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Abstract

The failure of current strategies to provide an explanation for controversial findings on the pattern of pathophysiological
changes in Alzheimer’s Disease (AD) motivates the necessity to develop new integrative approaches based on multi-modal
neuroimaging data that captures various aspects of disease pathology. Previous studies using [18F]fluorodeoxyglucose
positron emission tomography (FDG-PET) and structural magnetic resonance imaging (sMRI) report controversial results
about time-line, spatial extent and magnitude of glucose hypometabolism and atrophy in AD that depend on clinical and
demographic characteristics of the studied populations. Here, we provide and validate at a group level a generative
anatomical model of glucose hypo-metabolism and atrophy progression in AD based on FDG-PET and sMRI data of 80
patients and 79 healthy controls to describe expected age and symptom severity related changes in AD relative to a
baseline provided by healthy aging. We demonstrate a high level of anatomical accuracy for both modalities yielding
strongly age- and symptom-severity- dependant glucose hypometabolism in temporal, parietal and precuneal regions and a
more extensive network of atrophy in hippocampal, temporal, parietal, occipital and posterior caudate regions. The model
suggests greater and more consistent changes in FDG-PET compared to sMRI at earlier and the inversion of this pattern at
more advanced AD stages. Our model describes, integrates and predicts characteristic patterns of AD related pathology,
uncontaminated by normal age effects, derived from multi-modal data. It further provides an integrative explanation for
findings suggesting a dissociation between early- and late-onset AD. The generative model offers a basis for further
development of individualized biomarkers allowing accurate early diagnosis and treatment evaluation.
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Introduction

Neuroimaging studies using [18F]fluorodeoxyglucose positron

emission tomography (FDG-PET) and structural magnetic reso-

nance imaging (sMRI) provide substantial evidence of high

sensitivity for early detection and progression assessment in

Alzheimer’s disease (AD) at a group and single subject level [1–

11]. However, among these studies there are a number of

discordant results in terms of spatial characteristics and magnitude

of glucose hypometabolism and atrophy [12–14]. The supposition

that age- and symptom severity-related variability are the main

cause for these discrepancies has motivated researchers to adopt

analytical strategies that split disease populations into subgroups

depending on age- or symptom-severity (e.g. early- and late-onset

AD) [12–14].

The question that needs to be answered is whether age and

symptom severity indeed account for most of these discrepancies.

In other words, what are the relative contributions of age and
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disease to the anatomical patterns of abnormality of structure and

function? Investigation of these relationships may also provide

clues to another long-time controversy – can the observed

differences between young and aged AD patients be regarded as

a continuum or is there a clear separation into two cohorts

dependent on separate pathological mechanisms?

Recent studies have suggested that AD related brain changes

may be similar to those associated with healthy aging. If so, this

could explain age overestimation determined from sMR images

from AD patients [15] and inaccuracies obtained with automated

classification-based computer diagnostics in the eldest healthy

controls and youngest AD patients [11]. However, these effects

can also be explained in a more simple way by the applied

methodology. Both AD and healthy aging have been linked to a

decrease in grey matter (GM) volume in extensive networks

covering substantial parts of the brain [16–18]. Partial overlaps

between these networks are therefore very likely and also occur in

some key regions for AD including the hippocampus and parietal

cortices. A statistical classification/prediction model trained either

for prediction of age or AD would therefore consider these regions

as important for separation/prediction. An older healthy control

would therefore have a higher probability to be misclassified as AD

when applying a classifier trained on younger AD subjects. In

contrast, age prediction in an AD patient using a model built on

healthy controls would result in an age overestimation in this

patient due to the partially overlapping network of reductions in

GM volume. Both predictions are fully in line with previous

findings [15,19].

Another controversially discussed issue is the relative capability

and sensitivity of FDG-PET and sMRI to detect AD related

pathology. Recent studies provided evidence for the superiority of

each of the two imaging modalities as compared to the other to

detect AD related pathology [10,20]. However, none of these

findings can be interpreted without serious methodical consider-

ations. Both studies restricted their analyses to univariate region-

of-interest statistics to determine the power of each modality to

discriminate between AD patients and control subjects. Although

this approach provides a good estimation of the differential

pathology in the region mostly affected by the disease, it does not

at all reflect the whole pattern of AD related pathology over the

whole brain. Yet, exactly this whole-brain pattern is crucial for

detection and differentiation of AD from healthy aging and other

neurodegenerative processes. A second methodological limitation

of previous studies is related to pre-processing of FDG-PET data.

