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Translational Relevance 

MGMT-testing is disputed, which hinders stratified therapy and clinical trials omitting 

temozolomide. It is therefore of importance to determine the clinically relevant cutoff(s) 

defining the MGMT promoter methylation status for glioblastoma that allows safe clinical 

decision making and patient selection into trials omitting temozolomide. 

The pooled analysis of quantitative MGMT MSP (methylation-specific PCR) data from 4041 

glioblastoma patients screened or randomized in four clinical trials allowed determination 

and validation of an unsupervised cutoff and a lower cutoff supervised by outcome. The 

latter defines a “grey zone” comprising patients with low MGMT methylation who performed 

significantly better than truly unmethylated patients. This lower safety margin is suitable for 

selecting truly unmethylated patients for stratified therapy to spare patients unnecessary 

toxicity.  
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Abstract 

Purpose: The methylation status of the O6-methylguanine DNA methyltransferase (MGMT) 

gene promoter is predictive for benefit from temozolomide in glioblastoma. A clinically 

optimized cutoff was sought allowing patient selection for therapy without temozolomide, 

while avoiding to withhold it from patients who may potentially benefit. 

Experimental Design: Quantitative MGMT methylation-specific PCR data were obtained for 

newly diagnosed glioblastoma patients screened or treated with standard radiotherapy and 

temozolomide in four randomized trials. The pooled dataset was randomly split into a 

training and test dataset. The unsupervised cutoff was obtained at a 50% probability to be 

(un)methylated. Receiver operating characteristics (ROC) analysis identified an optimal 

cutoff supervised by overall survival (OS).  

Results: For 4041 patients valid MGMT results were obtained, whereof 1725 were 

randomized. The unsupervised cutoff in the training dataset was 1.27 

(log2[1000x(MGMT+1)/ACTB]), separating unmethylated and methylated patients. The 

optimal supervised cutoff for unmethylated patients was -0.28 (AUC=0.61), classifying “truly 

unmethylated” (≤-0.28) and “grey zone” patients (>-0.28, ≤1.27), the latter comprising ~10% 

of cases. In contrast, for MGMT methylated patients (>1.27) more methylation was not 

related to better outcome. Both methylated and grey zone patients performed significantly 

better for OS than truly unmethylated patients (HR=0.35, 95% CI: 0.27-0.45, p<0.0001; 

HR=0.58, 95% CI: 0.43-0.78, p<0.001), validated in the test dataset. The MGMT assay was 

highly reproducible upon retesting of 218 paired samples (R2=0.94).  

Conclusions: Low MGMT methylation (grey zone) may confer some sensitivity to 

temozolomide treatment, hence the lower safety margin should be considered for selecting 

unmethylated glioblastoma patients into trials omitting temozolomide. 
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Introduction 

A predictive role has been shown for the methylation status of the O6-methylguanine DNA 

methyltransferase (MGMT) gene promoter for benefit from Temozolomide (TMZ) in newly 

diagnosed glioblastoma patients (1-4). Consequently, the MGMT methylation status is used 

as a stratification factor in trials comprising TMZ treatment. All contemporary trials have 

confirmed the strong prognostic role of the MGMT status in glioblastoma patients treated 

with the combination of radiation concurrent with TMZ, followed by maintenance TMZ 

(TMZ/RTTMZ) (1, 5-10).The lack of efficacy of TMZ in MGMT unmethylated glioblastoma 

warrants replacement with an agent with a different mechanisms of action, or omission of 

TMZ to avoid futile therapy and associated toxicity. Trials specifically designed to selecting 

only MGMT unmethylated glioblastoma patients and replacing TMZ in the experimental arm 

are becoming a common strategy in clinical research (11-14) (CheckMate 498, 

NCT02617589; N2M2, NCT03158389). However, the best way of assessing the MGMT 

promoter methylation status remains strongly debated (15). It remains unclear which pattern 

and extent of MGMT promoter methylation is required to prevent MGMT mediated DNA 

repair that sensitizes glioblastoma patients to alkylating agent chemotherapy. A correlation 

of the extent of MGMT promoter methylation with outcome in patients treated with TMZ 

chemo-radiotherapy has been suggested (16, 17). Accurate and reproducible assays with 

clinically relevant cutoffs are required, in order not to withhold TMZ from patients who may 

potentially benefit, while sparing others from unnecessary toxicity and cost.  

