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Abstract

Because natural selection is likely to act on multiple genes underlying a given phenotypic trait, we study here the potential effect of

ongoing and past selection on the genetic diversity of human biological pathways. We first show that genes included in gene sets are

generallyunder stronger selectiveconstraints thanothergenesandthat their evolutionary response is correlated.Wethen introducea

new procedure to detect selection at the pathway level based on a decomposition of the classical McDonald–Kreitman test extended

to multiple genes. This new test, called 2DNS, detects outlier gene sets and takes into account past demographic effects and

evolutionary constraints specific to gene sets. Selective forces acting on gene sets can be easily identified by a mere visual inspection

of the position of the gene sets relative to their two-dimensional null distribution. We thus find several outlier gene sets that show

signalsofpositive,balancing,orpurifyingselectionbutalsoothers showinganancient relaxationof selectiveconstraints. Theprinciple

of the2DNS test canalsobeapplied toothergenomiccontrasts. For instance, thecomparisonofpatternsofpolymorphismsprivate to

African and non-African populations reveals that most pathways show a higher proportion of nonsynonymous mutations in

non-Africans than in Africans, potentially due to different demographic histories and selective pressures.

Key words: human evolution, pathway analysis, polygenic selection, McDonald–Kreitman test.

Introduction

In the search for genomic signals of natural selection (e.g.,

reviewed in Nielsen 2005), there has been a recent shift

from single gene to gene set approaches, where the focus

moved to gene networks, pathways, and interacting genes

(Daub et al. 2013; Fraser 2013; Zhang et al. 2013; Berg and

Coop 2014). Studying groups of functionally related genes

makes biological sense for several reasons. First, as selection

is acting on phenotypic traits usually controlled by many genes

(Stranger et al. 2011), we would expect it to affect multiple

genes or a whole pathway rather than a single gene. A bio-

logical pathway or a gene network is therefore a more natural

unit for selection tests. Second, mutations in one gene can

induce the modification of functionally connected genes to

adapt to or compensate for the initial change (Pazos and

Valencia 2008), and such co-evolution can lead to a cascade

of evolutionary changes within a gene network. Third, many

small effect mutations can together have a large effect on

polygenic traits. It has been suggested that selection on

such traits, termed polygenic selection, usually acts on stand-

ing variation at several loci at the same time. In the long run,

this would lead to an increase in the frequency of a suitable

combination of alleles that control the favored phenotype

(Pritchard et al. 2010).

For example, using levels of population differentiation be-

tween human groups, we have recently found several path-

ways involved in immune response to have been under

positive selection in recent human history (Daub et al.

2013). In this article, we investigate whether and what type

of polygenic selection could have acted at different stages of

human evolution, by comparing patterns of diversity between

humans and chimpanzees. The rationale is that since selective

pressures could have changed over time for some biological

pathways, recent or old episodes of selection cannot be de-

tected by only looking at current human diversity. Our method

contrasts patterns of fixed and polymorphic mutations in
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humans, allowing us to detect various selective pressures

having affected our species at different periods of its

evolution.

Our approach is based on statistics previously used in the

classical McDonald–Kreitman (MDK) test for positive selection

(McDonald and Kreitman 1991), a test that compares the ratio

of the number of nonsynonymous substitutions to synony-

mous substitutions between species (DN/DS) to the same

ratio within species (PN/PS). Assuming that synonymous mu-

tations are neutral, a higher DN/DS than PN/PS ratio is ex-

pected in case of ancient adaptive selection, because

positively selected mutations rising to fixation in a population

would contribute more to divergence than to polymorphism.

The related statistic a ¼ 1� ðDS� PNÞ=ðDN� PSÞ has been

used to estimate the proportion (a) of adaptive

nonsynonymous substitutions in a genome (Smith and Eyre-

Walker 2002). A limitation is that the same a value can be

obtained for different combinations of PN/PS and DN/DS

ratios. To account for this problem, we introduce here a

testing procedure, based on a two-dimensional (2D) decom-

position of a, which identifies gene sets departing from a

genome-wide null distribution and leads to a better interpre-

tation of the results by a visual inspection of bivariate

distributions.

Materials and Methods

Data Handling and Collection

Ensembl Gene Data

We downloaded the exon coordinates of protein coding

human genes from Ensembl (Ensembl version 64,

September 2011, Flicek et al. 2014). We then only considered

those genes (and their corresponding coding exons) that have

a chimp ortholog with a “known” status as defined in

Ensembl version 64, and genes having a chimp ortholog with-

out known status but with a known mouse ortholog. The

second group represents genes that most probably have a

real ortholog in chimp but are not annotated as such (yet)

due to the lower quality of the chimp sequence. This left us

with 18,078 genes and we will refer to this set as GEnsembl. We

computed the total exon length of each gene by summing the

length of all its coding exons but only counted a site once if it

was part of two overlapping exons. We thus used the longest

coding exon definition for each gene.

Human Single-Nucleotide Polymorphisms

Human single-nucleotide polymorphisms (SNPs) were inferred

from the comparison of the whole genomes of 42 unrelated

individuals sequenced by Complete Genomics (CG) at a depth

of 51–89X coverage per genome (Drmanac et al. 2010). The

42 individuals were sampled in 3 African populations (four

Luhya from Webuye, Kenya; four Maasai from Kinyawa,

Kenya; and nine Yoruba from Ibadan, Nigeria), and 5

non-African populations (nine Utah residents with Northern

and Western European ancestry from the CEPH collection;

four Han Chinese from Beijing; four Gujarati Indians from

Houston, TX; four Japanese from Tokyo; and four Toscans

from Italy). The SNPs were divided into three categories:

Sites which are polymorphic in Africans only (African SNPs),

sites polymorphic in non-Africans only (non-African SNPs),

and sites polymorphic in both Africans and non-Africans

(shared SNPs). The shared SNPs presumably arose before

the migration of modern humans out of Africa and are

therefore depleted from recent deleterious mutations that

otherwise could distort selective signals. This group of SNPs

was used in the 2DNS test (fig. 1 and supplementary fig. S1,

Supplementary Material online). The African and non-African

SNPs were used in a further analysis to compare demographic

patterns between the two regions (fig. 2).

