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Summary 

Fatty acids (FA) are one of the major storage forms of carbon in living 

organisms, precursors for some plant hormones such as jasmonate (JA), and 

major building compounds of the membrane bilayer. In this thesis I address the 

question: what are the roles of diunsaturated fatty acids (DUFAs) in 

Arabidopsis seedling establishment and defence? In the first part of this work I 

found that fatty acid composition is different between roots and shoots of 7-

day-old seedlings. The fatty acid composition of roots was constant during plant 

development, whereas in the shoots it changed within the first week of seedling 

establishment. Analysis of Arabidopsis mutants with low levels of 

polyunsaturated fatty acids (PUFAs) revealed chlorotic, dwarfish plants with 

delayed developmental phenotypes. Reduced levels of PUFAs in roots led to 

overaccumulation of reactive oxygen species (ROS) that correlated with 

reduced root growth and stronger susceptibility to abiotic stresses, such as salt 

treatment. Another interesting finding of this work was that Arabidopsis 

seedlings lacking DUFAs were highly resistant to the necrotrophic pathogen 

Botrytis cinerea. This work defines a first attempt to understand the role 

DUFAs in adaptation to some important abiotic and biotic stresses and their 

role in these processes. This research opened a lot of questions that could 

provide better understanding of plant development and adaptation to a changing 

environment.  
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Résumé en français 

Les acides gras sont connus pour être l'une des principales formes de stockage 

du carbone dans les organismes vivants et les composés de construction 

majeurs des membranes cellulaires. Dans cette thèse, j'ai abordé la question 

suivante : quel est le rôle des acides gras di-insaturés (AGDI) dans 

l'établissement et la défense des plantules d’Arabidopsis? Premièrement, j'ai 

constaté que la composition des AG était différente entre les racines et les 

pousses. La composition en AG des racines était constante pendant le 

développement de la plante, alors que dans les pousses, elle a changé au cours 

de la première semaine de croissance. L'analyse de mutants avec de faibles 

niveaux d'acides gras polyinsaturés (AGPI) a révélé un phénotype végétal 

chlorotique avec un développement retardé. Les niveaux réduits d'AGPI dans 

les racines ont entraîné une accumulation excessive des espèces réactives de 

l’oxygène, ce qui corrèle avec la réduction de la croissance des racines et une 

forte susceptibilité aux contraintes abiotiques. Un autre résultat intéressant est 

que les plants dépourvus d’AGDI étaient aussi très résistants au pathogène 

nécrotrophique Botrytis cinerea. Ce travail a été une première tentative pour 

comprendre le rôle des AGDI dans l'adaptation à certains stress (a-) biotiques 

et leur rôle dans ces processus. Notre recherche ouvre beaucoup de questions 

concernant le développement des plantes et leur adaptation aux changements 

de l'environnement. 
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Résumé pour un large public 

Acides gras di-insaturés (AGDI) et leur rôle dans l’établissement et la 

défense des plantules. 

Olga Dubey, Département de Biologie Moléculaire Végétale (DBMV), 

Université de Lausanne. 

Les plantes ont développé de multiples façons de s'adapter aux changements de 

l'environnement. Ce travail permet de mieux comprendre le rôle des acides gras 

di-insaturés (AGDI) et leur implication dans la résistance au stress. La 

première question de ce travail a été de comprendre le rôle des AGDI dans l 

'adaptation au stress salin. Nous avons constaté que les plantes avec des 

niveaux fortement diminués d'acides gras poly-insaturés (AGPI) possèdent des 

racines réduites. Lorsque ces plantes sont transférées sur un milieu de 

croissance avec une forte concentration en sel, la longueur des racines est 

diminuée encore plus fortement. Cette constatation indique un rôle important 

des AGDI pour la croissance des plantes dans un environnement salé. La 

deuxième question abordée dans cette recherche était de comprendre le rôle des 

AGDI dans la résistance au pathogène nécrotrophique Botrytis cinerea. Ces 

résultats indiquent un rôle important des AGDI pour le développement des 

plantes et leur adaptation au stress et ouvrent de nouvelles questions et de 

nombreuses possibilités d'approfondir les recherches en lien avec cette 

problématique. 
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I.1. Polyunsaturated fatty acids in plants: structures and biosynthesis. 

	

Fatty acids (FAs) are hydrocarbons containing a long aliphatic chain that can 

be either saturated (no double bonds) or unsaturated (one or more double 

bonds). Chain lengths of C16 (∼ 30%) and C18 (∼ 70%) are the most 

abundant in higher plants (Tjellstroem et al., 2012). Depending on the level of 

saturation, FAs can be subdivided into the saturated (e.g. 16:0; 18:0), 

monounsaturated (e.g. 16:1; 18:1; MUFA), di- (e.g. 16:2; 18:2; DUFA) or tri-

unsaturated (e.g. 16:3; 18:3; TUFA). Subgroups of 18:2 and 18:3 make up 55% 

of total fatty acids in Arabidopsis cell cultures (Tjellstroem et al., 2012). In 

leaves 18:2 and 18:3 represent, 18.5% and 50% respectively of total FAs 

(Maatta et al., 2012). In the roots the proportion of DUFAs and TUFAs is 

different from the shoots, 18:2 make up 37% of total FAs, whereas 18:3 only 

28% (Beaudoin et al., 2009). Leaf and root fatty acids are, therefore, primarily 

polyunsaturated.  

 

Most of the fatty acids found in cells are esterified to glycerol as glycerolipids. 

Their derivatives, glycolipids and phospholipids, form essential structural 

features of membrane bilayers. In many seeds, including Arabidopsis thaliana, 

triacylglycerols are the major energy source (Fig.1.1). 
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Figure 1.1. Structures of the major fatty acids and glycerolipids of plant cell 
membranes. From Ohlrogge and Browse (1995). 

 
Fatty acid biosynthesis in plants is different from that in animals, fungi and 

some bacteria. More than 30 enzymatic reactions are required to synthetize 

C16 or C18 FAs from acetyl-coenzyme A (CoA) and malonyl-CoA in plants 

(Ohlrogge and Browse, 1995). Whereas in the other kingdoms this process 

requires only one multifunctional polypeptide complex located in the cytosol 

(Ohlrogge and Browse, 1995; Laliotis et al., 2010). Synthesis of the major 

glycerolipids in plants is carried out on the membranes of plastids and the 

endoplasmic reticulum (ER), called in short the “prokaryotic” and “eukaryotic” 

pathways (Browse and Somerville, 1991; Heinz, 1993). 16:0 and 18:1 acyl 

groups are the essential substrates for polyunsaturated fatty acid synthesis in 
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both pathways. Fatty acid desaturase (FAD) enzymes are necessary for 

insertion of double bonds in newly synthetized unsaturated fatty acids 

(Fig.1.2).  

 

Figure 1.2. Fatty acid synthesis and glycerolipid assembly in Arabidopsis 
leaves. From Ohlrogge and Browse (1995). 

 

As shown in Figure 1.2, desaturation of 18:1 to 18:2 and 18:3 takes places in 

both pathways, but it requires different FAD enzymes. In the ER 18:1 

desaturation takes place through the activity of FAD2 enzyme and 18:2 is 

converted to 18:3 by FAD3 (Miquel and Browse, 1992; Browse et al., 1993). 

In plastids, the synthesis of both 16:2 and 18:2 FAs is dependent on FAD6 

enzyme (Browse et al., 1989) and 16:3/18:3 are produced by further 

desaturation catalysed by FAD7 and FAD8 (Browse et al., 1986; Gibson et al., 
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1994; McConn et al., 1994).  

 

Fatty acid synthesis is tightly regulated by the light/dark cycle in the 

photosynthetic organs of plants; malonyl-CoA is synthetized within seconds 

after light exposure (Sauer and Heise, 1983). This process is triggered by pH, 

Mg2+ and redox cascade changes within the chloroplasts (Harwood, 1983; 

Sauer and Heiske, 1983; Eastwell and Stumpf, 1983; Sasaki et al., 1997). Other 

external factors that can control fatty acid biosynthesis will be described in 

detail within the following subchapters. 

  

I.2. Roles of PUFAs in plant development and physiology. 
 

Fatty acids biosynthesis is a primary metabolic pathway essential for plant 

growth and development. fad2-2 fad6 Arabidopsis mutants that lack both 

DUFAs and TUFAs were shown to be lethal on soil, due to the important role 

of these FAs in the assembly and maintenance of the photosynthetic complexes 

(McConn and Browse, 1998). Surprisingly, plants lacking only TUFAs (fad3-2 

fad7-2 fad8) were shown not to have a strong impact on plant growth, but on 

male sterility caused by deficiency in jasmonic acid (JA; McConn and Browse, 

1996). Based on recent studies, the composition of galactolipids is tissue 

specific: the major pools of PUFAs in leaves are synthetized by FAD7, FAD8 

and FAD6 enzymes (Li-Beisson et al., 2013), whereas in meristematic zones, 
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FAD2 and FAD3 play the key role (Mei et al., 2015). In fast-growing tissues 

(calli) and highly dividing cells (cell suspension cultures), levels of 

phospholipids are significantly lower than in slow-growing cells. One of the 

current explanations for this phenomenon is associated with low activity of 

FAD2 and FAD3 enzymes in these tissues that leads to over-accumulation of 

18:1 in membranes (Mei et al., 2015). 

 

It has been long known that PUFAs have an important physiological role in 

plant adaptation to temperature changes (Pearcy, 1978; Raison et al., 1982; Iba, 

2002). Under cold conditions, PUFA biosynthesis increases, whereas under hot 

conditions it decreases. For example, the average number of double bonds per 

glycerolipid (diacyl lipids) in the leaves of Arabidopsis drops from 4.8 at 17 0C 

to 2.9 at 36 0C. Mutants deficient in TUFAs (fad3-2 fad7-2 fad8) are strongly 

affected in long-term exposure to 4 0C due to inability to maintain high 

chlorophyll levels (Fig.1.3.A). Even if TUFAs are not essential for adaptation 

to high temperatures, low levels of these FAs need to be maintained to promote 

plant survival (Fig1.3. B). 
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Figure 1.3. Triunsaturated fatty acids and their role in adaptation to 
temperature changes. (A) Wild type (left) and the fad3-2 fad7-2 fad8 mutant 
(right) were grown for 15 d at 22 0C and transferred to 4 0C for 30 days. From 
Routaboul et al., 2000. (B) WT and fad3-2 fad7-2 fad8 mutant were transferred 
from 22 0C to 33 0C for 15 days. From Routaboul et al. (2012). 

 

Roles for DUFAs in plant physiology have been identified with the help of 

fad6 and fad2 mutants. No phenotypic differences were observed in these 

mutants compared to the WT at 22 0C, 4 weeks post-germination (Miquel et 

al., 1993; Maeda et al., 2008). However, dramatic chilling sensitivity was 

detected in both mutants leading to leaf chlorosis, reduced growth rate and 

changes in chloroplast morphology (Hugly et al., 1992; Miquel et al., 1993). In 

recent years, namely an additional role of DUFAs has been identified, 

adaptation to salinity stress. fad2 and fad6 mutant plants growing on 200 to 250 

A	

B	

A	
WT	 fad3-2	fad7-2	fad8	
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mM NaCl media were shown to be more sensitive to this treatment compared 

to WT seedlings (shorter roots and chlorotic cotyledons) due to an altered ion 

homeostasis in fad6 mutants (Zhang et al., 2009) and dysfunction of 

membrane-embedded Na+ / H+ exchangers (Zhang et al., 2012). These results 

suggest an essential role of PUFAs in plant development and physiology. 

Another more recently discovered role of PUFAs is in buffering of reactive 

oxygen species (Mene-Saffrane et al., 2009; Schmid-Siegert et al., 2016) that 

are the main mediators of non-enzymatic lipid oxidation (nLPO) (Weber et al., 

2004). It was shown that a major by-product of lipid oxidation, 

malondialdehyde (MDA), is generated mainly from TUFAs (60-75%) in leaves 

and can promote gene expression in response to stresses (Weber et al., 2004; 

Schmid-Siegert et al., 2012). When the stress levels in plants go down, MDA is 

incorporated back into the chloroplast galactolipid 18:3-16:3-

monogalactosyldiacylglycerol (MGDG), which is thought to act as a cell 

protectant (Schmid-Siegert et al., 2016). The other possible sources of MDA in 

plants can be mono- and di-unsaturated fatty acids (Lui et al., 1997), although 

this needs to be tested. This thesis will further investigate the role of DUFAs in 

plants defences. 
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I.3. Roles of PUFAs in defences. 
 

PUFAs play important direct and indirect roles in defence. When plants are 

exposed to biotic stresses, PUFAs present in the membrane bilayer are oxidized 

leading to the formation of oxylipins and various reactive electrophile species 

(RES; Chehab et al., 2008). Oxylipins are oxygenated fatty acids that contain 

one or more oxygen atoms in addition to one in the carboxylic acid group. 

Oxygenation of 18:3 and 16:3 FAs generates oxylipins known as jasmonates 

(Wasternack and Kombrink, 2010; McDowell and Dangl, 2000). These 

molecules play important roles in plant defence against herbivores and 

necrotrophic pathogens (Walling, 2000; Kachroo and Kachroo, 2009). Plants 

subjected to herbivore attack were shown to produce more trichomes on the 

new emerging leaves and smaller petioles as response to this stress, features 

that are controlled by jasmonic acid pathway (Yan and Chen 2007; Zhang and 

Turner, 2008; Yoshida et al., 2009). Three cellular compartments (chloroplasts, 

peroxisomes and the cytosol) and multiple biosynthetic enzymes are required 

for JA biosynthesis (Fig.1.4). 
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Figure 1.4. Jasmonic acid biosynthesis and metabolism in Arabidopsis 
thaliana.	From Acosta and Farmer (2010).	

 
Another compound synthtetized from PUFAs during nLPO is azelaic acid (one 

of the reactive electrophile species (RES)). This reactive electrofile species 
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(RES) was shown to induce systemic acquired resistance in Arabidopsis plants 

upon stress conditions (Jung et al., 2009). 

 

In the last years, a new role of PUFAs was identified, namely mediation of 

transcriptional responses. Phospholipase A (PLA) was shown to activate 

promoters containing rapid stress response elements (RSREs) via cleavage of 

18:2 and 18:3 FAs from plant membranes upon pathogen attack. RSREs induce 

activation of defence genes upon multiple abiotic and biotic stresses providing 

plant protection on the early stages (Savchenko et al., 2010). Another by-

product of lipid oxidation involved in defence is phytoprostane (an oxylipin) 

that was shown to activate TGA motifs. TGA2, TGA5 and TGA6 factors 

induce expression of defence genes upon treatment with cyclopentenone 

oxylipins (Mueller et al., 2008).  

 

I.4. PUFAs and fungal pathogens including B. cinerea. 

	

The cuticle is an extracellular hydrophobic layer that covers aerial parts of the 

plant epidermis and works as a barrier between internal parts of the plant and 

the environment (Yeats and Rose, 2013). It consists of highly water-repellent 

thin wax layer (procuticle) in young leaves that develops to cutin and cuticular 

wax in mature leaves (Jeffree, 1996). C16 and C18 diacids, ω - and mid-chain 

hydroxy FAs are the major structural components of cutin in Arabidopsis 
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leaves (Molina et al., 2006). Surprisingly, the main cutin monomer in leaf and 

stem cuticle is 18:2 dicarboxylic acid (Bonaventure et al., 2004; Franke et al., 

2005). Very long chain fatty acids (VLCFAs) obtained by elongation of 

plastidial FAs are the major source for wax (Fig. 1.5; Jenks et al., 1995; 

Samuels et al., 2008).  

 

Figure 1.5. Cuticle biosynthesis in Arabidopsis thaliana plants. From Kachroo 
and Kachroo (2009). 

 

The cuticle is an important barrier that interacts with the surrounding 

environment. It provides the first layer of defence against pathogens and 

herbivores in addition to prevention of water, gas and solute loss (Eigenbroade 
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et al., 1995; Kolattukudy, 1996; Koteyeva, 2005). For cuticle-degrading 

pathogens, such as Fusarium solani pisi, Botrytis cinerea, Magnaporthe oryzae 

etc. cuticle and waxes play an important role in initiating pathogen 

development on the plant surface (Lin and Kolattukudy, 1978; Chassot et al., 

2008; Gilbert et al., 1996). Changes in cuticle composition can affect fungal 

development and prevent penetration into the plant (Chassot et al., 2007). 

Additionally, FA levels can change during pathogenesis. Increased levels of 

18:3 and reduced levels of 18:2 were seen 12 hours after Phytophthora sojae 

application to parsley cells. Surprisingly, no significant changes were detected 

in C16 fatty acids (Kirsch et al., 1997). Changes in the levels of linolenic acid 

(18:3) were also observed in other species, such as Phaseolus vulgaris, Poa 

pratensis and Eschscholtza californica upon attack by diverse rust species 

(Puccinia spp.; Hope and Heitefuss, 1974; Losel, 1978; Muller et al, 1993). 

 

Jasmonate plays an important role in resistance to necrotrophic fungi; plants 

lacking TUFAs were shown to have strong susceptibility to these pathogens 

(Kachroo et al., 2001; Yaeno et al., 2004). The role of DUFAs in pathogenesis 

has been described only in a few studies. It was shown that 18:2 can be used as 

a precursor for antifungal dienes such as Z,Z-1-acetoxy-2-hydroxy-4-oxo-

heneicosa-12,15-diene that is induced in avocado fruits upon Collectotrichum 

gloeosporioides infection (Madi et al., 2003). Another role of linoleic acid 

(18:2) is to promote morphological differentiation in Aspergillus nidulans, A. 
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flavus and A. parasiticus (Calvo et al., 1999), as well as sporogenesis in 

Aspergillus tomato, Sclerotinia fructicola and Neurospora crassa (Katayama 

and Marumo, 1978; Nukima et al., 1981). In summary, PUFAs have diverse 

roles in pathogenesis. Additional discoveries in this area are likely. 

