465.x 600 

Magurran, A.E. & Henderson, P.A. (2003) Explaining the excess of rare species in natural species abundance 601 

distributions. Nature, 422, 714-716.  602 

Manel, S., Williams, H.C. & Ormerod, S.J. (2001) Evaluating presence-absence models in ecology: the need to 603 

account for prevalence. Journal of Applied Ecology, 38, 921-931. doi: 10.1046/j.1365-604 

2664.2001.00647.x 605 

Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R.K. & Thuiller, W. (2009) Evaluation of consensus 606 

methods in predictive species distribution modelling. Diversity and Distributions, 15, 59-69. doi: 607 

10.1111/j.1472-4642.2008.00491.x 608 

Mateo, R.G., de la Estrella, M., Felicisimo, A.M., Munoz, J. & Guisan, A. (2013) A new spin on a 609 

compositionalist predictive modelling framework for conservation planning: A tropical case study in 610 

Ecuador. Biological Conservation, 160, 150-161. doi: 10.1016/j.biocon.2013.01.014 611 

Mateo, R.G., Felicisimo, A.M., Pottier, J., Guisan, A. & Munoz, J. (2012) Do Stacked Species Distribution 612 

Models Reflect Altitudinal Diversity Patterns? PLoS ONE, 7, e32586. doi: 613 

10.1371/journal.pone.0032586 614 

Mateo, R.G., Mokany, K. & Guisan, A. (2017) Biodiversity Models: What If Unsaturation Is the Rule? Trends in 615 

Ecology & Evolution, 32, 556-566. doi: http://dx.doi.org/10.1016/j.tree.2017.05.003 616 

McCullagh, P. & Nelder, J.A. (1989) Generalized Linear Models. 2nd edition. Chapman and Hall, London. 617 

McPherson, J.M., Jetz, W. & Rogers, D.J. (2004) The effects of species' range sizes on the accuracy of 618 

distribution models: ecological phenomenon or statistical artefact? Journal of Applied Ecology, 41, 811-619 

823. doi: 10.1111/j.0021-8901.2004.00943.x 620 

Meier, E.S., Kienast, F., Pearman, P.B., Svenning, J.C., Thuiller, W., Araujo, M.B., . . . Zimmermann, N.E. 621 

(2010) Biotic and abiotic variables show little redundancy in explaining tree species distributions. 622 

Ecography, 33, 1038-1048. doi: 10.1111/j.1600-0587.2010.06229.x 623 



Merow, C., Smith, M.J., Edwards, T.C., Guisan, A., McMahon, S.M., Normand, S., . . . Elith, J. (2014) What do 624 

we gain from simplicity versus complexity in species distribution models? Ecography, 37, 1267-1281. 625 

doi: 10.1111/ecog.00845 626 

Mod, H.K., le Roux, P.C., Guisan, A. & Luoto, M. (2015) Biotic interactions boost spatial models of species 627 

richness. Ecography, 38, 913-921. doi: 10.1111/ecog.01129 628 

Mokany, K. & Ferrier, S. (2011) Predicting impacts of climate change on biodiversity: a role for semi-629 

mechanistic community-level modelling. Diversity and Distributions, 17, 374-380. doi: 10.1111/j.1472-630 

4642.2010.00735.x 631 

Nenzen, H.K. & Araujo, M.B. (2011) Choice of threshold alters projections of species range shifts under climate 632 

change. Ecological Modelling, 222, 3346-3354. doi: 10.1016/j.ecolmodel.2011.07.011 633 

Nogues-Bravo, D. & Rahbek, C. (2011) Communities Under Climate Change. Science, 334, 1070-1071. doi: 634 

10.1126/science.1214833 635 

Parmesan, C. & Yohe, G. (2003) A globally coherent fingerprint of climate change impacts across natural 636 

systems. Nature, 421, 37-42. doi: 10.1038/nature01286 637 

Pellissier, L., Pradervand, J.-N., Pottier, J., Dubuis, A., Maiorano, L. & Guisan, A. (2012) Climate-based 638 

empirical models show biased predictions of butterfly communities along environmental gradients. 639 

Ecography, 35, 684-692. doi: 10.1111/j.1600-0587.2011.07047.x 640 

Pereira, H.M., Ferrier, S., Walters, M., Geller, G.N., Jongman, R.H.G., Scholes, R.J., . . . Wegmann, M. (2013) 641 