 

In the present analysis we aim at revisiting the MGMT methylation cutoff using the pooled 

datasets of recent prospective randomized clinical trials, which had used the same 

quantitative, methylation specific PCR (qMSP) MGMT assay (18, 19) and had delivered the 

identical backbone treatment of TMZ/RTTMZ to newly diagnosed glioblastoma patients. 

These combined datasets provide the unique opportunity to explore and validate the 

relationship between the extent of MGMT promoter methylation and overall survival (OS). 
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The specific goals of this research project are (i) re-evaluation of the technical 

(unsupervised) cutoff that discriminates methylated and unmethylated patients, whereby 

patients have a 50% probability to be methylated or unmethylated, (ii) definition of an optimal 

cutoff for glioblastoma patients, supervised by overall survival (OS), (iii) validation of the 

findings in an independent test dataset, (iv) evaluation of the assay reproducibility, and 

finally (v) comparison to the current assay-based classification used in routine diagnostics. 

The overarching goal is to provide one or more cutoffs that allow treatment decisions for 

personalized therapy and appropriate selection of patients into clinical trials omitting TMZ. 

 

Patients and methods   

Data Selection 

Quantitative MGMT promoter methylation data was obtained from four trials for newly 

diagnosed glioblastoma, with central MGMT testing by the same qMSP assay, applying the 

same cutoff [1 in log2 space; log2 (
𝑀𝐺𝑀𝑇

𝐴𝐶𝑇𝐵
 × 1000)] (18, 19), and using the standard 

TMZ/RTTMZ schedule as backbone treatment (5). Patients with available MGMT 

classification (n=4458) had been randomized into (i) the control arm of the phase III AVAGlio 

trial (n=472, NCT00943826) (8), (ii) the control or experimental arm of the RTOG 0825 

phase III trial (n = 621, NCT00884741) (7), (iii) the control or experimental arm of the 

CENTRIC (phase III) or CORE (phase II) trials that selected patients with a methylated or 

unmethylated MGMT promoter, respectively (n = 545, CENTRIC NCT00689221; n = 265, 

CORE NCT00813943) (18, 20); or (iv) patients who were screened, but neither randomized 

in CENTRIC (n = 2328) nor CORE (n = 227) (n=3365). All four selected trials failed to 

demonstrate improvement in overall survival of the experimental arm based on hazard ratios 

as reported. For randomized patients survival data and baseline information with respect to 

age, extent of surgery, and performance status were available. Data can be applied for via 

the following weblink: http://www.eortc.be/services/forms/erp/request.aspx. 

http://www.eortc.be/services/forms/erp/request.aspx
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Constitution of Training and Test Cohort 

For the present analysis, only samples passing the quality threshold for providing a “valid” 

test result (≥1250 copies of the normalizer gene β-actin, ACTB) were considered. This all 

patients (all-P) population included both randomized and screened patients, whereas the 

randomized patients (rand-P) population was a subset of the all-P population. The data was 

randomly split into a training and a test cohort, stratified for trial, extent of resection 

(complete resection, partial resection, biopsy only, other), and performance status (PS=0, 

PS≥1). The all-P training cohort was used for the unsupervised analyses, while the rand-P 

training cohort was used for the supervised analyses of the relationship between the extent 

of MGMT methylation and OS. Validation of the findings was performed in the all-P and 

rand-P test cohorts, respectively.  