These data are strongly affected by the underlying atrophy

pattern. A reduction in grey matter volume in a specific region

would therefore also lead to a reduction of the observed metabolic

signal due to increased contribution of other tissue types. This

effect is commonly known as partial volume effect (PVE) [21]. If

not accounted for, this effect strongly restricts the interpretation of

the observed FDG-PET signal due to a high susceptibility to the

underlying atrophy. A correction for this effect is therefore

necessary to enable a valid interpretation of the independent

contribution of both imaging modalities to detection of AD related

pathology.

To address these issues and questions we generate group level

anatomical models of pathophysiological changes observed in AD

using FDG-PET and sMRI data. In these models we account for

PVE and integrate disease-, age- and symptom severity-associated

changes in AD patients. We further dissociate them from healthy

aging related changes using a combination of voxel-based general

linear models (GLMs). We additionally assume that AD-induced

changes are added to changes observed in healthy aging. We use

the models to generate age- and symptom severity- specific whole-

brain patterns of glucose hypometabolism and atrophy. To

validate the obtained model and to address the questions described

above, we contrapose the models’ predictions in terms of

anatomical plausibility to findings reported in previous studies

investigating age- and AD-related changes. Thereby, we aim to

provide at a group level an integrative explanation for the

controversial findings described above regarding spatial charac-

teristics and magnitude of glucose hypometabolism and atrophy in

AD. We further make conclusions on the relative capability of

FDG-PET and sMRI to predict AD related pathology at a group

level.

We hypothesize, on the basis of the above considerations [12–

14] that a generative model predicting age and symptom severity

contributions to disease pathology based on data from two

imaging modalities – FDG-PET and sMRI – would provide a

robust and accurate differential pattern of glucose hypometabo-

lism and atrophy at different ages in AD patients. We expect

stronger changes in glucose metabolic compared to anatomical

data in earlier disease stages, in accordance with a recently

proposed model, which suggests that functional impairment

precedes structural changes in AD [22]. We also hypothesize that

patterns of brain atrophy associated with healthy aging would

overlap those associated with disease progression yet also show a

clearly distinguishable anatomical distribution pattern.

Methods

Subjects
To derive a generative model of age and symptom severity

related changes, we extracted from the Alzheimer’s disease

Neuroimaging Initiative (ADNI) database (www.adni-info.org)

sMRI and FDG-PET data from multiple centres of 80 patients

with a clinical diagnosis of AD and 79 healthy controls (Table 1). A

full list of subject and scan IDs used in this study is provided at the

following location: http://www.unil.ch/webdav/site/lren/shared/

Juergen/Overview_patandcon_MRIandPETdate.xlsx. For all sub-

jects, follow-up evaluations were available for up to 5 years after

initial examination. Control subjects and AD patient groups were

matched for gender and age. A diagnosis of AD was based on

NINCDS/ARDRA criteria [23]. Exclusion criteria for the ADNI

data included the presence of any significant neurological disease

other than AD, history of head trauma followed by persistent

Author Summary

Establishing an accurate diagnosis of Alzheimer’s disease
has been a major challenge in the past decades. With an
increasing amount of studies aiming at detection and
validation of imaging biomarkers for this disease, many
apparently controversial findings have been reported over
the time. The failure of current strategies to provide a
consistent explanation for these differential findings
motivates the necessity to develop new integrative
approaches based on multi-modal data that capture
various aspects of disease pathology. In our study we
propose such a generative model providing a compre-
hensive approach towards integration of previously
published differential findings in early- and late-onset
AD. We believe that our analytical strategy not only
provides the link between imaging biomarkers and clinical
phenotype considering the effects of aging, but could also
lead to new areas of research in terms of creation of new,
individualized biomarkers for a more accurate diagnosis of
Alzheimer’s disease.