To investigate the effect of larger sample sizes on our

results, polymorphism data were also obtained from the

1000 Genomes project phase 3 (Abecasis et al. 2012,

hereafter called the 1000G set), including 288,003 SNPs

from 1,594 individuals sampled from 16 nonadmixed

populations (five from Africa, seven from Asia, and four

from Europe, see supplementary table S1, Supplementary

Material online). Note that the 1000G SNP set consists of

polymorphisms called from a combination of both low and

high coverage data (between 8X and 30X) and that it only

targets about 40% of the exome, whereas CG covers the

whole exome at higher coverage (51–89X). For these rea-

sons, the CG set was used in the main analyses. In the

analyses where the CG and 1000G datasets where com-

pared, we only considered SNPs that were in exonic

regions both targeted by the 1000G project and fully

sequenced in all 42 CG samples.

Human Chimp Substitutions

Substitutions between human and chimp were inferred from

the comparison between the reference genomes of the two

species, using the syntenic net alignments between hg19 and

panTro2 available on the University of California–Santa Cruz

(UCSC) platform (Karolchik et al. 2012). The inferred muta-

tions were then placed on the human-specific or chimp-

specific branches of the tree by comparing the nucleotides

observed in human and chimp to the orthologous base in

the ancestral sequence derived from Ensembl Compara

release 59 and used by the 1000 Genomes consortium

(Abecasis et al. 2012); only mutations which could be

placed unambiguously on the human or chimp branch were

used.

Mapping and Annotation of Mutations

We mapped the mutations to the coding exons of the human

genes in the GEnsembl set. Our polymorphism and divergence

data cover a largely overlapping part of the exome: 89.2% of
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the exome is fully sequenced in all 42 CG samples, whereas

the human–chimp alignment covers 96.3% of the exome,

resulting in 86.8% of the exome covered by both datasets.

We classified the mutations as either synonymous or

nonsynonymous using ANNOVAR (Wang et al. 2010). As a

measure of evolutionary constraint, the sites were assigned

GERP scores (Cooper et al. 2005) collected from the UCSC

platform (Karolchik et al. 2012), which are estimated with the

GERP++ method (Davydov et al. 2010).

Ensembl to Entrez Gene ID Conversion

As genes in Biosystems gene sets are annotated with Entrez

gene IDs, we mapped the Ensembl gene IDs in GEnsembl to

Entrez IDs by constructing a one-to-one Ensembl–Entrez con-

version table. To do this, we first downloaded from the

National Center for Biotechnology Information (NCBI) Entrez

Gene website (Maglott et al. 2011) a gene list (GEntrez) with

19,759 “current” protein coding human genes (http://www.

ncbi.nlm.nih.gov/gene, accessed on February 7, 2013). Next,

we collected conversion tables (containing one-to-many or

many-many mappings) from three sources: Ensembl (version

64, September 2011), NCBI (ftp://ftp.ncbi.nih.gov/gene/DATA,

accessed on February 7, 2013), and HGNC (http://www.gene-

names.org/biomart/, accessed on September 3, 2012). From

these tables, we only kept rows with genes in GEnsembl and

GEntrez. We then pooled the three tables and counted the

occurrences of each unique Ensembl ID–Entrez ID combina-

tion. For each Ensembl ID, we kept the Ensembl–Entrez match

with the highest count (in case of multiple options, we took

the first one) and repeated this for each Entrez ID. The resulting

table contained 17,474 one-to-one Ensembl to Entrez gene ID

conversions and we used the genes from this table (gene list G)

for our further analyses.

Gene Sets

We downloaded 2,402 human gene sets from the NCBI

Biosystems database (Geer et al. 2010) (http://www.ncbi.

nlm.nih.gov/biosystems, accessed on February 2, 2013). The

Biosystems database is a repository of gene sets collected from

other pathway databases, such as BioCyc (Caspi et al. 2014),

KEGG (Kanehisa and Goto 2000; Kanehisa et al. 2014), The

National Cancer Institute Pathway Interaction Database

(Schaefer et al. 2009), Reactome (Croft et al. 2014), and

Wikipathways (Kelder et al. 2012). A gene set represents a

group of genes involved in biochemical interactions that

underlie a biological process. Examples of gene sets include

metabolic pathways, gene regulatory networks, or signal

transduction pathways.

We excluded genes that could not be mapped to the gene

list G and removed gene sets with less than ten genes.

Furthermore, we identified 95 groups of (nearly) identical

gene sets, namely sets sharing at least 95% of their genes,

and replaced each group by a union gene set (in the text their

name is followed by “*”) consisting of all genes in that group.

The remaining collection of 1,366 gene sets (S) was used for

our analyses. Note that, for ease of reading, we use both the

terms pathway and gene set interchangeably throughout the

main text; strictly only a small proportion (<2%) of the sets in

S are labeled as “complex” rather than “pathway” in the

Biosystems database.

Data Analysis

Test of Evolutionary Similarities between Genes
of a Given Gene Set

To assess whether genes in sets tend to share the same evolu-

tionary properties, we tested for significant differences in

gene-level DN/DS (or PN/PS) ratios between gene sets. First,

we estimated the variance component due to differences

among gene sets (s2
A) for all 1,366 sets using an analysis of

variance (ANOVA) framework (See supplementary text S1,

Supplementary Material online). We constructed the expected

null distribution of s2
A under the hypothesis that there are no

differences between groups, by repeatedly (n = 10,000) recal-

culating s2
A after permuting DN/DS and PN/PS ratios among

genes. Next, to assess that the significance was not due to one

or a few outlier gene sets, we repeatedly (N = 10,000)

sampled randomly 100 sets from the list of 1,366 gene sets

and computed s2
A on these 100 gene sets only. We built the

expected null distribution by performing the same sample

procedure but permuting DN/DS and PN/PS ratios among

genes for each drawing of 100 genes sets. (See also supple-

mentary fig. S2, Supplementary Material online.) Note that the

fact that genes can occur in multiple gene sets has no impact

on the results, as we keep the gene set definitions fixed when

creating the null distribution. Therefore, the amount of over-

lap between gene sets is the same in both null and observed

distributions.

