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In contrast to the traditional approach that uses total mortality rates, we want to gain additional insight
into the past development of mortality by concentrating on a more detailed breakdown of mortality
data, namely by causes of death. We work with the data from five developed countries (USA, Japan,
France, England and Wales, and Australia), two sexes, and split the mortality rates into five main groups
of causes of death (Infectious&Parasitic, Cancer, Circulatory diseases, Respiratory diseases, and External
causes). As it was shown in Arnold and Sherris (2016), these time series of cause-specific mortality
rates are cointegrated and so, there exist long-run equilibrium relationships between them. While the
previous research focused on the stationary part of the system of cause-specific mortality rates, in the
present paper we study its non-stationary part. For this we explicitly extract common stochastic trends
from the original variables and compare them across the different datasets. By testing cointegration
assumptions about these trends, we are able to get a better representation and understanding of how
cause-specific death rates are evolving. We believe that common patterns emerging from such analysis
could indicate a link to more fundamental biological processes such as aging.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The ever decreasing mortality rates represent one of the
iggest challenges that the insurance industry has ever faced. It is
ence very important to understand well the past developments
f mortality and be able to build sustainable forecasts for the
uture. This colossal task has been occupying many researchers as
ell as practitioners for several decades and resulted in innumer-
ble number of models, approaches, and practices. An interested
eader can find a review thereof in Booth and Tickle (2008), Cairns
2013) and Debón et al. (2006), including their references. While
he most of the existing models deal with the all-cause mortality,
e believe that integrating the information on different causes
f death into the model can bring additional insight and improve
he model’s fit. In the same time, cause-specific mortality rates
re dependent, but the dependency between them is inobservable
nd so, highly difficult to model.
Cointegration analysis represents a tool that allows us to take

nto account the dependency between the non-stationary vari-
bles. Two or more variables are said to be cointegrated if there
xists a linear combination of them that is stationary. Such linear
ombination describes then the link (or the dependency) be-
ween the variables in the long run and can be included into
vector autoregressive model. This approach was initially de-
eloped to model the econometric time series, but later also
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gained popularity in the field of mortality modeling. As a vector
of age-specific mortality rates usually has more elements than a
cointegration relation can incorporate, some authors overcame
this difficulty by concentrating on the pairwise cointegration
between the age-specific mortality rates (Darkiewicz and Hoede-
makers, 2004) or cointegration in a subset of mortality rates,
e.g. higher ages (Lazar and Denuit, 2009). In Gaille and Sherris
(2011) the authors reduced the age dimension by applying cointe-
gration analysis to the parameters of the Heligman-Pollard model.
Using total mortality rates, Njenga and Sherris (2011) were able
to formulate a cointegrated model incorporating five country-
specific mortality rates, whereas Arnold and Sherris (2013) ap-
plied a model allowing for cointegration relations between five
cause-specific mortality rates. Also, very productive was the idea
to apply the cointegration analysis to the time trends extracted
from the mortality rates by the means of the Lee–Carter model. In
this way, cointegration relations between the population-specific
time trends were used in modeling and forecasting mortality
rates by Li and Hardy (2011), Yang and Wang (2013), Zhou
et al. (2014), and Hunt and Blake (2015) in a multi-population
setting. Salhi and Loisel (2017) also studied the cointegration
relations between two populations, but used the pairwise cointe-
gration between the age-specific mortality rates for higher ages.
A further example is the work by Li and Lu (2017) who enrich
the vector-autoregression model for age-specific mortality rates
with a cointegration element that ensures the non-divergence of

the mortality rates at different ages.
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For our part, we want to concentrate on the different causes
f death with the help of the cointegration analysis. In this re-
ation, Arnold and Sherris (2013) showed that the cause-specific
ortality rates were cointegrated and confirmed this finding

or both sexes in ten different countries. Arnold and Sherris
2016) identified the optimal model structure for the cause-
pecific mortality rates that allowed the authors to spot the
ifference in behavior between the exo and endogenous causes
f death in the long run. Using a slightly different set of op-
imal models, Arnold and Glushko (2021) analyzed the short-
nd long-term interactions between the cause-specific mortality
ates, namely how each cause-specific mortality rate impacts and
eacts to the shocks received from the rest of the causes. To
chieve this goal, Arnold and Glushko (2021) analyzed the station-
ry part of the model by studying the short run (autoregressive)
nd the long run (cointegration) terms.
Now we want to take a different angle: if certain variables are

ointegrated, they must share common stochastic trends that are
liminated in the cointegration relation. In other words, as shown
y Stock and Watson (1988), for any cointegrated variables xt
nd yt there must exist a common factor representation of the
ollowing form:

yt
xt

]
=

[
A
1

]
ft +

[
ỹt
x̃t

]
, (1)

