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Abstract

Here we describe a method for measuring tonotopic maps and estimating bandwidth for voxels in 

human primary auditory cortex (PAC) using a modification of the population Receptive Field 

(pRF) model, developed for retinotopic mapping in visual cortex by Dumoulin and Wandell 

(2008). The pRF method reliably estimates tonotopic maps in the presence of acoustic scanner 

noise, and has two advantages over phase-encoding techniques. First, the stimulus design is 

flexible and need not be a frequency progression, thereby reducing biases due to habituation, 

expectation, and estimation artifacts, as well as reducing the effects of spatio-temporal BOLD 

nonlinearities. Second, the pRF method can provide estimates of bandwidth as a function of 

frequency. We find that bandwidth estimates are narrower for voxels within the PAC than in 

surrounding auditory responsive regions (non-PAC).
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1 Introduction

Primate studies suggest that the “core” of the auditory cortex (AC), identified on the basis of 

the underlying cellular architecture, contains up to three subdivisions with borders 

delineated by tonotopic gradient reversals: A1, R, and RT (Hackett, 2008; Hackett et al., 

1998). In humans, cytoarchitectonic and chemoarchitectonic studies have localized the AC 

core to approximately the medial two-thirds of Heschl's gyrus (HG) (Dick et al., 2012; 

Rademacher et al., 2001). Tonotopic organization within these areas has been measured 

using intracortical auditory event-related potentials (Liegeois-Chauvel et al., 1991), 

surgically implanted microelectrodes (Howard et al., 1996) and non-invasive functional 

imaging (Da Costa et al., 2011; 2013; Formisano et al., 2003; Humphries et al., 2010; Saenz 

and Langers, 2013; Striem-Amit et al., 2011; Talavage et al., 2004).

A number of functional MRI studies have identified two tonotopic gradients, thought to 

correspond to human homologues of areas A1 (hA1) and R (hR) that form mirror-image 

representations reversing at a low frequency border (Da Costa et al., 2011; 2013; Formisano 

et al., 2003; Humphries et al., 2010; Langers and van Dijk, 2011; Moerel et al., 2012; 

Striem-Amit et al., 2011). The low frequency region is found close to Heschl's gyrus, and 

some uncertainty remains as to the exact orientation of these two maps with reference to the 

gyrus (see Saenz and Langers, 2013 for a review ).

Several tonotopy studies have relied on stimuli comprised of orderly ascending or 

descending frequency progressions (e.g. Da Costa et al., 2011; 2013; Striem-Amit et al., 

2011; Talavage et al., 2004), and a phase-encoding analysis that identifies the “best 

frequency” of a voxel by either finding the phase of the sinusoid or time-lagged function that 

best-fits the voxel time course (Engel et al., 1994). While such methods provide a robust 

method for identifying tonotopically organized areas, several features of this approach 

contribute to uncertainty in interpreting results.

Frequency progression stimuli have the potential to cause habituation and/or expectation 

effects. Moreover, the “traveling wave” of BOLD activity induced across the cortical 

surface (Engel et al., 1994) by frequency progressions is likely modulated by spatiotemporal 

nonlinearities. Previous studies have shown that while the spatial and temporal summation 

of BOLD signals can be well approximated by the linear model; significant nonlinear 

spatiotemporal interactions do occur (Binda et al., 2013; Pihlaja et al., 2008; Zenger-Landolt 

and Heeger, 2003). Furthermore, estimates of best frequency based on a small number of 

presented frequencies tend be biased, especially near the edge of the stimulus range 

(Dumoulin and Wandell, 2008, Appendix B). Our data and that of Dumoulin et al. 

(Dumoulin and Wandell, 2008, Appendix B) suggest that these effects can be somewhat 

reduced by fitting data using a continuous function such as a Gaussian or a sinusoid capable 

of assigning voxels to outside the presented frequency range rather than using a “winner-

take-all” method that assigns a value based on the highest correlation to the presented 

frequencies only, where voxels with a best frequency outside of the stimulus range are 

assigned to either the highest or lowest presented frequency. Thus, frequency progression 

stimuli, especially when analyzed using ‘winner take all’ methods, have the potential to 

result in an overrepresentation of frequencies near the beginning or the end of the sweep. 
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Analogous concerns have been described for visual retinotopic mapping methods (Binda et 

al., 2013; Dumoulin and Wandell, 2008; Duncan and Boynton, 2003; Haak et al., 2012), and 

recently discussed for tonotopic mapping methods (Langers et al., 2014a; 2014b).

Here, we estimate auditory frequency responses using a population Receptive Field (pRF) 

method developed by Dumoulin and Wandell (2008) that is less susceptible to many of these 

issues when utilizing a randomized stimulus, and has the added advantage of providing a 

means of estimating the receptive field size or bandwidth of individual voxels as a function 

of frequency.

2 Materials and Methods

2.1 Subjects

Four right-handed subjects (2 male, 2 female, ages 24-45) participated in two fMRI sessions. 

Subjects reported normal hearing and no history of neurological or psychiatric illness. All 

procedures, including recruitment, consenting, and testing, followed the guidelines of the 

University of Washington Human Subjects Division and were reviewed and approved by the 

Institutional Review Board.

2.2 Stimulus Presentation

Auditory stimuli were generated in MATLAB using the Psychophysics Toolbox 

(www.psychtoolbox.org). Stimuli were delivered via MRI compatible insert earphones (S14, 

Sensimetrics), at a sampling rate of 44.1 kHz, with intensities adjusted to ensure flat 

frequency transmission from 100 Hz to 8 kHz. Subjects were instructed to keep their eyes 

closed during all scans.