Essential Biodiversity Variables. Science, 339, 277-278. doi: 10.1126/science.1229931 642 

Pineda, E. & Lobo, J.M. (2009) Assessing the accuracy of species distribution models to predict amphibian 643 

species richness patterns. Journal of Animal Ecology, 78, 182-190. doi: 10.1111/j.1365-644 

2656.2008.01471.x 645 

Pottier, J., Dubuis, A., Pellissier, L., Maiorano, L., Rossier, L., Randin, C.F., . . . Guisan, A. (2013) The accuracy 646 

of plant assemblage prediction from species distribution models varies along environmental gradients. 647 

Global Ecology and Biogeography, 22, 52-63. doi: 10.1111/j.1466-8238.2012.00790.x 648 

Pouteau, R., Bayle, E., Blanchard, E., Birnbaum, P., Cassan, J.J., Hequet, V., . . . Vandrot, H. (2015) Accounting 649 

for the indirect area effect in stacked species distribution models to map species richness in a montane 650 

biodiversity hotspot. Diversity and Distributions, 21, 1329-1338. doi: 10.1111/ddi.12374 651 



Pradervand, J.N., Dubuis, A., Reymond, A., Sonnay, V., Gelin, A. & Guisan, A. (2013) Quels facteurs 652 

influencent la richesse en orthoptères des Préalpes vaudoises? Bulletin de la Société Vaudoises des 653 

Sciences Naturelles, 93, 155-173.  654 

Preston, F.W. (1948) The Commonness, and Rarity, of Species. Ecology, 29, 254-283.  655 

Scherrer, D., Massy, S., Meier, S., Vittoz, P. & Guisan, A. (2017) Assessing and predicting shifts in mountain 656 

forest composition across 25 years of climate change. Diversity and Distributions, 23, 517-528.  657 

Sørensen, T. (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of 658 

species and its application to analyses of the vegetation on Danish commons. Biol. Skr., 5, 1-34.  659 

Thuiller, W., Georges, D. & Engler, R. (2013) biomod2: Ensemble platform for species distribution modeling. R 660 

package version, 2, r560.  661 

Thuiller, W., Lavorel, S., Araújo, M.B., Sykes, M.T. & Prentice, I.C. (2005) Climate change threats to plant 662 

diversity in Europe. Proceedings of the National Academy of Sciences of the United States of America, 663 

102, 8245-8250. doi: 10.1073/pnas.0409902102 664 

Thuiller, W., Pollock, L.J., Gueguen, M. & Münkemüller, T. (2015) From species distributions to meta-665 

communities. Ecology Letters, 18, 1321-1328. doi: 10.1111/ele.12526 666 

Turner, J.R., Gatehouse, C.M. & Corey, C.A. (1987) Does solar energy control organic diversity? Butterflies, 667 

moths and the British climate. Oikos, 195-205.  668 

Van der Putten, W.H., Macel, M. & Visser, M.E. (2010) Predicting species distribution and abundance responses 669 

to climate change: why it is essential to include biotic interactions across trophic levels. Philosophical 670 

Transactions of the Royal Society B-Biological Sciences, 365, 2025-2034. doi: 10.1098/rstb.2010.0037 671 

Zimmermann, N.E., Edwards, T.C., Graham, C.H., Pearman, P.B. & Svenning, J.-C. (2010) New trends in 672 

species distribution modelling. Ecography, 33, 985-989. doi: 10.1111/j.1600-0587.2010.06953.x 673 

Zurell, D., Zimmermann, N.E., Sattler, T., Nobis, M.P. & Schröder, B. (2016) Effects of functional traits on the 674 

prediction accuracy of species richness models. Diversity and Distributions.  675 

  676 



Figure legends 677 

Figure 1: Map of the study area with the forested sites (dark green triangles, N=3076), the 678 

grassland sites (light green circles and red squares, N=903) and the insect sites (red squares, 679 

butterflies N=192, grasshoppers N=202). 680 

Figure 2: The modelling framework illustrating the three different community modelling 681 

approaches: “single species cross-validation” (SSCV), “independent data” (ID) and 682 

