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We present a two-level model of concurrent communicating systems (CCS) to serve as a basis for

machine consciousness. A language implementing threads within logic programming is ¯rst

introduced. This high-level framework allows for the de¯nition of abstract processes that can be
executed on a virtual machine. We then look for a possible grounding of these processes into the

brain. Towards this end, we map abstract de¯nitions (including logical expressions representing

compiled knowledge) into a variant of the �-calculus. We illustrate this approach through a
series of examples extending from a purely reactive behavior to patterns of consciousness.
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1. Introduction: A Methodological Problem

Will machines ever be able to think and enjoy consciousness? This question has been

debated by philosophers and scientists alike, but no de¯nitive answer has been given

yet. Actors from both camps are sometimes very critical about each other. In fact, the

whole domain seems to su®er from a lack of methodology and disciplined activity.

Talking about the research done in robotics and AI, Brooks [2001] once wrote \None

of these ¯elds is experimental (…). There is no control experiment to compare

against". Ten years later, when confronted with the apparent failure of current

research in arti¯cial intelligence and arti¯cial life, he went on to ask if something was

not going wrong, and if one were not actually missing something fundamental and

currently unimagined in the models. He then conjectured: \Perhaps other math-

ematical principles or notions, necessary to build good explanations of the details of

evolution, cognition, consciousness or learning will be discovered and invented"

[Brooks, 2001].

In our view, research in these subjects should be inspired by the methods of

theoretical physics, i.e., in as much the same way as mathematical abstractions

(without apparent relations with intuitive perceptions) are used to model the

properties and interactions of elementary particles, computational abstractions
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should be used to model the cognitive activity taking place in the brain. The problem

would be then somehow \ground" these processes, i.e., to embody them into bio-

logical neural networks.

We further argue that the computational abstraction needed for this task is

already available, namely concurrent communicating systems (CCS ). What is

lacking today is an e®ective way of using this powerful notion, which tends to be

buried into opaque code (as too often in AI, \the theory is the program"), whereas it

should be at the heart of the model's de¯nition.

Towards this goal, we propose a two-level model of CCS. At the ¯rst level, resulting

from the integration of communication into a model of intelligent agents [Bonzon,

2002a], processes are de¯ned in a high level language that provides the necessary tool

for the simulation of cognitive functions. At the second level, abstract de¯nitions

(including logical expressions representing compiled knowledge) are mapped into a

variation of the �-calculus [Milner, 1999]. The basic functionality of this lower-

language bears strong similarities with arti¯cial neural networks: each of these two

formalisms allows for the representation of interconnected units (e.g., neurons) whose

con¯guration changes over time, and thus o®ers a possibleway to ground computations

into brain processes. As both the high-level and the lower-level language we introduce

can be compiled and executed on a virtual abstract machine [Bonzon, 2002b], exper-

iments can be easily reproduced. At the end, this should allow for a systematic and

repeated exploration, as required by the scienti¯c experimental method.

We come now to the very object of this exploration. The study of consciousness

extends in many directions. At one end lies the so-called \search for the neural

correlates of consciousness" [Atkinson et al., 2000]. Brie°y, this approach involves

\isolating the neural processes that correlate with various states of consciousness".

Following the increasing availability of brain imaging techniques, the experimental

research conducted in this direction is °ourishing. But this approach has failed so far

to provide us with any accurate knowledge about neuro-physiological mechanisms.

At the other end, we ¯nd theories that are formulated merely in terms of the infor-

mation processing presumably conducted by the brain [Sun, 1999]. This line of

research has often been described as constituting a complementary \search for the

computational correlates of consciousness" [Cleeremans, 2005]. This second approach,

however, has yet to produce experimental platforms. As reported in [Arrabales and

Sanchis de Miguel, 2008], there hardly exist a few actual implementations that fur-

thermore rely on metaphors (such as the Global Workspace model [Baars, 1988])

\that simply help us understand in a holistic way how the human mind works (…) far

away from an established body of scienti¯c knowledge".