 

I.5 Main goals of this thesis 
 

The purpose of this research was to examine the role of DUFAs in defence and 

development at the seedling stage, using Arabidopsis fad2 and fad6 mutants. 

Early in this thesis, I characterized fad mutants at different developmental 

stages from 3-day-old seedlings to 3-week-old rosettes. This was followed by 

analysis of PUFAs on development in fad2 mutants and its involvement in the 

adaptation to salt stress. In the last chapter of this thesis, I try to understand the 

role of DUFAs in resistance to the necrotrophic pathogen Botrytis cinerea. 

Application of this pathogen on wild type and fad seedlings showed resistance 

of fad mutants compared to WT plants. The next and the biggest goal of this 

work was to understand what leads to B. cinerea resistance. For this purpose 

multiple experimental approaches were used, such as atomic force microscopy, 

transmission electron microscopy, biochemical and molecular biological 

approaches.  
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II.1. General characterization of fad mutants. 
 

Fatty acids are one of the major storage forms of carbon in living organisms, 

precursors for some plant hormones such as jasmonate, and major components 

of membrane bilayers. Polyunsaturated fatty acids are highly abundant in 

plants: diunsaturated and triunsaturated fatty acids account for more than 70% 

of fatty acids in leaf cells and 50 to 70% in roots (Harwood, 1996). Fatty acid 

biosynthesis starts in the plastids with synthesis of 16:0 and 18:1 acyl groups. 

Higher unsaturated forms are made by fatty acid desaturases localized on the 

endoplasmic reticulum or in plastids (Browse et al., 1991; Heinz, 1993, Lou et 

al., 2014). Synthesis of linoleic acid (18:2) from oleic acid (18:1) requires two 

enzymes: FAD2 localized on the ER, and FAD6 in plastids (Miquel et al., 

1993; Browse et al., 1989). At the seedling stage, fad2 and fad6 single mutants 

have a similar phenotype as wild type (WT).  

 

The conversion of linoleic acid (18:2) to linolenic acid (18:3) requires 3 

enzymes: FAD3 localized on the ER, FAD7 and FAD8 in plastids. The fad3-2 

fad7-2 fad8 (fad trip) mutants have lighter leaf coloration and cannot produce 

seeds. These plants are able to grow in low-stress conditions but cannot be 

maintained at low temperatures (Routaboul et al., 2000). Remarkably, TUFAs 

do not play a crucial role in photosynthesis (McConn et al., 1996). Plant that is 

almost fully deficient in both di- and triunsaturated FA (fad2-2 fad6) cannot 
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grow on soil, but can be propagated on 2% sucrose media (McConn et al., 

1998). The fad2-2 fad6 double mutants have a chlorotic and dwarfed 

phenotype, but are able to produce fertile seeds under these conditions. The 

aim of this chapter is to understand the role of DUFAs at different stages of 

plant development. 

 

To obtain a mutant capable of growth on soil we investigated three mutant 

alleles of FAD2 and one allele of the FAD6 gene. The fad2-1 mutant was 

produced by ethyl methanesulfonate (EMS) mutagenesis and has a point 

mutation in the second exon, leading to an amino acid change from alanine to 

threonine (A->T). This is one amino acid before the first conserved His-Box 

(Zhang et al., 2012) that is involved in iron coordination complex at the active 

site together with two other His-Boxes (Shanklin et al, 1994). The fad2-2 allele 

(also obtained by EMS mutagenesis (James et al., 1990)) has a point mutation 

in the second exon, leading to an amino acid change from serine to 

phenyalanine (S->F), five amino acids before the second conserved region. 

This mutation was identified in this work. The fad2-3 mutant has a T-DNA 

insertion in the second exon, obtained from Arabidopsis Biological Resource 

Centre (SK18137). The fad6 mutant has a missense mutation in the fourth 

exon, leading to an amino acid change from glycine to alanine (G->A) in a 

membrane trans region (Zhang et al., 2009). All the mutations were confirmed 

by DNA sequencing and checked for homozygosity by PCR. 
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RT-PCR revealed similar to wild type levels of FAD2 and FAD6 gene 

expression in fad2-1, fad2-2 and fad6 mutants, whereas no expression of FAD2 

was detected of the fad2-3 allele, consistent with T-DNA insertion. The 

UBC21 (At5g25760) transcript was used as a control (Fig. 2.1). Presence of 

three different FAD2 alleles allowed us to exclude the fad2-2 mutant from 

further work, due to its intermediate phenotype revealed in crosses of fad2-1 

fad6; fad2-2 fad6 and fad2-3 fad6 double mutants and focus on fad2-1 and 

fad2-3 alleles of FAD2 gene. 

 
 
Figure 2.1. FAD2 and FAD6 transcript expression in 3-day-old seedlings. 
UBC21 was used as a loading control.  

 

PUFAs are one of the major components of membrane bilayers; deficiency in 

them might therefore strongly affect cell viability during plant development. 

To see if reduced levels of DUFAs affect plant morphology we compared 4-

week-old mutant rosettes under two different light conditions. This revealed 

phenotypic difference between WT and fad2 mutants (Fig.2.2). 
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Figure 2.2. Developmental phenotype of diunsaturated fatty acid mutants. (A) 
4-week-old rosettes grown in 9 h light / 15 h dark photoperiod. Scale bar 1 
mm. (B) 6-week-old flowering plants growing in continuous light. 

 

Figure 2.2, A shows that fad2 mutants grown under short day conditions were 

found to have shorter petioles than WT with darker and rounded leaves. fad6 

mutants more resemble the WT phenotype with an exception of lighter leaf 

color and smaller rosette size. During flowering the main difference was 

observed in fad2-3 mutants that have a bushy phenotype, most probably due to 

lack of apical dominance. The remaining fad mutants were morphologically 

similar to the WT (Fig. 2.2, B). 
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To eliminate all detectable DUFAs and TUFAs from plants, two double 

mutants: fad2-1 fad6 and fad2-3 fad6 were generated in this work. We obtained 

similar results to fad2-2 fad6 plants (McConn et al., 1998). The fad2-3 fad6 

double mutants had a dwarf phenotype, chlorotic leaves and did not produce 

seeds (Fig.2.3, A). The double mutants with the weaker allele (fad2-1) were 

able to growth on soil, seed production was delayed to 2 extra months (Fig.2.3, 

B). The size of these plants was significantly smaller compared to the WT and 

the double mutant had chlorotic leaves. Under short day conditions the fad2-1 

fad6 double mutants produced larger rosettes compared to those grown in 24 h 

light conditions.  

 

Figure 2.3. Monounsaturated plants. 4-week-old plants grown on (A) 2% 
sucrose media in Magenta boxes and (B) on soil. In both cases the same 14 h 
light, 10 h dark conditions were used.  

 

The fad2-2 fad6 and fad2-1 fad6 double mutants are strongly affected in 

development (McConn et al., 1998; this work), whereas the single mutants 

have morphologies similar to WT (Zhang et al., 2009; 2012; this work). That 

brought us to the idea of compensatory role between FAD2 and FAD6 

enzymes. The aim was to understand if this mechanism was controlled at the 
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translational or transcriptional levels. For this purpose, we conducted qPCR 

analysis of FAD2 and FAD6 transcript levels on 7-day-old seedlings grown on 

agar media (Fig.2.4). 

 
Figure 2.4. Relative expression of FAD2 and FAD6 genes in 7-day-old fad 
single mutants. FAD2 and FAD6 transcriptional levels were normalized to 
those of UBC21 in WT seedlings. Error bars indicate a mean of ± SD. Bars 
represent the means of 4 biological replicates; each contains a pool of ∼ 40 
seedlings. Statistical significance in pair-wise comparison was evaluated by 
Student’s test, where * p≤ 0.05, *** p≤ 0.001. 

 

The results obtained did not show significant upregulation of the FAD6 gene in 

fad2 mutants or of the FAD2 gene in the fad6 background. Suggesting that, 

compensatory mechanisms make take place at the post-transcriptional levels. 

 

II.2. Changes in fatty acid composition during development. 
 

Fatty acid profiling via gas chromatography - mass spectrometry (GCMS) was 

performed to monitor changes in the levels of PUFAs in fad mutants at early 

developmental stages. The time course from 3- to 7-day-old was chosen due to 

the known difference in the expression of FAD2 and FAD6 genes in this period 
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(Zhang et al., 2009; Zhang et al., 2012). Our results revealed similar FA 

profiling for seeds and 3-day-old seedlings (Fig.2.5) and further on changes 

during the first week of seedling establishment in the WT and mutants 

(Fig.2.6).  

 
 

Figure 2.5. Fatty acid composition in fad mutants. Arabidopsis (A), seeds; (B), 
3-day-old seedlings were used to perform fatty acid profiling. Error bars 
indicate a mean of ± SD. Bars represent the means of 3 - 6 biological 
replicates; each contains a pool of ∼300 seeds or ∼120 seedlings.  
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Figure 2.6. Fatty acid composition during the first week of seedling 
establishment. (A), WT; (B), fad6; (C), fad2-1; (D), fad2-3 seedlings were used 
for this analysis. Error bars indicate a mean of ± SD, bars represent the means 
of 4 - 6 biological replicates; each contained a pool of ≈ 40 seedlings. 

 
Significant changes in FA composition occurred in the WT seedlings between 

the third and sixth day after germination. There was an increase in the levels of 

16:3 from 2% to 13.5% and a decrease in 18:2 levels from 34% to 15% 

(Fig.2.6, A). The fad6 mutants showed similar changes in the levels of 18:2. 

However, fad6 plant reveales changes in C16 fatty acid composition, this 

mutant has no 16:2 FA, and it is associated with the over accumulation of 16:1 

which increases from 1% to 10% of extracted fatty acids by the end of the 6th 

day (Fig.2.5, B). The fad2 single mutants have a similar to WT composition of 
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C16 FAs, but differ to WT C18 FA compositions due to strongly reduced 

levels of 18:2. This correlated with over - accumulation of 18:1 and 10% 

higher levels of 18:3 compared to the WT. Surprisingly, in fad2-3 mutants 18:3 

levels stabilized on the 6th day after germination and in the fad2-1 on the 5th 

day (Fig.2.5, C-D). Unexpectedly, FA composition did not change strongly 

during the 7-day to 4-week stage in any of the genotypes analyzed (Fig 2.5, E). 

The fad2-1 fad6 double mutant had a consistent FA profile at all analyzed 

stages. The major FA components in fad2-1 fad6 mutants are 18:1 and 16:1 

with an almost complete absence of 16:2, 18:2 and 16:3,18:3 FAs. Based on 

these results, fad2-1 fad6 can be considered as a monounsaturated plant.  

 

II.3. PUFAs as major precursors of malondialdehyde. 

 

Reactive oxygen species are the main source of non-enzymatic lipid oxidation, 

a process where polyunsaturated fatty acids (PUFAs) present in membrane 

lipid bilayers get oxidized and that leads to aldehyde formation (Esterbauer et 

al., 1991). By-products of lipid oxidation are of great interest, because of their 

association with mammalian diseases such as cancer, aging, arthritis, 

Alzheimer’s disease, atherosclerosis and alcoholic liver disease (Ramos et al., 

1995; Esterbauer et al., 1991; Spiteller, 1996; Montine et al., 2002; Levonen et 

al., 2014; Han et al., 2016). According to a recent hypothesis, PUFAs work as 
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a buffering system for ROS and the by-products of lipid oxidation induce gene 

expression in response to stresses, leading to cell protection (Mene-Saffrane et 

al., 2007, Schmid-Siegert et al, 2016). 

 

Malondialdehyde is one of the most studied products of lipid oxidation that is 

commonly believed to be a genotoxic and proteotoxic molecule (Marnett, 

1999) generated from oxidative degradation of PUFAs with more than two 

methylene-interrupted double bonds (Pryor and Stanley, 1975). MDA can be 

present in two forms, depending on its pH: enolate, with a low chemical 

reactivity at cytosolic pH and a highly reactive protonated form at acidic pH 

that can lead to cell damage (Sawicki et al., 1963). MDA pools in Arabidopsis 

seedling can be visualized by 2-thiobarbituric acid (TBA) staining, which 

forms MDA(TBA)2 adducts that can be detected by their fluorescence at 

555±15 nm (Mène-Saffrané et al., 2007) and quantified via GC/MS using the 

cognate MDA internal standard D2-MDA (Yeo et al., 1994; Liu et al., 1997, 

Weber et al., 2004). 

 

The main sources of MDA in mammalian tissues are arachidonic and 

docosahexaenoic PUFAs, oleic and elaidic acids produce much lower amounts 

of MDA (Pryor and Stanley, 1975; Liu et al., 1997). In rodents the highest 

concentration of MDA was found in kidney and heart (Kelley et al., 2006; 

Kumasaka et al., 2007). This tightly correlates with the ratio of PUFAs in 



	 52	

kidney and heart (around 45-50%) compared to 25-30% in liver and brain 

(Spector, 2001).  

 

Due to the availability of lipid biosynthesis mutants, Arabidopsis is a widely 

used model organism in lipid oxidation studies. The highest concentration of 

MDA in Arabidopsis was found in the leaves (Muckenschnabel et al., 2002), 

where the major pool (76% of total MDA) originates from α-linolenic fatty 

acid (18:3; Weber et al., 2004). The sources of MDA in seedlings differ from 

those in adult plants and remain unknown (Schmid-Siegert et al., 2012). In this 

case di- and monounsaturated FAs could be the most likely source for MDA 

generation, since their abundance in shoots of Arabidopsis seedlings. 

 

The main question of this part of the thesis was to find the major source of 

MDA in Arabidopsis seedlings, its localization and potential role in defense 

responses. To answer these questions we used 3- and 7-day-old Arabidopsis 

seedlings and tested how changes in fatty acid levels affect MDA pools. 

 

According to earlier work (Schmid-Siegert et al., 2012), pools of MDA are 

localized in the meristematic zones of Arabidopsis seedlings. However, we 

found this tissue unsuitable, due to its small size, for biochemical analysis. To 

check this hypothesis, we used 3-day-old roots of Brassica oleracea (that is 

known to be closest relative to Arabidopsis) to conduct quantitative MDA 
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measurements of the tip and remaining part of the root (Fig.2.7, B). As a 

control we made fatty acid measurements from the root tip and remaining parts 

of the seedlings’ roots (Fig.2.7, A). 

 

 

Figure 2.7. Biochemical characterization of Brassica oleracea roots. (A) Fatty 
acid composition of 3-day-old entire roots and separated root tips. This 
experiment includes 6 independent replicates. (B) Total MDA levels in 3-day- 
old tips and remaining part of the root. Error bars indicate a mean of ± SD, bars 
represent the means of 4-6 biological replicates; each containing a pool of ≈ 60 
roots and 120 root rips. All tissue material was collected in liquid nitrogen to 
prevent oxidation of FAs.  
 

The results obtained did not confirm the hypothesis of high MDA 

concentration in the meristematic regions. On the contrary, we found no 

difference in FA composition and MDA levels of the tip and entire Brassica’s 

root. These results suggest that high concentration of MDA detected in the 
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meristematic regions of Arabidopsis seedlings previously, could be caused by 

defects in root tip permeability. 

 

fad mutants were used to estimate which polyunsaturated fatty acids can act as 

MDA precursors. To visualize MDA pools within the plant 2 - thiobarbituric 

acid solution (35 mM TBA, for 60 min) was used (Mene-Saffrance et al., 

2007). Signal intensity was shown to correlate with MDA levels; the more 

MDA the higher fluorescence. TBA staining of the 3-day-old Arabidopsis roots 

revealed stronger fluorescence in the root tips of WT and fad6 seedlings 

compared to fad2 mutants (Fig.2.8). 

 

Figure 2.8. In situ malondialdehyde (MDA) detection. 3-day-old Arabidopsis 
roots were incubated in 35 mM TBA solution for 60 min and visualized by 
confocal microscopy with excitation at 555 ± 15 nm. 
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To confirm these results we conducted quantitative MDA measurements via 

GCMS. This revealed a decrease in MDA levels of fad2 mutants from 4.5 to 3 

ng/mg dry weight (D.W.) in whole 3-day-old seedlings. We found no 

differences between fad6 and WT seedlings (Fig.2.9, A) and a strong MDA 

decrease in the fad2-1 fad6 double mutant – 1.19 ng/mg D.W. (below limit of 

quantification (LOQ)) relative to 4.5 ng/mg D.W. in the WT (Fig.2.9, B). 

MDA measurements in 3-day old roots showed stronger decreases in fad2 

mutants that could be explained by overall lover levels of DUFAs, due to the 

absence of FAD6 activity in this tissue (Fig.2.9, C).  
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Figure 2.9. Total MDA levels in 3-day-old seedlings. MDA measurements 
were conducted on (A-B) whole seedlings and (C) roots of WT, fad2 and fad6 
mutants. Each experiment was conducted 3 times with 4 independent replicates 
per each genotype. The limit of quantification (LOQ) is shown as the balck 
line. Statistical significance in pair-wise comparison was evaluated by 
Student’s test, where ** p≥ 0.01; *** p≤ 0.001.  