here ỹt and x̃t are both I(0), (1, −A) is the cointegrating vector
nd ft represent the common stochastic factors impacting the sys-
em. In the present paper, we will study the common stochastic
rends shared by the cause-specific mortality rates, i.e. the non-
tationary part of the model which is usually ignored when only
ointegration relations are analyzed (as this was done in Arnold
nd Sherris (2016) and Arnold and Glushko (2021)). To achieve
his, we will, first, recover these common factors, and second,
ee if any similarities or common patterns can be found between
ifferent countries. For the sake of comparability and consistence,
e use the same set of models as in Arnold and Glushko (2021).
In Arnold and Sherris (2016) the authors found that the coin-

egration techniques applied to the cause-specific mortality data
rovided a first bridge between econometrics and biology, two
reas of study essential for actuaries, and that cointegration re-
ations reflected the biological theory on aging. This became
ossible once the distinction between the exo and endogenous
auses, developed by biologists and demographers, was consid-
red. Although this classification is not clear-cut, to the first
roup of causes of death most researchers attribute various ex-
ernal or environmental factors that produce death, while the
ndogenous causes of death correspond to biological forces that
ead to death (Carnes et al., 2006). From the distinction be-
ween the exo and endogenous causes follows the idea that
ndogenous mortality reflects fundamental processes of the hu-
an body referred to as the biological processes of aging. Since

he authors found that only the endogenous causes appeared in
he cointegration relations, these relations may have the potential
o capture the statistical characteristics of the biological processes
f aging (Arnold and Sherris, 2016). Also, common stochastic
rends shared by the cause-specific mortality rates could repre-
ent the aging processes, because the aging process is known to
e stochastic (Hayflick, 2004) and a potential mixture of several
tochastic processes (Holliday, 2004). Then, the biological aging
f the body is indeed the underlying risk factor influencing the
auses of death (Olshansky et al., 2002) and is captured by the
ommon stochastic trends of the cointegrating system. How-
ver, Arnold and Sherris (2016) only analyzed the cointegration
elations and did not try to find an expression for these common
tochastic trends.
295
In the present work, we want to go further and investigate
he first intuition of Arnold and Sherris (2016) by recovering and
tudying the common stochastic factors ft as they are shown in
1). Gonzalo and Granger (1995) mention several reasons why
t may be interesting to recover ft , namely to (1) simplify a
omplex model; (2) decompose (yt , xt ) into two components
(ft , (ỹt , x̃t )) that transmit different kinds of information (while the
ermanent component ft corresponds to the trends present in the
ata, the transitory component (ỹt , x̃t ) conveys the information
n the short-term shocks and cycles); (3) study the subdivisions
f a large system by first finding the common factors in every
ubdivision and then studying the cointegration among them.
Cause-specific mortality rates are a reflection of numerous

mpacts and processes that range frommedical advances, changes
n lifestyles and nutrition to epidemics and aging. In spite of
he evident differences between the past experience of different
ountries, it is still reasonable to expect that some of these
rocesses will be present in all countries due to their universal
haracter, e.g., aging. So our objective is to recover the common
tochastic factors shared by the cause-specific mortality rates
rom one country and propose an approach allowing us to make
omparisons with a goal to find similarities across five countries.
hould a certain pattern be found in all tested countries, this
ould allow us to expect that we are dealing with some fun-
amental process common to human species as such. So in this
ay, we are able to shed light on the processes that underlie
he development of mortality in every tested country. Although
e are not yet able to identify these process with a certainty,
e believe that the possibility to give them a mathematical
xpression can help to improve our understanding of the past
evelopment of the mortality rates.
To achieve this, we, first, construct the set of common factors

n every country that has a lower number of dimensions than the
nitial variables. As it turns out that this number is still too high to
llow direct comparison between the countries, we further con-
entrate the information available in the set by using the principal
omponent analysis. When comparing the charts of the principal
omponents, we noticed that the form of the first elements was
imilar on all charts. To study further the observed resemblance,
e test for cointegration using the Johansen maximum likelihood
ests (Johansen, 1988). This allows us to examine cointegration in
large system of data variables (5 cause-specific mortality rates

or 5 countries and 2 sexes) that would not have been possible
ithout the initial reduction in its dimensionality. At the next
tep, we find that once we put together the first components
xtracted in every country, they are indeed cointegrated.
We believe that, although the cause-specific mortality rates

how different development patterns across countries, this obser-
ation could mean that the common factors reflect some similar
ntrinsic stochastic processes which occur in every dataset (coun-
ry). As we work with the cause-specific mortality rates, these
rocesses could point to some fundamental mechanisms, typical
or human species, such as biological aging.

The paper is organized as follows: in Section 2 we briefly
resent the data that we used in the study, then continue with
ome theoretical notions of the cointegration analysis and lay
ut the methodology used to extract and condense the common
tochastic factor in Section 3. The application of these tools to
he data is presented in Section 4, while Section 5 concludes the
aper.