 

Retest Dataset 

A cohort of patients was selected randomly among patients screened but not randomized for 

CENTRIC. Retest tissue sections had been set aside for this purpose as of protocol, if 

enough tissue was available. Sample identifiers of retest tissue sections were blinded 

(relabeled). The initial MGMT testing was performed at the certified MDxHealth site in Liège, 

Belgium and retesting took place at their laboratory in Irvine, CA, USA. Only samples with 

valid ACTB results in both the original and retest data were selected.  

 

All protocols were approved by the local ethics committees or institutional review boards and 

competent authorities, and patients provided written informed consent for trial participation 

and/or participation in marker screening including retesting. The trials were performed 

according to the guidelines of Helsinki (21). 

 

Quantitative Methylation-Specific PCR MGMT Assay 

The qMSP MGMT test was performed and evaluated essentially as described (18, 19) and is 

commercially available (PredictMDx test). In brief, DNA was isolated from sections of macro-
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dissected FFPE tumor tissue. After bisulfite treatment the copy numbers of methylated 

MGMT and the reference gene ACTB were determined by quantitative PCR. A valid test 

required a minimum of 1250 ACTB copies measured. 

For this study the calculation of the ratio of the MGMT and ACTB copy numbers was slightly 

modified as compared to the original procedure (19) by adding one MGMT copy to the 

numerator: log2 (
𝑀𝐺𝑀𝑇+1

𝐴𝐶𝑇𝐵
 × 1000). The result is termed corrected MGMT log2 ratio hereafter. 

Samples with zero MGMT copies would otherwise be lost after logarithmic transformation. 

For the calculations the original MGMT values were used, ignoring the technical limit of 

detection of the assay set at ≥ 10 copies of methylated MGMT. 

 

Determination of the Unsupervised Cutoff and MGMT Methylation Status  

We applied a bimodal Gaussian mixture distribution to model the corrected MGMT log2 ratio. 

The unsupervised cutoff in the all-P training cohort, defined as the 50% probability to be 

(un)methylated, was used to classify patients as unmethylated (≤ cutoff point) or methylated 

(> cutoff point). The same cutoff was used to classify the patients in the test cohort. 

 

Determination of the Optimal Cutoff Supervised by OS 

To identify an optimal cutoff point supervised by OS in both unmethylated and methylated 

patients in the rand-P training cohort, time-dependent Receiver Operating Characteristic 

(ROC) analysis with nearest neighbor estimation was used (22). OS predictions at two years 

were made in both groups. The optimal supervised cutoff point was chosen as the value that 

maximized the Youden’s index, if the area under the curve (AUC) was >0.6, otherwise no 

cutoff point was determined. The optimal supervised cutoff point was used to classify 

patients further, both in the training and test populations.  
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Statistical Analysis 

The all-P and rand-P training and test cohorts were compared using descriptive statistics. 

Categorical variables are presented as frequencies and percentages. Continuous variables 

are described by their median and interquartile range (IQR). Initial comparison of OS by 

MGMT status was performed using Kaplan Meier (KM) plots accompanied by a log-rank test.  

A univariate Cox model assessed the effect of MGMT methylation status on OS, whereas a 

multivariate Cox model was used for sensitivity purposes. All survival analyses were 

stratified by trial. Statistical significance was determined at the 2-sided 5% significance level.  

 

Assay MGMT methylation status reproducibility and comparison with the original procedure 

was quantified using Cohen’s Kappa coefficient. The original procedure uses the 

uncorrected MGMT log2 ratio with a cutoff of 1 and a lower safety margin of -0.75. This cutoff 

was based on 602 patient samples from CENTRIC, and the lower safety margin was set at 

the lower bound 95% CI of being unmethylated as described (12). A limit of detection of the 

diagnostic assay was also applied that sets <10 methylated MGMT copies to unmethylated. 

 

All analyses were carried out in R version 3.3.0. 