Note that we excluded 4,446 (2,963) genes that had zero

DS (PS), leading to undefined N/S ratios, when comparing DN/

DS (or PN/PS) ratios between genes (as shown in supplemen-

tary fig. S3, Supplementary Material online, and in the ANOVA

test described above). In the other analyses, we could use all

17,474 genes of our gene list G to compute DN/DS (or PN/PS)

ratios at the gene set level.

Gene and Gene Set Level DN/DS and PN/PS Ratios

To calculate the DN/DS ratio for a gene set, we summed up

separately the nonsynonymous and synonymous fixed muta-

tions found in all genes belonging to a given gene set (sup-

plementary fig. S1, Supplementary Material online) and took

their ratio as

DN

DS

� �
set

¼
DNset

DSset
¼

X
g2 set

DNg

X
g2 set

DSg

ð1Þ
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The PN/PS ratio was calculated in a similar way. In a few cases

where the same mutation occurred in more than one gene of

the same gene set (due to gene overlap or exon sharing,

around 0.1% of the mutations), it was counted only once.

Null Distributions

Gene Set Properties Taken into Account When Building
Empirical Null Distributions

We constructed empirical null distributions of DN/DS and PN/

PS ratios (in short “N/S ratios”) by creating a series of random

gene sets and recomputing new statistics on these gene sets.

As genes in gene sets might have specific evolutionary proper-

ties, randomly sampling genes from the gene list G would not

create a representative null distribution. Instead, we took into

account the negative correlation found between the number

of gene sets a given gene belongs to and the gene N/S ratio.

We also took into account the fact that genes belonging to

the same pathway tend to share the same evolutionary regime

(supplementary fig. S2, Supplementary Material online). To

preserve the evolutionary properties of gene sets, we applied

a bootstrap sampling method, where we sampled genes from

unions of gene sets that share a given proportion of their

genes (see next section).

In addition, we also considered the fact that gene sets with

a large “set length” (defined as the total exon length of its

genes) accumulate on average more mutations and for this

reason show a lower variance in N/S rates. We therefore cre-

ated null distributions for different set length categories and

tested each pathway against the appropriate null distribution.

Construction of Empirical Bootstrap Null Distributions

In short, we first created random gene sets of different sizes

(number of genes), where we sampled the size according to

the real size distribution and next computed the set length of

the random sets and assigned them to different set length

bins.

We created a random gene set as follows (supplementary

fig. S4, Supplementary Material online). First, we sampled a

gene set S0 from the collection S of all gene sets. For each

sampled gene set S0, we collected all genes that are the union

of genes in S0 and genes in any set S00 that overlaps with S0, in

the sense that their Jaccard similarity coefficient (defined as

[S0 \ S00]/[S0
S

S00]) is larger than 0.25. Next, we drew a gene

set size k from the geometric distribution that approximated

the real gene set size distribution. If the union contained less

than min(250, k) genes, it was discarded, otherwise we ran-

domly sampled k genes (without replacement if k< 250,

otherwise with replacement) from this union to form a

random gene set. We repeated this procedure 75�n

(n = 400,000) times. For each observed and random gene

set, we calculated its set length and distributed the sets

according to their set length over 75 equally sized bins,

explaining the factor 75 in the previous sentence. Note that

we drew k from a geometric distribution that approximated

the real size distribution but allowed for sampling gene sets

smaller than ten (the minimum gene set size) to obtain suffi-

cient sets to fill the smallest set length bins

X~Geomðp ¼ 1=ðmeanðset sizeÞ � 10ÞÞ þ 5 ð2Þ

In very few occasions, the N/S ratio of a (random) gene set

was not defined, because S was zero. In those cases, we

removed the gene set from the null distribution or from the

group of sets that were tested. To still have bins of size n, we

therefore actually created 75�n�1.1 gene sets, removed

the sets that did not have a defined N/S ratio, and took the

first n remaining gene sets for each bin.

Changing the values for parameters such as the similarity

coefficient or the number of bins gives similar test results. See

supplementary text S2 and table S2, Supplementary Material

online, for a detailed description of the parameters used and

the effect of changing their values.

Alternative Null Distributions without Gene Set Properties

To investigate the effect of not taking into account some

or all the properties of gene sets when creating a null dis-

tribution, we used several alternative sampling schemes con-

sisting of 1) randomly sampling from the whole gene list G;

2) sampling from all genes that are part of at least one gene

set; and 3) sampling genes with a probability proportional to

the number of gene set a gene belongs to. Similar to the

empirical bootstrap null distribution described above, we

corrected in all cases for gene set length, by creating null

distributions for specific set lengths and testing a pathway

against the corresponding null distribution. Results based on

these alternative null distributions are shown in supplemen-

tary figure S5, Supplementary Material online.

Tests of Selection

A New Test of Polygenic Selection (2DNS Test)

We developed a new test for polygenic selection (named

2DNS), which can be regarded as a decomposition of the

constitutive elements of a MDK test, DN/DS, and PN/PS. Our

2DNS test aims at detecting gene sets that are outliers in the

two dimensional DN/DS� PN/PS plane relative to an empirical

null distribution of joint DN/DS and PN/PS ratios. The P value of

a gene set is estimated from the joint N/S density on a two

dimensional grid. We first used the R function kde2d (taking

bandwidth = 0.15, maximum grid size = 10�10 and grid

point distance = 0.05) to estimate the probability density of

each of the grid points. We then bilinearly interpolated the

N/S coordinates of the observed gene set on the grid of the

null distribution and the corresponding density with the R

function interp.surface. The P value of the gene set is finally
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calculated by integrating over the densities of grid points that

have the same or lower density as the density of the observed

gene set (supplementary fig. S6, Supplementary Material

online). Note that because we use a kernel density estimation,

P values much smaller than the inverse of number of elements

in the null distribution can be obtained. See also supplemen-

tary text S2 and table S2, Supplementary Material online, for a

description of parameters used in the kde2d function and how

they affect the results when their value is changed.