Our ¯rst aim being precisely to give up metaphors in favor of computational

abstractions,we shall try anddelineate aspects of consciousness that could be amenable

to computational processes. We will therefore not be concerned by the so-called

<hard> problem of consciousness related to the phenomenology of feelings and sen-

sations, and be content with the <easy> ones related to the awareness of one's own

activity and perceptions. More precisely, we will try and model the functionality of

2 P. Bonzon



episodic memory [Tulving, 1999]. In short, this functionality allows for the thinking

and deliberation we do perform consciously or the events that hit our consciousness to

get somehowmemorized and then later recalled. The abstract robot model that we will

de¯ne in this paper works in a similar manner. This similarity will not allow us, how-

ever, to argue that it acts consciously. The only claim that we will make is that it does

enjoy a property it shares with a conscious mind, i.e., that of using a pervasive tool

identi¯ed with thoughts in order to keep and retrieve traces of its past activity.

Our model will also be in line with the idea that humans are not directly conscious

of their thoughts but rely on that for intermediate representations and processes. As

formulated by Crick and Koch [2000] when reporting about Jackendo® [1987] pos-

tulates: \what is conscious about thoughts is visual or other images, or talking to

oneself. (…) visual and verbal images are associated with intermediate-level sensory

representations, which are in turn generated from thoughts by the fast processing

mechanisms in short-term memory. Both the process of thought and its content are

not directly accessible to awareness". In order to account for this intermediation, or

in other words to allow for the indirect access to thoughts via intermediate-level

representations, some kind of communication must take place. We do thus postulate

in turn that if intermediate representations are the support of conscious thoughts,

then communication is their trigger. More precisely, this new postulate can be for-

mulated as follows: when humans think, they basically engage in synchronized

communication of some internal representations.

We choose to introduce our tools in context, i.e., by illustrative examples.

Following a developmental approach, we shall start with a model of purely reactive

behavior. We then show how it can be extended into a more complex model incor-

porating a deliberative behavior. We further introduce a kind of awareness into the

system by giving it the ability to keep traces of its deliberation processes, thus ending

up with a model exhibiting the functionality of episodic memory. Conscious thinking

can thus be bound to a particular type of activity, i.e., deliberation involving the

processing of internal representations identi¯ed with a model of thoughts.

Finally, to validate our developments, we present a model simulating the ¯rst level

of animal consciousness according to the hierarchy of Pepperberg and Lynn [2000].

2. A Test Bed for the Simulation of a Simple Robot

We shall base our developments on a simple robot model to be used as a test bed for

experiments. Let us consider any kind of autonomous vehicle or mobile robot that can

move towards a target to perform a single task (from simply picking up a ball to

¯xing a problem). For the purpose of a simulation, we assume that the robot is

equipped with physical sensors allowing for the detection of both its position and that

of targets. We shall further assume that the robot's behavior can be de¯ned in terms

of plans, each plan consisting in turn of actions. As the robot moves and acts, its

current plan and action are selected using ¯xed rules as well as data obtained from

its sensors.
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2.1. Rules for the selection of the robot's current plan and action

In this simple model, only one of two possible plans go or return can be selected

according to the following plan selection rules:

(1) \if there is a target to be served, then select plan go"

(2) \if there is no target to be served, then select plan return"

The choice of an action in a plan follows from do selection rules:

(3) \when using plan go, if moving towards the target, then select action forward "

(4) \when using plan go, if reaching the target, then select action work "

(5) \when using plan return, if moving towards home, then select action backward "

(6) \when using plan return, if reaching home, then select action rest ".

2.2. First-order logical representation of the robot's selection rules

In order to represent the robot's behavior in logical terms, let us ¯rst consider the

following predicates:

target(x) meaning \a target is located at position x "

at(x) meaning \the robot is at position x "

home(x) meaning \the home location to return to is at position x "

plan(p) meaning \plan p is selected"

do(p,a) meaning \within plan p, action a is selected".