“community cross-validation” (CCV).  683 

Figure 3: Deviation in site specific species richness between observations and predictions for 684 

the four different datasets (top to bottom) and the three different modelling pathways (left to 685 

right). The boxplots are sorted by the median and the colours indicate the different 686 

thresholding techniques used to binarise predictions. The line in the box indicates the median, 687 

boxes range from the 25th to the 75th percentile and the whiskers indicate ± 2 standard 688 

deviations. Letters above the boxplots indicate significant differences (Wilcoxon rank sum 689 

test, p < 0.05). 690 

Figure 4: Sørensen similarity between observations and predictions for the four different 691 

datasets (top to bottom) and the three different modelling pathways (left to right). The 692 

boxplots are sorted by the median and the colours indicate the different thresholding 693 

techniques. The line in the box indicates the median, boxes range from the 25th to the 75th 694 

percentile and the whiskers indicate ± 2 standard deviations. Letters above the boxplots 695 

indicate significant differences (Wilcoxon rank sum test, p < 0.05).  696 
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Figure 2: The modelling framework illustrating the three different community modelling 704 

approaches: “single species cross-validation” (SSCV), “independent data” (ID) and 705 

“community cross-validation” (CCV).   706 
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Figure 3: Deviation in site specific species 

richness between observations and 

predictions for the four different datasets 

(top to bottom) and the three different 

modelling pathways (left to right). The 

boxplots are sorted by the median and the 

colours indicate the different thresholding 

techniques used to binarise predictions. 

The line in the box indicates the median, 

boxes range from the 25th to the 75th 

percentile and the whiskers indicate ± 2 

standard deviations. Letters above the 

boxplots indicate significant differences 

(Wilcoxon rank sum test, p < 0.05). 
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Figure 4: Sørensen similarity between 

observations and predictions for the four 

different datasets (top to bottom) and the 

three different modelling pathways (left to 

right). The boxplots are sorted by the 

median and the colours indicate the 

different thresholding techniques. The line 

in the box indicates the median, boxes 

range from the 25th to the 75th percentile 

and the whiskers indicate ± 2 standard 

deviations. Letters above the boxplots 

indicate significant differences (Wilcoxon 

rank sum test, p < 0.05). 

 

  



Table 1: Basic statistics of the data sets used for the case study and the evaluation metrics 
(AUC) for the individual species distribution models using the three different community 
evaluation approaches. SSCV = Single species cross-validation, ID = Independent data, CCV 
= Community cross-validation 
 

Data set Number of 
species modelled 
(recorded) 

Prevalence 
(mean ± sd) 

Species 
richness 
(mean ± sd) 

AUC SSCV 
(mean ± sd) 

AUC ID 
(mean ± sd) 

AUC CCV 
(mean ± sd) 

Forest 312 (703) 0.044 ± 0.090 29.5 ± 11.8 0.80 ± 0.09 0.80 ± 0.08 0.79 ± 0.09 
Grassland 212 (905) 0.098 ± 0.089 23.5 ± 13.8 0.82 ± 0.07 0.83 ± 0.06 0.81 ± 0.06 
Butterflies 77 (131) 0.235 ± 0.137 18.1 ± 9.2 0.76 ± 0.10 0.75 ± 0.12 0.76 ± 0.10 
Grasshoppers 20 (41) 0.256 ± 0.193 5.1 ± 3.3 0.84 ± 0.07 0.86 ± 0.08 0.84 ± 0.06 

  



Table 2: Pearson Correlation of single species and community evaluation statistics. The 
asterisks indicate the significance level. Correlations of the single species evaluation metrics 
and their corresponding community evaluation metric are highlighted in bold. 

 Community metrics 
Single 
species 

Accuracy Sensitivity Specificity KAPPA TSS Sørensen 
similarity 

SR 
deviation 

Accuracy 1.00 *** -0.37 * 0.95 *** 0.70 *** 0.37 * 0.37 * -0.58 *** 
Sensitivity -0.36 ** 0.93 *** -0.54 *** 0.01 n.s. 0.56 *** 0.18 n.s. -0.44 *** 
Specificity 0.97 *** -0.53 *** 0.99 *** 0.64 *** 0.20 n.s. 0.31 *  -0.63 *** 
KAPPA 0.41 ** 0.50 * 0.27 * 0.79 *** 0.72 *** 0.82 *** -0.3 * 
TSS 0.06 n.s. 0.85 *** -0.14 n.s. 0.35 n.s. 0.79 *** 0.38 ** -0.20 n.s. 