. Data

For this study, we used the same data as in Arnold and Glushko
2021) and refer the interested reader to this article for the details
n the data preparation process. We mention here the main
oints.
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• Data were retrieved from the WHO Mortality Database
(World Health Organization, 2016) that contains the mid-
year population and the death counts by country, year, sex,
age group, and cause of death. The earliest observations in
this database go as far back as 1950.

• We considered the following countries and observation pe-
riods: USA (1950–2007), Japan (1950–2013), France (1952–
2011), England and Wales (1950–2013), and Australia
(1950–2004), subsequently shortened to US, JP, FR, E&W,
and AU respectively. These countries were chosen as they
participate in the database from the onset, belong to the
developed countries with important population sites and are
located in different parts of the world (North America, Aisa,
Europe, and Oceania). This choice ensures that we have at
our disposal the longest possible series of rich and reliable
observations.

• WHO defines the causes of death according to the Inter-
national Classification of Diseases (ICD). By applying the
comparability ratios1 we ensured that observations were
comparable across the different versions of ICD that switched
from ICD-7 to ICD-10 since the inception of the database.

• Causes of deaths were split in groups of infectious and
parasitic diseases, cancer, diseases of the circulatory system,
diseases of the respiratory system, and external causes.
These are the most important groups of causes of deaths.
They account for approximately 70%–80% of deaths in recent
years and made up approximately 50%–70% of deaths at the
onset of the observations.

• Central death (or mortality) rates were calculated as the
number of deaths by age, sex, and cause divided by the
mid-year population by age and sex.

• Central death rates were age-standardized using the US
male population of 2007 as the standard population (more
details on this procedure are given in Appendix A). We
will work with the total rates and will not differentiate
by age, otherwise there would be more variables than the
cointegration analysis can accommodate. Age-standardized
death rates for selected years using the US males population
base as well as the charts showing their evolution over
the entire observation period are shown in Appendix A,
Table A.1 and Fig. A.1.

• Equations were estimated for the time series of ordered
(n×1) vectors of the cause-specific mortality rates after the
application of the natural logarithm:

yt,s,c =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

log(mI&P
t,s,c)

log(mCancer
t,s,c )

log(mCirculatory
t,s,c )

log(mRespiratory
t,s,c )

log(mExternal
t,s,c )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where n is the number of the analyzed cause-specific mor-
tality rates, here n = 5, t denotes the time, s the gender, and
c the country.

1 A comparability ratio serves to remove the discontinuities between the
bservation periods: it makes the average of the mortality rates over the last two
ears of a classification coincide with the average of the mortality rates over
he first two years of the next classification. So, the mortality rates in every
lassification are divided by the comparability ratio(s) linking this classification
o the previous one(s).
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3. Theoretical framework

3.1. VECM and the common stochastic factors

Arnold and Sherris (2015, 2016) showed that the
cause-specific mortality rates were non-stationary and so, con-
tained stochastic trends. It was also demonstrated that at least
one cointegration relation existed between the variables and for
this reason, it was possible to build a Vector Error Correction
Model (VECM) describing the development of the cause-specific
mortality rates. VECMs represent an extension of the Vector
AutoRegression (VAR) models and allow modeling the depen-
dency between the lagged values of the differenced variables
and the variables in levels through the so-called cointegration
term αβ ′yt−1. Supposing that there are r cointegration relations,
i.e. that there exists a matrix β of rank r such that β ′yt is I(0), the
corresponding VECM has the following form:

∆yt = c + dt + αβ ′yt−1 +

p−1∑
i=1

ξi∆yt−i + ϵt , t = 1...T (2)

where

• c and d are (n × 1) vectors of constants;
• ξi is a (n × n) matrix of autoregressive coefficients for i =

1, 2, . . . , p − 1;
• β is a (n × r) matrix containing r vectors each representing

a cointegration relation;
• α is a (n× r) loading matrix that indicates how a particular

variable is impacted by the cointegration relation;
• ϵt is a (n × 1) vector of white noise errors.

Hamilton (1994) and Lütkepohl (2005) are the extensive ref-
rences on the VECM and VAR models.
Further, as mentioned in Stock and Watson (1988), cointe-

rated multivariate time series comprise at least one common
rend and so, can be expressed as a sum of a reduced number
f common stochastic trends, plus transitory, or stationary, com-
onents. In other words, yt can be explained in terms of a smaller
umber (n − r) of I(1) variables, ft , called common factors or

common long-memory components, plus some I(0) components
ỹt :

yt
n×1

= A1
n×k

ft
k×1

+ ỹt
n×1

, (3)

where k = n − r .
The objective is then to estimate ft as a linear combination of

the original variables using the methodology developed by Gon-
zalo and Granger (1995) which we briefly present in Appendix C.
Although the ft have fewer number of dimensions than the orig-
inal data, further reduction of dimensionality may be needed to
allow comparing of the common factors across countries.