Generative Biomarker Model in Alzheimer’s Disease

PLOS Computational Biology | www.ploscompbiol.org 2 April 2013 | Volume 9 | Issue 4 | e1002987



neurological deficits or structural brain abnormalities, psychotic

features, agitation or behavioural problems within the previous

three months or a history of alcohol or substance abuse. For most

subjects, multiple follow-up FDG-PET and sMRI scans were

available. Only data from the first examination date were used for

analysis. The study was conducted according to the Declaration of

Helsinki. Written informed consent was obtained from all

participants before protocol-specific procedures were performed.

Data used in the preparation of this article were obtained from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

(adni.loni.ucla.edu).

The ADNI was launched in 2003 by the National Institute on

Aging (NIA), the National Institute of Biomedical Imaging and

Bioengineering (NIBIB), the Food and Drug Administration

(FDA), private pharmaceutical companies and non-profit organi-

zations, as a $60 million, 5- year public-private partnership. The

primary goal of ADNI has been to test whether serial magnetic

resonance imaging (MRI), positron emission tomography (PET),

other biological markers, and clinical and neuropsychological

assessment can be combined to measure the progression of mild

cognitive impairment (MCI) and early Alzheimer’s disease (AD).

Determination of sensitive and specific markers of very early AD

progression is intended to aid researchers and clinicians to develop

new treatments and monitor their effectiveness, as well as lessen

the time and cost of clinical trials. The Principal Investigator of

this initiative is Michael W. Weiner, MD, VA Medical Center and

University of California – San Francisco. ADNI is the result of

efforts of many co-investigators from a broad range of academic

institutions and private corporations, and subjects have been

recruited from over 50 sites across the U.S. and Canada. The

initial goal of ADNI was to recruit 800 adults, ages 55 to 90, to

participate in the research, approximately 200 cognitively normal

older individuals to be followed for 3 years, 400 people with MCI

to be followed for 3 years and 200 people with early AD to be

followed for 2 years.’’ For up-to-date information, see www.adni-

info.org.

sMRI data
The sMRI dataset included standard T1-weighted images

obtained with different scanner types using a 3D MP-RAGE

(magnetization-prepared 180 degrees radio-frequency pulses and

rapid gradient-echo) sequence varying in TR and TE (repetition

and echo time) with an in-plane resolution of 1.2561.25 mm and

1.2 mm slice thickness acquired at 1.5T magnetic field strength.

All raw data were pre-processed to correct for distortion and B1

non-uniformity as described on the ADNI webpage (http://www.

loni.ucla.edu/ADNI/Data/ADNI_Data.shtml).

FDG-PET data
We analysed FDG-PET data for subjects who also underwent

sMRI scans. FDG-PET data were acquired with different PET-

scanner types according to one of three different protocols: 1)

dynamic: a 30 min six-frame acquisition (6 five-minute frames),

with scanning from 30 to 60 min post FDG injection; 2) static: a

single-frame, 30 min acquisition with scanning 30–60 min post

injection; and 3) quantitative: a 60 min dynamic protocol

consisting of 33 frames, with scanning beginning at injection and

continuing for 60 min. The majority of the scans in the ADNI

study were acquired with the first acquisition protocol. Images

further differed in resolution, orientation, voxel and image

dimensions and count statistics. The frames from 30 to 60 minutes

post injection were spatially realigned to minimize inter-frame

motion artefacts and a mean image of these frames was calculated

for each subject. These mean images were used for further

analysis.

Image pre-processing
All data processing steps were carried out using the SPM5

software package (Statistical Parametric Mapping software:

http://www.fil.ion.ucl.ac.uk/spm/) implemented in Matlab 7.7

(MathWorks Inc., Sherborn, MA). The same pre-processing

algorithm was used for sMRI and FDG-PET data, as described

elsewhere [11]. This procedure includes co-registration and

interpolation of both FDG-PET and sMR images to an isotropic

resolution of 16161 mm3, bias correction for inhomogeneity

artefacts for sMRI data, segmentation of sMRI data into different

tissue classes (only the grey matter tissue class is used for further

analyses), and masking of non-GM voxels in FDG-PET data. PVE

correction using the modified Müller-Gärtner method [21,24] was

in the PVElab software package [25] that is compatible with

SPM5 only. This procedure uses the segmented sMR images to

account for PVE and for potential atrophy effects in FDG-PET.