The asterisks indicate the significance level (n.s.= not significant, * p<0.05, ** p<0.01, *** p<0.001) 

 

  



 

 

 

Figure S1: Deviation in site specific 

species richness between observations and 

predictions for the four different datasets 

(top to bottom) and the three different 

modelling pathways (left to right). The 

boxplots are sorted by the median and the 

colours indicate the different thresholding 

techniques. The line in the box indicates 

the median, boxes range from the 25th to 

the 75th percentile and the whiskers 

indicate ± 2 standard deviations. For 

details on the method used within each 

threshold group see Table S1. 

  



 

 

 

Figure S2: Sørensen similarity between 

observations and predictions for the four 

different datasets (top to bottom) and the 

three different modelling pathways (left to 

right). The boxplots are sorted by the 

median and the colours indicate the 

different thresholding techniques. The line 

in the box indicates the median, boxes 

range from the 25th to the 75th percentile 

and the whiskers indicate ± 2 standard 

deviations. For details on the method used 

within each threshold group see Table S1. 



 

Figure S3: The relationship of the prevalence of a species (i.e., percentage of sites inhabited) 

to the performance of the SDMs (i.e., as measured by AUC) for the four studied data sets 

(taxa). 

  



Table S1: Description of the ten thresholding methods based on Liu et al. (2005) and Nenzen 
and Araujo (2011). 

Approach Accronym Definition Reference 
Single index-based approaches 

1. Kappa maximization approach 
 
 
 

2. Maximum commission error 

 
Max.Kappa 
 
 
 
MCE05 

 
Kappa statistic is maximized 
 
 
 
Allowed a maximum 
commission error of 5% 

 
(Huntley et al. 1995; 
Guisan, Theurillat & 
Kienast 1998) 

 (Mateo et al. 2012) 

Sensitivity and specificity-combined 
approaches 

   

3. TSS maximization approach 
 

4. Sensitivity-specificity equality 
approach 
 

5. ROC plot-based approach 

Max.TSS 
 
SensSpec 
 
 
Opt.ROC 

TSS statistic is maximized 
 
Difference of sens-spec is 
minimized 
 
ROC statistic is maximized 

(Allouche, Tsoar & 
Kadmon 2006) 
 
(Cantor et al. 1999) 
 
(Cantor et al. 1999) 
 

Model-building data-only-based approach 
6. Prevalence approach 

 
Preval 
 

 
Prevalence of the 
calibration data 

 
(Cramer 2003) 
 
 

Predicted probability-based approaches 
7. Average probability approach 

 
 

 
AvgProb 

 
Taking the average 
predicted probability of the 
model-building data as 
threshold 
 

 
(Cramer 2003) 
 
 

Community based approaches 
8. pS-SDM+PRR 

 
9. MEM+PRR 

 

 
pS-SDM+PRR 
 
MEM+PRR 

 
Probability stacked SDM 
 
Macroecological model for 
SR 

 
(Dubuis et al. 2013) 
 
(Guisan & Rahbek 2011) 

 

  



Table S2 : Community evaluation metrics used in this study. 

Metric Definition 
Species richness  
Deviation in species richness 𝐷𝐷𝐷𝐷𝐷𝐷. 𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 

Prediction success  
 

Sensitivity 
 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

 
 
Specificity 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

Community accuracy 𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑁𝑁
 

 
Community TSS 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 1 

 
Community Kappa 𝐾𝐾 =

𝐴𝐴𝐴𝐴𝐴𝐴 −  𝑝𝑝𝑒𝑒
1 − 𝑝𝑝𝑒𝑒

 

 
Community composition  

Sørensen 

 

𝑆𝑆 =
2 ∗ 𝑇𝑇𝑇𝑇

2 ∗ 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 

 
npred =Number of species predicted 
nobs = Number of species observed 
N = Number of events 
TP = Correctly predicted present species 
TA = Correctly predicted absent species 
FP = Falsely predicted present species 
FA = Falsely predicted absent species 
pe = (𝑇𝑇𝑇𝑇+𝐹𝐹𝐴𝐴)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)+(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)