We measured fMRI responses to two types of stimulation sequences: ascending/descending 

tone progressions and random tone sequences. Both stimuli were comprised of blocks of 

pure tone stimuli originally developed by Da Costa et al. (2011). Each frequency block 

lasted 2 s and contained eight pure tone bursts of the same frequency, with each burst lasting 

either 50 ms or 200 ms in duration (inter-stimulus interval = 50ms). Tone durations were 

alternated in pseudo-randomized order, switching durations at least 4 times during each 2 s 

block, resulting in a “Morse code” like pattern of long and short tones which served to 

increase the perceptual salience of the stimuli over the regular pattern of background scanner 

noise (Figure 1A). The choice of 2 s for our frequency block duration was primarily 

motivated to facilitate comparison with a traditional progression paradigm used in previous 

studies. Inline Supplementary Figure 1 shows the results of simulations that suggest when 

the effects of BOLD adaptation (Soltysik et al., 2004) are included, the optimal block 

duration would be between 1 to 5 s.

After sound system calibration, all stimulus sound intensities were adjusted according to a 

standard equal-loudness curve created for insert earphones (ISO 226) to approximate equal 

perceived loudness across all frequencies. Actual sound intensities (65-83 dB SPL) matched 

the perceived loudness of a 1000 Hz tone (reference frequency) at 70 dB SPL. Acoustic 

noise from the scanner was attenuated by expanding-foam eartips as well as protective ear 
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muffs placed over the ear following earphone insertion. Subjects reported hearing all tones 

to be clearly and comfortably audible, and of roughly equal loudness across all frequencies.

2.2.1 Ascending/descending tone progressions—Ascending/descending 

progressions were identical to those of Da Costa et al. (2011). The frequencies used were: 

88, 125, 177, 250, 354, 500, 707, 1000, 1414, 2000, 2828, 4000, 5657, and 8000 Hz (half-

octave steps). Each frequency block was presented for 2 s before progressing to the next 

higher (ascending progression, Figure 1B) or lower (descending progression, Figure 1C) 
frequency until all 14 frequencies had been presented. This 28 s frequency progression was 

followed by a 4 s silent pause and this 32 s cycle was repeated 15 times per scan, for total 

scan duration of 8 min. For each subject we carried out one ascending/descending 

stimulation session, during which subjects listened to 4 ascending progressions and 2 

descending progressions.

2.2.2 Random tone sequences—For the random tone sequences (Figure 1D), stimuli 

were arranged into 240 equally spaced frequency blocks (2 s) ranging from 88-8000 Hz. 

Each block was presented only once per scan and the frequency block order was randomly 

shuffled for each scan. Following every 60 frequency blocks was a 12 s silent pause which 

allowed the pRF algorithm to estimate the baseline fMRI response in response to scanner 

noise alone (Zuiderbaan et al., 2012) to improve the accuracy of bandwidth measurements. 

The entire scan therefore lasted a total of 8 min 48 s. Each subject participated in a single 

random tone sequence scanning session, consisting of 6 scans, each containing a different 

random sequence of the same tones. Our goal in presenting random tone sequences was to 

reduce spatial and temporal correlations between neighboring frequencies in the stimulus 

sequence, thereby reducing the influence of spatiotemporal nonlinearities on pRF estimates.

2.3 Magnetic resonance imaging

Functional magnetic resonance images were acquired with a 3T Phillips Achieva scanner 

(Philips, Eindhoven, The Netherlands) at the University of Washington Diagnostic Imaging 

Sciences Center (DISC) using an 8-channel head coil. Foam padding minimized head 

motion.

2.3.1 Acquisition Sequences—A common issue with tonotopic mapping protocols is 

the reliability of frequency measurements estimated in the presence of loud acoustic scanner 

noise that can interfere with or mask the hemodynamic responses to presented stimuli 

(Langers et al., 2005). While sparse scanning techniques limit the effects of acoustic noise, 

they require a marked increase in the amount of scanning time needed as compared to 

continuous acquisition (Hall et al., 1999; Humphries et al., 2010; though see Petkov et al., 

2006).

In order to examine the reliability of the pRF estimates calculated in the presence of acoustic 

scanner noise, data were gathered using two acquisition sequences: a standard EPI sequence 

and an attenuated EPI sequence designed with Philips SofTone software (SofTone factor of 

4.0) to generate quieter scanner noise. Acoustic scanner noise was recorded from inside the 

coil for both acquisition types (for both 27 and 35 slices, since the slice number can also 
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influence acoustic noise) using an MR-compatible fiber-optic microphone (FOMRI-II, 

Optoacoustics) placed within the scanner bore and saved in WAV format using Matlab. The 

overall A-weighted sound pressure levels (dBA) were also collected for both acquisition 

types using a B&K sound level meter model 2250.

A frequency spectrum of the recorded scanner noise was obtained for each acquisition type 

by performing a discrete Fast Fourier Transform and calculating the resulting frequency 

component magnitudes. The standard EPI sequence generated an overall louder (122 dBA) 

auditory scanner noise peaking at approximately 1000 Hz; while the attenuated EPI 

sequence generated quieter (105 dBA) scanner noise peaking at approximately 350 Hz, see 

Inline Supplementary Figure 2.

Each session contained six scans. Three functional scans were collected using the 

standardEPI sequence (35 slices, TR/TE = 2000/25 ms, flip angle = 80°, EPI-factor = 51, no 

slice gap). After discarding the first 5 timeframes of each functional scan, ascending/

descending session scans consisted of 240 acquisitions at an effective voxel size of 2.0 × 2.0 

× 3.00 mm3 (FOV= 264 × 264 × 105 mm3, matrix size= 132 × 132 × 35). Random tone 

sequence scans consisted of 260 volumes at an effective voxel size of 2.33 × 2.33 × 2.33 

mm3 (FOV = 224 × 224 × 81.55 mm3, matrix size= 113 × 113 × 35).