 
Due to massive changes in fatty acid composition during seedling 

establishment, we decided to make MDA measurements at the stage of 7-day-

old seedlings (Fig. 2.10) 

 

Figure 2.10. Total MDA levels in 7-day-old seedlings. Each experiment was 
conducted 3 times with 4 independent replicates per each genotype. The limit 
of quantification (LOQ) is shown as the balck line. Statistical significance in 
pair-wise comparison of mutant vs WT was evaluated by Student’s test, where 
** p≥ 0.01. 
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Exogenous MDA is known to activate defence and stress-related genes upon 

stresses (Weber et al., 2004). MDA induction can be caused by jasmonic and 

salicylic acid (SA) treatment in Arabidopsis seedlings (Schmid-Siegert et. al., 

2012). JA was also shown to increase degradation of Rubisco that leads to the 

rapid chlorophyll loss and oxidative stress in barley leaves (Jung, 2004). In this 

work we extended the results of Schmid-Siegert et. al. (2012) on MDA 

induction upon external hormonal treatment. JA application on 3-day-old 

seedlings leads to MDA induction in WT and mutants. There was a tight 

correlation between the amount of PUFAs and MDA increase upon JA 

treatment (Fig.2.11). 

 

Figure 2.11. MDA pools in 3-day-old seedlings after 50 µM JA treatment, 20 
hours post-application. Error bars indicate a mean of ± SD. Each experiment 
was conducted 3 times with 4 independent replicates per each genotype. One 
biological replicate consisted of a pool of ≈ 300 -400 seedlings. The limit of 
quantification is shown as the balck line. Statistical significance in pair-wise 
comparison was evaluated by Student’s test, where * p≥ 0.05; ** p≥ 0.01; *** 
p≤ 0.001.  
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II.4. Discussion. 
 

PUFAs are major components of lipid bilayers and, in plants; the lack of both 

di- and triunsaturated FAs is lethal (McConn et al., 1998). However, plants 

with only one type of PUFAs (di- or triunsaturated FAs) can grow under 

laboratory conditions. This leads to the conclusion that DUFAs and TUFAs 

may have similar overall roles in development. Nevertheless, TUFAs have at 

least one unique role that cannot be fulfilled by DUFAs. TUFAS are the only 

precursors for JA synthesis (Schaller et al., 2009). One of the questions 

addressed in this work was to look for specific roles of DUFAs in plant 

development by analysing single and double mutants of FAD2 and FAD6 

genes.  

 

The rosette phenotypes of 4-week old fad2 and fad6 mutants differed from 

that of the WT. The fad2 mutants were slightly smaller, with shorter petioles 

and rounded leaves, whereas fad6 mutants are similar in size to the WT, but 

with lighter leaf coloration, due to the dysfunction of photoinhibitory 

machinery (Perumal et al., 2002). The fad2-3 mutants had bushy morphology 

during flowering period. Generation of fad2-1 fad6 double mutants, confirmed 

the overall importance of DUFA and TUFAs in plant development. However, 

since these plants remained fertile they must produce very low levels of 

TUFAs that are involved in promotion of male fertility in Arabidopsis plants. 
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That is why we assume that the fad2-1 allele is likely to be hypomorphic. Even 

a small amount of PUFA can allow the plant to survive under low stress 

conditions. Chlorotic leaves are the result of strong inhibition of chlorophyll 

accumulation. This was already described in the fad2-2 fad6 mutant, where the 

leaf chlorophyll content was 11% of WT levels. Surprisingly, such a strong 

reduction did not affect the entire photosynthetic complex, but mainly the PSII 

quantum yield - parameter that best characterizes photosynthetic efficiency due 

to its link with downstream process (PSI and CO2 assimilation), was 50% less 

efficient in the fad2-2 fad6 mutant compared to the WT (McConn et al., 1998). 

Such a stong defect in photosynthetic activity of fad2-2 fad6 mutant could be 

explained by the deficiency in PUFAs that work as buffers for ROS, molecules 

that are generated during the photosynthesis process and lead to oxidative 

stress.  

 

Fatty acid composition changes during the early steps of plant 

development. Strong changes in fatty acid profiles were observed during the 

transition phase from germination to the appearance of the first true leaves. 

Prior to this, during the first 3-days after germination FA composition 

remained relatively stable but changed within the following days. To 

summarize, the 3-day-old fad2 seedlings display an over accumulation of 18:1 

FA whereas at the 7-day old stage levels of 18:1 decreased from approximately 

80 to 5%, but the levels of 18:3 increased approximately from 10 to 65%. 
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Changes in FA composition could be explained by seedling transition from 

semi-autotrophic growth at 3-day-old stage to autotrophic that takes place at 

the end of the first week. Due to the absence of fully established photosynthetic 

machinery and the use of reserves in the form of oil bodies plants obtain major 

source of the energy, such as triacyl glycerols from the seed. However, at the 

end of the first week, seedlings have fully expendent cotyledons that can 

perform photosynthesis and generate needed amount of energy to promote 

plant growth and de novo fatty acid synthesis (Frey-Wyssling et al., 1963; 

Murphy, 1990).  

 

Diunsaturated FAs are second major source of MDA in Arabidopsis 

seedlings. In vitro studies suggest that polyunsaturated fatty acids are the major 

source of MDA and recent discoveries revealed role of TUFAs as a major 

MDA source in the shoots of 3-day-old seedlings, but not in the roots (Schmid-

Siegert et al., 2012). This can be explained by abundance of PUFAs in 

different Arabidopsis tissues: in roots DUFAs and TUFAs are equally 

abundant, however in shoots TUFAs are the dominating FAs. Quantitative 

MDA measurements in seedlings support correlation in the amount of di- and 

triunsaturated fatty acids and MDA levels (Fig.2.6; 2.9; 2.10).  

 

To estimate the sensitivity to oxidation in vivo of different PUFAs in 3-day-old 

seedlings, we combined data obtained from fad2 and fad2-1 fa6 mutants with 



	 61	

data from the fad3 fad7-2 fad8 mutant that was published previously (Mene-

Saffrane et al., 2007; Schmid-Siegert et al., 2012). Involvment of different 

PUFAs in MDA generation was estimated by the following principle: 

percentage of MDA generated in seedlings of fad2-1 fad6 and roots of fad2-3 

mutants minus percentage of MDA generated in roots and whole seedlings of 

fad trip mutants (Schmid-Siegert et al., 2012) (Fig.2.12).  

 

Figure 2.12. Estimation of the contribution of different PUFAs to MDA 
generation in Arabidopsis seedlings. 

	
According to our results, PUFAs are the major source of MDA in Arabidopsis 

seedlings. Surprisingly the effect of different PUFAs on MDA generation 

appears to be tissue specific. Despite the fact that shoots and roots contain 

similarly high levels of 18:2 and 18:3 the main source of MDA in the shoots 

are triunsaturated fatty acids (16:3, 18:3), whereas in roots it is diunsaturated 

fatty acids (16:2, 18:2). 
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MDA induction in seedlings can be caused by stresses such as JA, SA 

treatment and wounding (Schmid-Siegert et al., 2012; 2016). To investigate if 

the basal and induced MDA pools originate from the same source, oleate 

desturase mutants were treated with jasmonic acid. This treatment is known to 

stimulate MDA production in roots (Schmid-Siegert et al., 2012). The results 

obtained confirmed that PUFAs are the major source of basal and induced 

MDA; the lower amount of PUFAs the less MDA can be generated under 

control and stress conditions. Reduced levels of PUFAs in plant can lead to 

over accumulation of ROS and permanent oxidative stress that will diminish 

plant growth. 

 

II.5. Experimental procedures. 
 

Plant growth conditions, genotypes and chemicals - Wild-type Arabidopsis 

(WT Columbia background) was used. The following alleles in the Columbia 

background were received from the Arabidopsis Biological Resource Centre 

(ABRC): fad2-1 (CS8041), fad2-3 (SK18137), fad6 (CS207), J. Browse kindly 

provided fad2-2 and fad2-2 fad6 alleles and fad2-1 fad6 and fad2-3 fad6 

double mutants obtained in this work, Brassica oleracea var. Mezzo Nano was 

from Samen Mauser (Winterthur, Switzerland). Seeds were stratified for 2 days 

at 4 0C and then grown at 21 0C under 100 µE m-2 s-1 of light with photoperiod 

depending on the application (seedlings: 14 h light, 10 h dark (long days); on 
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soil for seed propagation: 24 h light (continuous days) or experiments with 

adult plants at: 9 h light, 15 h dark (short day)). Seedlings were grown on half-

strength Murashige and Skoog solid media (half-strength MS, 2.15 g/L, pH 

5.7; Duhefa Biochemie, Haarlem, The Nederlands) supplemented with 0.5 g/L 

of MES hydrate (Sigma, Buchs, Switzerland) and 0.7% agar. 

 

Gene expression in fad2-1, fad2-2, fad2-3- and fad6 mutants – Each biological 

replicate consisted of ≈ 40 seedlings. Collected tissue was immediately frozen 

in liquid N2. RNA isolation and RT-PCR of UBC21 (At5g25760) were conduct 

as described (Park et al., 2002). For the FAD2 gene the following primer pair 

was used: forward - GCCATTCCCCATCTGACCACC and reverse - 

CCAACAAAACAGCGATGAGA for FAD6: forward - 

GAGGTGAGGGCTCTTCACAG and reverse - 

AGAAGCTCATCGCTTGGAAA. RT-PCR was performed with GoTaq DNA 

polymerase (Promega, Dubendorf, Switzerland) as indicated by the 

manufacturer. For the FAD2 gene the following qPCR primer pairs were used: 

forward - GCTCCATCTCCAGAAACATGG and reverse - 

TTGAGCGTTTGAAACAATGC for FAD6: forward - 

GAGGTGAGGGCTCTTCACAG and reverse –

TCACAAAGAACCCGGTAATTG. 

 

Fatty acid composition analysis – 3-day-old seedlings and roots were collected 



	 64	

(≈ 30 mg) and placed in 15 ml Pyrex SVL capped test tubes (Milian, 

Switzerland). 1ml of 2.5 % H2SO4 solution, in methanol was added to the 

samples. Samples were incubated for 90 min at 80 0C, 1.5 ml 0.9% NaCl and 1 

ml of hexane (≥97.0%, Sigma-Aldrich, Buchs, Switzerland) were added. The 

solution was vortexed briefly (2 sec) then centrifuged for 5 min at 1000 rpm. 

250 µl of the upper phase containing fatty acid methyl esters were collected. 

1µl of a 1:5 dilution was analyzed by GCMS (initial T = 1500C for 3 min, with 

a following increase from 1500C to 2000C).  

 

Gas chromatography/Mass Spectrometry – 3-day-old seedlings or roots (≈ 150 

mg) were harvested in liquid nitrogen and ground for 15 sec at 3000 rpm/sec in 

TissueLyser II (Quiagen, Hombrechtikon, Switzerland) MDA levels were 

measured by a gas chromatography/ mass spectrometry with D2-MDA internal 

standard generated from (2D2)-1,1,3,3-tetraethoxypropan as described (Weber 

et al., 2004) 

 

2-Thiobarbituric acid staining – 3-day-old seedlings were transferred in 35 

mM TBA or in 35 mM trichloroacetic acid solution as a negative control and 

incubated for 60 min at 37 0C. MDA-TBA adducts were detected by excitation 

515nm and emission: 555±15 nm. 

 

Jasmonic acid seedling treatment – At the end of day three, seedlings were 
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transferred in 2 different plates with: control  (half-strength Murashige and 

Skoog solid media with 0.5 g/L of MES hydrate dissolved in double distillated 

H2O) and jasmonic acid (50 µM) dissolved in control solution. Plates were 

incubated for 18 hours (long days conditions) before the tissue collection and 

following GC/MS analysis.  

Statistical analysis - Statistical significance in pair-wise comparison was 

evaluated by Student’s test, where * p ≤ 0.05; ** p ≤ 0.01; ***p ≤ 0.001. 
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Chapter III: The effect of Arabidopsis DUFA-deficient fad2 mutants on 

seedling growth 
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III.1. Characterization of root growth in fad2 mutants. 

	
An effect of fad2 mutants on Arabidopsis root growth in the presence of 

sodium chloride has already been reported (Zhang et al., 2012). Here we 

focussed further on the effect of fad2 mutation on root development. We were 

able to extend the results of Zhang et al. (2012) and to provide insights on the 

growth differences of wild type and fad2 roots. 

 

Roots are important not only for providing nutrients and water to shoots, but 

also for detecting and adapting to environmental changes (Tsukagoshi, 2016). 

The Arabidopsis root (which is typical for dicotyledonous plants) can be 

divided longitudinally into four regions: apical and basal meristem, elongation 

zone and differentiation zone (Fig. 3.1).  

 

Figure 3.1. Organization of the Arabidopsis root. Left: Longitudinal cross 
section. Right: Transversal section. Adapted from De Smet et al. (2015). 
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Apical and basal meristematic zones undergo active division, whereas cellular 

elongation and partial differentiation strictly take place in the elongation zone 

(Beemster et al., 1998).  The final step of root tissue establishment together 

with lateral root formation takes place in the differentition zone (Mendrinna 

and Persson, 2015; Cano-Delgado et al., 2010).  

 

Root development is tightly regulated by plant hormones such as auxin, 

cytokinin, ethylene, gibberellins, jasmonate, brassinosteroids and abscisic acid 

that can induce changes in the reactive oxygen species (ROS) levels 

(Vanstraelen and Benkova, 2012; Yoshimitsu et al., 2011; Bu et al., 2008; 

Guzman et al., 1990; Wang et al., 2011; Claeys et al., 2013; Laplaze et al., 

2007; De Smet et al., 2015). ROS that are strongly abundant in plants were 

also shown to play an important role in regulation of the root growth (O’Brien 

et al., 2012). Hydrogen peroxide (H2O2), hydroxyl radical (.OH) and 

superoxide (O2
-) are the major ROS in plant that are known to be by-products 

of oxygen metabolism (Wojciechowski, 2014; Fridovich, 1986). During 

photosynthesis, respiration and pathogen attack oxygen undergoes a series of 

univalent reductions that requires acception of one electron at a time by the 

oxygen atom. The outcome of four univalent reductions is synthesis of two 

water molecules and multiple ROS (Fig.3.2; Triantaphylides and Havaux, 

2009; Triantaphylides et al., 2008, Halliwell, 2006; Krieger-Liszkay, 2005, 

Fukai and Ushio-Fukai, 2011).  
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Figure 3.2. Reduction of oxygen to water. Adapted from Wojciechowski 
(2014). This scheme does not include singlet oxygen (.O2). 

 
In general, ROS in low concentration work as regulatory compounds, whereas 

at high concentration they lead to arrested growth and become toxic for the 

plant (Swanson et al., 2010; Choudhury et al., 2013). In Arabidopsis roots, O2
- 

is generally required for cellular proliferation, whereas H2O2 plays role in cell 

differentiation and in the lignification process (Tsukagoshi et al., 2010). .OH is 

thought to be involved in cell wall loosening and cell expansion (Liszkay et al., 

2004).  

 

At the molecular level, ROS such as .OH or 1O2 (singlet oxygen) are the main 

mediators of non-enzymatic lipid oxidation that leads to generation of fatty 

acid–derived aldehydes (Esterbauer et al., 1991). The end-products of lipid 

oxidation are of great interest due to their association with diseases such as 

cancer, arthritis, Alzheimer’s disease and atherosclerosis (Spiteller, 1996; 

Montine et al., 2002). Recent studies on plants have led to the hypothesis that 
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polyunsaturated fatty acids may work as a buffering system for ROS (Mene-

Saffrane et al., 2009, Farmer and Mueller, 2013; Schmid-Siegert, et al., 2016). 

Another role of fatty acid fragments produced as by-products of lipid oxidation 

is modulation of gene expression in response to stresses (Weber et al., 2004). 

The current findings are mainly based on the aerial tissues and so far, only a 

small amount of work has been conducted on the role of PUFAs in root stress 

responses. For example, there is evidence for the involvement of diunsaturated 

fatty acids in adaptation to salinity stress (Zhang et al., 2009; Zhang et al., 

2012). External PUFAs application was shown to decrease ROS production in 

stimulated 264.7 human macrophages that leads to protection of innate 

lymphoid cells (Ambrozova et al., 2010). These examples confirm the 

potentially important role of DUFAs in stress responses. The purpose of this 

work was to understand the role of DUFAs in Arabidopsis roots during control 

growth conditions and under stresses. 

	

In order to adress these questions we used Arabidopsis WT, oleate desaturase 

mutants and seedlings deficient in triunsaturated fatty acids (fad3-2 fad7-2 

fad8). Root growth was the first parameter investigated. The length of 

Arabidopsis roots was measured at 7-days post germination (Fig.3.3). 
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Figure 3.3. Root length analysis of 7-day-old Arabidopsis seedlings. (A) Image 
of the WT and fad mutants growing vertically on half MS plates. (B) 
Quantitative analysis of root length. Error bars indicate a mean of ± SD, bars 
represent the means of three independent experiments; each contains a pool of 
∼ 60 seedlings. Letters indicate statistically significant differences between 
pairs as determined by Tukey’s HSD test (p < 0.05). 

 

Both fad2 mutants caused significant reduction in root length (Fig. 3.3). This 

phenotype is not caused by deficiency in triunsaturated fatty acids or 

jasmonate, since no significant difference was observed between WT and fad 

trip roots. 
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To understand what affects development of fad2 mutants, we conducted fatty 

acid analysis on 7-day-old seedling roots (Fig.3.4).  

 
 
Figure 3.4. Fatty acid composition of 7-day-old roots. Bars represent the means 
of six biological replicates; each contains a pool of ∼ 120 seedlings roots. 
Statistical significance in pair-wise comparison WT vs mutant was evaluated 
by Student’s test, where ** p ≤ 0.01; *** p ≤ 0.001. ND – not detected. 

 

These results showed changes in the levels of C18 FAs in fad2 mutants, 

revealing strong reduction in the levels of 18:2 and 18:3. This led to the idea 

that fad2 plants may be under constant oxidative stress, due to the absence of 

PUFAs (Mene-Saffrane et al., 2009, Schmid-Siegert, et al., 2016). To test this 

hypothesis, we performed malondialdehyde measurements using GCMS (Fig. 