3.2. Principal component analysis

One of the most popular dimension-reduction techniques is
the principal component analysis (PCA) and the book by Jolliffe
(2002) is an extensive reference on the subject. Simply put, the
idea of the PCA is to reduce the dimensionality of a dataset and, in
the same time, preserve as much as possible the variation present
in the data.

Suppose that y is a vector of n random variables with a
known covariance matrix Σ . If Σ is a positive definite, it can
e decomposed as Σ = Γ ′ΛΓ , where columns v1, v2, . . . , vn of
are the eigenvectors corresponding to the ordered eigenvalues

1 ≥ λ2 ≥ · · · ≥ λn which form the main diagonal of the
atrix Λ. It can be shown that the vector x = Γ y will have the
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T
V

(
t
t
f
s
s
c
d
a

f
c
n
a
a

ame total variance as the vector y and the first component of x
iven by x1 = v′

1y will have the maximum variance of any linear
ombination a′y such that ||a|| = 1 (Hogg et al., 2014). For this
eason, x1 is called the first principal component (PC) of y and can
e used as a proxy for the information contained in y.
In our data, some elements of the vector y substantially out-

eigh the rest of the causes (e.g. circulatory and cancer death
ates). In this case it is recommended to use the correlation
atrix Σ∗ of y when calculating the PCs (Jolliffe, 2002).
So we apply the PCA in order to express the information

contained in the common stochastic factors in one principal com-
ponent. Such a reduction in the dimensionality of the data will
allow us to compare the first principal components for different
countries and sexes using the cointegration tests. This process is
schematically shown in Fig. 1.

Added to above, the PCA is a well-known method in the mor-
tality modeling field. One of the most popular mortality models,
the Lee–Carter model, basically extracts and projects a unique
time trend from a matrix of mortality rates by assuming that
the vector of the mortality reductions is time-invariant. Yang
et al. (2010) go further and account for the variant mortality
improvements at different ages.

4. Application to the cause-specific mortality rates

4.1. Estimation of the common stochastic factors

In order to estimate the common stochastic factors, one has
to, first, find the VECM equations that best describe the datasets.
Here, not only the number of cointegrating relations, but also the
form of the deterministic part of the model play an important
role. Let µt = c + dt denote the deterministic part of the model
(2) and suppose that the parameter d can be decomposed in the
irections of δ⊥ and δ such that δδ⊥ = 0. Then d = δρ +

⊥γ , where ρ and γ are the decomposition parameters. As the
ortality rates are known to have a trend, we will consider the

ollowing forms of the deterministic elements (Johansen, 1995):

• NT: no trend in the VECM, but a linear trend in the levels of
the variables: c ̸= 0, ρ = 0, γ = 0, hence d = 0,
297
able 1
ector error correction models chosen for the analysis.
Country Males Females

US VAR(2), QT, 1 CR VAR(2), QT, 1 CR
JP VAR(2), TC, 2 CR VAR(2), TC, 2 CR
FR VAR(2), NT, 1 CR VAR(2), QT, 1 CR
E&W VAR(2), QT, 1 CR VAR(2), QT, 1 CR
AU VAR(2), QT, 1 CR VAR(2), NT, 1 CR

Note: QT = quadratic trend in the VAR; TC = linear trend in the cointegration
relation; NT = no trend; CR = cointegration relation.

• TC: linear trend in the cointegration relation combined with
a linear trend in the levels of the variables (i.e., no linear
trend in the differenced variables): c ̸= 0, ρ ̸= 0, γ =

0, hence d = δρ,
• QT: linear trend in the differenced variables, thus the

quadratic trend in the levels of the variables (i.e., the VAR
model) : c ̸= 0, ρ ̸= 0, γ ̸= 0, hence d = δρ + δ⊥γ .

We will use the same VECMs as in Arnold and Glushko (2021)
that we reproduce here for the sake of completeness (see Table 1).

Once the VECM coefficients are calculated for every dataset,
we estimate the common factors ft = α⊥ yt as described in the
previous section. The maximum likelihood estimates of α̂⊥ =

m̂r+1, . . . , m̂n), where r is a number of cointegration relations,
hat is 1 or 2 for the datasets used in the study, suggest that
he number of dimensions of the common factor component
t will be 4 or 3 respectively. Hence, by estimating common
tochastic factors we reduced the number of dimensions in our
ystem, but comparing common factors across countries remains
omplicated. Fig. 2 shows the common factors estimated for the
ataset of US males, common factors for the rest of the datasets
re shown on Figs. B.1–B.9 of Appendix B.
At present, we would like to compare the common stochastic

actors across five countries, but as we have 3 to 4 factors for each
ountry, we cannot apply the cointegration analysis. For this, we
eed to further reduce the number of dimensions in order to be
ble to compare the common trends across the different datasets,
nd for this, we use the principal component analysis.
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Fig. 2. Common stochastic factors ft , US males.
m
t
H

able 2
roportion of the variance explained by the first principal component.