Correction for Multiple Tests

We corrected the P values for multiple testing by calculating

the q value of each gene set using the function qvalue from

the R package qvalue with default settings. The q value of a

test measures the minimum proportion of false positives (the

false discovery rate, FDR) when that test is called significant

(Storey and Tibshirani 2003). We retained those gene sets

with a q value below 0.2, meaning that we expect 20% of

our final candidates to be false positives.

Jackknife Approach to Detect Pathways with Outlier
Genes

We used a jackknife approach to examine the effect of indi-

vidual genes of a given gene set on our results. For each

significant pathway, we repeatedly removed one gene and

recalculated the DN/DS and PN/PS values. These jackknife

scores are depicted in figures 1B–H and 2B–E. Pathways

where one of the jackknife scores resulted in a much higher

P value were probably scoring significant because one gene

has extreme values and such pathways were not considered as

candidate gene sets for polygenic selection.

Classical MDK Test at Gene Set Level

The classical MDK test for positive selection tests at the gene

level whether the DN/DS ratio is significantly larger than the

PN/PS ratio. We extended this procedure to the gene set level

by creating for each gene set a 2�2 contingency table con-

taining its DNset, DSset, PNset, and PSset counts as defined in

equation (1) and testing whether the odds ratio of the table

(OR = (DS� PN)/(DN� PS) is significantly deviating from

(smaller than) one with a two-sided (one-sided) Fisher’s

exact test, using the R function fisher.test.

Comparing Gene Set Level Alpha Values with an
Empirical Null Distribution

We calculated a gene set analog of a for each set, here

defined as

a ¼ 1�

X
g2 set

DSg �
X

g2 set

PNg

X
g2 set

PSg �
X

g2 set

DNg

ð3Þ

and compared it to the a values of an empirical null distribu-

tion with corresponding set length.

Results

Genes in Biological Pathways Are Conserved and Share
Evolutionary Properties

We first investigated whether genes in pathways have differ-

ent evolutionary properties than genes that are not part of a

pathway. We downloaded a collection of 1,366 pathways

from the Biosystems database (Geer et al. 2010) and con-

trasted the genetic diversity of genes that occur in one or

more gene sets with genes that are not part of any gene

set. We used SNPs inferred from the Complete Genomics

(CG) collection of 42 human individuals from three African

and five non-African populations (Drmanac et al. 2010), as

well as the fixed differences between humans and chimpan-

zees that were assigned to the human branch. Interestingly,

we find that the nonsynonymous to synonymous ratios are

lower for genes in gene sets than for genes that are not part of

a gene set, both for mutations within human populations (PN/

PS) and for fixed mutations on the human lineage (DN/DS).

This suggests that genes belonging to gene sets are globally

under more severe evolutionary constraints (table 1).

In addition, we find that genes that are part of many path-

ways (ten or more) are even more constrained than genes

occurring in a single or a few pathways, as they show signifi-

cantly lower DN/DS and PN/PS ratios (P< 1e-6, Mann–

Whitney test, supplementary fig. S3, Supplementary

Material online). Overall, there is a small but significant nega-

tive correlation between the DN/DS ratio of a gene and the

number of pathways it belongs to (Pearson’s r = �0.09,

P<2.2e-16). These results make sense, since genes that are

part of many pathways often have an essential role or have

several functions, suggesting a potential pleiotropic effect of

mutations in these genes, and thus a higher chance for them

to be deleterious. These findings are also consistent with ear-

lier reports showing that highly connected proteins are usually

more essential (Jeong et al. 2001; Wuchty 2004) or evolving at

a slower rate (Fraser et al. 2002; Saeed and Deane 2006).

These results further imply that tests of selection bearing on

single genes should be performed separately for genes not

part of gene sets or that their lower levels of evolutionary

constraints be taken into account in future testing procedures

to minimize false positives.

Interestingly, we observe that gene-specific DN/DS and PN/

PS ratios are more similar within than between gene sets and

that the variance in N/S ratios due to differences between

gene sets represents around 5% (supplementary fig. S2,

Supplementary Material online) of the total variance in N/S

ratios (nonparametric ANOVA test, P value< 1e-4; see

Materials and Methods and supplementary text S1,

Supplementary Material online). This variance component
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also represents the average correlation between N/S ratios of

two genes belonging to the same gene set relative to two

genes from different gene sets. This positive correlation of

about 5% suggests that genes in a pathway share evolution-

ary properties and have a correlated evolutionary response

(i.e., most are rather conserved or most are under weak selec-

tion). These results are in keeping with the observation of

Fraser et al. (2002) that interacting proteins have similar

evolutionary rates, which the authors explained by the occur-

rence of compensatory changes in interacting proteins.

Measuring and Testing Selective Constraints at the
Pathway Level

We are interested here in finding a way to determine the

extent and the type of selection acting in gene sets.

FIG. 1.—Results from the 2DNS test. Here, shared SNPs (SNPs that are polymorphic both in African and non-African populations) are compared with

fixed substitutions in the human branch. (A) Distribution of DN/DS and PN/PS ratios of all tested pathways. Each dot represents a pathway with color

corresponding to its significance and size to its total exon length. The six pathways that scored significant (q value< 0.2; table 2) in the 2DNS test are

highlighted by a black circle. Note that seemingly outlier gene sets may not reach significance due to their small size, which increases the variance of their null

distribution. For example, the Hormone ligand-binding receptors pathway (depicted in gray; H), has a high DN/DS ratio, but because of its small size (ten

genes, 24 kb total exon length) its null distribution is very widespread in the 2D space. (B–G) Null distributions for six significant (q<0.2) pathways. (H) Null

distribution for the Hormone ligand-binding receptors pathway as a typical example of a nonsignificant outlier. The observed positions of gene sets are

indicated as orange dots highlighted by a black circle in the DN/DS–PN/PS plane, whereas the empirical null distribution is shown as gray dots (N = 400,000).