The robot's selection rules can then be represented by the following logical

implications (in accordance with the Prolog syntax, conjunctions are represented by

the operator \ , " and variables start with capital letters):

1) target(_) ! plan(go)

2) not target(_) ! plan(return)

3) (at(X), not target(X)) ! do(go,forward)

4) (at(X), target(X)) ! do(go,work)

5) (at(X), not home(X)) ! do(return,backward)

6) (at(X), home(X)) ! do(return,rest)

These implications, which will be used to drive the robot's behavior and stored as

¯xed data, are called compiled knowledge.

3. A Language for Concurrent Communicating Processes

Implementing a simulation of a simple robot like the one de¯ned above can be done in

a variety of ways. In any case, there is no need to introduce communication at this

stage. In order to allow for later developments, we shall nevertheless use at once a

language allowing for the expression of communicating concurrent processes. Towards

this end, we shall rely on our previous work that led us to de¯ne and implement such a

language within the framework of logical programming [Bonzon, 2002a,b].
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3.1. A ¯rst example: A logical sensor implementing reactive behavior

Let us give ¯rst a concrete example of the use of this language. More precisely,

consider the expression given in Fig. 1, which actually represents the de¯nition of a

logical sensor (as opposed to the physical sensors considered in the previous section)

implementing a reactive behavior.

The name of a thread, i.e., sensor is ¯rst declared, together with two local

variables, i.e., P and A. This is followed by a so-called guarded command (imple-

menting a logical implication) consisting of a guard, i.e., plan (P), do(P,A), separ-

ated by the operator \ j " from the command itself, i.e., effector(A).

When implemented as a concurrent process, the above guarded command will

allow for repeated reaction cycles de¯ned as follows:

– select a plan P and an action A from this plan using compiled knowledge

– deliver the task of executing action A to an appropriate e®ector.

Note: In computer science, a thread is simply a sequence of instructions which may

execute in parallel with other threads. With regard to a process, one may add that

<the implementation of threads and processes di®ers from one operating system to

another, but in most cases, a thread is contained inside a process. Multiple threads

can exist within the same process and share resources such as memory, while di®erent

processes do not share these resources> (quoted from Wikipedia).

3.2. Formal language de¯nition

We come now to a presentation of the complete language.We do not reproduce here the

usual syntax for ¯rst-order expressions, the only divergence being that variable names

must start with capital letters. The remaining formal syntax is de¯ned by the grammar

given in Fig. 2, where multiple choices are separated by the meta-operator \ jj ".
Each thread consists of a tree structure whose sequences contain messages sep-

arated by the conjunctive operator \ , " and end with alternatives containing guarded

messages separated by a disjunctive operator \ ; ". Possible messages consist simply

of the tell/ask pair used for communication, the start/end pair for creating and

deleting a thread and the e®ector command allowing for the execution of actions by

external actuators. Each thread is reentrant, i.e., is automatically resumed at the end

of each alternative.

thread(sensor,  
[P,A],
[(plan(P), 
  do(P,A)| [effector(A)])]) 

Fig. 1. A logical sensor implementing reactive behavior.
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4. Simulating Deliberative+Reactive Behaviors

In the second step of our test bed, we introduce a deliberative behavior. More pre-

cisely, the selection of a plan P, which in our previous model was part of the reactive

process leading to action execution, now involves a deliberative preprocessing taking

place before the action choice.

4.1. Threads implementing a deliberative+ reactive behavior

The overall robot behavior can be expressed by the threads given in Fig. 3.

As it can be seen, sensor(P) threads are dependent on a plan P and have been

extended with a deliberation process using deliberate compiled knowledge leading

to choose and execute a mental action B.

4.2. Running a simulation

The deliberate compiled knowledge needed in this case is given by the following

implications:

target(_) ! deliberate((end(sensor(return)),

start(sensor(go))))

not target(_) ! deliberate((end(sensor(go)),

start(sensor(return))))

In other words, whenever there is a target to be served, the deliberation leads ¯rst to

end the thread running a return plan (if there is any) and then starts a thread

running the plan go, and vice versa.