US JP FR EW AU

Males 72% 64% 79% 71% 79%
Females 79% 91% 76% 74% 90%

Table 3
Test for the number of cointegration relations, male datasets.
Trace statistics Critical values (Case NT)

r Males 10% 5% 2.5% 1%

4 3.50 2.69 3.76 4.95 6.65
3 11.75 13.33 15.41 17.52 20.04
2 25.78 26.79 29.68 32.56 35.65
1 44.80 43.95 47.21 50.35 54.56
0 83.14 64.84 68.52 71.80 76.07

Max eigenvalue statistics Critical values (Case NT)

r Males 10% 5% 2.5% 1%

4 3.50 2.69 3.76 4.95 6.65
3 8.25 12.07 14.07 16.05 18.63
2 14.03 18.60 20.97 23.09 25.52
1 19.02 24.73 27.07 28.98 32.24
0 38.34 30.90 33.46 35.71 38.77

A null hypothesis is accepted at α% significance level when the statistic is lower
than the corresponding critical value. Hence, the hypothesis of r equal to 1 is
ccepted by both tests at 5%, 2.5% and 1%.

The principal components for the US males dataset are shown
n Fig. 3 (see Figs. B.10–B.18 of Appendix B for the rest of the
ountries and sexes). As expected, the first PC has the maxi-
um variance, whereas the rest of the components represent

luctuations around the zero line.
For US males, the first principal component explains approx-

mately 72% of the total variance. Table 2 shows proportions for
he remaining datasets: for all datasets except Japanese males the
irst principal component accounts for at least 70% of the total
ariance. For the sake of comparability, we will keep and compare
he first PCs in every country and for every sex.

When comparing the charts of the principal components, it
s interesting to notice that the forms of the first components
n each chart have a high degree of resemblance. The similarity
ecomes even more striking once the first PCs from every dataset
 p

298
are put on the same chart (Figs. 4 and 5). To improve comparabil-
ity, we multiplied some of the PCs by −1 as we know that such
operations have no impact on the orthogonality or the variance
accounted for by a given principal component.

Although the cause-specific mortality rates showed rather dif-
ferent development profiles depending on the country, we see
that the patterns of the common stochastic factors, condensed
using the principal component analysis, share a lot of similarities
across the datasets. The resemblance is even more pronounced for
the female datasets. So, we would like to measure the closeness
between the first principal components of the common stochastic
factors in a formal way, using the tools of the cointegration analy-
sis. If some non-stationary variables are found to be cointegrated,
then there exists their linear combination that is stationary even
if each variable is not. Also, cointegrated variables move together
over the long term and are subject to the influence of the same
common trends. If the first PCs from every dataset are cointe-
grated, this will mean that they are linked to each other in their
long-term development.

4.2. Cointegration between the first principal components of the
common stochastic factors

In order to test if the first principal components of the com-
mon stochastic factors are cointegrated, we apply the Johansen
maximum likelihood procedure (Johansen, 1988). This is possible
only for the time series with the same number of observations.
For this reason, we are obliged to cut the first PCs at the length
of the shortest among them.

Under the null hypothesis H0 of the trace test there are exactly
r cointegrating relations among the data vector, in our case five
first principal components from five countries, against the alter-
native hypothesis HA that there are n = 5 cointegration relations.
From the upper part of Table 3 we see that H0 is rejected for the
r = 0 and is accepted for r = 1 at 5%, 2.5% and 1% significance
level. So according to the trace test there is 1 cointegration
relation for the male dataset. Under the null hypothesis H0 of the
aximum eigenvalue test there are exactly r cointegrating rela-
ions among the data vector against the alternative hypothesis
A that there are r + 1 cointegration relations. From the lower

art of Table 3 we see that H0 is rejected for the r = 0 and
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Fig. 3. PCA applied to common factors, US males.
Fig. 4. First PCs for each country, males.
Fig. 5. First PCs for each country, females.
s accepted for r = 1 at all shown significance levels. We can
onclude that according to both tests there is 1 cointegration
elation for the male dataset. Thus, although the common factors
volve stochastically, their development is driven by one long-run
quilibrium relationship that remains stationary over the years.
Similar observations hold for the female datasets with the

umber of cointegrating relations being equal to 2 in the NT
299
case and to 1 in the QT case (numerical results are shown in
Appendix B, Table B.1 and Table B.2).

