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Abstract. We propose a multivariate approach to the study of geographic species dis-
tribution which does not require absence data. Building on Hutchinson’s concept of the
ecological niche, this factor analysis compares, in the multidimensional space of ecological
variables, the distribution of the localities where the focal species was observed to a
reference set describing the whole study area. The first factor extracted maximizes the
marginality of the focal species, defined as the ecological distance between the species
optimum and the mean habitat within the reference area. The other factors maximize the
specialization of this focal species, defined as the ratio of the ecological variance in mean
habitat to that observed for the focal species. Eigenvectors and eigenvalues are readily
interpreted and can be used to build habitat-suitability maps. This approach is recommended
in situations where absence data are not available (many data banks), unreliable (most
cryptic or rare species), or meaningless (invaders). We provide an illustration and validation
of the method for the alpine ibex, a species reintroduced in Switzerland which presumably
has not yet recolonized its entire range.

Key words: Capra ibex; ecological niche; GIS; habitat suitability; marginality; multivariate
analysis; presence–absence data; specialization; species distribution; Switzerland.

INTRODUCTION

Conservation ecology nowadays crucially relies on
multivariate, spatially explicit models in all research
areas requiring some level of ecological realism. This
includes population viability analyses (Akçakaya et al.
1995, Akçakaya and Atwood 1997, Roloff and Haufler
1997), biodiversity-loss risk assessment (Akçakaya and
Raphael 1998), landscape management for endangered
species (Livingston et al. 1990, Sanchez-Zapata and
Calvo 1999), ecosystem restoration (Mladenoff et al.
1995, 1997), and alien-invaders expansions (Higgins
et al. 1999). Such studies often conjugate the power of
Geographical Information Systems (GIS) with multi-
variate statistical tools to formalize the link between
the species and their habitat, in particular to quantify
the parameters of habitat-suitability models.

Most frequently used among multivariate analyses
are logistic regressions (Jongman et al. 1987, Peeters
and Gardeniers 1998, Higgins et al. 1999, Manel et al.
1999, Palma et al. 1999), Gaussian logistic regressions
(ter Braak and Looman 1987, Legendre and Legendre
1998), discriminant analyses (Legendre and Legendre
1998, Livingston et al. 1990, Manel et al. 1999), Ma-
halanobis distances (Clark et al. 1993), and artificial
neural networks (Manel et al. 1999, Özesmi and Özes-
mi 1999, Spitz and Lek 1999). All these methods share
largely similar principles:
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1) The study area is modeled as a raster map com-
posed of N adjacent isometric cells.

2) The dependent variable is in the form of presence/
absence data of the focal species in a set of sampled
locations.

3) Independent ecogeographical variables (EGV) de-
scribe quantitatively some characteristics for each cell.
These may express topographical features (e.g., alti-
tude, slope), ecological data (e.g., frequency of forests,
nitrate concentration), or human superstructures (e.g.,
distance to the nearest town, road density).

4) A function of the EGV is then calibrated so as to
classify the cells as correctly as possible as suitable or
unsuitable for the species. The details of the function
and of its calibration depend on the analysis.

Sampling the presence/absence data is a crucial part
of the process. The sample must be unbiased to be
representative of the whole population. Absence data
in particular are often difficult to obtain accurately. A
given location may be classified in the ‘‘absence’’ set
because (1) the species could not be detected even
though it was present (McArdle 1990, Solow 1993; for
example, Kéry [2000] found that 34 unsuccessful visits
were needed before one can assume with 95% confi-
dence that the snake Coronella austriaca was absent
from a given site), (2) for historical reasons the species
is absent even though the habitat is suitable, or (3) the
habitat is truly unsuitable for the species. Only the last
cause is relevant for predictions, but ‘‘false absences’’
may considerably bias analyses.