<thread>              ::=  thread(<threadName>(<threadParams>),<varList>,<mesTree>) 

<varList>              ::=  [] || [<varName>|<varList>] 

<mesTree> ::=  [] || <seq> || [<alt>] 

<seq> ::=  [<mes>|<mesTree>] 
<alt> ::=  <guardMes> || (<guardMes>;<alt>)

<guardMes> ::=  (<guard>|<mesTree>) || <mesTree>

<mes> ::=  <messageName>(<messageParams>) 

<messageName ::=  tell || ask ||  start || end || effector

Fig. 2. BNF productions for agent threads.

thread(sensor(P),  
[A,B],
[(deliberate(B)| [effector(B), 

(do(P,A)| [effector(A)])])])

Fig. 3. Threads implementing a reactive+deliberative behavior.
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Deliberations could similarly be based on the robot's own activity, e.g., could lead

him to return home whenever he has completed working on a target. In this case,

deliberation would take place after the action choice, and depend on it, as shown in

the sensor de¯nition given in Fig. 4.

5. Introducing Conscious Recalls

In this last step, we model a form of consciousness taking place when recalls arise from

episodic memory. As discussed in the Introduction, this functionality refers to the

capability of remembering past experiences. Clearly, this functionality operates and/

or occurs in conjunction with A-consciousness, i.e., with the ability to access mental

contents. As a typical example, whenever one gets suddenly conscious of having done

something wrong, a new event or a perception (e.g., being told of the negative e®ect

of an action) and a recall from episodic memory (i.e., remembering having done it)

are concurrently involved. Our postulate here will be that conscious recall is based on

the coincidental delivery to the same locus of two or more internal communications.

Translated into our model, this means that a foreground thread recall will be

addressed concurrently by two or more background server threads, one acting as a

triggering event and the other one as a memory store.

5.1. A set of threads implementing conscious recalls

Our simulation of conscious recalls results from an extension of our previous model

given in Fig. 3. As sketched above, a new recall thread intended as the locus of

consciousness communicates concurrently with two server threads, one allowing for

the memorization of past events, and the other one acting as a trigger for the recall

of memorized items. These two background server threads are started within a

re°ective post-processing taking place after the action execution. We thus get the

new set of threads given in Fig. 5.

5.2. Running a simulation

The reflect compiled knowledge needed here is given by the following implication

and fact:

at(X) ! reflect(do(go,work), start(server(memory(work(X)))))

reflect(do(return,rest), start(server(trigger(memory))))

thread(sensor(P),  
[A,B],
[(do(P,A)| [effector(A), 

(deliberate(do(P,A),B)| [effector(B)])])] 

Fig. 4. Threads implementing an activity-based reactive+deliberative behavior.
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In this simple case, the robot is asked to memorize the position of a target while it

is working, and then to trigger a recall while it is resting.

Note: Arguments of tell/askmessages are uni¯ed with thread names. As an example,

when thread server(trigger(memory)) addresses thread recall via message tell

(X), then X gets bound to recall. Reciprocally when thread recall is addressing

server(trigger(memory)) via message ask(server(trigger(F))), then F gets

bound to memory.

6. Towards Grounding Abstract Processes into the Brain

In this section, we turn to the possible grounding of our models into biological neural

networks. To understand what could possibly be achieved in pursuing such a goal, let

us quote Van der Velde and de Kamps [2006]: \We know that the brain produces

cognition (it is the only example we are certain of). So, if we have an idea of how

computational processes could be matched onto brain processes, we could also get a

clearer view of what could be missing in the computational account".

We ¯rst note the analogy that does exist between the syntactic properties of our

model and the topology of synaptic connections:

— As shown by the formal syntax given in Sec. 3, threads grow as trees by pushing

branches, these branches being connected to the branches of other threads

through tell/ask communication primitives (we ignore for the moment the poss-

ibly for threads to extend sidewise by starting new threads).