 

Results 

Descriptive Analyses 

Valid qMSP MGMT results were available for 4041 patient samples (all-P population; 90.6% 

of all available samples), consisting of 2316 patients screened only (57.3%) and 1725 

randomized patients (rand-P population, 42.7%) (Fig. 1). Only for the latter full treatment and 

survival outcome data were available. The All-P population was randomly split into a training 

and test cohort stratified for trial and clinical factors, respectively comprising 2021 and 2020 

patients. The rand-P training and test cohorts contained 863 and 862 patients, respectively. 
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The origin of the patients (trial) and baseline characteristics are summarized in Table 1 and 

were balanced between cohorts.  

 

Assay Reproducibility  

The reproducibility of the assay was evaluated in 218 paired sample sets with ACTB copies 

≥ 1250 in both the original and retest data. Retest values for the corrected MGMT log2 ratio 

were plotted in function of the original values (Fig. 2). The coefficient of determination (R2) 

was >93%, indicating that most of the variability in the retest data could be explained by the 

original data. 

 

Unsupervised Technical Cutoff  

The unsupervised cutoff for the corrected MGMT log2 ratio, separating methylated and 

unmethylated samples, was equal to 1.27 on the log2 scale (Fig. 3A). After assignment of the 

MGMT methylation status there were 1332 unmethylated patients (65.9%) and 689 

methylated patients (34.1%) in the all-P training cohort.  

 

Association between MGMT Methylation Status and OS  

The median OS from randomization in the whole rand-P training cohort was 19.3 months 

(95% CI, 17.5–20.7). Baseline characteristics were balanced between the 460 MGMT 

unmethylated patients (53.3%) and 403 methylated patients (46.6%) (supplementary Table 

S1). Median OS was 14.5 months (95% CI, 14.0-15.3) and 26.5 months (95% CI, 25.1-30.2), 

respectively (Fig. 3B). MGMT methylated patients had a significantly longer OS compared to 

unmethylated patients (log-rank test, p<0.0001; HR=0.39, 95% CI, 0.30-0.50). Similar results 

were obtained in the multivariate analysis (supplementary Table S2). 

 

Supervised Optimal Cutoff 

For the unmethylated patients in the rand-P training cohort a time-dependent ROC curve 

with an AUC equal to 0.61 was obtained, resulting in an optimal cutoff point of -0.28 on the 
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log2 scale (Supplement Fig. S1A). This corresponds to a 96% probability of being 

unmethylated as visualized in Figs 4A and 4B. In contrast, for the methylated patients the 

ROC curve yielded an AUC of 0.50, suggesting no association between extent of 

methylation and outcome (supplementary Fig. S1B). 

 

Lower Safety Margin and OS  

The optimal supervised cutoff of -0.28 obtained in the unmethylated rand-P training subset 

was applied as a lower safety margin in the entire rand-P training cohort. The grey zone 

comprised 82 patients (9.5%), while 378 patients (43.8%) were labeled as truly 

unmethylated. The KM plot is displayed in Fig. 4C and the survival curves differed 

significantly according to the log rank test (p<0.0001). Univariate Cox regression analysis 

resulted in a HR of 0.35 (95% CI: 0.27- 0.45, p<0.0001) for the methylated patients, and a 

HR of 0.58 for patients in the grey zone (95% CI, 0.43-0.78, p<0.001), respectively, when 

compared to the truly unmethylated patients. Similar results were obtained in the multivariate 

analysis (Table 2). 

 

Validation of Unsupervised Cutoff and Supervised Safety Margin and OS in the 

Independent Test Cohort 

There were 375 truly unmethylated patients (43.5%), 70 grey zone patients (8.1%), and 417 

methylated patients (48.4%) in the rand-P test cohort. The median OS in the whole rand-P 

test cohort was 17.7 months (95% CI, 16.7-19.3). MGMT methylated patients had a 

significantly longer OS compared to unmethylated patients (supplementary Table S2, 

supplementary Fig. S2A). When including the lower safety margin, the survival curves 

differed significantly (log rank test, p<0.0001, Fig. S2B in the Supplement). The univariate 