DARTEL (Diffeomorphic Anatomical Registration using Expo-

nentiated Lie algebra) based on grey matter tissue probability

maps was used for spatial normalization of data to an average size

template created from all study participants [26]. Structural MR

images were additionally modulated to preserve the total amount

of signal from each region. The same deformation matrices used to

normalise sMRI scans to a template were used to co-register the

FDG-PET images. After spatial normalization anatomical regions

of all subjects were located at same location in the images.

Smoothing with a Gaussian kernel of 12 mm FWHM (full width at

half maximum) accounted for minor misalignment errors.. FDG-

PET data were intensity normalized to cerebellar mean [27] and

masked to avoid big edge effects. The cerebellar region was chosen

for intensity normalization of FDG-PET as it has been shown to

be a region of choice for intensity normalization which is

unaffected in healthy aging and early stages of AD when

correcting for PVE caused by atrophy [27–29].

FDG-PET and sMRI models of healthy aging and AD
All statistical analyses were also carried out using the SPM5

software package and Matlab 7.7. The effect of aging in healthy

control subjects was estimated separately for FDG-PET and sMRI

with voxel-wise linear regressions. To obtain the healthy aging

component of our generative model we used the beta coefficients

of aging in healthy controls to simulate voxel-wise changes in both

imaging modalities for the age range 50 to 80 years (Figure 1a).

The estimated values at 50 years were used as a 100% baseline.

Estimated age-related changes for the whole age range for both

FDG-PET and sMRI were expressed as percent decreases relative

to this baseline.

Table 1. Subject group characteristics.

Controls AD T-test (df,t,p)

Number 79 80 -

Male/Female 41/38 40/40 -

Age (years) 75.864.9 75.767.0 157,0.1,.887

Age range (years) 62–87 55–88 -

MMSE (score) 28.761.6 23.662.2 157,16.6,,.001

Mean 6 standard deviation. AD Alzheimer’s disease, con converters, MMSE Mini
Mental State Examination, noncon non-converters.
doi:10.1371/journal.pcbi.1002987.t001

Generative Biomarker Model in Alzheimer’s Disease
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To dissociate healthy aging- and AD-related changes, the

variance in glucose utilization and GM atrophy explained by

healthy aging was removed by voxel-wise linear regressions from

all imaging data used for further models (control subjects and AD

patients for both FDG-PET and sMRI; [19]). GLMs with age and

symptom severity (as measured by MMSE, [30]) as regressors were

built for the AD group separately for both FDG-PET and MRI.

To model the interaction of both factors the product of age and

symptom severity was also included. The inclusion of the

interaction between age and symptom severity accounts for any

differential disease progression associated with age in the AD

group. In this model we took the control group mean glucose

metabolism and GM volume at each voxel as a baseline. In an

effort to define the specific variance attributable to AD explained

by aging and symptom severity we removed variance from this

baseline that was explained by these factors and their interaction

(Figure 1c).

Further, we determined at what age the changes related to

normal aging become similar to those found in AD. For this

purpose, a third GLM, using age as the only factor, was calculated

in the AD cohort for both FDG-PET and sMRI data. The ages at

which the separate regressions for normal and AD associated

Figure 1. Schematic representation of voxel-wise age- and symptom severity- related models. a) Schematic representation of age-
related changes in one voxel (in %) considering GM volume at the age of 50 years as baseline. b) Schematic representation of changes related to
healthy aging (black line) and age-related differences in AD (red line) in one voxel. Intersection age (dotted line) represents the age at which healthy
aging in this voxel becomes similar to changes observed in AD. The hinge in the red line (aging in AD) at the intersection point indicates that after the
intersection age, according to our assumption of the additive impact of AD related processes to healthy aging, the healthy aging model would apply
in AD patients as no pathological processes in terms of atrophy or glucose hypometabolism are longer observable after this time point. c) Decrease
(in %) in GM volume observed in an exemplary voxel in AD depending on the constellation of age and symptom severity (MMSE) relative to the
baseline provided by healthy aging (violet line). AD Alzheimer’s disease, GM grey matter, MMSE Mini Mental State Examination.
doi:10.1371/journal.pcbi.1002987.g001