𝑁𝑁2
 

1 



Table S3 : Evaluation scores of individual SDMs by TSS (A), Kappa (B), PCC (C), Sensitivity (D) and Specificity (E) for the three community 2 
evaluation approaches and four datasets. SSCV = Single species cross-validation, ID = Independent data, CCV = Community cross-validation, 3 
FO = Forest plants, GL = Grassland plants, BF = Butterflies, GH = Grasshoppers.  4 

(A) TSS 5 

Thresholding SSCV ID CCV 

Approach FO GL BF GH FO GL BF GH FO GL BF GH 

Max.Kappa 0.2 ± 0.14 0.27 ± 0.2 0.31 ± 0.23 0.42 ± 0.17 0.21 ± 0.17 0.25 ± 0.21 0.3 ± 0.22 0.43 ± 0.26 0.23 ± 0.13 0.28 ± 0.14 0.31 ± 0.18 0.37 ± 0.15 

MCE05 0.3 ± 0.17 0.32 ± 0.17 0.27 ± 0.18 0.43 ± 0.16 0.28 ± 0.17 0.34 ± 0.17 0.27 ± 0.23 0.45 ± 0.21 0.25 ± 0.17 0.34 ± 0.12 0.31 ± 0.17 0.42 ± 0.12 

Max.TSS 0.35 ± 0.2 0.38 ± 0.14 0.34 ± 0.24 0.47 ± 0.12 0.33 ± 0.22 0.38 ± 0.21 0.34 ± 0.23 0.5 ± 0.26 0.35 ± 0.14 0.39 ± 0.11 0.35 ± 0.18 0.44 ± 0.12 

SensSpec 0.32 ± 0.16 0.36 ± 0.14 0.33 ± 0.18 0.51 ± 0.18 0.31 ± 0.2 0.37 ± 0.21 0.34 ± 0.24 0.51 ± 0.26 0.35 ± 0.13 0.38 ± 0.11 0.35 ± 0.18 0.45 ± 0.11 

Opt.ROC 0.34 ± 0.21 0.36 ± 0.19 0.33 ± 0.17 0.44 ± 0.26 0.32 ± 0.21 0.37 ± 0.21 0.34 ± 0.23 0.49 ± 0.25 0.35 ± 0.13 0.38 ± 0.11 0.35 ± 0.18 0.44 ± 0.12 

Preval 0.18 ± 0.15 0.27 ± 0.15 0.3 ± 0.19 0.41 ± 0.23 0.2 ± 0.16 0.26 ± 0.2 0.31 ± 0.22 0.4 ± 0.23 0.18 ± 0.14 0.23 ± 0.15 0.3 ± 0.17 0.37 ± 0.17 

AvgProb 0.43 ± 0.16 0.5 ± 0.12 0.41 ± 0.21 0.55 ± 0.14 0.47 ± 0.16 0.53 ± 0.13 0.38 ± 0.23 0.56 ± 0.15 0.44 ± 0.16 0.49 ± 0.11 0.4 ± 0.18 0.54 ± 0.14 

pS-SDM+PRR 0.12 ± 0.19 0.17 ± 0.24 0.28 ± 0.24 0.28 ± 0.22 0.14 ± 0.18 0.2 ± 0.24 0.24 ± 0.24 0.29 ± 0.28 0.14 ± 0.17 0.19 ± 0.21 0.27 ± 0.23 0.27 ± 0.22 

MEM+PRR 0.16 ± 0.17 0.2 ± 0.23 0.25 ± 0.24 0.3 ± 0.24 0.14 ± 0.18 0.2 ± 0.24 0.22 ± 0.24 0.32 ± 0.28 0.14 ± 0.17 0.2 ± 0.22 0.25 ± 0.22 0.3 ± 0.22 

 6 

(B) KAPPA 7 

Thresholding SSCV ID CCV 

Approach FO GL BF GH FO GL BF GH FO GL BF GH 

Max.Kappa 0.2 ± 0.14 0.24 ± 0.18 0.28 ± 0.22 0.35 ± 0.19 0.21 ± 0.15 0.24 ± 0.19 0.29 ± 0.22 0.42 ± 0.25 0.2 ± 0.14 0.24 ± 0.15 0.29 ± 0.18 0.36 ± 0.15 