Cox model resulted in a HR of 0.38 (95% CI, 0.29-0.49, p<0.0001) for the methylated 

patients, and a HR of 0.70 for patients in the grey zone (95% CI, 0.51- 0.96, p=0.03), both 

compared to the truly unmethylated patients. Similar results were obtained in the multivariate 

model (Table 2).  
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Good classification in retest dataset 

Application of the 1.27 unsupervised cutoff to the retest dataset of 218 paired samples 

yielded 8 methylation status mismatches (3.7%; supplementary Table S3). Cohen’s Kappa 

coefficient for inter-rater agreement was 0.93 (95% CI, 0.88-0.98) indicating almost perfect 

agreement between the original and retest methylation status. After also applying the lower 

safety margin the Kappa value was 0.80 (95% CI, 0.73-0.88), still indicating almost perfect 

agreement (supplementary Table S4). A Kappa-value of 0.89 (95% CI, 0.83- 0.95) was 

obtained, when in addition applying the limit of detection of the diagnostic qMSP assay that 

considers <10 copies of methylated MGMT below the limit of detection and classifies them 

as unmethylated by default (supplementary Table S5).  

 

Comparison of the validated new classification with the original procedure  

When comparing our classification method to the original procedure and cutoff (18, 19) in 

both the all-P training and test cohort, Cohen’s Kappa coefficients of respectively 0.93 (95% 

CI: 0.92 – 0.94) and 0.95 (95% CI, 0.94-0.96) were obtained, indicating almost perfect 

agreement (supplementary Table S6). When the limit of detection of the diagnostic assay 

was applied, the comparison between the original and new classification method 

(supplementary Table S7) resulted in a Cohen’s Kappa value of 0.98 (95% CI, 0.97-0.99) in 

the both the all-P training and test cohorts.  

 

Discussion 

We aimed at determining a clinically relevant cutoff for the qMSP MGMT assay that is most 

widely used in clinical trials for patient stratification and, more importantly, for treatment 

strategies omitting TMZ in patients with unmethylated glioblastoma. The technical cutoff of 

the MGMT assay used has been defined as the value where the probability of being 

methylated or unmethylated is 50% (18, 19). The uncertainty regarding the methylation 

status close to the cutoff is high. Our pooled analysis from four randomized trials allowed 
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determination and validation of the technical cutoff as well as a clinically relevant cutoff, 

supervised by OS in a large pooled dataset of patients treated uniformly with the current 

standard of care (TMZ/RT  TMZ).  

 

This supervised optimal cutoff (-0.28, corrected MGMT log2 ratio) was situated below the 

technical cutoff obtained (1.27) and represents a lower safety margin which defines a grey 

zone of “low” methylation (Fig. 2). Patients whose MGMT value was situated in this grey 

zone did significantly better than those classified as “truly” MGMT unmethylated (<-0.28). 

Application of the lower safety margin in trials comparing schedules of TMZ/RT  TMZ to 

RT only (4) may shed new light on the interpretation of the apparent “low benefit” from TMZ 

in the “MGMT unmethylated” population. Consequently, grey zone patients may benefit from 

TMZ treatment and should not be considered for treatments withholding TMZ.  

 

In contrast, among patients classified as MGMT methylated (>1.27, above the technical 

cutoff), a higher extent of methylation was not associated with a further gain in OS. This may 

suggest that detection of MGMT methylation in GBM using this assay is indicative of the 

second hit, completely inactivating MGMT. The first hit is the GBM characteristic loss of one 

copy of chromosome 10 on which MGMT resides (10q26) (23). For tumor types retaining 

both copies of MGMT other clinical cutoffs may apply predicting sensitivity to TMZ/alkylating 

agents as we have recently reported for IDH mutated grade II glioma treated with TMZ or RT 

in the EORTC-22033 randomized phase III trial (24, 25). 