Here we propose a new approach specifically de-
signed to circumvent this difficulty. Requiring only
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FIG. 1. The distribution of the focal species on any ecogeographical variable (black bars) may differ from that of the
whole set of cells (gray bars) with respect to its mean (mS ± mG), thus allowing marginality to be defined. It may also differ
with respect to standard deviations (sS ± sG), thus allowing specialization to be defined.

presence data as input, the Ecological-Niche Factor
Analysis (ENFA) computes suitability functions by
comparing the species distribution in the EGV space
with that of the whole set of cells. In the present paper,
we expose the concepts behind the ENFA, develop the
mathematical procedures required (and implemented in
the software Biomapper), and illustrate this approach
through an habitat-suitability analysis of the Alpine
ibex (Capra ibex).

MARGINALITY, SPECIALIZATION, AND THE

ECOLOGICAL NICHE

Species are expected to be nonrandomly distributed
regarding ecogeographical variables. A species with an
optimum temperature, for instance, is expected to occur
preferentially in cells lying within its optimal range.
This may be quantified by comparing the temperature
distribution of the cells in which the species was ob-
served with that of the whole set of cells. These dis-
tributions may differ with respect to their mean and
their variances (Fig. 1). The focal species may show
some marginality (expressed by the fact that the species
mean differs from the global mean) and some special-
ization (expressed by the fact that the species variance
is lower than the global variance).

Formally, we define the marginality (M) as the ab-
solute difference between global mean (mG) and species
mean (mS), divided by 1.96 standard deviations (sG) of
the global distribution

zm 2 m zG SM 5 . (1)
1.96sG

Division by sG is needed to remove any bias intro-
duced by the variance of the global distribution: a cell

randomly chosen from a distribution is a priori ex-
pected to lie that much further from the mean as the
variance in distribution is large. The coefficient weight-
ing sG (1.96) ensures that marginality will be most
often be between zero and one. Namely, if the global
distribution is normal, the marginality of a randomly
chosen cell has only a 5% chance of exceeding unity.
A large value (close to one) means that the species
lives in a very particular habitat relative to the reference
set. Note that equation (1) is given here mainly to ex-
plain the principle of the method; the operational def-
inition of marginality implemented in our software is
provided by equation (10), which is a multivariate ex-
tension of (1).

Similarly, we define the specialization (S ) as the ratio
of the standard deviation of the global distribution (sG)
to that of the focal species (sS),

sGS 5 . (2)
sS

A randomly chosen set of cells is expected to have
a specialization of one, and any value exceeding unity
indicates some form of specialization. We reemphasize
that specific values for these indexes are bound to de-
pend on the global set chosen as reference, so that a
species might appear extremely marginal or specialized
on the scale of a whole country, but much less so on
a subset of it.

Extending these statistics to a larger set of variables
directly leads to Hutchinson’s (1957) concept of the
ecological niche, defined as a hyper-volume in the mul-
tidimensional space of ecological variables within
which a species can maintain a viable population
(Hutchinson 1957, Begon et al. 1996). The concept is
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used here exactly in the same sense: by ecological niche
we refer to the subset of cells in the ecogeographical
space where the focal species has a reasonable prob-
ability to occur. This multivariate niche can be quan-
tified on any of its axes by an index of marginality and
specialization.

Some of these axes are obviously more interesting
than others, and this is why a factor analysis is intro-
duced. The reasons are actually double. First, ecolog-
ical variables are not independent. As more and more
are introduced in the description, multicollinearity and
redundancy arise. One aim of factor analyses is to trans-
form V correlated variables into the same number of
uncorrelated factors. As these factors explain the same
amount of total variance, subsequent analyses may be
restricted to the few important factors (e.g., those ex-
plaining the largest part of the variance) without losing
too much information.