Generative Biomarker Model in Alzheimer’s Disease
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aging intersect (referred to as intersection ages) were calculated on

a voxel-wise basis (Figure 1b). To calculate these voxel-wise

intersection ages xage the linear regression equations for healthy

aging and aging in AD (yCon~xage
:bConzcCon and

yAD~xage
:bADzcAD, where yCon and yAD are the predicted

voxel-wise grey matter volumes/glucose metabolism, cCon and cAD

the corresponding intercepts and bCon and bAD the slopes of

regression lines in controls and AD respectively) were set equal and

resolved for xage. The intersection age xage is then given by:

xage~
cCon{cAD

bAD{bCon

:

Generally, an early intersection age indicates that a region is

relatively spared by AD, if healthy aging affects AD patients

similarly to controls. A higher intersection age suggests that the

region is predominantly affected by disease-related processes.

All three voxel-based models are based on a previously validated

assumption of linearity between healthy aging- and AD symptom

severity- related changes with FDG-PET and sMRI data. [16,31].

To exclude a more complex e.g., quadratic relationship between

age or symptom severity in the AD cohort we calculated further

regression analyses after removing variance explained by healthy

aging. These comprised a) including only linear relationships for

both age and symptom severity; b) additionally modelling

quadratic relationships with age; and c) additionally modelling a

quadratic relationship for symptom severity. Gender was included

as a covariate for both imaging modalities and total intracranial

volume was additionally included as a covariate for the sMRI data.

A significance threshold of 0.001 uncorrected at voxel-level and

0.05 family-wise error (FWE)-corrected for non-stationarity of

smoothness at cluster level was used for statistical analyses [32].

Statistical analysis of behavioural data
Group comparisons of AD patients and control subjects for age

and symptom severity were carried out using T-tests with a

significance threshold of p,.05. Group differences regarding

gender were evaluated using a chi-square test for independent

samples. The statistical analyses were performed with SPSS 17.0

(http://www.spss.com/statistics/). A Pearson’s correlation coeffi-

cient was calculated (p,.05) in the AD group to investigate the

relationship between age and symptom severity.

Results

Subject demographic characteristics
AD patients and control subjects did not differ in age

[t(157) = 0.1;p = .887]. As expected MMSE differed significantly

between the groups [t(157) = 16.6;p,.001]. The comparison of

AD patients and control subjects in relation to sex showed no

statistical differences [x2(1) = 0.06;p = .811].

Differential pattern of changes related to healthy aging
in FDG-PET and sMRI

The generative model for healthy aging based on sMRI reveals

a widespread pattern of grey matter volume reductions sparing

only bilateral dorsal primary sensorimotor regions, brainstem,

lateral thalamus and the dorsal part of caudate nucleus (Figure 2a).

We observe the greatest reductions in GM volume, of more than

10% per decade, in right superior parietal lobule, superior and

inferior frontal gyrus, inferior frontal sulcus, primary auditory

cortex, pars triangularis, and anterior hippocampus. Left-hemi-

spheric reductions are observed in the premotor cortex, and in

superior and middle frontal gyri. Bilateral GM volume reductions

are restricted to calcarine gyri, insulae, anterior cingulate cortex,

superior temporal sulcus and posterior hippocampus.

The equivalent FDG-PET based model demonstrates a specific

pattern of age-related metabolic changes with an age related

decrease in glucose utilization of more than 10% per decade in

bilateral parietal, occipital, sensorimotor, premotor, dorsolateral

prefrontal and anterior insular cortices. Additionally, we see a

major reduction in glucose metabolism in bilateral posterior

putamina and in the left dorsal caudate nucleus (Figure 1b).

Age- and symptom severity- related changes
We report a negative relationship between symptom severity

and both metabolism and GM volume (Figure 3) and (Figure 4).

Lesser reductions in glucose utilization and GM volume are

associated with greater age in AD patients.