Light-orange dots show the scores of the jackknifed gene sets. The contour lines mark the proportion (0.5, 0.9, and 0.99) of the null distribution that falls

within these areas.
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Conventional MDK tests such as those based on the a statistic

are usually used to detect only positive selection (but note that

a negative a is an indicator of purifying selection or of slightly

deleterious mutations segregating in a population).

Furthermore, a is based on a ratio of ratios, and a given

high a value, taken to be indicative of positive selection, can

be obtained with a high DN/DS or a low PN/PS, which can be

due to different selective forces, such as recent strong purify-

ing selection. To address these issues, we propose here a new

test of polygenic selection that is more informative about the

respective importance of DN/DS and PN/PS ratios and that

detects outlier pathways for different types of selection. Our

aim with this test, referred to hereafter as the 2DNS test, is to

find gene sets that have evolved differently than other gene

sets, in that they have unusual DN/DS or PN/PS combinations

compared with other sets. First, we sum up the PN, PS, DN,

and DS counts over all genes in a gene set to obtain gene set

level DN/DS and PN/PS ratios (as shown in eq. [1]). Second, we

create genome-wide empirical null distributions of random

gene sets that take into account gene set size, as well as

potentially shared evolutionary properties of gene sets. Note

that the use of these null distributions also allows us to control

for the past demographic history shared among all gene sets

and for the overall selective constraint acting on coding

regions. Third, the joint probability density distribution of

DN/DS versus PN/PS ratios is estimated on a 2D grid directly

from the empirical null distribution. The P value for each gene

set is finally obtained by integrating the joint density of all grid

points that have a similar or lower density than the gene set of

interest defined by its “N/S coordinates” (see supplementary

fig. S6, Supplementary Material online).

We compared the distribution of gene set P values with a

uniform distribution on a QQ plot to confirm that our testing

procedure was well behaved (supplementary fig. S5D,

Supplementary Material online). The fact that the observed

P values are close to the expected uniform distribution sug-

gests that our null distribution correctly represents the proper-

ties of the gene sets. Note that naively constructed null

distributions that ignored some or all of the evolutionary

properties of gene sets led to strongly underestimated

P values, which would have translated in a large number of

false-positive gene sets (see supplementary S5A–C,

Supplementary Material online).

We applied the 2DNS test to the comparison between fixed

mutations on the human branch and polymorphisms that are

found both in African and non-African populations. These

“shared” polymorphisms come from relatively ancient muta-

tions that predated the migration out of Africa, and we thus

expect that slightly deleterious mutations, which can distort

selective signals (Eyre-Walker 2002; Fay et al. 2002; Parsch

et al. 2009), have been purged from this group. Indeed, the

distributions of the GERP score, a measure of evolutionary

constraint (Cooper et al. 2005), for fixed mutations and

shared polymorphisms are very similar, confirming that the

latter are not enriched with deleterious mutations (supple-

mentary fig. S7, Supplementary Material online).

The 2DNS test identifies six gene sets with a q value< 0.2

(fig. 1 and table 2). These gene sets are located well outside

the bulk of the 2D null distributions in different directions

(fig. 1B–G), suggesting that they are subject to different

forms of selection than the majority of sets that are under

slightly purifying selection. For each of the significant

Table 1

Counts and Ratios of Nonsynonymous (N) and Synonymous (S) Fixed Mutations and Polymorphisms in the Human

Lineage

Mutation Group N S N/S

Divergence (D)

All genic substitutions 32,332 41,596 0.78

Substitutions in genes belonging to a gene set 13,802 20,811 0.66

Substitutions in genes not belonging to a gene set 18,530 20,785 0.89

Polymorphism (P)

All genic SNPs 63,812 57,672 1.11

Private African SNPs 27,413 24,953 1.10

Private non-African SNPs 19,965 13,990 1.43

Shared SNPs 16,434 18,729 0.88

SNPs in genes belonging to a gene set 28,876 28,704 1.01

Private African SNPs 12,309 12,377 0.99

Private non-African SNPs 9,263 6,911 1.34

Shared SNPs 7,304 9,416 0.78

SNPs in genes not belonging to a gene set 34,936 28,968 1.21

Private African SNPs 15,104 12,576 1.20

Private non-African SNPs 10,702 7,079 1.51

Shared SNPs 9,130 9,313 0.98
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pathways, we repeatedly recalculated the DN/DS and PN/PS

values leaving one gene out in turn (“jackknifing”) to examine

to which extent the score depends on single genes (fig. 1B–H).

Significant Pathways Have Been Influenced by Different
Types of Selection

The two highest scoring sets, Olfactory transduction and

Olfactory Signaling Pathway, have both high DN/DS and

high PN/PS ratios (fig. 1B and C), in line with their known

relaxed constraints in primates, in particular in humans

(Gilad et al. 2005; Somel et al. 2013; Hughes et al. 2014).

This relaxation is often explained by the fact that vision has

become more important than smell in primates (Gilad et al.

2004). Note that having both DN/DS and PN/PS ratios around

two suggest that nonsynonymous mutations are neutral in

these genes, since most mutations on the first two codon

bases result in nonsynonymous changes. This result is consis-

tent with the observation that many olfactory genes have

become pseudogenes (Go and Niimura 2008).

The third high scoring gene set is Glutathione conjugation.

This pathway contains many glutathione S-transferases

(GSTs), which are involved in the protection of cells against

oxidative stress and toxic foreign compounds (Hayes and

Strange 2000). The jackknife scores of this pathway show

that PN/PS ratios are typically high for all genes in this set,

with some variation, whereas their DN/DS ratios is very

stable and maintained at a moderately high level (fig. 1D).