The other three scans were collected utilizing the Philips SofTone parameter, which reduces 

acoustic noise by controlling the shape of the gradient waveform independent of the 

amplitude. This change in the gradient waveform required either the number of slices to be 

reduced or the TR to be lengthened. We chose to maintain the 2 s TR and reduce the number 

of slices while increasing the voxel size to maintain roughly similar volume coverage (27 

slices, TR/TE = 2000/25 ms, flip angle = 76°, EPI-factor = 39, no slice gap). Both 

ascending/descending session and random tone sequence scans consisted of 260 volumes at 

an effective voxel size of 2.75 × 2.75 × 3.00 mm3 (FOV = 220 × 220 × 81 mm3, matrix 

size= 80 × 80 × 27).

Voxel volume differed across ascending/descending standard EPI sequences (12 mm3) and 

random tone standard EPI sequences (12.65 mm3). This change was made to provide a 

compromise voxel size which had an intermediate in-plane resolution (2.33 × 2.33 mm2) in 

between that of the standard (2.0 × 2.0 mm2) and attenuated (2.75 × 2.75 mm2) EPI 

sequences, and was also chosen to create isotropic voxels. However, by replicating all 

analyses described below using only attenuated EPI acquisition sequences, we confirmed 

that differences in voxel size were not responsible for any observed differences between 

ascending/descending and random tone sequences.

For the attenuated sequence we used a significantly larger voxel volume (22.69 mm3), which 

likely increased signal to noise (by a factor of ~1.6) at the cost of lower spatial resolution 

(Triantafyllou et al., 2005). However this decrease in non-physiological signal to noise 

seemed not to have a dramatic effect on pRF estimate reliability, see Supplementary Table 
2.
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2.3.2 MR Pre-processing—For analysis, data were resampled into 1 × 1 × 1 mm3 

volumetric space. Standard pre-processing of fMRI data was carried out using BrainVoyager 

QX software (version 2.3.1 Brain Innovation B. V., Maastricht, The Netherlands), including 

3D motion correction and high-pass filtering (cut-off: 2 cycles per scan). Functional data 

were aligned to the T1-weighted anatomical image acquired in the same session (MPRAGE, 

1 × 1 × 1 mm3). The anatomical images acquired in the two sessions were aligned to each 

other and to each subject's 3D Talairach-normalized anatomical dataset. The BrainVoyager 

QX automatic segmentation routine was used to reconstruct the cortical surface at the white-

gray matter border (with hand-editing to minimize segmentation errors) and the resulting 

smooth 3D surface was partially inflated.

2.3.3 Voxel Selection—For each subject, large regions of interest (ROIs) were selected 

from the partially inflated left and right hemisphere cortical surface meshes using drawing 

tools within BrainVoyager QX. ROI borders were drawn generously to include all voxels 

within a contiguous region of auditory cortex between the lateral border on the crown of the 

superior temporal gyrus, the medial border within the fundus of the lateral sulcus, the 

posterior border of the supramarginal gyrus, and the anterior border of the most anterior 

portion of the temporal lobe. Surface ROIs for each subject are shown here in Inline 
Supplementary Figure 3. These surface ROIs were then mapped back into the brain 

volume and expanded to include voxels from −1 to 3 mm around the gray-white matter 

boundary to assure that inaccuracies in the definition of the gray-white matter boundary did 

not affect the selection of voxels for data analysis. Rather than projecting this surface ROI 

into the functional volumes, we chose to index the voxels in anatomical space (at the cost of 

increased computation time). Preprocessed time-course data for each 3D anatomical voxel 

within the volume ROI were then exported to Matlab for further analysis.

2.3.4 PAC ROI—A functionally defined PAC ROI corresponding to hA1 and hR defined 

on the basis of the tonotopic gradients and informed by the underlying anatomy (illustrated 

by the solid black lines in Figure 2, Figure 3, Figure 5, and Figure 7), was generated to 

compare bandwidth data across regions. A contiguous patch of cortical surface containing 

two primary tonotopic gradients centered on low frequencies on HG was manually selected 

for each hemisphere of individual subjects (Da Costa et al., 2011; 2013). Anterior and 

posterior borders drawn along the outer high-frequency representations were primarily based 

on the tonotopic maps generated using the random tone sequences and pRF analysis. 

Quantitative comparisons of the size and similarity of PAC ROI identifications when using 

either the phase-encoding analysis or the pRF analysis are shown in Inline Supplementary 
Figure 4. ROI similarity was assessed using the Jaccard similarity coefficient (Jaccard, 

1912) according to the equation:

(1)

where the size of the intersection between voxels included in ROI A and ROI B is divided 

by the size of the union of voxels included in ROI A and ROI B.
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Lateral and medial borders were conservatively drawn to include only the medial two-thirds 

of Heschl's gyrus (Rademacher et al., 2001). Auditory responsive regions outside of this 

ROI are referred to as non-PAC.

2.4 Analyses 2.4.1 Phase-encoding analyses

Phase-encoding analyses on the ascending/descending tone progressions were based on Da 

Costa et al. (2011). Using Brain Voyager, a hemodynamic time course was predicted in 

response to the first 2 s sound block of each stimulus cycle, based on that individuals 

estimated hemodynamic response function (HDR, see below for how this was estimated). It 

was assumed that there was no response to the remainder of the stimulus cycle. This cyclical 

model function was shifted successively in time in 2 s increments (corresponding to the TR) 

to generate 14 time-lagged functions. Linear correlation was applied (between all 14 time-

lagged functions and the measured fMRI time course) on a per-voxel basis. Each voxel was 

then color coded according to the lag function resulting in the highest correlation value with 

its time course (“winner-take-all”). Lag values were then separately averaged for ascending 

progression scans (4 scans) and the descending progression scans (2 scans) for each voxel 

within the ROI and were exported to MATLAB (Mathworks, version 7.11). As in the pRF 

analysis, only voxels with a correlation threshold of 0.10 were considered “tonotopic” and 

included for further analysis.