Second, specialization is expected to depend on in-
teractions among variables. For instance, the temper-
ature one species prefers might vary with humidity.
Species may thus specialize on a combination of var-
iables, rather than on every variable independently. A
factor analysis may allow extraction of the linear com-
binations of original variables on which the focal spe-
cies shows most of its marginality and specialization.
In Principal Component Analyses (Cooley and Lohnes
1971, Legendre and Legendre 1998), axes are chosen
so as to maximize the variance of the distribution. In
ENFA, by contrast, the first axis is chosen so as to
account for all the marginality of the species, and the
following axes so as to maximize specialization, i.e.,
the ratio of the variance in the global distribution to
that in the species distribution.

FACTOR EXTRACTION

Outline of the principles

We use raster maps, which are grids of N isometric
cells covering the whole study area. Each cell of a map
contains the value of one variable. Ecogeographical
maps contain continuous values, measured for each of
the V descriptive variables. Species maps contain boo-
lean values (0 or 1), a value of 1 meaning that the
presence of the focal species was proved on this cell.
A value of zero simply means absence of proof.

Each cell is thus associated to a vector whose com-
ponents are the values of the EGV in the underlying
area, and can be represented by a point in the multi-
dimensional space of the EGVs. If distributions are
multinormal, the scatterplot will have the shape of a
hyper-ellipsoid (Fig. 2). The cells where the focal spe-
cies was observed constitute a subset of the global
distribution and are plotted as a smaller hyper-ellipsoid
within the global one. The first factor, or marginality
factor, is the straight line passing through the centroids
of the two ellipsoids. The species marginality is the
distance between these centroids, standardized as in Eq.

1. Fig. 2 plots this step for a three-dimensional initial
set.

To obtain the specialization factors, the reference
system is changed in order to transform the species
ellipsoid into a sphere, the variance of which equals
unity in each direction. In this new metrics, the first
specialization factor is the one that maximizes the var-
iance of the global distribution (while orthogonal to
the marginality factor). The other specialization factors
are then extracted in turn, each step removing one di-
mension from the space, until all V factors are extract-
ed. All specialization factors are orthogonal in the sense
that the distribution of the species subset on any factor
is uncorrelated with its distribution on the others. As
factors are sorted by decreasing order of specialization,
the first few (F) will thus generally contain most of the
relevant information. Their small number and inde-
pendence make them easier to use than the original
EGVs, so that all following operations will be restricted
to them. In particular, the suitability of any cell for the
focal species (be it classified as 0 or 1 for observation
data) will be calculated according to its position in the
F-dimensional space.

Mathematical procedures

Ecogeographical variables are first normalized as far
as possible, e.g., through Box-Cox transformation (So-
kal and Rohlf 1981). Though multinormality is theo-
retically needed for factor extraction through eigen-
system computation (Legendre and Legendre 1998),
this method seems quite robust to deviations from nor-
mality (Glass and Hopkins 1984). EGVs are then stan-
dardized by retrieving means and dividing by standard
deviations:

x 2 x̄ij jz 5 (3)i j sxj

where xij is the value of the variable xj in cell i, x̄j the
mean of this variable over all cells, and s its standardxj

deviation. Let Z be the N 3 V matrix of standardized
measurements zij. The V 3 V covariance matrix among
standardized variables is then computed as

1
TR 5 Z Z (4)G N

where ZT is the transposed matrix of Z. Because of
standardization (Eq. 3), RG is also a correlation matrix.

The NS lines of Z corresponding to the NS cells where
the focal species was detected are then stored in a new
NS 3 V matrix (say S), from which the V 3 V species
covariance matrix is calculated:

1
TR 5 S S. (5)S N 2 1S

Note that in contrast to RG, RS is not a correlation
matrix, since standardization was performed on the
global data set, not on the species subset.
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FIG. 2. Geometrical interpretation of the Ecological-Niche Factor Analysis. Square cells of the study area are represented
in a three-EGV space. The larger, lighter balloon represents the global cloud of cells, while the smaller, darker balloon
represents the subset of cells where the focal species was observed. The straight line passing through their centroids (mG and
mS) is the marginality factor. In order to extract the variance associated with this factor, the cell coordinates are projected
on a plane p perpendicular to it, thereby producing the two ellipses. In reality, those operations are typically conducted with
20–30 EGVs.