The fact that this pathway has an unusually high PN/PS ratio

for shared SNPs could be due to some form of balancing

selection. It suggests that the high diversity in GSTs is bene-

ficial, possibly serving as a population wide protection against

a large range of toxic factors in the environment. Indeed, GST

polymorphisms have been related to drug sensitivity and are

associated with disease susceptibility (Hayes and Strange

2000).

The next highest scoring pathway is the Beta-catenin phos-

phorylation cascade pathway. Beta-catenin is involved in both

cell adhesion and Wnt signaling (signal transduction). It also

plays an important role during development and it can act as

oncogene (Bienz 2005). This pathway is a good example of

having an unusual combination of N/S coordinates, with PN/

PS being much lower than DN/DS, while the separate ratios

are not extreme outliers by themselves. This pattern is compa-

tible with a recent strong purifying selection in humans result-

ing in very low PN/PS values (fig. 1E), possibly after an initial

adaptive event. Indeed, this is confirmed by the jackknife

scores that show a constantly low PN/PS score across all

genes. Two genes appear as outliers in opposite directions:

The APC gene (a gene involved in tumor suppression and in

synapse assembly, Rosenberg et al. 2008) plays a large role in

the high DN/DS ratio of this gene set, whereas the AXIN gene

has the opposite effect. When one or the other is removed,

the DN/DS ratio changes strongly, but when both are

removed, the DN/DS ratio (1.2) is close to the original value

(1.25). We therefore posit that the signal shown by this path-

way is indeed polygenic and not driven by the effect of a single

gene.

The Meiotic Recombination pathway is another candidate

for being affected by positive selection, with a relatively high

DN/DS ratio and a moderate PN/PS ratio (fig. 1F). Many genes

in this pathway code for histones, but the high DN/DS ratio is

caused by other genes, such as BRCA1, MSH4, TOP3A, and

PRDM9 (supplementary table S3, Supplementary Material

online), some of which were recently reported to be under

positive selection (Lou et al. 2014; Schwartz et al. 2014).

Although meiotic recombination is an essential and therefore

conserved process in mammals, some of the underlying

genetic factors (gene variants, recombination rate, and hot-

spots) vary among species (Baudat et al. 2013). The fact that

PRDM9, one of the key players meiotic recombination, has

been related with interspecific intercompatibilities (Oliver

et al. 2009) suggests that positive selection in the Meiotic

Recombination pathway could have been involved in the

emergence of barriers to reproduction with related species.

The mRNA Splicing pathway is a good candidate for being

under extremely strong purifying selection as it shows parti-

cularly low values both for DN/DS and for PN/PS (fig. 1G). This

pathway is an extreme example of a “housekeeping” path-

way, with genes expressed in all tissues. Earlier studies have

indeed reported that housekeeping genes evolve more slowly

Table 2

Pathways Scoring a q Value< 0.2 in the 2DNS Test Comparing Fixed Mutations in the Human Branch (DN/DS) and Polymorphisms Shared Between

African and non-African Populations (PN/PS)

Rank Gene Set Size (Genes) Length (kb) DN DS DN/DS PN PS PN/PS P q

1 Olfactory transduction 291 425 628 375 1.67 592 323 1.83 9.49e-59 1.06e-55

2 Olfactory Signaling Pathway 250 290 548 298 1.84 532 274 1.94 9.99e-43 5.58e-40

3 Glutathione conjugation 22 78 19 14 1.36 27 9 3.00 5.55e-04 0.1513

4 Beta-catenin phosphorylation cascade 17 109 24 22 1.09 1 12 0.08 6.63e-04 0.1513

5 Meiotic Recombination 57 171 127 88 1.44 26 34 0.76 7.41e-04 0.1513

6 mRNA Splicing* 101 437 41 233 0.18 9 75 0.12 8.13e-04 0.1513

NOTE.—Gene set length, total exon length of genes in set. Pathways marked with a "*" represent a union of highly similar pathways.
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than tissue specific genes and that they are under stronger

selective constraints (e.g., Zhang and Li 2004).

Impact of Differential Demography in African and
Non-African Populations

Previous studies have shown that populations outside Africa

have a higher proportion of deleterious mutations than those

in Africa (Lohmueller et al. 2008; Subramanian 2012), com-

patible with the buildup of a mutation load since the expan-

sion of modern humans out-of Africa (Peischl et al. 2013). We

examined PN/PS ratios for SNPs that were either shared

between Africans and non-Africans or private to Africans or

private to non-Africans. In line with previous results

(Lohmueller et al. 2008; Peischl et al. 2013), we find that

the PN/PS ratio is larger for non-African-specific SNPs than

for SNPs private to Africans. In addition, shared SNPs show

the lowest PN/PS ratio and this for genes belonging or not to

gene sets (table 1). These results are consistent with the view

that bottlenecks and range expansions of non-African popu-

lations have increased their PN/PS ratio relative to Africans

(Peischl et al. 2013) and that purifying selection had more

time to act on shared SNPs than on population specific

SNPs, thus contributing to the elimination of a proportionally

larger number of deleterious nonsynonymous mutations (see

also supplementary fig. S7, Supplementary Material online).

To study the effect of potentially different demographic

histories in Africans and non-Africans at the gene set level,

we used our 2DNS test to compare the PN/PS ratios of private

FIG. 2.—Results of the 2DNS test on PN/PS ratios of all tested pathways. Here, non-African SNPs (SNPs that are only polymorphic in non-African

populations) are compared with African SNPs (SNPs unique to African populations). (A) Distribution of DN/DS and PN/PS ratios of all tested pathways.