2.4.2 pRF analyses—Our pRF model computes the population receptive field for 

individual voxels based on a linear temporal model of the fMRI BOLD response time 

course. All population receptive field (pRF) analyses were carried out using custom software 

written in MATLAB.

The pRF analysis begins with a definition of the stimulus time course s(f,t), provided to the 

model as a matrix of binary values marking the presence or absence of auditory stimulation 

over frequency and time. To generate a hemodynamically blurred stimulus time course r(f,t), 

the stimulus time course was convolved with the estimated hemodynamic response function 

modeled as a gamma function h(t):

(2)

with the initial parameters n=3, tau (τ)= 1.5, and delay (δ)=1.8, based on Boynton et al. 

(1996). The hemodynamic response function (HDR) parameters tau and delay were 

subsequently optimized for individual subjects (as described below).

(3)

We estimated the population response using a one-dimensional Gaussian function g(f), 

defined over log frequency. The frequency center (f0) corresponds to the best frequency, 

while the standard deviation (σ) was used to estimate bandwidth by transforming the values 

into octaves and then calculating the full width half maximum (FWHM) of the Gaussian 

function. To create the predicted time series, we calculated the linear sum of the overlap 
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between the input stimulus after hemodynamic blurring with the Gaussian receptive field for 

each basis function, g(f):

(4)

Model fits for each voxel were obtained by finding values that maximized the correlation 

between the predicted and actual fMRI time-courses. The initial parameters for frequency 

centers (f0) spanned the range of the stimulus from 88 to 8000 Hz, and initial standard 

deviation (σ) values ranged from 0.5 to 4. The best fitting parameters from this set were then 

used as initial parameters for a nonlinear search algorithm (Matlab's fminsearch function) 

which uses unconstrained nonlinear minimization to find the pRF model parameters f0 and σ 

that maximize the correlation between the pRF predicted time-series and the BOLD data.

We then estimated each individual subject's auditory HDR by holding f0 and σ fixed and 

finding the best fitting parameters for τ and δ. To limit computational time this estimate was 

only carried out on a subset of voxels (1 out of every 6) within the anatomically defined 

ROI, after checking that restricting our estimation to a subset of voxels did not have an 

appreciable effect on the estimated HDR. Median (across all voxels with a fitted correlation 

value above 0.25) τ and δ parameters were used to provide the estimate of that individual's 

HDR. We then iteratively fit the pRF parameters (f0 and σ) for all voxels within the ROI, 

using the individually fitted HDR parameters. Individual HDR parameters are reported in 

Inline Supplementary Table 1.

The procedure described above had some minor modifications from the original 

implementation of Dumoulin and Wandell (2008). First, similar to Zuiderbaan et al. (2012) 

we jointly fit individual HDR and pRF parameters using a single dataset (rather than 

estimating the HDR using a separate dataset). Second, we convolved the hemodynamic 

response function before calculating overlap with the pRF rather than afterwards. This is 

mathematically identical but significantly reduces computation time, since once the HDR 

parameters have been estimated the convolution of the stimulus image with the HDR only 

has to be carried out once. Finally, we maximized the correlation between the predicted, 

p(t), and the obtained time courses rather than minimizing root mean squared error. The 

amplitude of each Gaussian pRF was estimated after fitting, based on the linear regression 

between the predicted and obtained time courses.

After fitting, only voxels that met the following criteria were retained for further analyses: 

(1) the correlation between the observed fMRI response time-course and that predicted by 

the best-fitting pRF (our goodness-of-fit index) was higher than 0.10 and (2) the standard 

deviation (σ) of the best fitting pRF was between 0.01-2 in log frequency space, or .

0332-6.64 in octaves (chosen based on the resolution and the range of the frequencies 

presented). These limits were chosen because at bandwidths below 0.0332 the voxel would 

respond to a single presented frequency, and with bandwidths above 6.64 the voxel would 

respond similarly to all frequencies presented.

Unlike the “winner-take-all” phase-encoded analysis, the pRF method is not limited to 

fitting frequency centers within the range of frequencies (88 and 8000 Hz) presented in the 
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stimulus. However frequency center estimates outside this range are likely to be somewhat 

inaccurate. We included well-fit voxels with frequency center values beyond the imposed 

frequency cutoffs in Figure 2 and Figure 3 and the histograms in Figure 4, but simply 

categorized them as high-pass (HP) or low-pass (LP).

2.4.3 Comparison of different acquisition sequences—The consistency across the 

two acquisition sequences was calculated as a Pearson correlation coefficient (rxy) across the 

frequency center and bandwidth estimates from three random tone sequence scans of both 

acquisition types. We additionally computed mean (across subjects) “non-attenuated” 

correlation coefficients (rx’y’) for both frequency center and bandwidth values according to 

the equation:

(5)

where rxx and ryy are the correlation coefficients across single scans of the same acquisition 

type. Non-attenuated correlation provides a measurement of the correlation across two 

different scan types having factored out measurement error as estimated using scans of the 

same acquisition type (Muchinsky, 1996; Spearman, 1904).

2.4.4 Effect of frequency center distribution on bandwidth estimates—Since 

pRF bandwidth estimates are dependent on the distribution of frequency centers of the 

underlying receptive fields, we estimated the effects of systematic frequency gradients and 

hemodynamic spatial blurring on bandwidth values estimated from the random tone 

sequence scans. For each subject, we estimated the slope of the change in frequency center 

within each voxel, based on the frequency centers of neighboring voxels. For every voxel 

for which the pRF model was successfully fit, we found the neighboring voxels within a 

3mm radius (results were not highly dependent on the choice of radius). We then assumed 

that the frequency sweep within the voxel of interest consisted of a linear gradient between 

its best fitting frequency and those of its neighbors to predict the increase in bandwidth size 

due these factors.