Let u be a normed vector of the EGV space. The
variance of the global distribution on this vector is
uTRGu, while that of the species distribution is uTRSu.
The first specialization factor should thus maximize the
ratio Q(u) 5 uTRGu/uTRSu. However, this vector must
also be orthogonal to the marginality factor m, given
as the vector of means over the V columns of S:

NS1
m 5 z . (6)O i j5 6N i51S

The problem therefore becomes that of finding the
vector u that maximizes Q(u) under the constraint mTu
5 0. This is equivalent to finding u, such that

T u R u 5 1S
T u m 5 0 (7)


Tu R u max. G

A change in variables allows us to rewrite the prob-
lem

Tv v 5 1
Tv y 5 0 (8)


Tv Wv max

where v 5 u, y 5 z/ , and z 5 m, W 5½ T 2½R Ïz z RS S

RG is a symmetric matrix. It can be shown that2½ 2½R RS S

the solution is given by the first eigenvector of

T TH 5 (I 2 yy )W(I 2 yy ). (9)V V

Indeed,
1) y is an eigenvector of H because Hy 5 (IV 2

yyT)W (IV 2 yyT)y 5 0;
2) H is symmetrical and thus admits a base of or-

thonormed eigenvectors so that Hv 5 lv ⇒ vTy 5 0;
and,

3) vTHv is maximum for the first eigenvector, which
also maximizes vTWv since vTy 5 0 ⇒ vTHv 5 vT(IV

2 yyT)W (IV 2 yyT) v 5 vTWv.
The V eigenvectors of H are then back transformed,

and the new eigenvectors (u 5 v) are stored in a2½RS

matrix U. These vectors are RS-orthogonal (all Su dis-
tributions have variance 1 and are uncorrelated). Fur-
thermore, due to the constraint that u be orthogonal to
m, this system has one null eigenvalue. The corre-
sponding eigenvector is thus deleted from U, and m is
substituted instead as the first column. It should be
noted that, although all marginality is accounted for by
the first factor, this factor is not ‘‘pure,’’ in that the
niche of the focal species may also display some re-
striction on it, in addition to its departure from the
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FIG. 3. The suitability of any cell from the global distri-
bution is calculated from its situation (arrow) relative to the
species distribution (histogram) on all selected niche factors.
Specifically, it is calculated as twice the dashed area (sum of
all cells from the species distribution that lie as far or farther
from the median dashed vertical line) divided by the total
number of cells from the species distribution (surface of the
histogram).

mean. The amount of specialization on this first axis
is provided by the difference between the traces (sum
of all eigenvalues) of W and H.

All these procedures are implemented in the software
Biomapper (A. H. Hirzel, J. Hausser, and N. Perrin,
University of Lausanne, Lausanne, Switzerland).

Interpretation of the factors

The coefficients mi of the marginality factor express
the marginality of the focal species on each EGV, in
units of standards deviations of the global distribution.
The higher the absolute value of a coefficient, the fur-
ther the species departs from the mean available habitat
regarding the corresponding variable. Negative coef-
ficients indicate that the focal species prefers values
that are lower than the mean with respect to the study
area, while positive coefficients indicate preference for
higher-than-mean values. An overall marginality M can
be computed over all EGV as

V
2mO i!i51

M 5 (10)
1.96

so that the marginalities of different species within a
given area can be directly compared.

The coefficients of the next factors receive a different
interpretation: the higher the absolute value, the more
restricted is the range of the focal species on the cor-
responding variable. Note that only absolute values
matter here, since signs are arbitrary. The eigenvalue
li associated to any factor expresses the amount of
specialization it accounts for, i.e., the ratio of the var-
iance of the global distribution to that of the species
distribution on this axis. Eigenvalues usually rapidly
decrease from the second factor to the last one, so that
only the first four or five axes are useful to compute
habitat suitability. Different criteria may be used for
the selection process, such as direct comparison with
the broken-stick distribution, or threshold value for cu-
mulative variance.