For both male and female datasets taken separately, Johansen
tests for the form of the deterministic term indicate that either no
trend (case NT) or a quadratic trend (case QT) should be included
in the process. For male datasets, the results of cointegration test
with a quadratic trend are inconclusive, and for this reason, we
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ests on residuals of the fitted VECM.
Type of the test Name of the test p value

Males NT Females NT Females QT
r = 1 r = 2 r = 1

Autocorrelation Portmanteau (15 lags) 0.348 0.970 0.991
Portmanteau (25 lags) 0.162 0.975 0.982
Portmanteau (35 lags) 0.159 0.985 0.991

Normality Skewness 0.335 0.653 0.180
Kurtosis 0.311 0.967 0.603
Both 0.309 0.935 0.339

present the results for the NT case only. For female datasets,
both forms of the deterministic term provide good model fit.
The null hypotheses of no autocorrelation and normality of the
residuals are not rejected for the male, as well as the female
dataset (Table 4).

We also tested the male and female datasets together for
he cointegration between the first principal components of the
ommon stochastic factors. As the shape of the first PCs is quite
ifferent between the male and female datasets, it is not surpris-
ng that we do not find any cointegration relation when we test
he first principal components of the common stochastic factors
or both sexes simultaneously.

As for the first principal components of the common stochastic
actors tested separately for each sex, they are indeed cointe-
rated. This means that first, the cause-specific mortality rates,
eing cointegrated themselves, share some stochastic trends that
re common to all causes. Then, once the corresponding com-
on stochastic factors are explicitly extracted from the cause-
pecific mortality rates and condensed, they, in turn, also share
ome common stochastic trends, but on the next level, i.e. across
ifferent countries.

. Discussion and conclusion

Although cause-specific mortality rates show different devel-
pment patterns across countries, sexes and historical periods, as
e deal with the death rates of the human species, it is reason-
ble to expect that similarities and common features also exist
etween these patterns. The steady decrease of the mortality
ates that has been observed in many parts of the world for more
han a century is also due to factors and effects that are uni-
ersally present, albeit to a different extent. Among such factors
ne can cite medical advances, changes in lifestyles and nutrition,
pidemics, and aging. Cointegration analysis in conjunction with
he identification of the common stochastic factors as proposed
y Gonzalo and Granger (1995) is then a practical tool that can
fficiently help to elicit possible common long-term regularities
nd trends.
Among the factors influencing the development of mortality

ates, biological aging has probably the most universal character
s it increases vulnerability to all common causes of death (Ol-
hansky et al., 2002; Hayflick, 2004). Although there is no single
enerally accepted definition of aging, in simple terms it is usually
efined as a progressive loss of normal body functions that leads
o death (Holliday, 2004). In biological systems, aging is believed
o be a stochastic process that is caused by the increasing loss
f molecular fidelity that, with time, becomes superior to the
epair capacity of the organisms. Also, age changes represent the
reatest risk factor for age-associated diseases (Hayflick, 2004).
In spite of its paramount importance to virtually every aspect

f human life, the process of aging is not yet fully understood
nd many different theories of aging exist, each having its merits
nd weaknesses (for a review thereof see Holliday (2004) and Jin
2010) including the references). Moreover, it is still not clear
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if aging can be measured since a reliable biomarker of aging is
yet to be found (Butler et al., 2004). Should such measure be
discovered, we could then study the development of mortality
rates in function of advancement in aging. Instead, we presently
find ourselves in a situation when a set of mortality rates evolving
in time must reflect the effect of the aging processes, but it is not
clear if and how this effect can be made explicit on the basis of
the observed mortality rates only.

The intuition behind the application of the cointegration anal-
ysis to the death rates is to model simultaneously the develop-
ment of several main cause-specific mortality rates and repeating
the analysis for a number of populations. Should any patterns or
trends be revealed that are common to all or the majority of the
datasets included in the study, this could point to some funda-
mental processes that are proper to the human species. In Arnold
and Sherris (2016) the authors found that only the endogenous
mortality rates participated in the cointegration relations, i.e. in
the long-term equilibrium states between the causes. It was
assumed that this could indicate the link between the common
stochastic trends shared by every cause-specific mortality rate
and the processes of biological aging.

In this study, we explicitly measured the common stochastic
factors as well as proposed an approach allowing us to make
comparisons across countries. For this, we first, extracted the
common stochastic factors from the sets of the cause-specific
mortality rates in every country and for each sex. These are
the factors that impact every cause-specific mortality rate in a
particular country. Then, using the principal component analysis
we condensed these factors and used the first principal compo-
nents in the subsequent cross-country analysis. We have found
that there exists at least one cointegration relation between the
first principal components of the common stochastic factors from
different countries, which means that they are also subject to
some universal stochastic trends that deploy their impact in all
countries. As a consequence, these universal stochastic trends
might reflect some intrinsic processes that occur in every country.
Our results, combined with those of Arnold and Sherris (2016)
tend to indicate that these universal stochastic trends are describ-
ing some features of the processes of biological aging, although at
this point, we cannot state with certainty to what exactly these
trends correspond. As we now know that they exist and can be
made explicit from the data, further research is needed in order
to identify the mechanisms, likely biological, that are behind the
observed behavior of the cause-specific mortality rates. Because
of its universal and predominant character, aging is one of the
possibilities that should not be omitted.