3.5). MDA is a marker of singlet oxygen or free radical-catalysed peroxidation 

in Arabidopsis that is synthetized mainly from PUFAs (Janero et al., 1990, 

Schmid-Siegert, et al., 2012; 2016). Earlier studies showed that reduced levels 

of MDA in fad trip mutant leaves correlated with higher levels of ROS in these 
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tissues (Mene-Saffrane et al., 2007; Schmid-Siegert, et al., 2012). Based on 

these studies we can predict that reduced levels of PUFAs can lead to ROS 

accumulation.  

 

Figure 3.5. MDA levels in 7-day-old Arabidopsis roots. Bars represent the 
means of 4 biological replicates; each contains a pool of ∼ 480 seedlings roots. 
The limit of quantification (LOQ) is shown as a blck line. Statistical 
significance in pair-wise comparison was evaluated by Student’s test, where 
*** p ≤ 0.001. 

 

In 7-day old roots of WT plants, MDA levels are almost three times higher 

than in fad2 mutants. These results are consistent with the hypothesis that 

PUFAs (and in this case, DUFAs) are the major source of MDA in the root. 

For the next step, we tested ROS levels in the roots, hypothesizing that reduced 

MDA levels lead to a more oxidative environment in the cells (Fig.3.6). The 

ROS-ID total ROS/Superoxide detection kit from Enzo (Lausanne, 

Switzerland; Fig.3.6, A) and 2,7-dichlorodihydrofluorescein diacetate 

(H2DCFDA) overall ROS detection solutions (Fig.3.6, B) were used to 

perform root staining.  
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Figure 3.6. ROS staining of 7-day-old roots. (A) Seedlings treated with ROS-
ID total ROS/Superoxide detection kit were vacuum infiltrated for 15 min. 
Hydrogen peroxide, peroxynitrite and hydroxyl radicals were visualized at 
wavelengths 490 nm /525 nm excitation/emission (Ex/Em) and labelled ‘green 
stain’, superoxide ‘.O-

2’ at 550 nm /620 nm, ‘red stain’ (Ex/Em). Each photo is 
representative of the six biological replicates. Scale bar 1 mm. (B) 15 µM of 
H2DCFDA ROS detection solution was used in living roots of Arabidopsis 
seedlings visualized at wavelengths 495 nm /527 nm (Ex/Em). Arrows indicate 
differences in fluorescence between WT and fad2 mutants. 

	
Figure 3.6, A. highlights the difference between ROS fluorescence in WT and 

fad2 mutants. Strong green fluorescence was observed in meristematic and 

differentiation zones of fad2 mutants, but a difference in superoxide (red 

staining) was only observed in case of fad2-3 mutants relative to the WT. The 
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total ROS-ID solution also indicated increased fluorescence in diffrentiation 

zone of both fad2 mutants’ roots (Fig.3.6, B). 

 

The next aim of this work was to identify which cell types were affected by 

low DUFA levels in the roots of fad2 mutants. For this purpose, we measured 

root meristem cell number (cells from quiescent center to the elongational 

zone) and cortex cells (Fig.3.7). 
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Figure 3.7. Morphological analysis of 7-day-old WT and fad2 roots. (A-B) 
Primary root meristem visualization and cell number quantification. (C) Cortex 
cell visualization, the arrow indicates cells of interest. (D) Measurements of 
cortex cell lengths. Bars represent the means of 10 roots (± SD). Letters 
indicate statistically significant differences between pairs as determined by 
Tukey’s HSD test (p < 0.05). 

 

Analysis of the meristematic and elongation zones of WT and fad2 mutants 

revealed significant changes in both regions. Interestingly, stronger differences 

were observed in meristematic zone where cell number was reduced by 20% in 

fad2-1 and 39% in fad2-3 mutants. The elongation zone was not significantly 

affected in fad2-1 mutants compared to the WT plants, but showed 18% 

reduction in fad2-3 seedlings. In conclusion, reduced root length in fad2-1 
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mutants is caused primarily by a reduced number of meristematic cells. The 

fad2-3 mutants had stronger decrease in root length compared to WT and fad2-

1 seedlings. This phenotype could be explained by reduction in both the 

number of meristematic cells and a reduction of cortex cell lengt that is caused 

by deficiency in PUFAs.  

 

III.2. DUFAs and their role in root growth in stress conditions. 

	

Arid and semi-arid territories are increasing yearly and amount to more than 

40% of the land surface (Shanon, 1986). Fertilizers and climate change are two 

of the main factors leading to such modifications. Aridification is often 

associated to an over-accumulation of salt and minerals in the soil (Jiang et al., 

2016), which can be even more challenging for plants. However, some plants 

are able to partly cope with increased salinity. For example, it was shown, that 

Arabidopsis seedlings can grow at relatively mild salt levels (<100 mM; Jiang 

et al., 2016), but once the salinity levels increase the plant cannot function 

normally. For example, high salt levels lead to reduced Arabidopsis root 

lengths through decreases in cell elongation (Potters et al., 2007; Bernstein, 

2013), reduced number of meristematic cells (West et al., 2004), as well as 

changes in root architecture (Julkowska et al., 2014) and gravity responses 

(Sun et al., 2008).  
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Root development during salt treatment depends on multiple factors including 

hormonal changes, such as upregulation of abscisic acid (ABA) and down 

regulation auxin (IAA) (Hernandez et al., 2010), but one general mechanism 

has been described for all of them – induction of ROS (Bernstein, 2010; 

Hernandez et al., 2010). Due to the high potential toxicity of ROS, plants have 

developed defence mechanisms, e. g. the production of ROS-detoxifying 

enzymes (Dat et al., 2000; Apel and Hirt, 2004). Recently, it has been shown 

that salt treatment down-regulates auxin signalling in roots by stabilization of 

Aux/IAA repressors (Iglesias et al., 2014). The aim of this part was to deduce 

the role of DUFAs in root adaptation to salinity stress, by growing WT and 

fad2 seedlings in 100 mM NaCl media or exposing them to salt for brief 

periods (1 hour).  

 

For the first part of this research we grew WT, fad2-1 and fad2-3 Arabidopsis 

seedlings on 100 mM NaCl media and then analysed their root length (Fig.3.8).  
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Figure 3.8. Root length analysis of 7-day-old Arabidopsis seedlings growing in 
control and salt-rich media. Bars represent the means of 3 independent 
experiments; each contains a pool of ∼ 60 seedlings. Letters indicate 
statistically significant differences between pairs as determined by Tukey’s 
HSD test (p < 0.05). 

 

Constant exposure to salt led to a strong reduction in the growth of WT and 

fad2 roots. In the case of WT plants, salt treatment led to a 45% reduced root 

length compared to the control conditions. In fad2 mutants this effect was even 

stronger, leading to respectively 86 and 94% reduced root length in fad2-1 and 

fad2-3 mutants, hence supporting the earlier findings on strong susceptibility to 

salt treatment in fad2 mutants (Zhang et al., 2012).  

 

The next part of this project was to localize the root zone associated with 

length reduction upon salt treatment. For this purpose plants were grown for 7-

days on media containing 100 mM NaCl. Meristematic and elongation zones 

were analysed (Fig. 3.9).  
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Figure 3.9. Morphological analysis of 7-day-old roots of WT and fad2 
seedlings grown in control and salt media were visualized with propidium 
iodide (PI) staining. (A-B) Primary root meristem visualization and cell 
number quantification and comparison with control conditions. (C) Cortex cell 
visualization, the arrows indicate cells of interest. (A, C) Scale bar 100 µm.(D) 
Measurements of the cortex cells grown in salt media. Bars represent the 
means of 10 roots (±SD). Letters indicate statistically significant differences 
between pairs as determined by Tukey’s HSD test (p < 0.05).  

 

The results obtained revealed that root length in the WT plants was reduced 

upon salt treatment, due to a 37% reduction in the number of meristematic 

cells. Changes in cell sizes in elongation zones were not significant. In fad2 

mutants, root growth was affected in both meristematic and elongation zones. 

Relative to the WT, fad2-1 mutants showed decreases in the number of 

meristematic cells from 79% in control to 29% in salt conditions and in cortex 

cell length from 91 to 53%. Similarly to the changes observed in the fad2-1 

mutant, in fad2-3 roots the number of meristematic cells was reduced from 

60% in control to 16% in salt - treated conditions. The strongest reduction in 
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cortex cell length was observed in fad2-3 mutants, showing a decrease from 81 

to 36% in treated conditions relative to the WT.  

 

For the next step of this work, we decided to use the ROS-ID total 

ROS/Superoxide detection kit to compare WT and fad2-1 seedlings in three 

different conditions: control, transfer to salt media for 1 h followed by 

visualization, and growth on salt media (Fig. 3.10). We performed a time 

course assay to find highest ROS induction in WT seedlings upon salt 

treatment. 1 h treatment showed higher fluorescence in roots. Hence, it was 

used to detect early root responses to salt stress in combination with other 

treatments. 

 
 
Figure 3.10. ROS staining of 7-day old Arabidopsis roots. WT and fad2-1 roots 
were grown in 3 different conditions, followed by ROS staining. Hydrogen 
peroxide, peroxynitrite and hydroxyl radicals were visualized at wavelengths 
490 nm /525 nm (Ex/Em) and labelled ‘green stain’, superoxide ‘red stain’ was 
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detected at 550 nm /620 nm (Ex/Em). Each photo is representative of the six 
biological replicates. Scale bar – 0.5 mm.  

 

The difference between ROS-associated fluorescence in WT control and salt 

treatment is shown in Figure 3.9. In the control, green associated fluorescence 

is mainly localized in elongation zone and superoxide is mildly induced all 

along the root. ROS-associated fluorescence in the WT plants grown on salt 

media was equally spread along the root with stronger fluorescence than in the 

control conditions. A one-hour salt treatment lead to the strongest ROS 

induction compared to the other treatments in both WT and fad2-1 mutant, 

with no differences in ROS localization. Green fluorescence was induced over 

the whole root, whereas red was mainly induced in the elongation root zone. 

MDA measurenments and ROS staining showed that roots of fad2-1 mutants 

have higher overall ROS levels in control conditions, compare to the WT 

plants. The fad2-1 seedlings grown on salt-rich media displayed no difference 

to the control conditions for green stain, but the fad2-1 mutant had higher 

superoxide levels. These results led us to the idea to test the expression of the 

detoxification genes. For this reason, we used genes that were induced upon 75 

µM phytoprostane A1 treatment that is reported to inhibit root growth and cell 

division (Mueller et al., 2008). Two detoxification genes that showed more 

than 100 fold induction in that publication were chosen for this work: 

cytochrome P450 family protein (CYP81D11) and UDP-glucoronosyl/ UDP-
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glucosyl transferase family (UGT73B3). Their expression was checked in three 

different conditions in WT and fad2 mutants (Figure 3.11).  

 

 

 

Figure 3.11. Relative expression of CYP81D11 and UGT73B3 genes in 7-day-
old seedlings. Transcriptional levels of detoxification genes were normalized to 
those of UBC21. Bars represent the means of 4 biological replicates; each 
contains a pool of ≈ 30 (control and 1h salt treatment) to 120 (salt grown) 
seedlings. Letters indicate statistically significant differences between pairs as 
determined by Tukey’s HSD test (p < 0.05).  

 

These results indicate induction of both detoxification genes upon 1h salt 

treatment in WT and fad2 mutants. Surprisingly, they showed different 

expression rates: CYP81D11 had higher levels upon 1h salt treatment in WT, 
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whereas UGT73B3 was expressed most highly in fad2-1 after one hour 

exposure to salt. Interestingly, expression of the UGT73B3 gene under control 

conditions was lower in fad2-3 mutants compared to the WT seedlings. No 

difference in gene expression was found between WT and fad2 mutants grown 

on salt for 7-days. These findings suggest that adaptation to salt stress is a very 

complicated process that requires multiple levels of plant adaptation.  

 

III.3. Discussion. 

	

PUFAs play an important role in plant adaptation to stresses, by forming 

membrane bilayers and working as substrates for hormone production and 

buffering ROS levels (Vick and Zimmerman, 1984; Routaboul et al., 2000; 

Falcone et al., 2004, Zhang et al., 2009; Zhang et al., 2012;	Schmid-Siegert et 

al., 2012; 2016). Plants deficient in TUFAs showed no major changes in 

growth and development, other than a male sterility phenotype due to the 

absence of jasmonic acid (McConn and Browse, 1996). Currently, there is 

almost no information available on the role of DUFAs in plant development. 

This is was why we decided to base our research on the root growth of fad2 

mutants.  

 

fad2 mutants have shorter root lengths than the WT in control conditions. 

Plants lacking both di- and tri-unsaturated fatty acids (fad2-2 fad6 double 
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mutants) were shown to be unviable on soil, whereas if only one PUFA is 

missing they can grow normally (McConn and Browse, 1998). In this work we 

analysed the fatty acid composition analyses of fad2 roots. This revealed 

significant differences to the WT plants. 2% of PUFAs and 68% of MUFAs 

from the overall extracted fatty acids were detected in both fad2 roots, 

compared to 55% of PUFAs and no detected levels of MUFAs in WT plants. 

These findings lead us to the assumption that overall ROS levels might be 

higher in fad2 mutants, due to their deficiency in PUFAs, which may prevent 

them from buffering ROS (Mene-Saffrane et al., 2009, Schmid-Siegert, et al., 

2016). ROS staining assays and malondialdehyde measurements provided 

some support for this hypothesis. Our results are also consistent with the 

hypothesis that high levels of H2O2 and O-
2 can lead to reduced root growth in 

Arabidopsis (Swanson and Gilroy, 2010; Choudhury et al., 2013).  

 

fad2 mutants are more susceptible to salt treatment compared to WT 

plants. An earlier study has shown an important role of the FAD2 enzyme in 

the function of Na+/H+ exchangers. Roots of fad2 mutants were susceptible to 

salt treatment and had high cytoplasmic levels of Na+ (Zhang et al., 2012). 

Similarly, our study confirmed that fad2 mutants are sensitive to salt and 

provided further insights into the effect of salt and growth. 
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Based on our findings, the short root length of fad2 mutants growing on salt 

media was caused by a reduced number of meristematic cells and reduced 

cortical cell lengths. This effect could be related to changes in redox status and 

hormone signalling.  

 

Salt treatment induces ROS accumulation in Arabidopsis roots, leading to a 

more oxidized redox status, which in turn may cause the reduction in meristem 

cell number (Jiang et al., 2016). Based on the results of root staining, fad2 

mutants grown on salt media have overall higher ROS levels and a stronger 

reduction in the number of meristematic cells than in WT plants.  

 

Reduced root cortex cell length is observed in Arabidopsis plants exposed to 

salt treatment (Jiang et al., 2016). This correlated with high levels of abscisic 

acid (ABA) in the elongation zone (Duan et al., 2013; Ondzighi-Assoume et 

al., 2016). Unfortunately, we did not perform a quantitative analysis of ABA 

levels. However, our germination assay on WT and fad2 mutants (Fig.3.12) is 

consistent with the fact that plants with upregulated levels of ABA are known 

to have delayed germination rates compared to the WT (Kermode, 2005; 

Bentsink and Soppe, 2008). 
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Figure 3.12. Germination of Arabidopsis seeds (assessed 1 day post-
germination). Bars represent the means of 3 biological replicates; each contains 
a pool of 25 seeds. Statistical significance in pair-wise comparison was 
evaluated by Student’s test, where ** p ≤ 0.01. 

 

Indeed, we found that seed germination rate was reduced respectively by 24% 

and 11% in fad2-1 and fad2-3 mutants relative to WT. These results might be 

related to changes in ABA levels of fad2 seedlings. However, this hypothesis 

would require further testing. 

 

III.4. Experimental procedures. 

 

Plant growth conditions, genotypes and chemicals - Wild-type Arabidopsis 

(WT Columbia background) was used. The following alleles in the Columbia 

background were received from the Arabidopsis Biological Resource Centre: 

fad2-1 (CS8041), fad2-3 (SK18137) and fad3-2 fad7-2 fad8 mutant seeds from 

McConn and Browse (1996). Seeds were stratified for 2 days at 4 0C and then 
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grown at 21 0C under 100 µE m-2 s-1 of light with photoperiod depending on the 

application (seedlings: 14 h light, 10 h dark (long days); on soil for seed 

propagation: 24 h light (continuous days) or experiments with adult plants at: 9 

h light, 15 h dark (short day)). Seedlings were grown on half-strength 

Murashige and Skoog solid media (½ MS, 2.15 g/L, pH 5.7; Duhefa 

Biochemie, Haarlem, The Nederlands) supplemented with 0.5 g/L of MES 

hydrate (Sigma, Buchs, Switzerland) and 0.7 % agar. 

 

Root phenotypic analysis – plants were grown vertically for 7-days on half-

strength Murashige and Skoog solid media (½ MS) or 100 mM NaCl in ½ MS 

media. Photos were taken and analysed by ImageJ (https://imagej.nih.gov), 60 

seedlings were used for one biological replicate. Root cell measurements were 

performed as described in Acosta et al. (2013).  

 

Fatty acid composition analysis – roots of 7-day-old Arabidopsis seedlings (≈ 

30 mg) were placed in 15ml Pyrex SVL capped test tubes (Milian, 

Switzerland). 1ml of 2.5% (v/v) H2SO4 in methanol was added to the samples. 

Samples were incubated for 90 min at 80 0C, 1.5 ml 0.9 % NaCl and 1 ml of 

hexane (≥97.0% (GC), Sigma-Aldrich, Buchs, Switzerland) were added. The 

solution was vortexed briefly (2 sec) then centrifuged for 5 min at 1000 rpm. 

250 µl of the upper phase containing fatty acid methyl esters were collected. 1 

µl of a 1:5 dilution in hexane was analyzed by GCMS (initial T = 150 0C for 3 



	 95	

min, followed by a ramp 150 0C to 200 0C at 10 0C per minute).  