A global specialization index can be computed as

V

lO i!i51

S 5 (11)
V

and can be used for among-species comparisons, pro-
vided the same area is used as reference.

HABITAT-SUITABILITY MAPS

A variety of methods can be envisaged to compute
the suitability for the focal species of any cell from the
study area. Among the several alternatives tested, the
following approach turned out to be quite robust and
was implemented in Biomapper. It builds on a count
of all cells from the species distribution that lay as far
or farther apart from the median than the focal cell on

a factor axis. This count is normalized in such a way
that the suitability index ranges from zero to one.

Practically, this is performed by dividing the species
range on each selected factor in a series of classes, in
such a way that the median would exactly separate two
classes (Fig. 3). For every cell from the global distri-
bution, we count the number of cells from the species
distribution that lay either in the same class or in any
class farther apart from the median on the same side
(Fig. 3). Normalization is achieved by dividing twice
this number by the total number of cells in the species
distribution. Thus, a cell laying in one of the two clas-
ses directly adjacent to the median would score one,
and a cell laying outside the species distribution would
score zero.

An overall suitability index of the focal cell can then
be computed from a combination of its scores on each
factor. In order to account for the differential ecological
importance of the factors, we attribute equal weight to
marginality and specialization, but, while all the mar-
ginality component goes to the first factor, the spe-
cialization component is apportioned among all factors
proportionally to their eigenvalue (the marginality fac-
tor may thus take more than half of the weight if it
also accounts for some specialization).

Repeating this procedure for each cell allows to pro-
duce a habitat-suitability map, where suitability values
range from 0 to 1. To convert this quantitative (or semi-
quantitative) map into a presence/absence one, a
threshold value may be chosen, above which the cell
will be considered as suitable. A validation data set
can be used to find out the best threshold value, e.g.,
through the ROC plot method (Zweig and Campbell
1993, Fielding and Bell 1997), given some a priori cost
values to each type of inferential error. Typically, since
our method builds on presence data only, lower costs
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TABLE 1. Nature and source of the 34 ecogeographical variables used in the Ecological-Niche Factor Analysis (ENFA) of
ibex distribution.

Official
database Topic Source† Derived EGV

AS85R
DHM
GWN
Vector 200
SB

cover use
topography
hydrography
land map
ibex colonies

OFS
OFS
OFS
OFT
OFEFP

frequency and proximity of rock, snow, forests, meadows, etc.
altitude, slope, aspect, SD of altitude
proximity of rivers and lakes
proximity of villages, towns, railways, roads, etc.
calibrating and validation of presence data sets

†Abbreviations: OFT, Swiss Office of Topography; OFS, Swiss Office of Statistics; and OFEFP, Swiss Federal Office of
Environment.

TABLE 2. Variance explained by the first five (out of 34) ecological factors, and coefficient
values for the 13 most important initial variables.

Margin-
ality Spec. 1 Spec. 2 Spec. 3 Spec. 4

EGV (46%) (11%) (8%) (6%) (4%)

Rock frequency
Grass frequency
Altitude
Distance to grass
Distance to agricultural meadows

0.350
0.321
0.269

20.245
0.231

20.105
20.021
20.365

0.021
20.062

20.132
20.044
20.561
20.096

0.017

20.186
20.043

0.005
20.121

0.588

20.163
20.039

0.111
20.073
20.784

Frequency of .308 slope
Frequency of dense forest
Distance to secondary roads
Frequency of agricultural meadows
Distance to towns