2.4.5 Estimation accuracy—A bootstrapping procedure (to remove variability due to 

selection of the subset of scans to be included in the estimate) was carried out whereby the 

standard error of the frequency center or bandwidth was repeatedly estimated for 2-6 of the 

random tone sequence scans, irrespective of acquisition type. Estimation variability was 

calculated in terms of both standard error of the mean (SEM) and the relative standard error 

(RSE) of the mean frequency center or mean bandwidth estimate according to the equation:

(6)

Where STD is the standard deviation of the frequency center or bandwidth estimate 

(corrected for biases due to being a small sample using Cochran's theorem), n is the number 

of scans included in the estimate and is either the mean frequency center or mean bandwidth 

estimate (Cochran, 1934).
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2.4.6 Double Gaussian model—Data were also fit with a double Gaussian center 

surround model (Zuiderbaan et al., 2012). The surround bandwidth was constrained (using a 

cost function) to be larger than the center bandwidth and to be less than 6.64 octaves. The 

amplitude of the surround was not constrained to be negative. The difference in fit between 

the single and double Gaussian model was assessed using a nested model F-test. The 

original single Gaussian model had 2 free parameters (frequency center and bandwidth, with 

the amplitude fixed at 1) while the double Gaussian model had 2 additional parameters 

describing the width and the amplitude of the “surround”.

3 Results

3.1 Tonotopic maps as a function of both stimulus and analysis methods

Figure 2 shows tonotopic maps using the ascending and descending tone progressions on 

the left hemisphere cortical surface mesh for two typical subjects. Phase-encoded maps were 

generated using either an average of four scans of the ascending tone progressions (left 

panel) or an average of two scans of the descending tone progressions (middle panel). Maps 

using the pRF method for ascending and descending tone progressions (right panel), were 

generated from all six (equally weighted) functional scans. Separate maps for the right 

hemisphere of these subjects are shown in Inline Supplementary Figure 5.

Tonotopic maps generated using the random tone sequences and the pRF method from an 

average of six (equally weighted) functional scans are shown for both hemispheres of all 

four subjects in Figure 3. All maps are based on scans from both the standard and attenuated 

EPI acquisition protocols since, as described below, frequency center estimates were highly 

correlated across the two types of acquisition protocol. The frequency center values of 

individual voxels are color-coded along a gradient, with red corresponding to the lowest 

frequency value (88 Hz) through blue corresponding to the highest frequency tested (8000 

Hz), as in Figure 1. Low-pass (LP) voxels are colored dark red, while high-pass (HP) voxels 

are colored dark blue. Across all figures/analyses the same correlation threshold of 0.10 was 

used.

Across both stimulus types and analysis methods, clear mirror-symmetric tonotopic 

gradients, corresponding to the PAC subdivisions hA1 and hR, are visible. These mirror-

symmetric gradients reversed at a low frequency border, centered either on the crown of HG 

(Subject 1 and 3 in Figure 3) or within the sulcus intermedius (SI) between the duplications 

of HG (Subject 2 and 4 in Figure 3). This low frequency region was flanked both caudally 

(hA1) and rostrally (hR) by high frequency regions creating a “high-low-low-high” gradient 

reversal extending across HG. In certain cases, areas hA1 and hR appear to be oriented in a 

V-shape (Subject 2 and 4 in Figure 3) with the high frequency endpoints situated more 

medially than the low frequency center. The maps generated for ascending and descending 

progressions and analyzed with either phase-encoding or pRF analysis are very similar, as 

can be seen in Figure 2 and Table 1. While the general position of the gradient reversal was 

very consistent across ascending/descending and the random tone sequence stimuli, there 

are noticeable differences in the distribution of frequencies between the maps even when 

both are analyzed using the pRF method (Figure 2 and 3 and Table 1).
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Figure 4 shows stacked (across subjects) probability histograms of frequency center (f0) 

values estimated for both stimulus types and analysis methods, collapsed across acquisition 

protocols. The histograms for the ascending and descending tone progression stimuli show a 

strong double peak with very strong representations of higher and lower frequencies – this 

double peak was visible when these data were analyzed using either “winner-take-all” phase 

encoding or the pRF analysis . This double peak was also robust to the choice of threshold – 

remaining equally salient across thresholds ranging between 0.1 (Figure 4) through 0.35. 

This double peak was even more noticeable in single scan data. Because the ”winner-take-

all” model did not allow for lag values greater than 14 or less than 1, noise within individual 

scans is not zero mean. That pushes f0 away from the boundary values (towards the center) 

when averaging across multiple scans. In contrast, the histogram for the random tone 

sequence stimuli has a different shape, with a heavier representation of mid-range 

frequencies. In addition, as might be expected from the approximate range of human hearing 

(20 Hz-20 kHz) and primate physiology data (Cheung et al., 2001) a reasonable proportion 

of voxels were characterized as high pass (HP), while few voxels were characterized as low 

pass (LP).

3.2 pRF measurements of bandwidth

Bandwidth measurements from random tone sequences are shown in Figure 5. Bandwidth 

estimates are not reported for the ascending/descending sequences for reasons discussed 

below. Bandwidth maps were generated from an average of all six random tone sequence 

functional scans using both the standard and attenuated EPI acquisition protocols since, as 

described below, the two types of acquisition protocol produced similar bandwidth 

estimates. For bandwidths between 1-8 octaves, color coding of the bandwidth map is linear. 

Narrow bandwidths (< 1 octave) were color coded as red, and broad bandwidths (> 8 

octaves) were coded as blue.