— Neurons do grow like trees as well: Around the cell body is a branching dendritic

tree that receives signals sent from other neurons through their axon, the axon

itself possibly terminating in a branching synaptic tree (we restrict ourselves here

to axonal chemical synapses, ignoring for the moment the sidewise dendritic gap

junctions, to which we shall turn in later developments), see Fig. 6.

thread(sensor(P),  
[A,B,C],  
[(deliberate(B)|[effector(B), 

  (do(P,A)|[effector(A), 
   (reflect(do(P,A),C)|[effector(C)])])])]) 

thread(server(P),  
[X],  
[tell(X)])  

thread(recall,  
[F,P],
[ask(server(trigger(F))),   
 ask(server(F(P))), 
 effector(report(recall(P)))]) 

Fig. 5. A set of threads implementing conscious recalls.
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Sets of interconnected neurons, or neural nets, form a structure in which micro-

currents propagate as neurons <integrate and ¯re>. As it is known from recent

advances in the theory of concurrent parallel processes [Milner, 1999], this continuous

°ow of signal transmissions is akin to the dynamic recon¯guration of a communi-

cation network. A powerful tool standing as a universal model of computation,

namely the �-calculus, has been designed for expressing concurrent processes whose

con¯guration may change during the computation. The basic idea behind the

�-calculus (which, similarly to recurrent neural networks, has been shown to be

Turing equivalent, i.e., capable of calculating any computable function) is that in

order to model any communication system, one only needs to consider channels with

given names, and then to pass these names over them. Towards this end, two com-

munications primitives are de¯ned, namely the send(x,y)/receive(x,y) pair allowing

for the sending/receiving of name y on channel x.

Similarities do exist between the �-calculus and at least one model of neural-

symbolic integration. Actually, the temporal synchrony mechanism that lies at the

heart of the architecture proposed by Shastri and Ajjanagadde [1993] is closely

related to the operational principles of the �-calculus: by slightly extending the

facilities o®ered at the �-primitive level, it is indeed possible to rewrite their examples

as �-processes.

We therefore postulate that a possible way of grounding behaviors into the brain

is to try and work simultaneously on two fronts, i.e., to de¯ne and implement both

neural nets and models of thoughts in terms of the �-calculus.

6.1. Implementing neural nets as ¼-processes

The original �-calculus is so minimal that it does not contain primitives such as

numbers, booleans, variables, or the usual °ow control statements such as \if...

then...else". We can actually look at the �-calculus as a trimmed-down variant of our

language for threads, the basic di®erences being that:

— Communicationprimitives of the�-calculus, i.e., send/receive, have twoarguments;

— Logic formulas cannot be interpreted directly in the �-calculus.

Fig. 6. Pairs of neurons with various axonal synaptic connections.1

1Used with permission of Eric H. Chudler, Ph.D., Neuroscience for Kids, http://faculty.washington.edu/

chudler/neurok.html.
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In order to get an e®ective programming tool, we have developed an extension of

the �-calculus that uses guarded commands, making extended �-processes look

similar to our threads and executable on our virtual machine. As an example, let us

consider the schema given in Fig. 7 describing the basic functioning of a neuron.

This simple arti¯cial neuron can be represented by the extended �-process given

in Fig. 8.

Both neural nets and �-processes are systems of interconnected units whose wired

con¯guration changes over time (with <wired> referring here to < active> connec-

tions). In the case of neural nets, active connections result from a ¯ring neuron sending

a signal along its axon onto other neurons (as indicated above, we refrain for the

moment from considering sidewise connections through dendritic gap junctions). In the

case of �-processes, active connections are determined by send/receive commands.

6.2. Implementing behaviors as ¼-processes

The translation of threads into �-processes requires that compiled knowledge given

by logical expressions be \°attened" and passed over on named channels (as noted

above, this is very similar to the proposal put forward by Shastri and Ajjanagadde

[1993] in the context of symbolic-neural integration). Starting with the model of

reactive behavior given in Sec. 3.1, but without yet introducing plans, we get the

�-processes given in Fig. 9.