Each dot represents a pathway with color corresponding to its significance and size to its total exon length. The four pathways that scored significant

(q value< 0.2) in the 2DNS test are highlighted by a black circle. (B–E) Null distributions for the four significant (q<0.2) pathways. The observed

positions of gene sets are indicated as orange dots highlighted by a black circle in the DN/DS-PN/PS plane, whereas the empirical null distribution

(N = 400,000) is shown as gray dots. Light-orange dots show the scores of the jackknifed gene sets. The contour lines mark the proportion (0.5, 0.9,

and 0.99) of the null distribution that falls within these areas.
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non-African SNPs and private African SNPs. As expected, PN/

PS ratios are overall clearly larger for non-African SNPs than for

African SNPs at the gene sets level (fig. 2, sign test: P<2.2e-

16). In addition to showing the effect of past demography on

the whole genome, our procedure reveals four significant out-

lier pathways (supplementary table S4, Supplementary

Material online), which all have unusual N/S combinations

given the genomic background. These pathways are related

to olfactory signaling and mRNA processing and they are

examples of relaxation and purifying selection, as found in

the previous test where we contrasted fixed mutations against

shared SNPs.

Effect of Increasing Sample Size: 2DNS Applied on the
1000 Genomes Dataset

Increasing the number of sampled individuals will not only

lead to a higher number of detected SNPs but also to an

enrichment in low frequency variants that are potentially

under stronger purifying selection. To study this effect, we

repeated our testing procedure on another dataset, namely

SNPs from the 1000 Genomes project phase 3 (1000G set),

using data collected from 1,594 individuals. To properly com-

pare the results, we restricted our analyses to the part of the

exome that is covered by both the Complete Genomics and

the 1000 Genomes projects. First, we applied the 2DNS test

on both SNP sets to compare N/S ratios between fixed muta-

tions in the human lineage and SNPs shared between African

and non-African populations. Although there were twice as

many shared SNPs in the 1000G set as in the CG set (supple-

mentary table S5, Supplementary Material online), the top

scoring gene sets are very similar (supplementary table S6,

Supplementary Material online). Indeed, the four significant

gene sets in the CG dataset are the top four of five significant

gene sets in the 1000G results. Next, we applied the test on

both datasets to compare N/S ratios between SNPs private to

African and non-African populations. Although three out of

the four significant sets in the CG results are also significant in

the 1000G test, the latter test produces twice as many sig-

nificant sets in total (supplementary table S7 and fig. S8,

Supplementary Material online). This larger number of signifi-

cant sets seems both due to the much larger number of SNPs

in the 1000G set (five times more African SNPs and ten times

more non-African SNPs, supplementary table S5,

Supplementary Material online) and to the enrichment of

slightly deleterious nonsynonymous mutations among rare

variants that can inflate the PN/PS ratio. Two high scoring

pathways are particularly interesting, because the PN/PS

ratio of their African SNPs is larger than the PN/PS ratio of

their non-African SNPs. The Signaling by constitutively active

EGFR pathway has a moderate African PN/PS ratio and lower

non-African PN/PS ratio, suggesting recent adaptation in

Africa or purifying selection outside Africa. The Linoleic acid

metabolism pathway has a high PN/PS ratio in both African

and non-African SNPs which rather points to a recent relaxa-

tion of purifying selection in African populations.

Comparison between 2DNS and Classical MDK Tests

To illustrate the difference between our new approach and

classical MDK tests, we performed an MDK test at the gene

set level. In other words, we tested whether some gene sets

presented a DN/DS ratio larger than their PN/PS ratio. We

inferred the significance of the results in two ways: With a

conventional Fisher’s exact test on the 2� 2 contingency table

of gene set level DN, DS, PN and PS counts and by comparing

the gene set a value computed according to equation (3) (see

Materials and Methods) to an empirical null distribution built

along the same principles as for the 2DNS test.

With a two-sided Fisher’s exact test (testing for deviation

from DN/DS = PN/PS) we find 68 pathways scoring significant

(q value< 20%). Most of them have a PN/PS>DN/DS, which

would point toward purifying or balancing selection rather

than to positive selection (supplementary table S8,

Supplementary Material online). Interestingly, nine out of

the ten highest scoring significant sets are directly related to

immunity or response to pathogens. There are only four sig-

nificant pathways with DN/DS> PN/PS, indicative of positive

selection, namely IL-2 Signaling Pathway, IL2-mediated signal-

ing events, Beta-catenin phosphorylation cascade, and

Pentose phosphate pathway (Pentose phosphate cycle), all

ranked in the lower half of the list. However, applying a

one-sided Fisher’s exact test, where we explicitly try to

detect cases where DN/DS> PN/PS, produces no significant

pathways at FDR level 20% (supplementary table S9,

Supplementary Material online). We note, however, that a

QQ plot analysis of the P values of both Fisher’s exact tests

shows clear systematic departures from expectations. Indeed,

the P values are under- and overestimated for the two sided

and for the one-sided Fisher exact test, respectively (supple-

mentary fig. S9, Supplementary Material online), implying that

the two-sided test is too liberal, and the one-sided test is too

conservative.

The comparison of gene set a values to an empirical null

distribution results in several high scoring pathways, but none

of them are significant after correcting for multiple tests (sup-

plementary table S10, Supplementary Material online), sug-

gesting that a test based on a values is less powerful than our

2DNS test. Moreover, we notice that most of the top-ranking

pathways (shown as dark red points on supplementary fig.

S10, Supplementary Material online) have a high a value asso-

ciated with a low DN/DS and an even lower PN/PS. This sug-

gests that positive selection is more easily detected in (or is

more likely to act on) slowly evolving genes.

Discussion

Our 2DNS test has several advantages over classical methods

such as the MDK test. First, we focus on the detection of
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selection in functional groups of genes instead of single genes.

Not only is a biological pathway or gene network a more

natural unit to test for selection, but by pooling genes belong-

ing to the same gene set, we avoid the exclusion of many

genes that have undefined N/S ratios. Second, our test allows

one to detect different selective regimes, whereas classical

tests are often designed to evidence only one type of selec-

tion, usually positive selection. As proposed in figure 3, we can

infer which selective regime could have acted on an outlier

gene set from its position in the PN/PS-DN/DS plane. Still,

different selective processes can yield similar patterns leading

to ambivalent interpretations. However, we see this as a pro-

blem of the underlying biology (different processes generate

similar patterns) rather than of the 2DNS test per se. In these

cases, one could inspect the function of the genes of a candi-

date pathway in more detail to gain insight on the type of

selection that might have acted on the gene set.