0.230
20.228

0.222
20.212

0.209

20.035
0.025

20.012
20.907

0.012

0.074
20.727
20.049
20.011

0.049

0.011
0.037

20.129
0.236

20.021

0.004
20.001

0.115
20.383

0.002
1 SD of altitude
Distance to forests
Distance to villages

0.204
0.203
0.200

0.000
0.015
0.003

20.005
0.165
0.017

20.032
20.068
20.097

20.044
0.108
0.320

Notes: EGVs are sorted by decreasing absolute value of coefficients on the marginality factor.
Positive values on this factor mean that ibex prefer locations with higher values on the cor-
responding EGV than the mean location in Switzerland. Signs of coefficient have no meaning
on the specialization factors. The amount of specialization accounted for is given in parentheses
in each column heading.

should be attributed to cells wrongly considered as suit-
able than to cells wrongly considered as unsuitable.

AN APPLICATION TO THE ALPINE IBEX

The alpine ibex (Capra ibex) was exterminated from
the Swiss Alps in the last century due to excessive
hunting. Reintroduction attempts starting in 1911 were
highly successful, and colonies have since grown rap-
idly throughout the Swiss Alps. As a legally protected
species, ibex populations were carefully monitored
since their reintroduction, so that presence data are
highly reliable. However, as their expansion is still hin-
dered by the patchiness of their habitat, they presum-
ably do not occupy yet all suitable regions. Absence
data therefore do not necessarily reflect poor-quality
habitat, a point which strongly advocates for the use
of an analysis relying on presence data only.

The whole of Switzerland was chosen as reference
area, and modeled as a raster map based on the Swiss
Coordinate System (plane projection), comprising
4 145 530 square cells of 1 ha (100 3 100 m) each. We
used 34 ecogeographical variables derived from gov-
ernmental data bases (Table 1). Topographical data (al-
titude, slope, and aspect) were directly obtained as

quantitative variables. Frequency and distance data
were derived from boolean variables describing soil
occupancy, as official data bases attribute each cell to
one category only (snow, rocks, meadow, forest, build-
ing, etc), according to a regular sampling. Distance data
express the distance between the focal cell and the
closest cell belonging to a given category. Frequency
describes the proportion of cells from a given category
within a circle of 1200 m radius around the focal cell.
Circle surface is ;5 km2, which corresponds to the
mean area explored daily by individual ibexes (Ab-
derhalden and Buchli 1997).

The presence database was a digitized map of ibex
home ranges. The polygons drawn by fauna managers
were converted in raster format at the same resolution
as EGV maps. This raster was then randomly parti-
tioned into two data sets, every cell having a 0.5 chance
of belonging to each set. The first set (101 564 cells)
was used to calibrate the model, and the other set
(101 550 cells) to validate it. Application of the ENFA
method to the calibration set provided an overall mar-
ginality of M 5 1.1 and an overall specialization value
of S 5 2.2, showing that ibex’s habitat differs drasti-
cally from the mean conditions in Switzerland, and that
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FIG. 4. Habitat-suitability map for alpine ibex in Switzerland, as computed from ENFA. The scale on the right, marked
‘‘HS values,’’ shows the habitat suitability values represented by each shade in the map. The inset is displayed at a larger
scale at bottom left, with ibex presence data on the right. In the habitat-suitability map, light shading denotes areas more
suitable for ibex, and dark shading denotes areas less suitable. In the ibex presence map at bottom right, dark shading denotes
ibex presence. The largest suitable patch is indeed occupied, while the smaller one is not, being either too small or unreachable.

ibex are quite restrictive on the range of conditions
they withstand. The five factors retained (out of the 34
computed) accounted for 74% of the total sum of ei-
genvalues (that is, 100% of the marginality and 74%
of the specialization). The marginality factor alone ac-
counted for 46% of this total specialization, a quite
important value, meaning that ibex display a very re-
stricted range on those conditions for which they most-
ly differ from background Switzerland conditions.