We did not find a significant correlation between bandwidth and frequency center values (r 

= 0.046). Nor did we find a clear bandwidth gradient running orthogonal to the tonotopic 

gradient for any individual subjects (using a gradient analysis similar to that used by Petkov 

et al. (2006), data not shown). However, as shown in Figure 6, we did find that bandwidth 

values were smaller in the PAC than in non-PAC regions. A 2-way ANOVA testing Area 

(PAC vs. Non-PAC) × Hemisphere (Left vs. Right) found a significant main effect of Area 

[F (1, 12) = 16.36 p = 0.002] on mean bandwidth value. There were no significant main 

effect of Hemisphere [F (1, 12) = 0.54, p < 0.476] and no significant interaction of Area vs 

Hemisphere [F (1, 12) = 0.07, p < 0.8017]. While bandwidths were overall narrower in PAC 

than in surrounding non-PAC areas, our findings do not support the use of bandwidths as the 

sole criteria for defining PAC borders since there was significant heterogeneity of 

bandwidths within our tonotopically defined PAC ROI.

We estimated the effects of systematic frequency gradients and hemodynamic spatial 

blurring on bandwidth size. These estimates predicted that shifts in frequency preference as 

a function of distance across the cortical surface is likely to have increased our bandwidth 

estimates by a median value of ~10%.
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Finally, we found a positive correlation between activation levels (GLM t-value, Inline 
Supplementary Figures 6 and 7) and bandwidth estimates (random tone sequences only), 

as shown in Inline Supplementary Figure 8. Broader tuning results in a higher activation 

level across the duration of the sound condition, leading to stronger responses in the sound 

vs. silence contrast.

3.3 Comparison of different acquisition sequences

Tonotopic maps and bandwidth maps looked very similar across standard and attenuated 

EPI sequences. Figure 7 shows an example from Subject 3, generated from the random tone 

sequences and fitted using the pRF analysis technique. The scatter plots of Figure 8 directly 

compare frequency center and bandwidth values between the two acquisition sequences 

across all voxels that met our selection criteria for all four subjects. Neither the maps, nor 

the scatter plots show any obvious mis-estimation of frequency values near the peak of the 

scanner noise. Individual subject correlation coefficients between three scans of the 

attenuated EPI sequence and three scans of the standard EPI sequences are shown in Table 
2. The mean (across subjects) non-attenuated correlation coefficient (which represents the 

correlation after parsing out measurement error) between standard and attenuated sequences 

was 0.813 (varying between 0.742-0.965 across subjects) for frequency centers and 0.726 

(varying between 0.566-0.813 across subjects) for bandwidth estimates. Mean correlation 

coefficients between single scans of the same or different type of EPI sequence are shown in 

Inline Supplementary Table 2.

While frequency center and bandwidth estimates were similar across the two acquisition 

sequences, further testing, including presenting stimuli using a sparse sequence, will be 

necessary to determine the extent to which acoustic scanner noise affects pRF estimation.

3.4 Estimation accuracy

Figure 9 shows pRF estimation variability as a function of the number of scans included in 

the estimate, for both frequency center (f0) and bandwidth. PRF estimation variability is 

presented in terms of standard error (SEM) of the mean frequency center (f0) or mean 

bandwidth estimate (leftward y-axis) and the percentage standard error (% STE) of the mean 

frequency center (f0) or mean bandwidth estimate (rightward y-axis).

Frequency estimates were remarkably reliable – with only 2 scans ( less than 9 minutes 

each) the estimated standard error was less than 5% of the estimated frequency center (f0), 

suggesting that a single scan is adequate to obtain a basic tonotopic map. Unsurprisingly, we 

find that bandwidth estimates were less accurate than frequency estimates: for our dataset a 

full session was required to obtain bandwidth estimates with standard error variability of less 

than 25%. Although we corrected for overlap in the sampled distributions using the Cochran 

correction, given the small number of scans on which these simulations were carried out, 

these estimates should be considered a rough guideline and may underestimate variance.

3.5 Double Gaussian model

The difference between the single and double Gaussian model was assessed using a nested 

model F test that examined the percentage of voxels that were fit significantly better using a 
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double Gaussian model. In 2 of the four subjects less than 5% of voxels were better fit by 

the double Gaussian model – suggesting that the model did not provide any additional 

explanatory power. For Subjects 1 and 3, 14% and 17% of voxels respectively were 

significantly better fit with the double Gaussian model. For voxels that were significantly 

better fit by the double Gaussian model, Subject 1 had a median improvement of 33% 

(goodness-of- fit value of 0.24 for the single Gaussian model and 0.32 for the double 

Gaussian model). Subject 3 had a median improvement of 36% (goodness-of- fit value of 

0.22 for the single Gaussian model and 0.30 for the double Gaussian model). For these 

better fit voxels, the median amplitude of the inhibitory surround compared to the center 

amplitude (fixed at 1) was −0.51 for Subject 1 and −0.50 for Subject 3 (note that the 

surround was not constrained to be negative).

4 Discussion

We show here that a modified version of Dumoulin and Wandell's (2008) pRF technique can 

be used to generate tonotopic and bandwidth maps of human auditory cortex. When using 

traditional ascending/descending tone progressions this method results in tonotopic maps 

that are very similar to those obtained using traditional phase-encoding analysis methods. 

However, unlike phase-encoding methods, the pRF method does not require an orderly 

sequence; instead, functional maps of auditory cortex may be derived from responses to a 

wide array of stimuli, including random or pseudo-random sequences. While maps 

generated using random tone progressions identified roughly similar tonotopic areas as 

those obtained using ascending/descending tone progressions, the exact boundaries of these 

areas, and the representation of frequencies within these areas was somewhat different.