Symptom severity related GM volume changes at age 60 years

were detected throughout the brain with greatest degrees of

atrophy seen in bilateral parietal, temporal, occipital, dorsolateral

prefrontal, posterior cingulate and premotor cortices, the precu-

neus, dorsal caudate nucleus, amygdala and hippocampus. At 80

years of age, the greatest, bilateral, symptom severity related

atrophy was found in parietal, temporal, occipital, primary

sensorimotor and dorsolateral prefrontal cortices, the hippocam-

pus and thalamus.

We show symptom severity- related glucose metabolism

reductions bilaterally in posterior temporal, parietal, lateral

occipital, dorsolateral prefrontal and premotor cortices and in

the precuneus. Symptom severity related hypometabolism is less

extensive at higher than lower ages.

In general, regional decreases in metabolism and grey matter

volumes relative to healthy aging are significantly more pro-

nounced in the lower compared to higher age range in AD. In the

model, we observe substantial age-dependant differences in terms

of hypometabolism and atrophy in AD patients compared to a

healthy aging baseline even at an MMSE score of 30. At the age of

60 years these differences are bilaterally restricted to inferior

frontal gyrus, premotor regions, inferior and medial temporal

gyrus, cerebellum, rectal gyrus and to left parietal regions. Regions

showing an initial difference in this age range do not correspond

well to the anatomical pattern observed in later symptom severity

stages and remain rather less affected compared to other regions.

Initial differences observed at the age of 80 years are located in

bilateral parietal, bilateral hippocampal and left sensorimotor

regions and in both caudate nuclei.

We observe a more consistent anatomical pattern of initial

differences in hypometabolism at a MMSE score of 30. For the

whole age range of 60–80 years, initial glucose hypometabolism is

observed in bilateral parietal, inferior temporal and posterior

cingulate cortices, posterior thalamus and the precuneus. Addi-

tionally, at 80 years of age we demonstrate significant differences

in bilateral primary sensorimotor and premotor regions and in the

anterior temporal lobes. All regions showing initial glucose

hypometabolism, except for the posterior thalamus, also show

the steepest symptom severity-related metabolic decline. Regions

hypometabolic only at age 80 show no specific symptom severity-

related decline.

Dissociating healthy aging from Alzheimer’s disease
To dissociate brain changes related to healthy aging from AD

pathology at specific ages we computed the intersection age of

models for healthy aging and aging in AD at the voxel level

(Figure 5). With sMRI, we see the highest intersection ages

bilaterally in hippocampus, anterior and posterior thalamus,

posterior and midcingulate, parietal, temporal, cerebellar, pre-

Generative Biomarker Model in Alzheimer’s Disease
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frontal and premotor regions. With FDG-PET, regions with the

highest intersection ages are bilaterally restricted to precuneus,

cerebellum, anterior and posterior cingulate, posterior parietal,

temporal, lateral occipital, primary motor, premotor and prefron-

tal cortices and the left dorsal caudate nucleus.

Linear relationship between age, symptom severity and
imaging results

With sMRI, the linear regression model describing the

relationship between age, symptom severity and structural changes

in AD showed a significant correlation for each factor with

atrophy (Figure 6a). After removing the variance attributable to

healthy aging, age correlates positively with GM volume in AD in

right premotor and bilaterally in parietal, temporal, occipital and

medial and lateral prefrontal regions. Additional significant

bilateral positive correlations were observed in anterior cingulate

cortex and in the cerebellum. These counter-intuitive positive

correlations can be interpreted as reflecting the additional age-

specific atrophy needed to produce a similar degree of symptom

severity in younger compared to older AD patients. There were no

significant negative correlations. Further, we found significant

bilateral positive correlations with symptom severity in temporal,

lateral and medial prefrontal, inferior parietal, occipital regions

and in thalamus as well as the left premotor cortex. Again no

negative correlations were observed.

With FDG-PET we found a significant positive correlation

between age and glucose metabolism in bilateral temporal and

parietal regions. There were no other significant correlations with

age or symptom severity.

Inclusion of a quadratic relationship with age or MMSE into the

models revealed significant positive correlations of glucose metab-

olism with a quadratic age coefficient only in left dorsal parietal

cortex (Figure 5b). No other significant correlations were observed.