Marginality coefficients (Table 2) showed that ibexes
are essentially linked to high-altitude, steep, and rocky
slopes, rich in pastures (rock frequency 5 0.35, altitude

5 0.27, frequency of slopes .308 5 0.23, grass fre-
quency 5 0.32, distance to grass 5 20.24). By con-
trast, ibex tends to avoid forest (frequency 5 20.23)
and human activities (distance to secondary roads 5
0.22, distance to agricultural meadows 5 0.23). Aspect
(northness, eastness) as well as snow and water (lakes,
rivers) had only marginal effects. The very large ei-
genvalue (76.6) attributed to this first factor means that
randomly chosen cells in Switzerland are ;80 times
more dispersed on this axis than the cells were ibex
was recorded. Or in other words, ibex are extremely
sensitive to shifts from their optimal conditions on this
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FIG. 5. Box plots presenting the distributions of the hab-
itat-suitability values for the whole set of cells (left) and the
validation subset (right). The latter is made of the 101 550
cells with ibex that were not included in the analysis. Boxes
delimit the interquartile range, the middle line indicating the
median; whiskers encompass the 80% confidence interval.
The two distributions obviously differ, as the global one is
mostly confined to low values (suitability, 5–33%), while the
validation set concentrates on high-suitability values (75–
99%).

axis. The next factors account for some more special-
ization, mostly regarding agricultural meadow fre-
quency and altitude (second factor) as well as forest
frequency (third factor), showing some sensitivity to
shifts away from their optimal values on these vari-
ables.

A suitability map was built from these five factors
for the whole of Switzerland, which is plotted on Fig.
4. Enlargement of a small part of it shows one suitable
patch where ibex was indeed recorded (on the right),
as well as one smaller suitable patch (on the left) where
ibex was not recorded. This patch presumably was not
colonized because of its isolation, or too small to sus-
tain a viable colony on the long term. As false positives
like this give no indication about the quality of our
model, standard quality estimators like the kappa index
(Monserud and Leemans 1992), which attribute the
same importance to false positives and false negatives,
cannot be used to validate it. Instead, we evaluated the
distribution of suitability values of cells from the val-
idation set. As shown in Fig. 5, these cells differ dras-
tically from the global distribution. Predicted suitabil-
ity exceeds 0.5 in 83% of cells, which differs highly
significantly (P , 0.0001, bootstrap test) from the val-
ue of 24% expected if cells were randomly chosen from
the global distribution.

DISCUSSION

Niche factors and distribution maps

The originality of the present approach lies in the
fact that it builds on the concept of ecological niche,

which is central to the whole field of ecology. A basic
tenet of the niche theory is that fitness (or habitat suit-
ability) does not bear monotonic relationships with
conditions or resources, but instead decreases from ei-
ther side of an optimum. In this respect, our approach
differs fundamentally from other techniques like dis-
criminant functions or first-order regressions, where
relationships are assumed linear and monotonic. Ac-
cordingly, our analysis directly provides two key mea-
surements regarding the niche of the focal species,
namely those of marginality and of specialization. Out-
puts thus have intuitive ecological meaning, and allow
direct comparisons with the niche of different species.
Application of the analysis to evaluate, e.g., species
packaging or niche-overlap measurement among mem-
bers of a guild, would be straightforward extensions
of the present approach (e.g., Dolédec et al. 2000)

Our application to ibex data, for instance, provides
quantitative estimates of marginality and specialization
for this species which evidence its very peculiar eco-
logical requirements. Furthermore, interpretation of the
factors in terms of the EGVs turns out to be very con-
sistent with the experience of field specialists. In par-
ticular, the EGVs that correlate with the marginality
factor are precisely those most often cited as particu-
larly relevant for ibex ecology (Rauch 1941, Nievergelt
1966, Nievergelt and Zingg 1986, Hausser 1995, Hin-
denlang and Nievergelt 1995).

These results obviously suffer from the same caveat
as any inferential approach: a variable might turn out
to correlate with one of the main axes not because of
its intrinsic importance, but because it correlates
strongly with another crucially important variable.
ENFA is a purely descriptive method and cannot extract
causality relations. Nonetheless, it provides (at worst)
important cues about preferential conditions, and re-
mains a powerful tool to draw potential habitat maps.