 

Gas chromatography/Mass Spectrometry – 7-day-old roots (≈ 150 mg) were 

harvested in liquid nitrogen and ground for 15 sec at 3000 rpm/sec in 

TissueLyser II (Quiagen, Hombrechtikon, Switzerland). MDA levels were 

measured by a gas chromatography/ mass spectrometry with D2-MDA internal 

standard generated from (2D2)-1,1,3,3-tetraethoxypropan as described (Weber 

et al., 2004). 

 

Salt assay – 7-day-old Arabidopsis seedlings were subjected to salt stress. In 

one case, seedlings were permanently grown in ½ MS media complimented 

with 100 mM NaCl (Shi et al., 2000). In the second case, to detect early 

changes upon salt stresses, plants were grown for 7-days on ½ MS followed by 

transfer and 1h incubation on ½ MS media containing 100 mM NaCl.  

 

Germination assay – Arabidopsis seeds were planted on ½ MS media and left 

in a long day conditions for 24 h, followed by quantification of the emerged 

roots.  

 

Gene expression analysis – 7-day-old Arabidopsis roots were collected after 3 

different treatments: control (Growing on half-strength MS plates), 1 h 100 

mM NaCl treatment and permanent growth on ½ MS plates containing 100 
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mM salt. Finally, seedlings were collected and stored in liquid nitrogen. 30 to 

50 seedlings were used per one biological replicate. RNA isolation and 

quantitative RT-PCR was performed as described earlier (Gfeller et al., 2011). 

CYP81D11 and UGT73B3 transcripts were quantified as described earlier 

(Köster et al., 2012; Langlois-Meurinne et al., 2005). 

 

ROS detection assay – 7-day-old Arabidopsis roots were stained with two 

different ROS indicators: ROS-IDTM Total ROS/Superoxide Detection Kit 

(Enzo Life Sciences AG, Lausanne, Switzerland) and 2,7-

dichlorodihydrofluorescein diacetate (H2DCFDA; Sigma-Aldrich, Buchs, 

Switzerland). For the first solution, roots were vacuum infiltrated with ROS-

IDTM Total ROS/Superoxide Detection Kit for 15 min under dark conditions 

followed by visualization with Leica MZ16A stereomicroscope. Signals from 

hydrogen peroxide, peroxynitrite and/or hydroxyl radicals were visualized at 

wavelengths 490 nm /525 nm (Ex/Em) and labelled ‘green stain’. Superoxide 

‘red stain’ was detected at 550 nm /620 nm (Ex/Em). Second solution - 15 µM 

H2DCFDA in water was used to visualize living roots (Oyama et al., 1994) at 

wavelengths 495 nm /527 nm (Ex/Em) using Zeiss 200 BIOP confocal 

microscope. 

 

Statistical analysis - Statistical significance in pair-wise comparison was 

evaluated by Student’s test, where * p ≤ 0.05; ** p ≤ 0.01; ***p ≤ 0.001, 
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multiple comparison analysis of variances (ANOVA) followed by Turkey’s 

HSD test was performed using JMP – statistical analysis software. 
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Chapter IV: PUFAs and their role in susceptibility to Botrytis cinerea. 
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IV.1. Screening for fad mutant resistant to B. cinerea in 7 and 14 day-old 
plants. 

 

Plant-fungal interactions are considered to be as old as the terrestrial vascular 

plants. According to evolutionary studies, the colonization of the land by plants 

happened with the help of fungi 400 - 460 million years ago (Redecker et al., 

2000; Remy et al., 1994). Most plant-fungal interactions are considered to be 

symbiotic, promoting growth and stress tolerance in plants and providing 

carbohydrates to the fungus (Buscot et al., 2000). However, some fungal 

species became plant pathogens and these have led to fast evolution of 

resistance mechanisms in the plant kingdom (Jones and Dangl, 2006). 

 

B. cinerea is one of the most studied and abundant necrotrophic pathogens that 

affects more than 200 plant species and causes serious agricultural loss each 

year (Jarvis, 1977). The efficiency of this fungus is caused by its rapid 

attachment on the host surface and fast germ tube development that promotes 

penetration (Epstein et al., 1997). The asexual spores of B. cinerea (conidia) 

are produced on conidiophores and are easily dispersed in nature. Conidial 

attachment occurs in two phases: immediate adhesion – caused by hydration 

with the help of weak adhesive forces (Doss et al., 1993) and delayed adhesion 

– induced by secretion of extracellular matrix-degrading enzymes a couple of 

hours after (Doss et al., 1995; Doss et al., 1999). Development of the germ 

tubes depends on multiple factors, such as: surface hardness, hydrophobicity, 
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topography and structural components. If some of these factors are missing, 

germ tube growth is arrested, if not, the fungus forms an appressorium as a 

next step of its development (De Zwaan et al., 1999; Staples et al., 1987; 

Talbot et al., 1996; Wessels et al., 1991; Tucker et al., 2001).  

 

Plants, on the other hand, have developed several defense mechanisms against 

necrotrophic fungi such as B. cinerea: a) prevention of pathogen penetration 

(Fleishman et al, 1995); b) increased levels of reactive oxygen species (ROS; 

Malolepsza and Urbanek, 2002); c) induction of defense hormones, such as 

jasmonate (Thomma et al., 1998), ethylene (ET; Feys et al., 2000), salicylic 

(Audenaert et al., 2002) and abscisic acids (ABA; Pandey et al., 2005).  

 

This study aimed to uncover other possible sources of defense against B. 

cinerea. Diunsaturated fatty acids were chosen as possible candidates due to 

their strong involvement in cuticle synthesis, that forms the first layer of 

defense against many pathogens. We chose 7 and 14 day-old Arabidopsis 

seedlings to study the role of DUFAs in B. cinerea resistance.  

 

To address these issues, three Arabidopsis oleate desaturase mutants were 

used: two alleles of FAD2 (fad2-1, fad2-3) unable to synthetize 18:2 FAs in the 

endoplasmic reticulum, and one allele of FAD6 (fad6) that prevents the 

generation of 16:2 and 18:2 fatty acids in plastids. In addition, we used as 



	 109	

positive controls mutants deficient in production of triunsaturated fatty acids 

(fad3-2 fad7-2 fad8), jasmonate (the allene oxide synthase mutant: aos) and for 

cutin biosynthesis (a glycerol-3-phosphate acyltransferase double insertion 

mutant: gpat4 gpat8). B. cinerea application was conducted on 7-day-old 

cotyledons and 14-day-old first true leaves; plants were analysed 48 hours 

post-inoculation by counting the number of organs with lesions (Fig.4.1).  

 

 

Figure 4.1. B. cinerea pathogenesis on Arabidopsis seedlings. Lesions were 
detected visually 48 hours post treatment.  

 

Wild type (Columbia) seedlings including mutants described earlier were 

tested for B. cinerea susceptibility when they were 9- and 16-days-old. Results 

are presented in Figure 4.2. 

					14-day-old	seedlings	 					16-day-old	seedlings	
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Figure 4.2. B. cinerea resistance bioassay on Arabidopsis seedlings. (A) 9-day- 
and (B) 16-day-old seedlings were used in this assay. 2 µL of B. cinerea spore 
suspension (5×105 s/ml) was applied on one cotyledon or first true leaf of each 
seedling and incubated for 48 h. The number of organs with lesions was 
scored. (A) Error bars represent the means of four biological replicates (± SD), 
each from a pool of ≈ 120 seedlings. Letters indicate statistically significant 
differences between pairs as determined by Tukey’s HSD test (p < 0.05). (B) 
Error bars represent the means of four biological replicates (± SD), each from a 
pool of 70 seedlings. Statistical significance in pair-wise comparison control vs 
treatment was evaluated by Student’s test, where ** p ≤ 0.01. 
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The results obtained revealed strong increase in resistance of fad2 and gpat4 

gpat8 mutants to B. cinerea in relation to the WT at 7-day-old stage, whereas 

the fad6 mutant showed no significant difference to WT.  Surprisingly, fad trip 

and fad2-1 fad6 mutants also showed resistance to this pathogen. This was 

unexpected due to the absence of JA in these mutants. Jasmonates are very 

important hormones for defences against necrotrophic pathogens (Thomma et 

al., 1998). The aos mutant showed enhanced susceptibility upon B. cinerea 

treatment. These results indicate that resistance of fad trip and fad2-1 fad6 

mutants was caused by changes in fatty acid composition and was not related 

to jasmonate responses. 

 

B. cinerea application on the WT revealed a 20% increase in susceptibility of 

leaves compared to cotyledons. Similarly to WT, fad2-3- and fad trip mutants 

showed an average of 60% increase in susceptibility in leaves, showing the 

same levels as WT. Finally, the gpat4 gpat8 double mutant’s levaes remained 

resistant to B. cinerea. To estimate roles of fatty acids in increased 

susceptibility on the first true leaves, we conducted fatty acid profiling of WT 

and fad2-3 mutant at both the 7-day- and 14-day-old stages (Fig.4.3).  
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Figure 4.3. Fatty acid composition of WT and fad2-3 mutant performed at 7- 
and 14-day-old stage. Error bars represent the means of of 4 - 6 biological 
replicates (± SD); each pool contained approximately 40 seedlings.  

 

The major difference was detected in the levels of 18:1 and 18:3 fatty acids. At 

the stage of 7-days fad2-3 mutants had 4% of oleic acid, whereas at the stage of 

14 days, these levels were below limit of quantification. Increased levels of 

18:3 FAs at the stage of 14-days-old seedlings could not explain B. cinerea 

resistance. No correlation was found between increase in the levels of 18:3 FAs 

and higher levels of jasmonic acid – a major defence hormones involved in 

resistance to necrotrophic pathogens. This leads to the conclusion that 18:1 

fatty acid could play an important role in resistance to B. cinerea. 
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IV.2. Does cuticle permeability lead to B. cinerea resistance in fad 
mutants? 

 

B. cinerea enters within the plant by using cutinase, an enzyme that degrades 

the cuticle. To avoid activation of defence response genes in host, B. cinerea 

produces oxalate that prevents generation of reactive oxygen species 

(Commenil et al., 1998; Liu et al., 1998). In Table 4.1, we summarize current 

knowledge concerning cuticle mutants and their resistance or susceptibility to 

this necrotrophoic pathogen using earlier published data from Serrano et al. 

(2014). 

 

Table 4.1. Characterized cuticle mutants and their responses to B. cinerea.  

Mutant B. cinerea 
susceptibility 

Resistance 
factor References 

lcr  
(lacerata) 

- Fungitoxic 
diffusate, 

ROS 
 

Voisin et al., 
2009 

lacs2 -long-chain 
acyl-CoA 
synthetase 

- Fungitoxic 
diffusate;SAR
; 6-week old 

Bessire, et al., 
2007; Schnurr et 

al., 2004 
 

ace/hth – 
adhesion of calyx 

edges 
/hothead 

+  Celine Chassot 
thesis, 2006, 
University of 

Freiburg 
 

bdg (bodyguard) - Fungitoxic 
diffusate;ROS 

Chassot et al., 
2008 

 
fdh (fiddlehead) -  Voisin et al., 

2009 
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acbbp1 
(acyl-coa-binding 

protein) 
 

+  Xue et al., 2014 

pec1 
(permeable 

cuticle1) 

 
- 

Fungitoxic 
diffusate; 

ROS 

Chassot et al., 
2008 

 
 

acp4 
(acil carrier 

protein) 

- ROS, SAR Bessire, et al., 
2007; Schnurr et 

al., 2004 
 
 

gly1 
(glycerol-3-
phosphate 

dehydrogenase) 
 

+ SAR Xia et al., 2010 

cdk8 
(cycle -dependent 

kinase8) 
 

- PDF1.2 Zhu et al., 2014 
 
 

 
aba2 
(ABA 

biosynthesis) 
 

- ROS, ABA 
down 

regulation 

L’Haridon et al., 
2011 

aba3 
(ABA 

biosynthesis) 

- ROS, ABA 
down 

regulation 

L’Haridon et al., 
2011 

Symbols indicate: susceptibility (+) and resistance (-) to B. cinerea; SAR: 
systematic acquire resistance.  
	

As shown in Table 4.1, most cuticle mutants are resistant to B. cinerea. This 

could be explained by fast induction of antifungal compounds (Bessire et al., 

2007) or constitutive overexpression of genes involved in lipid transfer (LPT), 

peroxidase (PER) and proteinase inhibitors (PI) (Chassot et al., 2007). 
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Unfortunately, these results do not explain why some cutin biosynthesis 

mutants do not show resistance to this pathogen. 

 

Plant waxes were also shown to play a role in fungal development on the host; 

for example, terpenoids found in the wax layer of avocado fruits induced 

appressorium formation in Colletrichum gloeosporioides (Podila et al., 1993; 

Kolattukudy et al., 1995). C22 FAs, fatty alcohols or alkanes, present in the 

wax layer of rice leaves promoted development of Magnaporthe grisea (Hegde 

and Kolattukudy, 1997). In grapes, wax composition was shown to change 

during maturation and this correlated with increased B. cinerea susceptibility in 

mature grapes. This effect was linked to high levels of primary alcohols and 

oleanic acid in young berries and their diminution in mature grapes (Commenil 

et al., 1996). B. cinerea resistance is a complicated process that requires 

overlap of different defence pathways that are strongly variable depending on 

the plant genotypes.  

 

Hence, the purpose of this part was to disengage the role of the cuticle in 

resistance to B. cinerea in fad mutants. We performed cuticle permeability 

assays to describe the effect of deficiency of di- or triunsaturated fatty acids on 

cuticle formation (Fig. 4.4).  
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Figure 4.4. Cuticle permeability assay in 14-day-old seedlings. Plants were 
harvested and immediately placed in toluidine blue solution for 15 minutes. 

 

Toluidine blue staining of 14-day-old seedlings permits the visualization of 

cuticle permeability in cotyledons and fully expanded true leaves. WT, fad6 

and aos did not stain, meaning that cuticle function is not affected in these 

plants. fad2-3, fad2-1, fad2-1 fad6 and gpat4 gpat8 double mutants have 

cuticle permeability defects in both cotyledons and first true leaves, whereas 

fad trip permeability effected only in the cotyledons.  

 

Transmission electron microscopy (TEM) was performed to describe how the 

cuticle ultrastructure is affected in fad2-3, fad trip and gpat4 gpat8 mutants. 

(Fig.4.5) 
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Figure 4.5. Cuticle ultrastructure of 7-day-old Arabidopsis cotyledons. C – 
cuticle, CW- cell wall; EC- epidermal cell. Small boxes represent zoomed in 
part with the cuticle; scale bars 50 µm. Arrows indicate the cuticle layer. This 
experiment was repeated three times with similar results in all cases, this graph 
is representative of one of these experiments; scale bars 200 µm. 

 

Cuticle of the WT plants is seen as dark electron dense layers, whereas in the 

gpat4 gpat8 double mutant these are absent and instead there is a light grey 

layer that is not tightly attached to the cell wall. Concerning fad trip and fad2-3 

mutants, they both have thin electron dense layers of the cuticle with less 

electron dense patches. 
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To identify which cuticle monomers were affected in fad mutants, we 

performed a quantification of aliphatic polyester monomers from the shoots of 

7-day-old seedlings (Fig. 4.6).  

 

 

Figure 4.6. Quantification of aliphatic polyester monomers in 7-day-old 
Arabidopsis shoots. Error bars represent the means of six biological replicates 
(± SD), each containing a pool of ≈ 1920 seedlings. FAME - fatty acid methyl 
ester; DCA - dicarboxylic acid; ω-OH – omega hydroxyl fatty acid. This 
experiment was repeated three times with similar results in all cases, this graph 
is representation of one of these experiments.  

	
Polyester monomer profiles revealed a strong overall reduction of cutin 

monomers in the gpat4 gpat8 double mutant, highlighting a very strong 

permeability in cotyledon and leaves of these plants. fad2-3 and the fad2-1 

fad6 double mutant displayed an 2.5 times lower levels of DCA 18:2 and 8 

times higher levels of DCA 18:1 compared to the WT. Surprisingly, fad2-3 
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mutants showed an over accumulation of C18:2 FAME, that was not observed 

in fad2-1 fad6 double mutant. Both mutants had almost no detectable levels of 

18:1 FAME.  

 

The fad trip mutant that showed a permeable cuticle phenotype at the 

cotyledon stage displayed an over-accumulation of 18:2 DCA, similar to fad6 

mutant, i.e. three times higher levels of 18:1 FAME and two times reduction in 

18:0 FAME. The fad6 mutant showed almost no difference in its polyester 

profile compared to the WT, except as mentioned earlier, a 1.5 times higher 

level of 18:2 DCA. This change did not appear to affect cuticle permeability in 

this plant.  

 

Due to the involvement of waxes in B. cinerea resistance, we performed 

scanning electron microscopy to visualize wax layers in WT and fad mutants 

(Fig. 4.7).  
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Figure 4.7. Scanning electron microscopy images of 7-day-old Arabidopsis 
cotyledons. Arrows indicate wax crystals. Five cotyledons were analyzed for 
each genotype; the images shown are representative. 

 

These images clearly show that there is almost no wax layer on Arabidopsis 

cotyledons and small patches of crystals chaotically organized on the surface, 

similar to the situation for Arabidopsis leaves (Jenks et al., 1995; Lee and Suh 

et al., 2014).  
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In summary, aliphatic polyester monomer profiling revealed strong changes in 

the cuticle composition of fad mutants. Monomer compositions differed in 

fad2-3, fad2-1 fad6, fad trip and gpat4 gpat8 mutants. No changes in wax 

composition were observed. As a conclusion, no polyester monomers could 

explain resistance to B. cinerea. Visualization of waxes on the surface of 

cotyledons also did not explain resistance to this pathogen. One more time, our 

results confirm that host-pathogen interaction is a very complicated mechanism 

that still has to be uncovered. 