 

Comparison of the here presented OS-supervised MGMT classification (methylated, grey 

zone or unmethylated) with the original classification and cutoffs (12, 18) revealed a high 

level of agreement. In the original classification procedure we had defined the safety margin 

as the 95% probability to be unmethylated (12) based on theoretical considerations as it is 

unknown which methylation pattern and how much methylation is required for complete 

silencing of MGMT expression in glioblastoma (26). This safety margin was applied for 
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patient selection into trials omitting TMZ (12, 13). This boundary is very similar to the safety 

margin determined with the OS supervised analysis in this study that corresponds to a 96% 

chance of being unmethylated. Thus, our study now demonstrates the clinical importance of 

respecting a grey zone by providing the respective supporting outcome data. Implementation 

of the safety margin essentially groups methylated and grey zone results into the TMZ 

requiring patient population and selects the truly unmethylated patients as suitable for 

treatment without TMZ. This needs to be taken into account for clinical trial planning. 

 

Despite the large dataset and high reproducibility of the assay (R2=0.94) our study suffers 

from some limitations. All analyses were retrospective, which might have caused patient 

selection and cannot guarantee that training and test cohorts were balanced in terms of 

unmeasured confounders. In addition, no survival data was available for screened patients 

only, reducing the sample size for supervised and subgroup analyses. Yet, no better 

datasets to address this important issue for clinical practice and future clinical trial design is 

likely to become available. 

 

It is important to note that the extent of methylation as measured and quantified by different 

MGMT tests may not necessarily have the same biological significance. Distinct tests use 

different principles (15) and/or interrogate different CpGs that do not all have the same 

impact on MGMT silencing (26-28), which is the principle mechanism for sensitizing patients 

to TMZ. Consequently, cutoffs and corresponding safety margins need to be determined and 

validated for each assay (17, 29-31).  

 

In conclusion, the present analysis demonstrates that the qMSP assay is robust and 

technically reproducible, and confirms the strong impact of MGMT methylation on outcome 

in a large clinical trial populations treated with TMZ/RTTMZ. The re-establishment of the 

cutoffs in a large dataset with a slightly different calculation model and using outcome 

information, yielded almost identical classification into methylated, grey zone, and truly 
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unmethylated patients as compared to the original procedure described (12). The clinically 

relevant cutoff informed by OS defined a grey zone with a safety margin that identifies 

patients who perform significantly better than truly unmethylated patients and may have 

some benefit from TMZ. This grey zone could be validated in an independent dataset 

indicating that these patients should not be selected for treatment schemes avoiding TMZ.  

 

With this study we aim to encourage stratified TMZ treatment for glioblastoma patients 

implementing a safety margin for guiding treatment decisions. This should facilitate testing 

new treatment paradigms without TMZ in MGMT unmethylated GBM patients who direly 

need better treatments.  
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Figure Legends 

Figure 1. Flow of patient samples through the study. all-P, all patients population; rand-

P, randomized patient population; ACTB, -actin gene. 

 

Figure 2. Reproducibility of qMSP MGMT assay. 

The Original and Retest dataset (corrected MGMT log2 ratios, [log2 (
𝑀𝐺𝑀𝑇+𝟏

𝐴𝐶𝑇𝐵
× 1000)]) from 

218 paired samples are visualized in a scatter plot. The R-squared was 93%. Retests were 

performed using a second set of FFPE tumor sections in a different laboratory blinded to the 

original results. 

 

Figure 3. Unsupervised MGMT promoter methylation cutoff and OS.  

The unsupervised cutoff of 1.27 obtained in the all-P training cohort is indicated in green in 

the bimodal distribution of the corrected MGMT log2 ratio values [log2 (
𝑀𝐺𝑀𝑇+𝟏

𝐴𝐶𝑇𝐵
× 1000)] (A). 

The Kaplan Meyer plot visualizes OS in the rand-P training cohort separated into patients 

with MGMT promoter-methylated and -unmethylated tumors (p<0.0001, logrank test). The 

shaded area represents the 95% confidence interval. 

 

Figure 4. Optimal MGMT promoter methylation cutoff and OS. 