In this respect, a limitation of our software is that it
does not yet include confidence intervals on distribu-
tion maps. Increasingly, conservation managers are de-
manding risk analyses that incorporate uncertainties in
model predictions. These could clearly be obtained
through the bootstrapping of presence data. Though not
yet implemented in Biomapper, this procedure will cer-
tainly provide an important and useful extension.

A second limitation, less easy to deal with, is that
ENFA only handles linear dependencies within the spe-
cies niche. Multiplicative or nonlinear interactions can-
not be accommodated in the present state, except
through transformations or nonlinear combinations of
the original ecogeographical variables.

A third limitation is that some EGVs may turn out
to be constant in S, or in linear combination with other
EGVs, which makes RS singular. This is likely to hap-
pen with coarsely measured data or small species data
sets. Whenever this happens, Biomapper identifies the
constant or correlated EGVs so that the user can remove
(one of) them from the analysis. An alternative ap-
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proach would obviously consist of improving the field
sample, either by increasing the presence data set or
by measuring EGVs on a finer scale.

Finally, a last important point to emphasize again is
that our approach characterizes ecological niches rel-
ative to a reference area. Marginality and specialization
are thus bound to depend on the geographic limits of
the study area. Some species may turn out to occur at
the very edge of their distribution, and may thus appear
quite specialized in the reference set, however wide-
spread they might be otherwise. Reciprocally, ibex
would have appeared much less marginal and special-
ized had our sampling area been restricted to the Alps.
The same distinction must be applied here as the one
made between fundamental and realized niches (Hutch-
inson 1957). Our analysis does not investigate funda-
mental niches, but only their specific realization within
a given geographical context.

ENFA vs. logistic regressions

With respect to more standard techniques, a crucial
advantage of ENFA is that it does not require absence
data. Presence data are compared instead with back-
ground environment. This of course implies that pres-
ence data should be unbiased samples of actual distri-
butions, which we suspect might not be the case of
many available database, since sampling efforts are fre-
quently biased with respect to environment. However,
though this problem is difficult to circumvent, the point
must also be made that database often simply lack any
absence data. And when available, these may turn out
to be either unreliable (in the case of cryptic or poorly
known species) or meaningless (in the case of invading
species, or those living in fragmented habitats where
some patches have become extinct). As many species
enter one of these categories, our approach potentially
has a wide application range. In particular, predictions
about the expected expansion of invading species seem
a promising test bed.

In the case of stable populations from well-known
species, one might prefer more classical approaches
such as logistic regressions, able to extract relevant
information from absence or abundance data. This
point deserves proper investigation, in order to localize
the threshold where the benefits gained from incor-
porating absence data are compensated by the costs
induced by their possible poor quality. Investigations
are presently in progress to compare the power of
ENFA to that of classical logistic regression analyses
under different biological and sampling scenarios, in
order to assess their respective advantages and incon-
veniences. Preliminary results show ENFA to be more
robust than classical logistic regressions with respect
to several habitat-occupancy scenarios (Hirzel et al.
2001).

Finally, the point must also be made that the pro-
cedures used by standard stepwise analyses to select
significant EGVs from the original set turn out to be

highly sensitive to the algorithms chosen, as well as to
the input order. Consequences are that (1) many trials
are needed in order to sort out the ‘‘best’’ model, and
(2) variables that bear a causal relationship to the focal
species’ presence might well be lost in the process, if
other EGVs present spurious correlations. This implies
some subjective choices, and requires a good a priori
knowledge of the focal species’ ecology. In contrast,
our factor analysis does not reject any input EGV, but
only weights them. The subjective components and a
priori knowledge required are thereby kept minimal,
and correlations among variables and axes are imme-
diately visible and interpretable.
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