Fig. 7. A simple arti¯cial neuron.2

2Source: Neural Networks, Chr. Stergiou and D. Siganos, Imperial College of London, http://www.doc.ic.

ac.uk/�nd/surprise96/journal/vol4/cs11/report.html.

process(body, 
 [X1,X2,X3,Summation,Threshold], 
 [receive(dendrite1,X1), 
  receive(dendrite2,X2), 
  receive(dendrite3,X3), 
  (Summation is X1+X2+X3,
  Summation >= Threshold | [send(axon,Summation)])]) 

Fig. 8. A simple arti¯cial neuron represented as a �-process.
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As it can be seen in these various processes, the communication taking place on

channels target, not target, at and home actually replicates the reactive compiled

knowledge given in Sec. 2.2. To allow for the sidewise connections needed for

implementing the deliberation presented in Sec. 4, let us introduce generic server

processes that can be started and ended from within any regular process:

server(F(P),

[],

[send(F,P)])

Plans can be then implemented as background servers whose communication with

action processes will replicate the implications given in Sec. 4.2, e.g.:

process(go,

[],

[receive(target,_),

end(plan(return)),

start(plan(go))])

process(forward,

[X,Y],

[receive(plan,go),

(continued as before) …])

process(forward,
 [X,Y],  
 [receive(target,X), 
  receive(at,Y), 
  (X\=Y | [effector(forward)])]) 

 process(work, 
 [X,Y],  
 [receive(target,X), 
  receive(at,Y), 
  (X=Y | [effector(work)])])

 process(backward,
 [X,Y],  
 [receive(not target,_) 
  receive(home,X),
  receive(at,Y), 
  (X\=Y | [effector(backward)])]) 

 process(rest, 
 [X,Y],  
[receive(not target,_), 
receive(home,X),

  receive(at,Y), 
  (X=Y | [effector(rest)])])

Fig. 9. Reactive behavior as �-processes.
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Coming ¯nally to the model of conscious recall given in Sec. 5, the processes

corresponding to actions work and rest must be ¯rst extended to start a background

server memorizing the position of a target while working and to trigger a foreground

recall while resting, thus replicating the re°ect compiled knowledge given in Sec. 5.2:

process(work,

[X,Y],

[receive(plan,go),

receive(target,X),

receive(at,Y),

(X ¼ Y j [effector(work),
start(memory(work(X)))])])

process(rest,

[X,Y],

[receive(plan,return),

receive(home,X),

receive(at,Y),

(X ¼ Y j [effector(rest),
start(trigger(memory))])])

The foreground recall process can be then de¯ned as follows:

process(recall,

[F,P],

[receive(trigger,F)),

receive(F,P),

effector(report(recall(P)))])

To summarize, computations taking place in reactive models develop within

axonal-dendritic networks via send/receive operations. In contrast, computations

taking place in deliberative models develop sidewise using background servers, which

in turn are coupled with foreground processes via send/receive operations, thus

representing the equivalent of dendritic-dendritic gap junctions which can be star-

ted/ended \on the °y" via start/end operations.

7. Case Study: Modeling the First Level of Animal Awareness

In this last section, we do some steps towards the validation of our theoretical devel-

opments in the context of animal consciousness. Relying on a study by Pepperberg and

Lynn [2000], we present a simulation of an experiment putting to light what these

authors suggest might be the ¯rst level of animal awareness.

In this experiment, pigeons can peck either a red or a green button, and are

confronted at the same time with a red sample [Zentall et al., 1981]. Green being

actually the good choice (i.e., pecking the green button rewards them with food),

after awhile pigeons have learned to <choose non-match>, i.e., they have become

aware of the good choice and thus consistently peck the green button.
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Similarly to our previous example involving a robot, we shall distinguish three

levels in our simulation. At the ¯rst level, which can be said to correspond to re°exes

(either innate or learned), actions are de¯ned within plans. At the second level,

deliberation leads to plan selection. Finally at the third level, re°ection triggers

consciousness.

Pigeons have two possible plans to choose from, i.e., random and avoid, and there

is only one action peck(x), de¯ned selectively as follows:

— \when using plan random, then randomly peck anyone of the two buttons";

— \when using plan avoid, then peck the button that does not match the sample".

Let us now consider the following predicates:

choices(l) meaning \l is the list of possible choices"

random(x,l) meaning \x is a value randomly selected from the list l"

member(x,l) meaning \x is any value belonging to the list l"

sample(x) meaning \x is the value corresponding to the sample"

do(p,a) meaning \within plan p, action a is selected".