One advantage of the ascending/descending tone progression stimuli is that the maps 

generated from these stimuli are very robust. This makes progression stimuli well suited for 

determining whether an area is tonotopic and/or providing rough estimates of area 

boundaries based on frequency reversals when scan time is limited. However, as previously 

described, ascending/descending tone progressions are susceptible to habituation and/or 

expectation effects (Kastner et al., 1999) as well as other types of spatiotemporal 

nonlinearities (Pihlaja et al., 2008; Zenger-Landolt and Heeger, 2003) due to the “traveling 

wave” of BOLD activity on the cortical surface. This “traveling wave” improves signal to 

noise: goodness-of-fit index values were higher for ascending/descending tone progressions 

than for random tone sequences. However these effects also result in an over-emphasis of 

frequencies near the beginning or the end of the sweep (Binda et al., 2013; Dumoulin and 

Wandell, 2008; Duncan and Boynton, 2003; Haak et al., 2012; Langers et al., 2014a; 

2014b). We therefore do not report bandwidth estimates for the ascending/descending 

sequences as these effects can result in an overestimation of receptive field size, probably 

due to spatiotemporal blurring. Additionally the ascending/descending sequences had a half-

octave separation between frequency blocks. This under-sampling made it impossible to 

accurately estimate narrower bandwidths (estimated bandwidths became infinitely small). In 

contrast, random tone sequences do not suffer from these biases and likely provide a more 

accurate method for measuring the finer-scale tonotopic and bandwidth organization.
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4.1 The organization of tonotopic gradients and tuning bandwidth

Like previous studies, we identified two tonotopic gradients, thought to correspond to hA1 

and hR (Da Costa et al., 2011; Da Costa et al. (2013); Formisano et al., 2003; Langers and 

van Dijk, 2011; Moerel et al., 2012). These “high-low-low-high” mirror-symmetric 

gradients followed the morphology of the cortex, with the more posterior gradient 

corresponding to hA1 and the more anterior gradient corresponding to hR (Da Costa et al., 

2011; 2013; Humphries et al., 2010; Langers and van Dijk, 2011).

Ours is the first fMRI study to examine bandwidth using the traditional psychoacoustic 

approach of randomly presented pure tones. A variety of plausible organizations for 

bandwidth have been suggested in the literature, for example: (1) bandwidth varies 

systematically with best frequency (Cheung et al., 2001; Recanzone et al., 1999), (2) 

bandwidth gradients run orthogonal to tonotopic gradient (Kayser et al., 2007a; Petkov et al., 

2006), and (3) tuning widths are narrower within the PAC than surrounding non-PAC 

regions (Moerel et al., 2012; Petkov et al., 2006; Seifritz et al., 2006).

While we did not find a significant correlation between bandwidth and frequency center 

values nor a clear bandwidth gradient, we did find that bandwidth values were significantly 

smaller within PAC than in surrounding non-PAC regions. This is consistent with evidence 

from animal electrophysiology (Rauschecker et al., 1995; Tian and Rauschecker, 1994) and 

neuroimaging (Kayser et al., 2007a; Petkov et al., 2006). Additionally, a recent human study 

by Moerel et al. (2012) found some indication that bandwidths were narrower along HG. 

Here we find that the area of narrow bandwidths extends beyond the gyrus itself. However, 

there was some heterogeneity of bandwidths within our tonotopically defined PAC, with 

regions of broad bandwidth consistently contained within the PAC borders. Therefore, 

unlike Moerel et al. (2012) we do not limit the PAC borders to the areas of narrowest tuning 

bandwidth.

One caveat is that bandwidth estimates are more variable than frequency estimates, even 

when based on a full session of data. We believe this is not a limitation of our particular 

methods, since the reliability of our frequency estimates compare favorably with previous 

studies using similar techniques (Da Costa et al., 2011; Humphries et al., 2010; Moerel et 

al., 2012; Petkov et al., 2006; Striem-Amit et al., 2011). Thus, it is likely that additional 

methodological advances might reveal further topographical structure in bandwidth 

organization.

4.2 What do auditory population receptive fields represent?

It is not straightforward to extrapolate single neuron tuning-width data from responses 

within human fMRI voxels, since voxel-level BOLD signals include the responses of 

hundreds of thousands of neurons collectively across cortical layers and neuronal types 

(104-105 neurons per cubic mm in cortex). As described in Dumoulin and Wandell (2008), 

pRF estimates depend on the average receptive field of the population of neurons that drive 

the BOLD response. This population may be a biased sample of the underlying population. 

For example, the neurons driving the response may depend on the properties of the stimulus 
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being used – it is possible that different pRF estimates will be obtained using band pass 

noise or naturalistic stimuli (Moerel et al., 2012) than with our pure tone frequency stimulus.

Dumoulin and Wandell (2008) found that pRF estimates of visual receptive field size were 

systematically larger than single unit recording estimates, but were relatively closely 

matched to local field potential (LFP) estimates of receptive field size. Similarly, our 

bandwidth estimates were generally larger than those from single-unit recordings, which 

have been shown to range between one tenth of an octave to wider than five octaves in 

primates (Cheung et al., 2001; Recanzone et al., 1999), but were consistent with those 

measured using auditory field potentials (Kayser et al., 2007b).

4.3 The use of forward models to examine auditory processing

Similar to other “forward models”, the pRF method models the response properties of 

individual voxels, an approach that is becoming increasingly popular, see Naselaris et al. 

(2011) for a review. One advantage of such forward models is that they allow for flexibility 

in the choice of stimulus sequence. As previously mentioned, Moerel et al. (2012) used a 

forward model to examine tonotopic organization using naturalistic stimuli and found that 

the regions that showed preferential responses to human voice and speech were tuned to the 

lower range of the frequency spectrum. This tuning was apparent using both natural sound 

and simple tone stimuli. In our case we took advantage of this stimulus flexibility to 

examine tonotopic mapping using a more traditional psychoacoustic approach, using stimuli 

that consisted of randomly ordered pure tones.