MCE05 0.21 ± 0.13 0.23 ± 0.15 0.24 ± 0.22 0.31 ± 0.16 0.21 ± 0.13 0.28 ± 0.15 0.27 ± 0.22 0.41 ± 0.18 0.11 ± 0.12 0.16 ± 0.14 0.24 ± 0.17 0.32 ± 0.16 

Max.TSS 0.19 ± 0.12 0.27 ± 0.17 0.3 ± 0.19 0.4 ± 0.14 0.21 ± 0.14 0.27 ± 0.16 0.3 ± 0.21 0.41 ± 0.23 0.17 ± 0.13 0.22 ± 0.15 0.3 ± 0.17 0.36 ± 0.15 

SensSpec 0.21 ± 0.14 0.21 ± 0.17 0.29 ± 0.19 0.41 ± 0.17 0.22 ± 0.14 0.28 ± 0.17 0.3 ± 0.21 0.42 ± 0.23 0.17 ± 0.13 0.23 ± 0.15 0.3 ± 0.17 0.37 ± 0.14 

Opt.ROC 0.15 ± 0.15 0.22 ± 0.14 0.32 ± 0.18 0.43 ± 0.17 0.22 ± 0.14 0.27 ± 0.16 0.3 ± 0.21 0.42 ± 0.23 0.17 ± 0.13 0.23 ± 0.15 0.3 ± 0.18 0.37 ± 0.14 

Preval 0.2 ± 0.13 0.22 ± 0.18 0.3 ± 0.2 0.34 ± 0.17 0.21 ± 0.15 0.25 ± 0.18 0.3 ± 0.22 0.39 ± 0.22 0.19 ± 0.14 0.23 ± 0.15 0.3 ± 0.17 0.36 ± 0.16 

AvgProb 0.17 ± 0.12 0.21 ± 0.14 0.26 ± 0.17 0.38 ± 0.15 0.17 ± 0.13 0.22 ± 0.15 0.26 ± 0.19 0.37 ± 0.18 0.16 ± 0.13 0.22 ± 0.15 0.29 ± 0.16 0.37 ± 0.16 

pS-SDM+PRR 0.15 ± 0.16 0.17 ± 0.18 0.26 ± 0.23 0.28 ± 0.25 0.14 ± 0.17 0.18 ± 0.2 0.22 ± 0.23 0.29 ± 0.29 0.14 ± 0.16 0.17 ± 0.19 0.26 ± 0.21 0.28 ± 0.22 

MEM+PRR 0.14 ± 0.16 0.17 ± 0.21 0.24 ± 0.22 0.32 ± 0.26 0.14 ± 0.17 0.18 ± 0.2 0.22 ± 0.23 0.34 ± 0.29 0.15 ± 0.16 0.19 ± 0.19 0.25 ± 0.21 0.32 ± 0.22 

 8 



C) Percentage correct classified (PCC) 9 

Thresholding SSCV ID CCV 

Approach FO GL BF GH FO GL BF GH FO GL BF GH 

Max.Kappa 0.91 ± 0.09 0.9 ± 0.07 0.78 ± 0.1 0.83 ± 0.08 0.9 ± 0.09 0.89 ± 0.07 0.77 ± 0.09 0.83 ± 0.1 0.88 ± 0.09 0.87 ± 0.06 0.76 ± 0.08 0.82 ± 0.07 
MCE05 0.85 ± 0.15 0.79 ± 0.07 0.66 ± 0.11 0.82 ± 0.08 0.88 ± 0.07 0.87 ± 0.05 0.77 ± 0.09 0.82 ± 0.08 0.59 ± 0.14 0.68 ± 0.09 0.64 ± 0.1 0.73 ± 0.08 

Max.TSS 0.85 ± 0.08 0.84 ± 0.07 0.73 ± 0.11 0.83 ± 0.09 0.86 ± 0.1 0.85 ± 0.08 0.73 ± 0.11 0.81 ± 0.09 0.77 ± 0.07 0.79 ± 0.05 0.72 ± 0.08 0.79 ± 0.06 
SensSpec 0.79 ± 0.1 0.84 ± 0.04 0.73 ± 0.09 0.81 ± 0.08 0.87 ± 0.09 0.86 ± 0.07 0.73 ± 0.1 0.81 ± 0.08 0.79 ± 0.07 0.81 ± 0.05 0.73 ± 0.07 0.8 ± 0.06 
Opt.ROC 0.86 ± 0.08 0.86 ± 0.06 0.72 ± 0.11 0.82 ± 0.05 0.87 ± 0.1 0.86 ± 0.07 0.74 ± 0.1 0.81 ± 0.09 0.79 ± 0.07 0.81 ± 0.05 0.73 ± 0.08 0.8 ± 0.06 