The peck action can then be de¯ned by the following implications:

(choices(L),

random(X,L)) ! do(random,peck(X))

(choices(L),

member(X,L),

not sample(X)) ! do(avoid,peck(X))

Plan random is always selected by default. In order for the pigeons to learn to

choose the avoid plan, we shall postulate that as a result of their sensory experiences,

they do engage in two deliberative activities see and sort de¯ned as follows:

sample(X) ! see(peck(X),

start(server(match(X))))

not reward(X) ! sort(peck(X),

start(server(reject(X))))

In other words, when pecking a button that doesmatch the sample, pigeons start a

server match(X) intended to communicate with a learning task (de¯ned below in

thread learn). Similarly, when not rewarded with food, they start a server re-

ject(X). Finally, a re°ective step acting as a consciousness trigger will lead them to

adopt the avoid plan as soon as a given learning threshold is reached:

threshold((match,reject)(X))! reflect((start(server(match(X))),

start(server(reject(X)))),

(end(sensor(random)),

start(sensor(avoid))))
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The overall process can now be de¯ned as follows, where the e®ector increment

acts as a counter to be tested using the threshold predicate given in Fig. 10.

Note: Switching to the avoid plan accounts for the pigeons new behavior. Our

simulation, which does rely on compiled knowledge (i.e., the de¯nition of the peck

action under the form of implications), does not provide any clue of how the new

re°ex is actually built into the pigeon's brain. In order to simulate this process, action

de¯nitions could be represented as threads, and their adaptation made explicit

through communication with the learning process.

Our simulation clearly follows Zentall et al. [1981] ¯ndings, i.e., that pigeons do

not learn to choose green, but learn to match and avoid pecking the match. As a

matter of fact, as pointed out by Pepperberg and Lynn's, < a pigeon need not be

aware of anything speci¯c about the green sample, nor that is it being trained

with respect to oddity, nor of any concept of redness>. One might then rightfully

ask: Where does awareness come into the picture? Pepperberg and Lynn's answer is

that pigeons have the ¯rst level of awareness: < the ability to follow a simple

rule involving perception of a speci¯c item and its avoidance>. As these authors

further note, this ability does not necessarily mean < being aware of devising or

following the rule>. They go on suggesting that an organism has a second level of

awareness when it < knows not only that a rule exists with respect to \likeness/

familiarity" (¯rst level), but is aware enough of the rule to transfer it across

situation>. This is not the case for pigeons that do not transfer easily to a task where

red is correct.

 thread(sensor(P),
 [A,B,C,D], 
 [(do(P,A) | [effector(A),  

  (see(A,B), 
sort(A,C) | [effector(B),

effector(C),
(reflect((B,C),D)|[effector(D)])])])]) 

 thread(server(P),
 [X], 
 [tell(X)]) 

 thread(learn((F,G)(X)),
 [],  
 [ask(server(F(X))), 
  ask(server(G(X))), 
  effector(increment((F,G)(X))), 
  end(server(F(X))), 
  end(server(G(X)))])

Fig. 10. A set of threads implementing the ¯rst level of animal awareness.
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8. Related Work

As already stated in the Introduction, there is not much work done along the

same lines as ours to report about. Existing proposals generally stop short of any

implementation, and thus do not allow for the kind of experimentation we call for.

According to the latest survey [Cleeremans, 2005], the search for the computational

correlates of consciousness tends so far to concentrate on theoretical aspects, and does

not seem to have led yet to possible groundings into brain processes. A notable

exception is given by the recent model put forward by Hamero® [2009]. His framework

distinguishes two kinds of coordinated activity presumably taking place within the

brain, one being identi¯edwith the \neuro-computation" in axonal�dendritic synaptic

networks of \integrate-and-¯re" neurons, and the other one deriving from neuronal

groups linked by dendritic�dendritic gap junctions. While the ¯rst mechanism is

credited with the non-conscious cognitive brain functions (including sensory processing

and control of behavior), the second one is supposed to enable collective integration and

volitional choices correlating with consciousness. The strong analogies existing

between Hamero®'s < conscious> pilot located in < dendritic webs>, on one hand,

and our model of deliberation and conscious recalls which develops sidewise via

background processes/threads, on the other, is rather striking. While developed

independently and through quite di®erentmeans, they do concur to propose a plausible

explanation for combined computational and neural correlates of consciousness.