A second advantage of forward models is that they allow for the modeling of tuning 

properties of individual voxels. In our case, because we were specifically interested in 

frequency tuning and bandwidth, we used a very simple model, assuming a Gaussian in log 

space. In contrast, Moerel et al. (2012) used a two-stage model that allowed them to directly 

estimate the spectral tuning of the voxel. However, to quantify frequency and bandwidth 

tuning a Gaussian was fit to this spectral response profile– thereby reducing their model to a 

close equivalent of ours. More recently, this same group did away with fitting a Gaussian to 

characterize multi-peaked spectral tuning profiles, as opposed to single bandwidth value 

(Moerel et al., 2013).

It is also possible to create more complex pRF models than a simple Gaussian – an approach 

intermediate between the spectral tuning model and the simple Gaussian pRF model we 

focus on in this paper. The improved fits for the double Gaussian model found within a 

subset of voxels in 2 of our 4 subjects suggest that some additional power may be obtained 

by permitting more complex frequency response profiles than a simple Gaussian 

(Zuiderbaan et al., 2012). Other interesting future directions will include presenting multiple 

tones at once, thereby allowing measurement of response saturation (Kay et al., 2013) and 

the inclusion of alternative temporal response profiles including onset and offset responses 

(Harms and Melcher, 2003). One of the advantages of the pRF approach is that it provides 

an elegant framework within which to assess whether more complex models can provide 

additional insight into auditory BOLD responses.
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The pRF method described here also provides a natural methodology to examine differences 

in tuning as a function of various factors known to affect auditory processing such as 

attention (Da Costa et al., 2013), auditory training (Jäncke et al., 2001; Menning et al., 

2000), musical experience (Pantev and Herholz, 2011), or loss of vision early in life (Elbert 

et al., 2002).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Stimuli. (A) 3 example frequency blocks containing 8 pure tone bursts (50 or 200 ms). (B, 

C) 2 cycles (total 15 cycles per scan) of the ascending and descending tone progressions. 

(D) The first 120 frequency blocks of a random sequence scan.

Thomas et al. Page 19

Neuroimage. Author manuscript; available in PMC 2016 January 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. 
Tonotopic maps for the left hemisphere of Subject 3 (first row) and Subject 4 (second row). 

Maps were calculated using either: ascending tone progressions (4 scans) analyzed using 

phase-encoding (left panels), descending tone progressions (2 scans) analyzed using phase-

encoding (middle panels), or ascending/descending tone progressions (6 scans, therefore 

weighted towards the ascending tone progressions) analyzed using the pRF method (right 

panels). Frequency center (f0) values are color-coded along a gradient, with red 

corresponding to the lowest frequency value (88 Hz) through blue corresponding to the 

highest frequency (8000 Hz). Low-pass (LP) voxels are colored dark red, while high-pass 

(HP) voxels are colored dark blue. The borders of the PAC ROIs are designated by the solid 

black lines. The crowns of gyri are indicated by the dashed black lines. Across all figures/

analyses the same correlation threshold of 0.10 was used, unless otherwise stated.
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Figure 3. 
Tonotopic maps calculated using random tone progressions analyzed using the pRF method. 

Frequency center (f0) values are color-coded along a gradient, with red corresponding to the 

lowest frequency value (88 Hz) through blue corresponding to the highest frequency (8000 

Hz). Low-pass (LP) voxels are colored dark red, while high-pass (HP) voxels are colored 

dark blue. The borders of the PAC ROIs are designated by the solid black lines. The crowns 

of gyri are indicated by the dashed black lines. Across all figures/analyses the same 

correlation threshold of 0.10 was used, unless otherwise stated.
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Figure 4. 
Probability histograms of frequency center (f0) values for voxels in left and right 

hemispheres, stacked across subjects for the tonotopic maps of Figures 2 and 3 calculated 

for ascending progressions analyzed using phase-encoding (first panel), descending 

progressions analyzed using phase-encoding (second panel), ascending/descending tone 

progressions analyzed using the pRF method (third panel), or random tone progressions 

analyzed using the pRF method (fourth panel). The number of voxels is normalized so each 

subject contributes equally. The colors correspond to the individual subjects.
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Figure 5. 
Bandwidth maps for all four subjects. Bandwidth values are color-coded along a gradient 

with red corresponding to the narrow bandwidth values (<1 octave) through blue 

corresponding to the broader bandwidth values (>8 octaves).
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Figure 6. 
Bandwidths are narrower within the PAC than in outlying non-PAC areas. As described in 

the main text, a 2-way ANOVA found a significant main effect of cortical area (PAC vs. 

non PAC) on mean bandwidth value.
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Figure 7. 
(A) Tonotopic maps for example Subject 3 calculated using random tone progressions 

averaged across separate data sets of three scans using a standard EPI sequence and an 

attenuated EPI sequence, analyzed using the pRF method. Color coding is the same as 

Figure 3. (B) Bandwidth maps for for the same data and analysis. Color coding as in Figure 
5.
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Figure 8. 
Scatter plots showing the correlation of frequency center (f0) (left panel) or bandwidth 

values (right panel) between the two acquisition sequences. Each data point represents a 

single voxel whose correlation (between the predicted and obtained time-course, calculated 

across the three scans of standard the attenuated acquisition protocols) was larger than our 

threshold of 0.1 for both acquisition sequences. The colors correspond to the individual 

subjects.
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Figure 9. 
Estimated standard error of frequency (f0) (left panel) and bandwidth (right panel) estimates 

as a function of the number of scans. The x-axis represents the number of scans included in 

the estimate, the leftward y-axis represents the standard error of the mean, and the rightward 

y-axis represents the relative standard error, as described in the main text. The colored 

markers correspond to the individual subjects. The mean (across subjects) is shown in black 

and error bars represent standard error across subjects.
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