We believe that our results will bring forward the discussion
on how to measure the biological processes of aging and the
related research in the fields of demography, economics, biology
or epidemiology. In addition, our study shows that as the same
stochastic trends are present in all datasets, similar assump-
tions for the intra-cause dependence can be used across different
countries. On the other hand, we saw that the first principal com-
ponents of the common stochastic factors for males and females
when put together were not cointegrated. This could indicate that
there is an important divergence in the biology of aging for men
and women and for this reason, different assumptions should be
used for each sex when modeling the development of the cause-
specific mortality rates. Our next steps will consist in using the
results of the cointegration analysis to improve the cause-specific
mortality forecasts.
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able A.1
ge-standardized central death rates for selected years, x103 .

Females Males

1960 1980 2000 1960 1980 2000

US I&P 0.0852 0.0630 0.1014 0.1888 0.1215 0.1686
Cancer 1.6269 1.5857 1.5786 2.1394 2.4409 2.2483
Circulatory 4.3148 2.9428 1.9744 6.8425 5.2315 3.2263
Respiratory 0.4595 0.3292 0.5124 0.8670 0.8205 0.8512
External 0.4516 0.3804 0.3058 1.1217 1.0368 0.7731

JP I&P 0.4350 0.0842 0.0629 0.8160 0.2099 0.1426
Cancer 1.4299 1.3156 1.1361 2.0147 2.1748 2.1092
Circulatory 1.6850 1.3904 0.6263 2.2670 1.8094 0.8788
Respiratory 0.9022 0.3804 0.3551 1.3673 0.6830 0.7941
External 0.4644 0.3230 0.2476 1.0982 0.7577 0.7161
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Cancer 1.4781 1.4868 1.4368 2.0721 2.3765 2.1570
Circulatory 4.0123 3.0032 1.5502 6.5525 5.1796 2.4928
Respiratory 0.5108 0.4362 0.6109 1.1511 1.1897 1.0071
External 0.4747 0.4236 0.2625 1.0533 0.9189 0.6118
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Appendix A

Age-standardization of the cause-specific mortality rates

To calculate the age-standardized death rates, we first, calcu-
ate the simple mortality rates for each country as the number of
eaths by age, sex and cause divided by the mid-year population
y age and sex. Next, we assume that the population age structure
s constant over the whole observation period and is equal to the
ge structure of the US males population in 2007 (see Table A.1):

x,t,d,s,c = dx,t,d,s,c/lx,t,s,c

d∗

t,d,s,c =

∑
x

mx,t,d,s,c × lx,2007,males,USA

m∗

t,d,s,c = d∗

t,d,s,c/l2007,males,USA

here (see Fig. A.1).

dx,t,d,s,c = number of deaths at age x, in year t,

for cause of death d,

gender s and country c;

lx,t,s,c = mid-year population at age x, in year t,

gender s and country c;

x,t,d,s,c = central death rate at age x, in year t,

for cause of death d,

gender s and country c.

Appendix B

See Figs. B.1–B.18, Tables B.1 and B.2.
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Table B.1
Test for the number of cointegration relations, female datasets, case NT.
Trace statistics Critical values (NT)

r Females 10% 5% 2.5% 1%

4 0.79 2.69 3.76 4.95 6.65
3 6.16 13.33 15.41 17.52 20.04
2 18.18 26.79 29.68 32.56 35.65
1 52.39 43.95 47.21 50.35 54.56
0 101.41 64.84 68.52 71.80 76.07

Max eigenvalue statistics Critical values (NT)

r Females 10% 5% 2.5% 1%

4 0.79 2.69 3.76 4.95 6.65
3 5.37 12.07 14.07 16.05 18.63
2 12.02 18.60 20.97 23.09 25.52
1 34.20 24.73 27.07 28.98 32.24
0 49.02 30.90 33.46 35.71 38.77

A null hypothesis is accepted at α% significance level when the statistic is lower
than the corresponding critical value. Hence, the hypothesis of r equal to 2 is
accepted at all significance levels by both tests.

Table B.2
Test for the number of cointegration relations, female datasets, case QT.
Trace statistics Critical values (QT)

r Females 10% 5% 2.5% 1%

4 0.05 2.57 3.74 4.85 6.40
3 5.37 16.06 18.17 20.13 23.46
2 15.75 31.42 34.55 36.94 40.49
1 35.22 50.74 54.64 57.79 61.24
0 83.85 73.40 77.74 80.74 85.78

Max eigenvalue statistics Critical values (QT)

r Females 10% 5% 2.5% 1%

4 0.05 2.57 3.74 4.85 6.40
3 5.32 14.84 16.87 18.57 21.47
2 10.38 21.53 23.78 26.07 28.83
1 19.47 27.76 30.33 32.56 35.68
0 48.64 33.74 36.41 38.68 41.58

A null hypothesis is accepted at α% significance level when the statistic is lower
than the corresponding critical value. Hence, the hypothesis of r equal to 1 is
accepted at all significance levels by both tests.