Our 2DNS test is similar in spirit to the 2D neutrality test

proposed by Innan (2006), which incorporates two summary

statistics to test genes for signals of selection. However, the

statistics used by Innan are indirect measures of neutrality, and

the interpretation of these pairs of values is not straightfor-

ward. Rather, instead of combining two selection tests, we

decompose here the MDK test into its two constituent factors,

DN/DS and PN/PS, which allows us to gain more insight into

underlying evolutionary pressures.

A third important advantage of our method is that it com-

pares gene sets against a genome-wide empirical null dis-

tribution and thus controls for potential demographic events

(similar to e.g., Nielsen et al. 2005) and genome-wide selective

forces, most notably background selection (Hernandez et al.

2011). It has indeed been noticed that large genomic datasets

contain their own null distribution (Efron 2013), implying they

can be used to evidence outliers. Note, however, that our

approach does not test against any prespecified evolutionary

model, and it is therefore not a test of neutrality since gene

sets found to be nonsignificant by our approach can be under

selection. With our 2DNS test, we are thus trying to find

extreme outliers, such as gene sets that have atypical patterns

of diversity compared with other gene sets, which makes it a

rather conservative method, as we build a null distribution that

closely reflects the properties of the gene sets themselves.

However, we have shown that using a naı̈ve null distribution,

for example, by simply randomly sampling from all genes,

would yield many false positives (supplementary fig. S5,

Supplementary Material online), because this null distribution

would not reflect the inherent properties of gene sets in gen-

eral. This is especially true because pathways described in

current databases are probably a biased subset of existing

biological pathways.

In line with earlier studies (Bustamante et al. 2005;

Chimpanzee Sequencing and Analysis Consortium 2005;

Zhang and Li 2005; Eyre-Walker and Keightley 2009;

Messer and Petrov 2013), we find more evidence for purifying

rather than positive selection, reflected for example in lower

DN/DS ratios than PN/PS ratios, both at the gene and gene set

level (table 1). However, a possible explanation for finding only

a few examples of positive selection is that it does not affect

mostly coding regions, but rather regulatory regions or other

functional parts of the genome, leading to variation in gene

expression or epigenetic differences (Ponting and Lunter

2006; Enard et al. 2014). The 2DNS test could be adapted

to study such categories of genomic data, for example, com-

paring mutations in transcription factor binding sites to puta-

tive neutral flanking sites, as other metrics than synonymous

or nonsynonymous state can be used to assign the level of

functional or selective constraints; for example, site conserva-

tion scores (e.g., GERP scores, Cooper et al. 2005).

Our 2DNS test is not restricted to finding gene sets with

unusual DN/DS-PN/PS pairs in the human branch and can

easily be extended to other species or applied to compare

evolutionary rates between species. The test is also suitable

to compare the diversity levels among polymorphisms

between groups with a different demographic history, as

exemplified in figure 2, where we compare SNPs private to

African and to non-African populations.

In the NS plane, many small gene sets show very unusual

joint N/S ratios (fig. 1A), but they are not found significant

because their associated null distributions are very wide (e.g.,

fig. 1H). This shows that one should be cautious with groups

of genes that have high N/S ratios, as such values can arise by

chance alone, but it also suggests that our test might lack

power to detect outlier selection regimes in small gene sets.

Indeed, when we use a smaller dataset by restricting it to the

86.8% of the exome that is covered by both the
FIG. 3.—Potential selective forces having acted on significant outlier

gene sets depending on their position in the N/S plane.
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polymorphism and divergence datasets (see also Mapping and

annotation of mutations in the Materials and Methods sec-

tion), we get similar top scoring gene sets (supplementary

table S11, Supplementary Material online), but they have a

lower significance, probably due to the loss of data (20% less

SNPs and 10% less fixed mutations).

In addition, it is likely that selection has not affected whole

pathways but only some subsets and that this limited signal

might be difficult to detect at the whole pathway level.

Alternatively, different selective forces might also act on dis-

tinct subsets of genes, and their signal could cancel each

other’s out when examining whole pathways, leading to a

reduced power of our approach. Note that this problem

also occurs when testing single genes, since different exons,

introns, or regulatory regions can be affected by different

selective forces. It would thus be useful to extend our test to

detect selection in pathway submodules, which should be the

object of future work.

Our previous attempt at detecting selection at the gene set

level within human populations revealed several pathways

involved in immune response to be potentially under positive

selection (Daub et al. 2013). Interestingly, our present study

does not show strong signals of positive selection but rather of

overall purifying selection. These differences can be due to

several reasons. First, our previous study used a statistic (hier-

archical FST) detecting differences between continental groups

that should have emerged recently, whereas our 2DNS statis-

tics are more sensitive to older events. We contrast old muta-

tions that have occurred on the human lineage to

polymorphisms shared between Africans and non-Africans

(fig. 1) and which should thus have occurred in the ancestral

human populations prior to the exit out of Africa. Second, our

current testing procedure is more stringent than that used

previously. We are indeed looking for outliers in a null distri-

bution that takes into account selective constraints acting on

pathways and past demographic effects, whereas we pre-

viously based our test on a null model of human evolution

only taking into account global levels of differentiation

between human populations. Third, we focused here strictly

on coding regions, whereas we also considered neighboring

regions in our previous study, thus including regulatory and

enhancer regions that have been recently shown to bear the

strongest signals of positive selection in humans (Enard et al.

2014). These differences in methodology and in the investi-

gated time scales could thus explain the apparent discrepan-

cies found between these two studies. This also indicates that

different forces have acted on pathways at different periods of

human evolution.

Supplementary Material

Supplementary text S1 and S2, tables S1–S11, and figures

S1–S10 are available at Genome Biology and Evolution

online (http://www.gbe.oxfordjournals.org/).
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