Preval 0.92 ± 0.08 0.91 ± 0.05 0.79 ± 0.08 0.83 ± 0.06 0.9 ± 0.08 0.89 ± 0.06 0.77 ± 0.1 0.83 ± 0.09 0.9 ± 0.08 0.89 ± 0.06 0.77 ± 0.08 0.82 ± 0.07 
AvgProb 0.71 ± 0.07 0.67 ± 0.08 0.64 ± 0.11 0.74 ± 0.08 0.69 ± 0.08 0.69 ± 0.07 0.64 ± 0.11 0.73 ± 0.08 0.69 ± 0.07 0.69 ± 0.07 0.66 ± 0.09 0.73 ± 0.07 

pS-SDM+PRR 0.93 ± 0.09 0.88 ± 0.07 0.76 ± 0.08 0.86 ± 0.09 0.91 ± 0.1 0.89 ± 0.08 0.77 ± 0.11 0.83 ± 0.1 0.91 ± 0.1 0.89 ± 0.08 0.78 ± 0.09 0.84 ± 0.1 
MEM+PRR 0.92 ± 0.1 0.9 ± 0.09 0.8 ± 0.09 0.84 ± 0.09 0.91 ± 0.1 0.89 ± 0.09 0.79 ± 0.1 0.86 ± 0.08 0.91 ± 0.1 0.89 ± 0.08 0.79 ± 0.08 0.86 ± 0.09 

 10 

 11 

D) Sensitivity 12 

Thresholding SSCV ID CCV 

Approach FO GL BF GH FO GL BF GH FO GL BF GH 

Max.Kappa 0.31 ± 0.18 0.36 ± 0.24 0.47 ± 0.21 0.51 ± 0.26 0.27 ± 0.21 0.32 ± 0.25 0.46 ± 0.24 0.56 ± 0.26 0.32 ± 0.18 0.37 ± 0.18 0.5 ± 0.2 0.52 ± 0.22 
MCE05 0.45 ± 0.13 0.61 ± 0.11 0.66 ± 0.18 0.73 ± 0.12 0.35 ± 0.17 0.42 ± 0.17 0.42 ± 0.23 0.57 ± 0.19 0.68 ± 0.05 0.67 ± 0.07 0.7 ± 0.09 0.71 ± 0.11 

Max.TSS 0.44 ± 0.28 0.55 ± 0.15 0.62 ± 0.14 0.67 ± 0.15 0.46 ± 0.28 0.52 ± 0.27 0.59 ± 0.22 0.66 ± 0.25 0.57 ± 0.11 0.59 ± 0.11 0.61 ± 0.14 0.63 ± 0.15 
SensSpec 0.55 ± 0.25 0.49 ± 0.15 0.58 ± 0.18 0.65 ± 0.13 0.42 ± 0.26 0.49 ± 0.25 0.58 ± 0.22 0.67 ± 0.25 0.54 ± 0.1 0.55 ± 0.11 0.58 ± 0.14 0.63 ± 0.12 
Opt.ROC 0.44 ± 0.2 0.54 ± 0.14 0.57 ± 0.21 0.67 ± 0.14 0.44 ± 0.26 0.49 ± 0.26 0.58 ± 0.22 0.65 ± 0.24 0.55 ± 0.1 0.56 ± 0.11 0.59 ± 0.14 0.62 ± 0.14 