Appendix C

Estimation of the common stochastic factors

The methodology developed by Gonzalo and Granger (1995)
allows to estimate ft as defined in (3) by imposing that

1. ft be linear combinations of the original variables, in our
case the cause-specific mortality rates:

ft
k×1

= B1
k×n

yt
n×1

, (C.1)

2. the remaining stationary part ỹt does not have any perma-
nent effect on yt.

Substituting (C.1) in (3), we obtain that ỹt = (I − A1B1)yt. In
ther words, the stationary component ỹt is also a linear combi-
ation of the non-stationary variables yt which is only possible
or ỹt = A2β

′yt = A2zt , where zt = β ′yt is the cointegration
elation. The authors show that the only linear combination of yt
uch that ỹt has no long-run effect on yt is

t = α⊥

k×n
yt
n×1

, (C.2)

here α′ α = 0 and k = n − r .

⊥
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t

Fig. A.1. Age-standardized central log-death rates by cause.
The condition imposed in (C.1) not only helps to identify ft ,
but also makes them observable by linking ft to the original vari-
ables. Both conditions make ft ‘‘a good candidate to summarize
he long-run behavior of the original variables’’ (Gonzalo and
302
Granger, 1995). The authors also show that these conditions allow
identifying ft up to a non-singular matrix multiplication to the
left. The resulting factor model is:

y = A f + A z , (C.3)
t 1 t 2 t
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Fig. B.1. Common stochastic factors, US females.

Fig. B.2. Common stochastic factors, JP males.

Fig. B.3. Common stochastic factors, JP females.
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Fig. B.4. Common stochastic factors, FR males.
Fig. B.5. Common stochastic factors, FR females.
.

a
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here ft = α⊥yt and zt = β ′yt, and satisfies the following
roperties:

• The common factors ft are not cointegrated.
• Cov(∆f ∗

it , z
∗

j,t−s) = 0 (i = 1, . . . , k; j = 1, . . . , n − k; s ≥ 0),
where ∆f ∗

it = ∆fit − E(∆fit | lags(∆yt−1)) and ∆z∗

it =

∆zit − E(∆zit | lags(∆yt−1))

The second property is another way of saying that zt does
ot cause ft in the long run. It also follows that any alternative
efinition of ft will vary only by I(0) components and therefore
ill be cointegrated.
To solve for the coefficients of (2), following Johansen (1988)

e concentrate the model by regressing ∆y and y on (∆y ,
t t−1 t−1

304
. . , ∆yt−p+1) which gives the residuals R0t and R1t respectively,
s well as the residual product matrices Sij

ij = T−1
T∑

j=1

R0tR1t , i, j = 0, 1. (C.4)

he concentrated model is then

0t = αβ ′R1t + ϵt , (C.5)

and β is estimated using the reduced-rank regression from the
following eigenvalues problem

| λS − S S−1S |= 0. (C.6)
11 10 00 01
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c
l
o

Fig. B.6. Common stochastic factors, EW males.
Fig. B.7. Common stochastic factors, EW females.
s

α

l
t

After ordering the eigenvalues λ̂1 > λ̂2 > · · · > λ̂n and
orresponding eigenvectors V̂ = (v̂1, v̂2, . . . , v̂n), the maximum
ikelihood estimates of the cointegration term of the VECM are
btained as β̂ = (v̂1, v̂2, . . . , v̂r ) and α̂ = S01β̂ .
We proceed in a similar way to estimate α⊥ by solving the

equation

| λS − S S−1S |= 0, (C.7)
00 01 11 10

305
which gives the eigenvalues λ̂1 > λ̂2 > · · · > λ̂n and corre-
ponding eigenvectors M̂ = (m̂1, m̂2, . . . , m̂n), normalized such
that M̂ ′S00M̂ = I . The α⊥ that defines ft is then

⊥ = (m̂r+1, . . . , m̂n). (C.8)

We can see that the set of the common factors ft has indeed a
ower number of dimensions than the initial data, but if r is equal
o 1 or 2, further reduction of dimensionality may be needed.
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Fig. B.8. Common stochastic factors, AU males.
Fig. B.9. Common stochastic factors, AU females.
Fig. B.10. PCA applied to common factors, US females.
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Fig. B.11. PCA applied to common factors, JP males.
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Fig. B.12. PCA applied to common factors, JP females.

Fig. B.13. PCA applied to common factors, FR males.

Fig. B.14. PCA applied to common factors, FR females.

Fig. B.15. PCA applied to common factors, EW males.
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Fig. B.16. PCA applied to common factors, EW females.

Fig. B.17. PCA applied to common factors, AU males.

Fig. B.18. PCA applied to common factors, AU females.
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