The position of the optimal cutoff point of -0.28 [corrected MGMT log2 ratio value, log2 

(
𝑀𝐺𝑀𝑇+𝟏

𝐴𝐶𝑇𝐵
× 1000)] is indicated in orange in the bimodal distribution of the entire all patients 

(all-P) training cohort (A). It corresponds to a 96% chance to be unmethylated (4% chance to 

be methylated) as illustrated in the posterior probability plot (B) and defines the lower bound 

of the “grey zone“ (-0.28, and ≤1.27). The Kaplan Meyer plot visualizes (C) the outcome of 

patients in the randomized patient (rand-P) training cohort separated into MGMT promoter 

methylated (<1.27), grey zone (-0.28, and ≤1.27), and truly unmethylated patients (<-0.28) 

(p<0.0001, logrank test). The shaded area represents the 95% confidence interval. 
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Table 1. Patient origin (trial) and baseline characteristics of split datasets  

 

a all-P, all patients population; b rand-P, randomized patients population 

  

 TRAINING cohort (%) 

 

TEST cohort (%) 

 

 all-P a (n=2021) rand-P b (n=863) all-P a (n=2020) rand- P b (n=862) 

Trial 

CENTRIC (randomized) 264 (13.1) 264 (30.6) 262 (13.0) 262 (30.4) 

CENTRIC (screened) 1058 (52.4) NA 1058 (52.4) NA 

CORE (randomized) 132 (6.5) 132 (15.3) 133 (6.6) 133 (15.4) 

CORE (screened) 100 (4.9) NA 100 (5.0) NA 

AVAGlio 170 (8.4) 170 (19.7) 170 (8.4) 170 (19.7) 

RTOG 0825 297 (14.7) 297 (34.4) 297 (14.7) 297 (34.5) 

Baseline Characteristics  

Performance status (randomized patients only) 

PS = 0 NA 516 (59.8) NA 514 (59.6) 

PS ≥ 1 NA 347 (40.2) NA 345 (40.0) 

Missing NA 0 (0) NA 3 (0.4) 

Extent of resection (randomized patients only)  

Complete resection NA 454 (52.6) NA 453 (52.6) 

Partial resection NA 394 (45.7) NA 392 (45.5) 

Biopsy only NA 6 (0.7) NA 7 (0.8) 

Other NA 8 (0.9) NA 8 (0.9) 

Missing NA 1 (0.1) NA 2 (0.2) 

Age in years (randomized patients only) 

Median (Q1,Q3) NA 57 (50, 63) NA 57.5 (50, 64) 

Corrected log2 MGMT ratio 

Median (Q1,Q3) -0.58 (-2.00, 3.24) 0.63 (-1.97, 4.77) -0.58 (-1.96, 3.54). 1.06  (-1.79, 4.94) 
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Table 2. Outcome by MGMT promoter methylation status in the rand-P training & test cohorts. 

Methylation status N (%) Observed 

Events 

Median survival 

[months] 

HR (95% CI) P-value  Adj. HR (95% CI)a Adj. P-value  

Training cohort        

Truly unmethylated 378 (43.8) 302 14.0 (13.1 – 14.7) 1.00   1.00   

Grey zone  82 (9.5) 50 18.5 (16.2 – 25.0) 0.58 (0.43 – 0.78) <0.001 0.64 (0.47 – 0.87) <0.01 

Methylated  403 (46.7) 203 26.5 (25.1 – 30.2) 0.35 (0.27 – 0.45) <0.0001 0.32 (0.25 – 0.42) <0.0001 

Test cohort        

Truly unmethylated 375 (43.5) 299 13.6 (12.9 – 14.7) 1.00   1.00   

Grey zone  70 (8.1) 46 16.5 (13.8 – 20.6) 0.70 (0.51 – 0.96) 0.03 0.71 (0.52 – 0.97) 0.03 

Methylated  417 (48.4) 219 25.6 (23.2 – 28.4) 0.38 (0.29 – 0.49) < 0.0001 0.36 (0.28 – 0.46) < 0.0001 

a adjusted for age, ECOG performance status, and extent of resection 
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