Our computational architecture looks compatible too with the requirements and/

or consequences of Edelman's theory of neuronal Darwinism. Some of the salient

features of this theory can be well illustrated through the following quote [Edelman,

1987]: \the brain is dynamically organized into cellular populations containing

individually variant networks (…). Coherent temporal correlations of the responses

of sensory receptors sheets, motor ensembles, and interacting neuronal groups in

di®erent brain regions occur by means of re-entrant signaling. Such signaling is based

on the existence of reciprocally connected neural maps". Further investigations are

clearly needed in order to establish a ¯rm link between the two approaches, but it is

worth mentioning here the obvious similarities that do exist at ¯rst sight between

Edelman's rather intuitive concepts of variant networks and reciprocally connected

neural maps, on one hand, and our own formal presentation of networks involving

various neuronal connections implemented via extended �-processes, on the other.

9. Conclusion

As a possible basis for machine consciousness, we propose to adopt a two-level model

of concurrent communicating systems (CCS). At the ¯rst level, processes can be

de¯ned in a high-level language resulting from the integration of communication into

a model of intelligent agents. At the second level, these abstract de¯nitions can be

mapped into a variation of the �-calculus, o®ering thus a possible way to ground
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computations into brain processes. As both the high-level and the lower-level

languages we introduce can be compiled and executed on a virtual abstract machine,

experiments can be easily reproduced, allowing for a systematic and repeated

exploration, as required by the scienti¯c experimental method.

A de¯nite distinctive feature of the abstract level we propose is the clear dis-

tinction it makes between compiled knowledge, on one hand, and communication

threads, on the other. While compiled knowledge represents innate (or programmed)

behavior, threads o®er ways for

— processing this knowledge;

— delivering e®ector commands;

— acquiring learned behavior.

Being both the medium and the vehicle of deliberations leading to actions, threads

can be identi¯ed with a model of thoughts. Therefore the claim we make here is that

our abstract model does enjoy a property it shares with a conscious mind, namely

that of using a pervasive tool identi¯ed with thoughts in order to keep and retrieve

traces of its past activity.

As an illustration, we did implement both a simple abstract robot that is capable

of recalling its past activity in response to a triggering event and a model for the ¯rst

level of animal consciousness. As already stated in our Introduction, we do not claim

to have thus succeeded in simulating consciousness, conscious behavior, or whatso-

ever. Clearly, any attempt at simulating consciousness should involve a real situated

robot, possibly confronted with its own survival, etc. In any case, our aim was not to

try such an attempt, but rather to propose, at the same time, both a test bed and a

particular approach for implementing experiments.

Our test bed has been implemented and is running on a Prolog platform. Various

extensions could be easily brought to enhance

— the virtual machine, in order to include more realistic perceptions;

— the de¯nition of the abstract robot test bed.

It is worth noting here how our developmental approach correlates with evol-

utionist views: starting with the simplest of models de¯ned by a single thread, we

either de¯ned new threads or enlarged existing ones, always keeping their kernel

untouched and adding new functionalities at their interface. It is easy to imagine how

this process could be iterated and the corresponding models get more and more

complex until they eventually end up mimicking a brain. One could then ultimately

invoke Brook's motto [2001], i.e., \the behaviors are the building blocks, and the

functionality is emergent" to claim that the model \almost naturally" evolved to

simulate consciousness. However, according to common sense, it is only when the eyes

(or for that matter, any other sense) hit the mind that true consciousness really

arises. Consequently, multiplying the number of seniors-motor controls, modeling
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their interaction and eventually attempting a coupling with a real situated robot

would be the next thing to do in order to go beyond simulations.
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