Discussion

In this study we demonstrate that a generative model captures

the anatomical and metabolic features associated with AD and

Figure 2. Healthy aging related changes observed in MRI (a) and FDG-PET (b) considering the expression of GM volume and
glucose metabolism at the age of 50 years as baseline. FDG-PET [18F]fluorodeoxyglucose positron emission tomography, GM grey matter, MRI
structural magnetic resonance imaging.
doi:10.1371/journal.pcbi.1002987.g002

Figure 3. A linear model of age and MMSE related changes observed in AD in FDG-PET considering the healthy control group as
baseline. AD Alzheimer’s disease, FDG-PET [18F]fluorodeoxyglucose positron emission tomography, MMSE Mini Mental State Examination.
doi:10.1371/journal.pcbi.1002987.g003
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healthy aging in the age range 60 to 80 years accurately and

robustly. The model differentiates between the effects of aging and

symptom severity in AD patients. It also provides a means to test

for interactions between them, as exemplified here with disease

progression and patient age. The age-dependant differential

sensitivity of structural and metabolic scanning for the detection

of AD pathology we demonstrate emphasises the ability of our

generative model to infer expected age- and symptom severity-

specific changes recorded with both imaging modalities.

Our study’s three main findings support and extend observa-

tions made previously. Firstly, the spatial location of changes

related to different ages and symptom severities in AD was mostly

consistent with regions reported in the literature [33–35].

However we also identified a more widespread network of regions

showing age related metabolic decreases and atrophy whilst

controlling for potential PVE related changes in FDG-PET. The

AD model at lower ages was substantially more extensive in terms

of decreases in glucose metabolism and GM volume than at

greater ages. This finding is in accordance with previous research

[12–14].

Our second result is that in general, the magnitude of healthy

aging related imaging changes between 50 and 80 years is

comparable to that of changes associated with an increase in AD

symptom severity at any age. Substantial regional overlap in both

hypometabolism and atrophy was observed between a network of

areas affected by healthy aging and that identified in AD. To

interpret this overlap it is important to note that all changes related

to age and symptom severity in AD we report here were calculated

after removing the variance explained by healthy aging. That

means that all age-related differences can be interpreted as an add-

on required to normal age-related changes to induce a predefined

symptom severity at the corresponding age. In previous research

comparing differently aged AD groups with age-matched healthy

control subjects a split of AD into different subgroups e.g., early-

and late-onset AD, was suggested [12]. In contrast, the results of

our study indicate that the anatomically different qualitative and

quantitative patterns observed in AD at different ages may be

explicable by regionally inhomogeneous, age-related, baseline

changes in healthy controls. This notion is supported by the

observation of a similar anatomical pattern of structural and

metabolic changes across the studied age range in AD patients.

Overall, our results suggest a more integrative view of AD

indicating that previously reported differences between early- and

late-onset AD patients can be explained as an interaction of AD

pathology with changes due to healthy aging. More simple,

assuming that AD affects parietal and temporal regions, a strong

healthy aging related decrease in glucose metabolism e.g. in the

parietal cortex with at the same time relatively preserved

Figure 4. A linear model of age and MMSE related changes observed in AD in MRI considering the healthy control group as
baseline. AD Alzheimer’s disease, MMSE Mini Mental State Examination, MRI structural magnetic resonance imaging.
doi:10.1371/journal.pcbi.1002987.g004
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metabolism in the temporal region would lead to an observation of

both regions when comparing younger patients to younger

controls. Yet, only the temporal region would be detected when

comparing older patients to older controls.

A third result is in the dissociation of age- and disease- related

processes inferred from the intersection ages of healthy aging and

AD models. While in previous research some studies successfully

applied whole-brain approaches to discriminate dementia patients

from control subjects [6,11,36], sparse solutions based on highly

discriminative features have been used in most [4,37–40].

However, there is a problem with feature selection that has been

neglected till now. This is the assumption of feature reliability,

independent of the expression of possible confounding variables.