 

IV.3. Induction of ROS and defense hormones upon B. cinerea infection in 

fad mutants. 

 

ROS are known to play an important role in the control of plant development 

(Gapper and Dolan, 2006) and in responses to abiotic and biotic stresses (Apel 

and Hirt, 2004; Mittler et al., 2004), by inducing defense response genes 

(Levine et al., 1994).  

 

The role of ROS in B. cinerea resistance remains unknown. According to one 

hypothesis B. cinerea, like other necrotrophic pathogens, can suppress ROS 

production, preventing induction of antifungal compounds and defence 

response genes at the early steps of fungal penetration (Germeier et al., 1994; 
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Pezet et al., 2004). However, some cuticle-deficient mutants have high basal 

ROS levels that lead to the constant upregulation of major defense genes 

(Bessire et al., 2007; Chassot et al., 2007; L'Haridon et al., 2011; Liu et al, 

2015) and hence induce B. cinerea resistance. The aim of this part was to 

analyse ROS levels in fad mutants upon B. cinerea infection and to compare it 

with the expression of common hormonal marker genes induced upon B. 

cinerea application.  

 

We used 7-day-old Arabidopsis cotyledons either with mock treatment (24h 

treatment with potato dextrose broth (PDB)), or infected with B. cinerea in 

PDB for 24h. To detect changes in the ROS levels, we used ROS-IDTM Total 

ROS/Superoxide Detection Kit (Enzo Life Sciences AG, Switzerland) as 

described by Marschal and Tudzynski (2014). It is important to note that this 

technique has not, to our knowledge, been used before on plants, however it 

provided promising results in the present study (Fig.4.8). Due to the previously 

published results showing stronger ROS fluorescence with later infection time 

points (L’Haridon et al., 2011), we performed our assay 24 h after the 

treatment. 
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Figure 4.8. ROS staining of 8-day-old cotyledons. (A), 24 h post PDB 
application and (B) 24 h post B. cinerea application in PDB. Treated seedlings 
were vacuum infiltrated in ROS staining solution for 30 min. Hydrogen 
peroxide, peroxynitrite and hydroxyl radicals were visualized via wavelengths 
490 nm/ 525 nm (Ex/Em) and called as ‘green stain’, superoxide via 550 nm/ 
620 nm (Ex/Em), ‘red stain’. Each photo is representative of ten analysed 
cotyledons.  

 

No visual difference was found between the WT, fad trip and fad2-3 mutant 

upon PDB treatment. Cotyledons infected with B. cinerea showed stronger 

induction of analyzed ROS species. Patchy fluorescent spots on the WT 

cotyledons revealed areas of fungal penetration. In this case the detected 

fluorescence is likely to come from both plant and pathogen, since both of 

them induce ROS during the pathogenesis process. The fad2-3 mutants showed 
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less fluorescence with both dyes, a result that could be explained by a lower 

ratio of fungal penetration (not tested in the present study). The fad trip mutant 

displayed the strongest induction of ROS compared to WT and fad2-3 mutant. 

This could be explained by the absence of TUFAs in this plant and its inability 

to conduct ROS buffering due to absence of these fatty acids (Mene-Saffrane et 

al., 2007; Schmid-Siegert et al., 2016). 

 

In summary, WT, fad trip and fad2-3 mutants showed no difference in ROS 

fluorescence after the mock treatment. 24 h post B. cinerea application induces 

stronger fluorescence of ROS in Arabidopsis cotyledon. We noticed a gradient 

of increased green and red staining in WT, fad2-3- and fad trip mutants.  

 
The next step was to correlate increased ROS levels with hormonal changes 

(Fig.4.9). In order to detect changes in the levels of JA and ET – the (ethylene- 

and jasmonate-responsive plant defensin) PDF1.2 marker gene was used 

(Penninckx et al., 1996,1998). PDF1.2 expression was seen at the site of 

infection and at the distal regions leading to the similar kinetics at both parts 

(Penninckx et al., 1996, Ferrari et al., 2003). To analyse the potential role of 

the SA pathway in B. cinerea resistance, we used the PR1 (pathogenesis-

related protein 1) marker gene. This gene is activated upon pathogen infection 

downstream of systematic acquired resistance (SAR; Von Loon et al., 1994). In 

contrast to PDF1.2, PR1 is expressed only in the region of pathogen 
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penetration (Ferrari et al., 2003). Finally, to test the involvement of ABA, we 

used the ABA1 (encoding an zeaxanthin epoxidase involved in ABA 

biosynthesis), aba1 mutants in Arabidopsis show B. cinerea susceptibility that 

might be caused by JA and ET changes this mutant (Korolev et al, 2004).  
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Figure 4.9. Induction of defence marker genes upon B. cinerea infection in 8-
day-old seedlings. qRT-PCR of PDF1.2 (A), PR1 (B) and ABA1 (C) 
expression in 7-day-old Arabidopsis seedlings 24 h after B. cinerea application. 
Transcripts were normalized to SAND and displayed relative to the expression 
in WT mock. Error bars represent the means of six biological replicates (±SD), 
each containing a pool of ≈ 30 seedlings. The dashed line indicates the limit of 
quantification (LOQ) is indicated. (A-B) Letters indicate statistically 
significant differences between pairs, as determined by Tukey’s HSD test (p < 
0.05). (C) No significant interaction between treatment and genotypes was 
revealed. Tukey’s HSD test was performed on genotypes, revealed significant 
effect of infection (p < 0.0008). 

 

According to the qPCR results, no similar pattern of hormonal response was 

revealed between mutants showing resistance to B. cinerea. Expression of the 

PDF1.2 marker gene was similar between WT and fad2-3 mutants, whereas 

fad2-1 fad6, fad6 and fad trip showed much lower PDF1.2 gene expression 

compare to the WT. This result could be explained by potentially lower levels 

of JA in these mutants, due to the complete absence or strong reduction of 

triunsaturated fatty acids. Significantly lower levels of PDF1.2 in the gpat4 

gpat8 double mutant require further investigation. Indeed, according to fatty 

acid profiling, no difference was found between WT and gpat4 gpat8 double 

mutant (Fig.4.10), leading to the idea that ET levels might be affected in this 

mutant.  
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Figure 4.10. Fatty acid composition in 7-day-old seedlings of WT and the 
gpat4 gpat8 double mutant. Error bars represent the means of six biological 
replicates (± SD); each contained a pool of  ≈ 50 seedlings. 

 

According to previously published results, SA was not strongly induced upon 

B. cinerea infection in WT plants (Birkenbihl et al., 2012). We confirmed this 

result with 7-day-old WT seedlings by conducting qPCR with the SA-

responsive the PR1 marker gene (a similar pattern upon B. cinerea infection 

was observed in fad6 and fad2-1 fad6 double mutants). Surprisingly, fad2-3 

and gpat4 gpat8 double mutants showed more than 10-fold PR1 induction 

upon B. cinerea infection. Concerning fad trip, it revealed higher basal levels 

of PR1 expression and 10-fold induction upon treatment. 

 

During B. cinerea infection, ABA signalling is strongly down regulated 

(Windram et al., 2012), due to its antagonistic relations with ET, which is 

induced upon infection (Yang et al., 2005). A similar pattern of down 

regulation of the ABA1 gene upon B. cinerea infection was observed on WT, 
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fad2-3, gapt4 gpat8 and fad2-1 fad6 double mutants, with the exception of a 2- 

fold higher level of ABA1 in fad2-1 fad6 plants. Surprisingly, the fad6 mutant 

displayed no down regulation of the ABA1 gene upon B. cinerea infection, 

leading to assumption that ethylene levels in this mutant are lower than in WT 

plants during infection process. As shown above (Fig.4.8), mild changes in 

ROS levels in fad2-3 mutants and strong basal levels of green stain in fad trip 

did not lead to upregulation of genes such as a PDF1.2 or ABA1, but did lead to 

strong induction of PR1. Interestingly, SA is involved in the local defence to B. 

cinerea, by decreasing lesion size, but not the overall survival rate of infected 

seedlings (Ferrari et al., 2003).  

 

IV.4. Changes in topography of the cotyledon surface can lead to B. 
cinerea resistance. 

 

Early pathogenesis is a crucial step that requires spore attachment to the host 

surface, spore germination, formation of appressoria and further penetration 

(Kuo and Hoch, 1996). Development of the germ tube depends on multiple 

factors, such as surface hardness, hydrophobicity, topography and structural 

components. It is important to note that if one or more of these factors are 

perturbed, germ tube growth is reduced or arrested. If all the required 

conditions are present, the fungus forms an appressorium as a next step of its 

development (DeZwaan et al., 1999; Staples et al., 1987; Talbot et al., 1996; 
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Wessels et al., 1991; Tucker et al., 2001). For these various reasons, we 

examined cotyledon topography in relation to B. cinerea penetration in WT 

plants and fatty acid desaturase mutants.  

 

To examine immediate adhesion and hyphal growth on fad mutants, we 

performed adhesion assays (Fig.4.11). For this purpose, cotyledons were 

incubated with B. cinerea spore suspension for 4 h after which seedlings were 

washed in 100% ethanol for 1 h to remove unattached spores from the 

cotyledon surface. 

  

Figure 4.11. B. cinerea adhesion assay. WT and fad2-3 cotyledons were 
infected with spores of B. cinerea, the amount of attached spores per cotyledon 
was quantified 4 h after spore application. Error bars represent the means of ten 
biological replicates (± SD), each initially containing a pool of ≈ 500 spors of 
B. cinerea; Statistical significance in pair-wise comparison was evaluated by 
Student’s test, where * p < 0.05. 

 

The initial concentration of applied B. cinerea spores was 500 spores/µl. The 

number of attached spores on WT cotyledons equalled approximately 350 
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spores, whereas on fad2-3 seedlings these were approximately 250 spores (p < 

0.05; Fig. 4.11). This result could explain a partial resistance to B. cinerea in 

the fad2-3 mutant. It led us to the idea that a modified topography in fad2-3 

cotyledons might be responsible for this difference. 

 

The second step was to test the effect of delayed adhesion by analysing 

development of germ tubes several hours post infection. First, we conducted a 

time course assay to estimate the speed of B. cinerea development on WT and 

fad mutants (Fig. 4.12). 

 

Figure 4.12. B. cinerea development: a time course assay on 7-day-old 
cotyledons. Pictures were taken at three different time points: 4, 8 and 24 hours 
post inoculation. For 4 and 8 hours a 40X standard objective was used and for 
24 hours a 20XDIN standard objective. Hyphae were stained with Trypan blue. 
The experiment was repeated 3 times. Scale bar 50 µm. 
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No difference was found between WT and fad infected cotyledons 4 h post 

infection, whereas infection at later time points (8 and 24 h) revealed increased 

hyphal growth on WT cotyledons compared to the fad mutants. To be able to 

estimate the difference between at these time points we performed hyphae 

length measurements at 4 and 8 h post infection (Fig. 4.13). The 24 h time 

point was excluded from the experiment, due to the difficulty of measuring 

hyphae lengths on and in WT plants caused strong overlay of hyphae.  
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Figure 4.13. B. cinerea hyphal length assay at two different time points. 2µL 
suspension of 5×105 spores was applied to single cotyledons of 7-day-old 
seedlings (A) 4 h and (B) 8 h post application. Error bars represent the means 
of 100 B. cinerea hyphae measured on 10 cotyledons (± SD). Letters indicate 
statistically significant differences between pairs as determined by Tukey’s 
HSD test (p < 0.05). 

 

According to our results, the average length of hyphal 4 h post infection was 25 

µm on WT cotyledons and 20 µm on the fad mutants. After 8 h, hyphal length 

increased two times on WT, whereas on fad mutants, hyphal growth was 

arrested at the stage of 4 h post infection. We concluded that delayed adhesion 

reduces B. cinerea development on fad mutants.  

 

Earlier papers considered leaf topography as an important factor promoting 

pathogen development (DeZwaan et al., 1999; Staples et al., 1987; Talbot et 

al., 1996). To examine if cell morphology in fad mutants was affected, we used 

confocal microscopy to visualize cotyledon epidermal cells of WT and cuticle 

mutants at the stage of 7-day-old seedlings (Fig.4. 14).  
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Figure 4.14. Pavement cell morphology of 7-day-old cotyledons, stained with 
propidium iodide. Pavement cells have different morphology depending on 
their location, for this reason, only the region near to cotyledon tip was chosen 
for the analysis (n = 10 cotyledons). Scale bar 50 µm. 

	
Visually, pavement cells of cuticle mutants have a different morphology to 

those of the WT: smaller cells with fewer lobes. To obtain quantitative results, 

we used Lobefinder_V1-4.0 software (Wu et al., 2016). Single pavement cells 

were selected in ImageJ and converted to roi files, further analyses were 

carried out in Lobefinder (Fig.4.15). 

 



	 134	

	 	

	  
Figure 4.15. Example of a single pavement cell analyzed with Lobefinder_V1-
4.0 software. 

	
The numeric data were saved in xlsx format and analyzed as described in 

Materials and Methods. Quantified parameters of pavement cells are shown 

below (Fig.4.16). 

fad2-3 

	gpat4	gpat8 fad	trip 

WT 
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Figure 4.16. Quantitative analysis of pavement cell parameters in 7-day-old 
cotyledons. (A) Lobe number, (B) perimeter and (C) circularity were 
measured. Error bars represent the means of 45-50 pavement cells measured on 
10 cotyledons (±SD). Letters indicate statistically significant differences 
between pairs as determined by Tukey’s HSD test (p < 0.05). 

 

fad mutants had reduced lobe numbers, cellular perimeters and increased 

circularity compared to the WT cells, no significant difference was found 

between WT and gpat4 gpat8 cotyledons. This could be caused by 

morphological and turgor changes of the cell (Hamant et al., 2008, Routier-

Kierzkowska et al., 2012, Sampathkumar et al., 2014). For this reason we 

decided to use atomic force microscopy to examine the spatial distribution of 

mechanical properties such as height, elasticity and adhesion of Arabidopsis 

thaliana cotyledons (Fig.4.17).  
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Figure 4.17. Atomic force microscopy images of 7-day-old Arabidopsis 
cotyledons. (A) Height, (B) Young’s modulus (stiffness) and (C) adhesion 
maps were obtained. Five cotyledons were analysed in this work, 
representative images were chosen for each map. Arrows indicate stomata. 
Experiment performed by Petar Stupar, Laboratory of the Physics of Living 
Matter, EPFL, Lausanne.	

 

These images show the difference in elastic modulus (Young’s modulus), a 

measure of stiffness in fad2-3 mutants compared to WT cotyledons. However, 

only slight changes were noticed in the adhesion and no difference in the 

height maps. Due to the observed difference in adhesion and stiffness maps we 

performed quantitative analysis of these features (Fig.4.18). 
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Figure 4.18. Quantitative analysis of atomic force microscopy results. (A) 
Young’s modulus, (B) adhesion and (C) height were measured. Error bars 
represent the means of 15 to 20 pavement cells parameters obtained from five 
cotyledons (±SD). Statistical significance in pair-wise comparison control vs 
treatment was evaluated by Student’s test, where ** p ≤ 0.01; *** p ≤ 0.001. 
Measurenments performed by Petar Stupar, Laboratory of the Physics of 
Living Matter, EPFL, Lausanne. 

 

Figure 4.18 show that mean Young’s modulus is different between WT and 

fad2-3 mutants and was 0.7 and 0.4 MPa respectively. Adhesion parameters 

were also affected and were 0.3- and 0.4 nN in WT and mutants respectively. 

Cell height was the only feature that did not change in WT and mutants 

cotyledons and was 4 µm in both cases. These results revealed multiple non-

uniformities that could be explained by heterogeneous composition of the cell 

surface in the WT and the fad2-3 mutant. Unfortunately, such a slight change 
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in morphology of the pavement cells cannot explain resistance to B. cinerea in 

fad2-3 mutant, but might explain slight changes in adhesion of B. cinerea 

spores on cotyledons of fad2-3 mutants relative to the WT (Fig.4.11). 

 

IV. 5. Surface metabolites and their role in B. cinerea resistance.  

 

Early stages of B. cinerea development are crucial for the successful process of 

pathogenesis (Perryman et al., 2002). Plants have developed multiple defense 

mechanisms to prevent fungal spreading: release of volatiles, induction of ROS 

and defence genes. For example, (E)-2-hexanal and β-phellandrene volatiles 

identified from Solanum lycopeisicum were shown to have an inhibitory effect 

on the germination and hyphal growth of B. cinerea (He et al., 2005). On 

another hand, B. cinerea has developed multiple layers of adaptation to 

parasitize on the host that makes it very efficicent necrotrophic pathogen. 

However, when plant undergoes developmental changes such as, impaired 

secondary cell wall function in Arabidopsis mutants, B. cinerea development is 

strongly supressed in these plants (Hernandez-Blanco et al., 2007). The aims of 

this subchapter were to identify compounds found on the surface of 

Arabidopsis cotyledons and relate it to B. cinerea resistance in fad seedlings.  
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The first step of this work was to extract metabolites localized on the surface of 

WT and fad2-3 plants. We applied a drop of isopropanol (2 µl) on each 

cotyledon, collecting it 30 sec after application. 784 cotyledons were used for 

the surface analyses. Further samples (196) were used to analyse the metabolite 

composition of the entire seedling. The extracts were analysed using ultra-

performance liquid chromatography quadrupole time of flight mass 

spectrometry (UPLC–qTOF-MS/MS) in collaboration with Gaétan Glauser at 

Platform of Analytical Chemistry, University of Neuchâtel. For the positive 

control, we used fresh weight powder obtained from whole WT, fad2-3- and 

fad trip seedlings shoots and compared it to surface metabolites extracted with 

gently placed isopropanol drops. To visualize the similarities between WT and 

fad2-3 samples we used a principal component analysis (PCA; Fig 4.19).  