Preval 0.28 ± 0.17 0.28 ± 0.21 0.46 ± 0.21 0.55 ± 0.25 0.26 ± 0.2 0.32 ± 0.24 0.49 ± 0.22 0.53 ± 0.25 0.24 ± 0.18 0.29 ± 0.18 0.47 ± 0.19 0.5 ± 0.23 
AvgProb 0.76 ± 0.11 0.82 ± 0.1 0.77 ± 0.12 0.83 ± 0.1 0.79 ± 0.11 0.85 ± 0.1 0.78 ± 0.17 0.85 ± 0.13 0.76 ± 0.1 0.81 ± 0.06 0.78 ± 0.1 0.84 ± 0.07 

pS-SDM+PRR 0.21 ± 0.28 0.26 ± 0.32 0.43 ± 0.36 0.42 ± 0.39 0.21 ± 0.28 0.28 ± 0.33 0.44 ± 0.36 0.45 ± 0.4 0.21 ± 0.27 0.26 ± 0.3 0.45 ± 0.33 0.41 ± 0.36 
MEM+PRR 0.21 ± 0.28 0.3 ± 0.31 0.38 ± 0.36 0.41 ± 0.38 0.21 ± 0.29 0.28 ± 0.33 0.38 ± 0.35 0.43 ± 0.38 0.21 ± 0.27 0.28 ± 0.3 0.39 ± 0.32 0.42 ± 0.34 
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E) Specificity 16 

Thresholding SSCV ID CCV 

Approach FO GL BF GH FO GL BF GH FO GL BF GH 

Max.Kappa 0.95 ± 0.09 0.91 ± 0.07 0.82 ± 0.12 0.87 ± 0.1 0.94 ± 0.07 0.93 ± 0.07 0.84 ± 0.12 0.88 ± 0.1 0.91 ± 0.09 0.93 ± 0.07 0.81 ± 0.12 0.85 ± 0.1 
MCE05 0.87 ± 0.15 0.81 ± 0.04 0.78 ± 0.11 0.79 ± 0.09 0.93 ± 0.03 0.91 ± 0.03 0.86 ± 0.1 0.88 ± 0.08 0.57 ± 0.15 0.91 ± 0.03 0.61 ± 0.13 0.7 ± 0.1 

Max.TSS 0.88 ± 0.09 0.79 ± 0.07 0.73 ± 0.1 0.83 ± 0.09 0.87 ± 0.1 0.86 ± 0.09 0.75 ± 0.13 0.84 ± 0.09 0.78 ± 0.08 0.86 ± 0.09 0.74 ± 0.1 0.8 ± 0.08 
SensSpec 0.89 ± 0.07 0.82 ± 0.06 0.77 ± 0.1 0.81 ± 0.09 0.89 ± 0.09 0.88 ± 0.07 0.75 ± 0.12 0.84 ± 0.09 0.81 ± 0.07 0.88 ± 0.07 0.76 ± 0.09 0.82 ± 0.07 
Opt.ROC 0.84 ± 0.08 0.87 ± 0.08 0.74 ± 0.11 0.82 ± 0.09 0.88 ± 0.09 0.88 ± 0.08 0.76 ± 0.13 0.84 ± 0.09 0.8 ± 0.07 0.88 ± 0.08 0.76 ± 0.09 0.82 ± 0.07 

Preval 0.92 ± 0.07 0.95 ± 0.05 0.85 ± 0.13 0.85 ± 0.09 0.94 ± 0.08 0.94 ± 0.06 0.82 ± 0.13 0.87 ± 0.11 0.94 ± 0.08 0.94 ± 0.06 0.84 ± 0.11 0.87 ± 0.09 
AvgProb 0.69 ± 0.08 0.68 ± 0.06 0.63 ± 0.12 0.72 ± 0.09 0.68 ± 0.08 0.68 ± 0.07 0.6 ± 0.12 0.71 ± 0.09 0.68 ± 0.08 0.68 ± 0.07 0.62 ± 0.09 0.69 ± 0.08 

pS-SDM+PRR 0.92 ± 0.15 0.91 ± 0.12 0.81 ± 0.19 0.86 ± 0.19 0.93 ± 0.15 0.92 ± 0.12 0.8 ± 0.23 0.84 ± 0.21 0.93 ± 0.14 0.92 ± 0.12 0.82 ± 0.19 0.86 ± 0.18 
MEM+PRR 0.93 ± 0.14 0.93 ± 0.1 0.85 ± 0.18 0.91 ± 0.15 0.93 ± 0.15 0.92 ± 0.13 0.85 ± 0.2 0.89 ± 0.16 0.93 ± 0.14 0.92 ± 0.13 0.86 ± 0.17 0.88 ± 0.15 
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