We decided to investigate this assumption by testing whether a

correlation of AD symptom severity with imaging data was also

affected by the processes of normal aging as defined in a healthy

population. We did this with our described method of model

intersections. Our results suggest that features like local atrophy or

glucose hypometabolism that discriminate between AD patients

and control subjects at the age of 60 are not necessarily observed at

age 80. This non-stationarity of features is mainly explained by

atrophy and hypometabolism related to healthy aging, which

affect some regions similarly to AD. We previously demonstrated

that accounting for changes related to healthy aging improves AD

detection with support vector machine classification [19]. This

study extends that approach and suggests that diagnostic classifier

algorithms, like machine learning techniques, when applied to the

general population, need to take potential interactions of imaging

features with demographic and clinical factors into account.

Related to this, our intersection model also provides evidence that

the pathological pattern observed in AD in some regions is clearly

distinguishable from healthy aging even at very advanced age.

The obtained models could be used to improve early AD

detection e.g. by training automated classifiers on age- and

symptom severity- specific pathological AD patterns (features)

extracted by thresholding the obtained AD model. They could also

be applied directly in clinical assessment by evaluating the

similarity of observed pathology in any individual to age- and

symptom severity- specific patterns generated using the AD model.

Thereby, to enable individual assessment, percent signal difference

maps could be calculated between each subject’s imaging data and

imaging data generated using the healthy aging model. However,

both of these approaches require careful evaluation in future

studies prior to clinical application.

Nonetheless, a valid interpretation of our results needs to

consider the effects of several other assumptions and limitations.

First, the sensitivity of the generative model for detecting and

predicting AD pathology depends on the accuracy of the model of

healthy aging. The age- related, widespread patterns of brain

atrophy and hypometabolism we find are consistent with previous

findings [16,31,41–43]. The most prominent changes of glucose

hypometabolism we observed include large parts of an occipital-

parietal-frontal network. The only non-linear (quadratic) relation-

ship between age and metabolic changes we found in an

anatomically highly restricted area in the left dorsal parietal

cortex. The absence of more complex relationships between these

parameters indicates that linear models are very probably a

sufficient approximation of the underlying structural and meta-

bolic processes.

A major advantage of our approach is the generalizability of our

model to any constellation of age and symptom severity. A further

difference to conventional approaches is that the method we

propose relies on a voxel-wise group mean, ignoring the variance

and so allowing detection of quite minor group differences. This

type of analysis, though more flexible than conventional statistics,

nevertheless requires caution in the interpretation of results. Minor

differences between groups of healthy subjects and AD patients

could still be due to random effects unrelated to AD. However, as

Figure 5. Voxel-wise intersections of healthy aging and changes observed in AD in MRI (a) and FDG-PET (b). Colour bars represent
the intersection age. AD Alzheimer’s disease, FDG-PET [18F]fluorodeoxyglucose positron emission tomography, MRI structural magnetic resonance
imaging.
doi:10.1371/journal.pcbi.1002987.g005
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we model disease progression (albeit based on cross-sectional data)

we would expect the magnitude of differences to increase with

higher symptom severity. This assumption suggests that local

differences between AD patients and control subjects that are not

so correlated with it are more likely to be due to random artefacts

than disease related pathology.

For all three models used in our study, we made the assumption

that healthy aging affects AD patients in the same way as healthy

subjects in terms of hypometabolic and atrophic changes, with AD

pathology additive to changes associated with healthy aging. This

assumption is in line with current views that AD as a pathological

process is unrelated to healthy aging.

A further issue of interpretation of interactions is the recognised

inaccuracy of clinical diagnosis of AD, which may differ in

younger vs. older or in mildly vs. severely impaired patients. Any

bias towards an alternative diagnosis or co-diagnosis with another

dementing condition could lead to a different anatomical or

hypometabolic pattern. Such a differential pattern of glucose

hypometabolism was seen, for example, in sensorimotor regions

only in old AD patients with low symptom severity.

Most of these problems are also common to standard statistical

methods of evaluation of group differences. In group statistics one

often uses a high significance threshold to avoid false positive

results thus minimising their effect on between group differenti-

ations. By contrast, our approach also provides an opportunity to

evaluate the impact of possible confounding effects, such as age in

this case, on the discrimination between AD patients and control

subjects.
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