 

 

Figure 4.19. PCA score plot from surface (S) and whole shoot (L) metabolites 
of 7-day-old WT and fad2-3 seedlings. t[1] and t[2] are first and second 
principle components, with percentage of  explained variance. 
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The score plot analysis revealed 51% difference between metabolites located 

on the cotyledon surface and within the whole shoot. The difference between 

genotypes base on t2 score was 14%. Based on the results we were able to 

generate a list of metabolites that were more abundant on the surface of WT 

(Tab.4.2, A) or fad2-3 cotyledons (Tab.4.2, B).  

 

Table 4.2. List of metabolites differently abundant on the surface of 
cotyledons. 

Primary	ID Retention	Time Mass p[1] p[2] 
0.42_96.9604 0.42 96.9604 0.049395 -0.0482446 
7.69_115.9202 7.69 115.9202 0.0561692 0.0313873 
0.37_175.0241 0.37 175.0241 0.127511 0.0488703 
0.51_175.0241 0.51 17`5.0241 0.0819731 0.00919991 
3.20_173.1172 3.2 173.1172 0.0631811 -0.0020076 
7.61_200.8580 7.61 200.858 0.057357 -0.0307473 
1.37_271.1653 1.37 271.1653 0.0540017 -0.0315947 
5.11_297.1523 5.11 297.1523 0.0602876 -0.0123178 
0.54_306.0757 0.54 306.0757 0.0767897 -0.0225199 
5.43_311.1675 5.43 311.1675 0.0950371 0.182941 
5.65_311.1674 5.65 311.1674 0.0593553 0.0288497 
6.35_325.1830 6.35 325.183 0.0761216 -0.0110057 
7.23_339.1990 7.23 339.199 0.0469393 0.0635867 
7.73_339.1988 7.73 339.1988 0.0624628 -0.0241187 
7.22_355.1573 7.22 355.1573 0.0691702 0.0706257 
1.28_420.0452 1.28 420.0452 0.301344 0.0444207 
1.58_434.0605 1.58 434.0605 0.110374 0.00198554 
1.91_448.0766 1.91 448.0766 0.10657 0.00438866 
1.43_447.0524 1.43 447.0524 0.182129 0.0981691 
2.25_462.0920 2.25 462.092 0.251875 0.0088241 
2.58_476.1076 2.58 476.1076 0.300901 0.0337789 
1.92_480.0629 1.92 480.0629 0.075229 -0.000402789 
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1.66_477.0631 1.66 477.0631 0.050346 -0.0665822 
2.14_494.0783 2.14 494.0783 0.153499 -0.0139228 
1.28_488.0328 1.28 488.0328 0.0592286 -0.00150966 
2.25_530.0797 2.25 530.0797 0.0598475 -0.00510187 
2.58_544.0952 2.58 544.0952 0.0675826 0.00213135 
2.07_701.1319 2.07 701.1319 0.0671114 -0.0436028 
1.28_863.0796 1.28 863.0796 0.0580936 0.0078035 

 

Primary	ID Retention	Time Mass p[1] p[2] 
2.10_133.0139 2.1 133.0139 -0.0719767 -0.00649105 
0.38_135.0291 0.38 135.0291 -0.0568916 -0.0628453 
0.59_173.0086 0.59 173.0086 -0.0494958 0.0169776 
0.38_194.0482 0.38 194.0482 -0.0860043 0.0505904 
8.29_200.8580 8.29 200.858 -0.0526127 -0.109828 
7.74_200.8579 7.74 200.8579 -0.0506031 -0.234611 
2.08_223.0604 2.08 223.0604 -0.160571 -0.149679 
5.47_311.1671 5.47 311.1671 -0.0957646 0.0353388 
2.09_339.0711 2.09 339.0711 -0.221309 -0.0802656 
1.65_385.1130 1.65 385.113 -0.125053 0.0658945 
4.33_431.1831 4.33 431.1831 -0.105223 0.130447 
0.57_436.0400 0.57 436.04 -0.0675544 0.0524221 
0.64_452.0358 0.64 452.0358 -0.0886851 -0.0511424 
3.80_449.1489 3.8 449.1489 -0.128415 0.231524 
3.61_449.1488 3.61 449.1488 -0.140641 0.267151 
1.27_494.0819 1.27 494.0819 -0.110853 -0.00673135 
1.39_492.1025 1.39 492.1025 -0.12882 0.160839 
1.90_497.3337 1.9 497.3337 -0.0582332 0.0289323 
1.55_508.0981 1.55 508.0981 -0.137131 0.00795124 
0.42_565.0476 0.42 565.0476 -0.0524982 -0.00720483 
2.46_591.1709 2.46 591.1709 -0.0786776 0.00910763 
2.58_591.1709 2.58 591.1709 -0.112459 0.0631813 
2.58_613.1524 2.58 613.1524 -0.0486447 0.00346483 
2.09_677.1349 2.09 677.1349 -0.126528 -0.0191261 
6.63_681.2953 6.63 681.2953 -0.11395 -0.00458775 
2.07_679.1502 2.07 679.1502 -0.139561 -0.0896932 



	 142	

2.10_701.1320 2.1 701.132 -0.0597376 -0.0444339 
1.59_771.2341 1.59 771.2341 -0.051502 0.0898185 
7.18_822.5271 7.18 822.5271 -0.075844 -0.0710086 

 

 (A) WT and (B) fad2-3 seedlings were analysed in this experiment. List was 
created automatically based on principal component plots: p1 and p2 vectors. 
These vectors indicate relation of different variables to each another.  

	
To select compounds potentially involved in B. cinerea resistance we 

performed metabolomics analysis from the surface of true leaves of WT and 

fad2-3 two-week old seedlings. This approach was chosen due to the loss of 

resistance in the first true leaves of fad2-3 mutants. Metabolites obtained from 

the surface of first true leaves were compared to the ones obtained from the 

cotyledons. Only compounds that show more than two fold increase were 

chosen for further analysis (Fig 4.20). 
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Figure 4.20. Relative quantification of two metabolites differently present on 
the surface of WT and fad2-3 cotyledons and leaves. Error bars represent the 
means of 3 - 4 biological replicates; one biological replicate consisted of 
isopropanol drops collected from 784 cotyledons and 196 leaves (± SD). 
Statistical significance in pair-wise comparison was evaluated by Student’s 
test, where *** p ≤ 0.001. 

	
With the help of a surface metabolomics approach we were able to identify two 

compounds that could be involved in B. cinerea resistance in fad2-3 mutant. 

Glutathione is one of the most important sulfur-containing antioxidants and 

redox buffers in plants (Bergmann and Rennenberg, 1993). It is a tripeptide 

thiol (ϒ-glutamyl-cysteiyl-glycine) that was shown to play multiple roles in the 

plant such as: uptake, transport and storage of reduced sulfur, detoxification of 

ROS, xenobiotics, heavy metals and other substances that can damage cell 

functioning (Noctor et al., 1998; Tausz 2001, Blokhina et al., 2003; Kopriva 

and Rennenberg, 2004; Tausz et al., 2004).  
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The other possible candidate may be 7-methylsulfinylheptyl glucosinolate 

(7MSOH). The mass of this compound is 494.083 in negative mode and its 

fragmentation products are consistent with such a structure. However, this is a 

tentative identification that needs conformation by, for example, nuclear 

magnetic resonance. This compound belongs to the group of secondary 

metabolites containing sulfur and nitrogen, common in order of Capparales 

and involved in herbivore and pathogen resistance (Rask et al., 2000; 

Redovnikovic et al., 2008). Levels of glucosinolates are differently distributed 

in Arabidopsis leaves. The highest concentration of glucosinolates was found 

in the midvein and the outer lamina, whereas one of the lowest on the surface 

of Arabidopsis leaves (Shroff et al., 2008; Soenderby et al., 2010; Shroff et al., 

2015). 7MSOH is an aliphatic glucosinolate that is synthetized from 

pentahomomethionine, that is not strongly abundant in Arabidopsis shoot and 

roots making in average 15 to 20 pmol mg-1 of FW (Hogge et al., 1988; 

Maruyama-Nakashita et al., 2008). 7MSOH is not strongly abundant in 

Arabidopsis leaves and no biological role for this glucosinolate in nature was 

found so far (Maruyama-Nakashita et al., 2006). Once the cell is damaged 

glucosinolates are hydrolyzed by myrosinases (thioglucosidase) to form 

isothiocyanates, thiocyanates or nitriles (Rask et al., 2000). 7MSOH might play 

a role in preventing B. cinerea development on the surface of Arabidopsis 

seedlings. 
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IV. 6. What is the B. cinerea entry point in Arabidopsis cotyledons? 
 

B. cinerea is an opportunistic fungus that can infect host organisms through 

wounded regions, sites previously infected by other pathogens, intact 

epidermal cells or, by direct penetration through cuticle into the cell wall 

(McKeen, 1974; van Kan, 2006). The purpose of this subchapter was to 

identify the entrance points of B. cinerea on the cotyledons of the WT and 

cuticle mutants at the 7-day-old seedling stage.  

 

We used scanning electron microscopy to follow development and 

appressorium formation of B. cinerea. A 6 h post - inoculation time point was 

chosen to follow germ tube growth (considering previous results, it is an 

optimal time point). Fig. 4.21 shows a 7-day-old WT cotyledon with 

developing B. cinerea hyphae on it.  
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Figure 4.21. Scanning electron micrographs of 7-day-old Arabidopsis 
cotyledons. (A) Control, central part of cotyledon, (B) 6 h post B. cinerea 
inoculation, (C) hyphal growth on the surface of cotyledon avoiding stomata as 
an entrance point, (D) Appressorium formation at the boundary of two 
pavement cells. 

 

B. cinerea enters the plant through intercellular spaces. The same process has 

been observed on broad bean leaves (Mansfield and Richardson, 1981), onion 

(Gourgues et al., 2004) and Chinese wild Vitis (Wan et al., 2015). To further 

examine this we made transversal sections of cotyledons inoculated with B. 

cinerea (Fig.4.22). 
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Figure 4.22. Transversal sections of WT cotyledons inoculated with B. cinerea 
for 24h. (A), appressorium formation in the intercellular region of two 
epidermal cells. (B), B. cinerea entrance in Arabidopsis cotyledon. B.c.- 
Botrytis cinerea, EP – epidermal cell, red rows indicate intercellular space. 
Scale bar 5µm.  

 

This clearly showed that B. cinerea penetration started in intercellular spaces. 

To identify the entrance point of B. cinerea in cuticle mutants, cotyledons of 

fad2-3- and gpat4 gpat8 mutants were inoculated with B. cinerea for 24 h with 

further preparation of transversal sections and visualization under a 

transmission electron microscope (Fig.4.23).  
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Figure 4.23. Transversal section of cuticle deficient mutants. (A) fad2-3 and 
(B) gpat4 gpat8 cotyledons were inoculated with B. cinerea (B.c). EP – 
epidermal cell, red rows indicate Botrytis cinerea. Scale bar 5µm. 

	
On both images B. cinerea formed mucilage (light grey layer of undefined 

shape, surrounding spores) - an early step of germ tube development (Hawker 

and Hendy, 1963). These results support the hypothesis that B. cinerea enters 

Arabidopsis cotyledons through the intercellular spaces of epidermal cells. 

 

The next question addressed in this study was to identify preferable cell type 

for B. cinerea entrance. For this purpose we used Botrytis cinerea enhanced 

GFP fluorescent B05 strain (Bcgfp1), kindly provided by Prof. Matthias Hahn 

(Technical University of Kaiserslautern). The fluorescent B. cinerea strain was 

applied to fad2-3 and WT cotyledons and incubated for 6 h followed by 

visualization on a Zeiss LSM700 confocal microscope (Zeiss, Feldbach, 

Switzerland; Fig. 4.24). 
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Figure 4.24. B. cinerea entrance through the intracellular regions of 
Arabidopsis pavement cells. Cellular borders were stained with propidium 
iodide. Bcgfp1 strain was visualized 6h post application. Arrows indicate 
entrance points of B. cinerea. 

 
This image clearly shows that B. cinerea enters through the intercellular spaces 

of Arabidopsis pavement cells. We analysed 10 cotyledons of WT and fad2-3 

mutant. No difference in B. cinerea entrance on these genotypes was observed.  

 

IV.7. Discussion. 
 

Triunsaturated fatty acids were shown to have an important role in resistance to 

necrotrophic fungi, as precursors of jasmonic acid (Thomma et al., 1998), 

whereas the function of diunsaturated fatty acids in this process remained 

unknown. However, there is only some evidence concerning their involvement 

in the conidiation process in Aspergillus parasiticus (Wilson et al., 2014). 

DUFAs are major components of the surface defense layer, i.e. in the cuticle 

WT	
	

fad2-3	
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(Bonaventure et al., 2004). Our study further investigated the roles of DUFAs 

resistance to the necrotrophic fungus Botrytis cinerea. 

 

Cuticle deficiency and its role in B. cinerea resistance. We showed that 

cotyledons of mutants deficient in 18:2 (fad2-3); 16:3 and 18:3 (fad trip) or 

both DUFAs and TUFAs (fad2-1 fad6) have permeable cuticle. Increased 

permeability of fad cotyledons could be explained by changes in composition 

of major structural polyester components. However, no common cutin 

monomer defect, compared to WT, was detected in the mutants analysed. 

Moreover, the gpat4 gpat8 double mutant showed no differences in FA 

composition compared to WT, but this mutant displayed the highest cuticle 

permeability in cotyledons and the first true leaves, together with the most 

reduced levels of cutin monomers. Toluidine blue staining of the first true 

leaves showed permeability defect only in fad2-3 and fad2-1 fad6 mutants, 

showing a specific role of TUFAs in the polyester composition of Arabidopsis 

cotyledons, but not true leaves. If only cuticle permeability would be involved 

in B. cinerea resistance, fad trip plants would be the only ones to show 

susceptibility to this pathogen, however leaves of fad2-3 mutants also show 

this phenotype. These results lead to conclusion that cuticle permeability might 

be one of the factors to promote B. cinerea resistance, but additional 

mechanisms should be activated to fight this pathogen.  
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The role of ROS in B. cinerea resistance at the stage of 7-days old 

seedlings. Another question that we addressed in this research was to 

understand what leads to B. cinerea resistance in fad mutants at the stage of 7-

day-old seedlings. To address this problem, we analysed internal ROS levels in 

our mutants. Their upregulation was shown to play a crucial role in the 

resistance to B. cinerea by the activation of defence response genes 

(Malolepsza and Urbanek, 2002). We used malondialdehyde as a marker for 

nonenzymatic lipid oxidation. Surprisingly, no difference was found in MDA 

levels in the WT and the fad2-3 mutant in non-stressed conditions, but the 

fad2-1 fad6 double mutant had MDA levels close to the limit of quantification 

and fad trip levels were lower than in the WT, consistent with previously 

published results (Schmid-Siegert et. al., 2012). These finding indicate that 

fad2-1 fad6 and fad trip mutants are present under constant oxidative stress, 

that might lead to the higher internal levels of the defence hormones, such as 

SA or JA. However, no difference in the hormonal levels should be found 

between WT and fad2-3 seedlings. We assume that fad2-3 can have different 

mechanism of B. cinerea resistance to fad2-1 fad6 and fad trip seedlings. 

 

Defense hormones and their induction upon B. cinerea treatment. Most of 

the defence marker genes examined did not show a difference upon B. cinerea 

infection at cotyledon stage between WT and mutants. The exception was the 

PR1 gene that showed strong basal and induced resistance in fad trip mutants, 
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as well as 5-fold induction in fad2-3 seedlings. These differences might be 

explained by possibly higher levels of ROS such as, for example, H2O2 in fad 

trip seedlings (Schmid-Siegert et. al., 2012), leading to the synthesis of 

salicylic acid (Nawrath and Metraux, 1999; Yalpani et al., 1991). Salicylic acid 

is an important component of plant defence against B. cinerea that inhibits 

fungal entrance at the site of infection (Ferrari et al., 2003), but does not 

promote resistance to this fungus at the later stages of infection. Consequently, 

we concluded that B. cinerea resistance in fad mutants is not simply due to 

increase in the levels of defence hormones upon B. cinerea infection. 

 

Changes in morphology of epidermal cells correlated with B. cinerea 

resistance Previously it was shown that some necrotrophic fungi cannot 

penetrate into the plant due to surface changes or cell topography (DeZwaan et 

al., 1999; Staples et al., 1987; Talbot et al., 1996). In this work we showed that 

fad mutants have a different pavement cell morphology compared to the WT. 

Using atomic force microscopy to analyse pavement cells revealed differences 

in adhesion and stiffness parameters of fad2-3 mutants compared to the WT. 

These results did not explain the arrested growth of B. cinerea hyphae in the 

fad2-3 mutant, but may relate to the partial spore adhesion defect in this 

mutant.  
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Different to the WT metabolites on the surface of fad2-3 cotyledons. To 

understand B. cinerea resistance in the fad2-3 mutant surface metabolomic 

analysis was performed. This technique allowed us to identify metabolites that 

were abundant on the surface of fad2-3 cotyledons compared to the WT. Of 

these 7-methylsulfinylheptyl glucosinolate is of strong interest. Surprisingly, 

previous works on aliphatic glucosinolates did not show involvment of these 

compounds in B. cinerea resistance (Tierens et al., 2001). The inability to 

identify the potential involvement of compounds such as 7-

methylsulfinylheptyl glucosinolate in fungal resistance previously, could be 

explained by a low abundance of this glucosinolate in WT plants. Over-

accumulation of this compound on the surface of fad2-3 cotyledons may be 

promoted by the permeable cuticle that permits chemical transport onto the 

cotyledon surface. The might also be an indirect effect of DUFA deficiency 

that causes over-accumulation of methyl-derived glucosinolates. 

 

B. cinerea entrance in Arabidopsis cotyledons. The last question of this work 

was to identify the entrance point of B. cinerea in WT and fad mutants. 

According to results of scanning electron microscopy, B. cinerea enters into 

the plant through the intercellular spaces of pavement cells. This is consistent 

with images from previous publications (Mansfield et al., 1981, Gourgues et 

al., 2004, Wan et al., 2015). To estimate if there was cell preference for 

penetration, we applied Bcgfp on cotyledons of WT and fad2-3 mutants. No 
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cell preference was identified. However, we confirmed that B. cinerea indeed 

enters through the intercellular spaces. Surprisingly, developing hyphae did not 

growth directly into the mesophyll layer. Instead they sometimes re-emerged 

from the cotyledon after the first entrance through not only the intercellular 

spaces but also through the epidermal cells directly. 

 

IV.8. Experimental procedures. 

 

Plant growth conditions, genotypes and chemicals - Wild-type Arabidopsis 

(WT Columbia background) was used. The following alleles in the Columbia 

background were received from the ABRC: fad2-1 (CS8041), fad2-3 

(SK18137), fad6 (CS207), fad2-1 fad6 and fad2-3 fad6 double mutants were 

obtained by crosses in this work, gpat4 gpat8 double mutant seeds were kindly 

provided by Frederic Beisson (Li et al., 2007, Li-Beisson et al, 2009), fad3-2 

fad7-2 fad8 mutant seeds from McConn and Browse (1996) and aos was from 

Park et al. (2002). Seeds were stratified for 2 days at 4 0C and then grown at 21 

0C under 100 µE m-2 s-1 of light with photoperiods depending on the application 

(seedlings: 14 h light, 10 h dark (long days); on soil for seed propagation: 24 h 

light (continuous days). Seedlings were grown on half-strength Murashige and 

Skoog solid media (1/2 X MS, 2.15 g/L, pH 5.7; Duchefa Biochemie, Haarlem, 

The Nederlands) supplemented with 0.5 g/L of MES hydrate (Sigma, Buchs, 
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Switzerland) and 0.7 %. No sucrose was added to the media. 

 

Infection with Botrytis cinerea – two strains of B. cinerea were used in this 

work: BMM, kindly provided by C. Nawrath and B 05.10 fused to the GFP 

(Bcgfp1) provided by M. Hahn. The fungus was grown on potato dextrose for 

10 days. Conidia were filtered and diluted to 5x105 spores per µl in half PDB. 2 

µl of this suspension was applied on cotyledons of 7day old Arabidopsis grown 

in petri dishes with ≈ 100% humidity. After infection Petri dishes were 

incubated for 48 hours in long day conditions. Infection rate was scored 

visually by counting the number of seedlings (cotyledons or first true leaves) 

with lesions. All the chemicals were obtained from Sigma-Aldrich (unless 

mentioned below). 

 

Fatty acid composition analysis – 7- and 14-day-old seedlings were collected 

(≈30 mg) and placed in 15 ml Pyrex SVL capped test tubes (Milian, 

Switzerland). 1 ml of 2.5% H2SO4 solution, in methanol was added to the 

samples. Then, samples were incubated for 90 min at 80 0C, 1.5 ml 0.9% NaCl 

and 1 ml of hexane (≥ 97.0% (GC), Sigma-Aldrich, Buchs, Switzerland) were 

added. The solution was vortexed briefly (2 sec) then centrifuged for 5 min at 

1000 rpm. 250 µl of the upper phase containing fatty acid methyl esters were 

collected. 1 µl of a 1:5 dilution was analysed by GCMS (initial T = 150 0C for 

3 min, with a following increase from 150 0C to 200 0C).  
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Cuticle permeability assay – 14-day old seedlings were placed in 6-well plates 

with 1 ml of Toluidine blue solution (500 mg TB dissolved in 1 L of water and 

0.001% of Tween 20), incubated for 15 min and gently rinsed with water 

(Tanaka et al., 2004). 

 

Transmission electron microscopy  – 7-day-old Arabidopsis cotyledon discs 

(1.5 mm in diameter) were fixed and sectioned as indicated earlier (Fabre et al., 

2015). Micrographs were taken with a Philips CM100 TEM (FEI, Eindhoven, 

the Netherlands) at an acceleration voltage of 80 kV with a TVIPS TemCam-

F416 digital camera (TVIPS GmbH, Gauting, Germany). 

 

Polyester analysis – aliphatic polyester composition was performed on 7-day-

old seedlings (only the areal part of seedling was used for this analysis). 2000 

shoots were collected and pooled in liquid nitrogen to obtain one biological 

replicate. Six replicates were made for each genotype. Then, the polyester 

composition was analysed after trans esterification by base-catalysis and 

following acetylation as described previously (Li-Beisson et al., 2013). 

 

ROS detection assay – 7-day-old seedlings were divided into two groups. For 

the first group, B. cinerea suspension (2 µl) in PDB media was applied to 

cotyledons. For the second group (used as a control) only PDB (2 µl) was 

applied to cotyledons. Both groups were then incubated for 24 prior to staining 
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by ROS-IDTM Total ROS/Superoxide Detection Kit (Enzo Life Sciences AG, 

Switzerland) as described in the manual. Seedlings were vacuum infiltrated for 

30 min under dark conditions. ROS species were visualized via wavelengths 

490 / 525 (Ex / Em), superoxide via 550 / 620 (Ex / Em). 

 

Gene expression analysis – 7-day-old seedlings were either infected with B. 

cinerea or only PDB solution was applied (as a control) with 24 h incubation. 

Finally, seedlings were collected and stored in liquid nitrogen. 30 to 50 

seedlings were used per one biological replicate. RNA isolation and 

quantitative RT-PCR was performed as described earlier (Gfeller et al., 2011). 

PDF1.2, PR1 and ABA1 transcripts were quantified as described earlier 

(Solano et al., 1998, Hilfiker et al., 2014, Chen et al., 2013). 

 

B. cinerea adhesion assay – 1 µL drops of B. cinerea spore suspension (5x105 

spores/ml) were applied onto 10 cotyledons of WT and fad mutants, incubated 

for 4 h, then seedlings were washed with 100% ethanol with gentle shaking for 

1 h. Cotyledons were stained by dipping 7-days-old cotyledons in preheated 

solution of Trypan blue (500 mg/L Trypan blue with 1 ml/L of Tween 20 

dissolved in water) for 15 sec and directly rinsed in H2O and visualized under 

Leica 5000 microscope. Modified and adapted from Doss (1995). 
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B. cinerea development assay – Spores were applied on 7-day-old seedlings 

and visualized with Trypan blue at: 4, 8 and 24 h post inoculation. To obtain 

stain solution, 20 mg of Trypan blue was dissolved in 10 ml of lactic acid, 10 

ml glycerol, followed by addition of 10 ml warm water-saturated phenol. To 

perform staining, seedlings were dipped for 15 to 25 seconds in the warm 

solution, followed by further 30 min wash in 70 % ethanol to remove excesive 

stain and to remove chlorophyll. Cotyledons were visualized under a bright 

field microscope. Hyphal length was measured using the ImageJ freehand tool 

option.  

 

Cryo-scanning electron microscopy – 7-day-old shoots were fixed with a 

mixture of 50 % colloidal graphite (Scientific, Essex, United Kingdom) and 50 

% Tissue Tek OCTTM (Sakura Finetek, Torrance, USA) at room temperature 

and then cryofixed. The observations were performed as described previously 

(Mazurek et al., 2013). 

 

Atomic force microscopy – 7-day-old cotyledons of Arabidopsis thaliana (WT 

and fad2-3) were dissected in a moist environment. Each cotyledon was fixed 

with double-sided tape in a small Petri-dish and quickly covered with ultra-

pure water. Measurements were done on NanoWizard III (JPK Instruments, 

Berlin, Germany) mounted on an Axiovert inverted optical microscope (Zeiss, 

Jena, Germany). Quantitative Imaging (QI) mode and DNP-10 (Bruker Probes, 
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Camarillo, USA) cantilevers with spring constants of 0.06 N/m were used. 

Properly calibrated (glass indentation, thermal tuning) cantilevers indented the 

samples with 2.5 nN force at 40 µm/s with Z length of 2 µm. Resolution of 0.7 

µm per pixel was kept constant throughout imaging. All measurements were 

conducted within 1h of cotyledon attachment. JPK SPM Data Processing 

software (JPK Instruments, Berlin, Germany) was used for force-curve fitting, 

while Matlab was used for data presentation. The Hertz model was used for 

force-curve fitting, assuming the Poisson ratio of 0.5, and pyramidal geometry 

of the tip (front angle of 150 ). For histogram representations of pavement cells 

only a masking parameter was applied on the height, stiffness and adhesion 

maps. 

 

Metabolomic analysis - was carried out by UHPLC-QTOF-MS on an Acquity 

UPLC coupled to a Synapt G2 QTOF mass spectrometer (Waters). An Acquity 

UPLC BEH C18 column (50 x 2.1 mm, 1.7 µm; Waters) was employed at a 

flow rate of 400 µL/min and maintained at a temperature of 25°C. The 

following gradient was used with 0.05 % formic acid in water as mobile phase 

A and 0.05% formic acid in acetonitrile as mobile phase B: 0.0 - 7.0 min 2-100 

% B, 7.0 - 9.0 min 100% B, 9.0 - 11.0 min 2% B. The injection volume was 2.5 

µL. The QTOF was operated in electrospray negative mode using the MSE 

mode. Mass spectrometric parameters were as follows: mass range 85 - 1200 

Da, scan time 0.2 s, source temperature 120°C, capillary voltage -2.0 kV, cone 
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voltage -25V, extraction cone -4.5 V, desolvation gas flow and temperature 

800 L/h and 400 0C, respectively, cone gas flow 20 L/h, collision energy 4 eV 

(low energy acquisition function) and 10 - 35 eV (high energy acquisition 

function), collision gas (argon) 7 x 10-3 mbars. A 400 ng/mL solution of the 

synthetic peptide leucine-enkephaline in water: acetonitrile: formic acid (50 : 

50 : 0.1) was infused constantly into the mass spectrometer as internal 

reference to ensure accurate mass measurements. Data were recorded by 

Masslynx v.4.1. Marker detection was performed using Markerlynx XS 

(Waters) with the following parameters: initial and final retention time 0.0 and 

9.0 min, mass range 85 - 1200 Da, mass window 0.02 Da, retention time 

window 0.06 min, intensity threshold 500 counts, automatic peak width and 

peak-to-peak baseline noise calculation, deisotoping function applied. Data 

were mean - centred and Pareto - scaled before applying principal component 

analysis. Markers of interest were tentatively identified based on their 

molecular formula determination and fragments obtained by collision-induced 

dissociation. 

 

Statistical analysis - Statistical significance in pair-wise comparison was 

evaluated by Student’s test, where * p ≤ 0.05; ** p ≤ 0.01; ***p ≤ 0.001, 

multiple comparison analysis of variances (ANOVA) followed by Turkey’s 

HSD test was performed using JMP – statistical analysis software. 
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Chapter V: Concluding remarks 
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The focus of this work was to understand the roles of diunsaturated fatty acids 

(DUFAs) in seedling establishment and defence. Previous work revealed that 

plants lacking DUFAs could not survive on soil (McConn et al., 1998). In this 

thesis we generated plants with extremely low levels of DUFAs (< 1% total 

FAs) that had dwarfish and yellowish phenotypes but were viable on soil and 

able to produce seeds. So far no specific morphological phenotypes have been 

reported for Arabidopsis fad2 mutants during their first weeks of development. 

In this work we found that fad2 mutants show reduced root growth and that this 

correlated with high internal ROS levels. The most surprising finding of this 

research concerned aerial tissues. Both fad2-3 and fad trip seedlings were 

strongly resistant to the necrotrophic pathogen Botrytis cinerea. We focused 

our research on cotyledons and found high levels of a glucosinolate (potentially 

7-methylsulfinylheptyl-glucosinolate) on the surface of fad2-3 cotyledons. This 

could potentially have a fungitoxic affect on B. cinerea. The thesis covered a 

broad range of questions related to polyunsaturated fatty acids and their 

involvement in plant development and adaptation to stresses. However, even 

more questions need to be addressed to better understand roles of DUFAs in 

plant. This chapter contains perspectives for further work on DUFAs. 
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V.1. Characterization of Arabidopsis PUFA-deficient fad mutants. 
 

In the chapter II of this thesis I compared phenotypic and biochemical 

characteristics of fad2 and fad6 mutants to the WT. Fatty acid analysis of the 

WT identified changes in fatty acid composition during the 3- to 7-day-old 

stage. These changes probably reflect semi-autotrophic growth during the first 

days, followed by switch to fully autonomous growth on the 5th to 6th day of 

seedling development. One of the open questions from this part was what are 

the mechanisms used by the plant to control fatty acid changes? Are these 

processes controlled at the translational or transcriptional level? To separate 

these processes qPCR can be performed to analyse gene expression and 

western blot could be performed to visualize changes in protein levels. 

However, this was not addressed and the thesis instead concentrated on the 

questions more related to the roles of DUFAs in plants.  

 

An interesting finding was the bushy phenotype of fad2-3 mutants observed 

during the flowering period. Notably, this was not observed in fad2-1 mutant. 

The absence of this phenotype in fad2-1 mutants could be caused by a weaker 

(hypomorphic) allele in this plant that leads to slightly higher levels of PUFAs 

in fad2-1 plant compared to fad2-3, which appears to be a null mutant. 

Quantitative FA analysis using C18 and C16 standards will be required to test 

this hypothesis and this may be challenging since DUFA levels are low in 
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fad2-1 mutant. The bushy phenotype could be related to changes in the levels 

of auxin, strigolactone or cytokinin in this mutant. These hormones control 

rosette morphology (Fellner, 1996; Prochazka and Truksa, 1999; Nordström et 

al., 2004; Brewer et al., 2009 Mordhorst et al., 1998; Nogue et al., 2000). All 

of these hypotheses require further analysis, for example, by performing 

hormonal mesurments at the flowering stage to identify which hormone causes 

to the bushy morphology of fad2-3 mutants. This could be followed by detailed 

analysis of the biosynthesis of this hormone to identify the stage that could 

potentially involve FAs. Performance of these experiments could possibly lead 

to a better understanding of plant development and role of DUFAs in this 

process. 

 

V.2. The effect of Arabidopsis DUFA-deficient fad2 mutants on seedling 
growth. 

	

In the Chapter III of this thesis I identified a role of PUFAs in root 

development using fad2 mutants. The reduced root growth in these seedlings 

was explained by almost complete absence of PUFAs that are known to be 

ROS scavengers (Mène-Saffrané et al., 2007; Schmid-Siegert et al., 2016). 

High internal ROS levels in fad2 mutants were suggested by ROS staining. 

These high ROS levels would lead to constant oxidative stress. The most 

obvious hypothesis is that once another external stress is added, for example, 

salt stress, it leads to stronger suppression of the root growth in fad2 mutants 
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compared to WT seedlings (Zhang et al., 2012; this work). Analysis of root 

growth characteristics in this thesis showed that this effect is mainly caused by 

a reduction in the number of meristem cells and reduced cortex cell lengths in 

the mutants, due to over accumulation of ROS that leads to oxidative stress 

followed by decrease in the levels of growth hormones. This work can be 

continued in multiple ways. First of all, the FAD2 gene could be expressed in 

different cell types of fad2-3 roots to attempt to rescue root length. Then fad2-1 

or/ and fad2-3 could be crossed with respiratory burst oxidase homologs (rboh) 

mutants to obtain plants with reduced ROS levels in the meristem and 

elongation zones (Lee et al., 2013).  

The almost complete absence of PUFAs and their replacement by 18:1 FAs 

could lead to the changes in root polyester composition in fad2-1 and fad2-3 

mutants. This might affect root suberinization and casparian strip maturation 

that can be investigated by fluorol yellow and propidium iodide staining. If 

changes in suberin levels are detected, it would be interesting to apply 

pathogens to WT and fad2 roots to examine the role of monounsaturated fatty 

acids in root defence. 
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V.3. PUFAs and their role in resistance to Botrytis cinerea. 
	
	
In the last experimental chapter (IV) of this thesis I identified resistance of 

fad2-3, fad2-1 fad6 and fad trip cotyledons to the necrotrophic pathogen 

Botrytis cinerea. These mutants were found to have permeable cotyledon 

cuticles, but no detectable changes in the internal ROS levels or upregulation 

of common hormonal marker genes in aerial tissues were found. The increased 

resistance of fad2 mutants activated at the early stages of B. cinerea infection. 

Changes in pavement cell topography of fad2-3 mutants can explain a partial 

adhesion defect of B. cinerea on Arabidopsis cotyledons. However, the major 

resistance of fad2-3 to B. cinerea may be associated with surface metabolites. 

In this work one such metabolite (tentatively identified as the glucosinolate 

7MSOH) was found. The structure of this compound needs to be established. 

To test whether this compound has a fungitoxic activity additional experiments 

need to be done. For example, incorporation of the glucosinolate into B. 

cinerea growth media followed by application on WT cotyledons and 

quantifying number of seedlings showing resistance. Another possible 

experiment to extend this research could be to perform surface metabolite 

analysis on fad trip and fad2-1 fad6 cotyledons and first true leaves. This 

should identify similar or different compounds involved in B. cinerea 

resistance in these mutants. Beyond this, it would be interesting to identify B. 

cinerea mutants that show resistance to a 7MSOH, followed by full 
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transcriptomic analysis compared to control B. cinerea strain. These results 

will help us to better understand internal mechanisms that are involved in 

fungal susceptibility to this glucosinolate. 
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