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Abstract15

Stratified thin layers often present a prominent mechanical contrast with regard to the16

embedding background and, hence, are important targets for seismic reflection studies.17

An efficient way to study the reflectivity response of these thin layers is to employ their18

homogenized viscoelastic equivalents. We aim to homogenize a simple, yet realistic, thin-19

layer model, which is composed of a finite non-periodic sequence of homogeneous porous20

strata embedded in a background deemed impermeable at the seismic frequencies. The21

overarching objective is to reproduce the reflectivity response of such stratified thin lay-22

ers. However, the estimation of the equivalent moduli is inherently affected by the bound-23

ary conditions (BC) associated with the embedding background. Therefore, classical ho-24

mogenization procedures, which assume the existence of a periodic structure, are not read-25

ily applicable. We, therefore, propose a novel homogenization procedure that incorpo-26

rates naturally the appropriate BC. To this end, we consider a sample that includes both27

a part of the background and a section of the thin layer, to which we apply classical os-28

cillatory relaxation tests. However, we estimate the average of stress and strain compo-29

nents only over the thin layer section of interest. To test the accuracy of the method,30

we consider a sandstone composed of two strata saturated with different fluids embed-31

ded in impermeable half-spaces. After estimating the corresponding equivalent moduli,32

we compare the resulting P-wave reflectivities with those obtained using the original model.33

Our results show that the inferred viscoelastic equivalent closely reproduces the reflec-34

tivities of the stratified thin layer in the seismic frequency range.35

Plain Language Summary36

Porous thin layers are relevant for a wide range of pertinent applications such as37

carbon sequestration or hydrocarbon exploration since they can serve as storage of flu-38
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ids of interest. They often present a prominent seismic reflectivity response due to the39

high mechanical contrast with the embedding background. Heterogeneous porous thin40

layers generally show an equivalent viscoelastic behavior at seismic frequencies as a con-41

sequence of solid-fluid interactions, which, in turn, are induced by the passing wave. Con-42

sequently, an efficient way to study the seismic response of porous thin layers is to use43

their homogenized viscoelastic equivalents. If a thin layer contains a repeating sequence44

of porous strata, well-established methods exist to obtain the corresponding viscoelas-45

tic equivalents. However, if a thin layer is composed of a non-periodic number of porous46

strata, which, for all practical intents and purposes, is likely to be the rule rather than47

the exception, these methodologies are not applicable. To alleviate this problem, we, there-48

fore, propose a novel approach to compute homogenized properties of thin layers com-49

posed of a non-periodic sequence of porous strata to compute their reflectivities.50

1 Introduction51

Quantitative interpretation of seismic reflection data is essential for constraining52

rock and pore fluid properties in general and for characterizing seismic-scale thin lay-53

ers in particular. In the given context, a layer is considered to be thin if the seismic re-54

flections from the top and bottom interfaces cannot be individually resolved at the dom-55

inant wavelength, such that their compounded effect manifests itself as a single seismic56

reflection signal. This effect occurs when the layer thickness is equal to or smaller than57

a quarter of the dominant wavelength (Widess, 1973; Kallweit & Wood, 1982). The cor-58

responding threshold is known as the tuning thickness and is characterized by an initial59

constructive interference of the reflection signals from the top and bottom interfaces that60

becomes destructive as the layer thickness decreases (Bakke & Ursin, 1998; Hamlyn, 2014).61

Thin layers commonly exhibit heterogeneous structures (e.g., Li et al., 2020; Hussain et62
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al., 2023), such as internal stratification (Figure 1a), which, in turn, govern their effec-63

tive seismic response. Pertinent applications of reflectivity studies on thin layers are, for64

instance, the characterization of gas-bearing beds (e.g., Cichostȩpski et al., 2019; Shakir65

et al., 2022) as well as the monitoring of carbon sequestration (e.g., Williams & Chad-66

wick, 2012; Zhang et al., 2013). Current methodologies to estimate the rock properties67

of thin layers have been largely developed within the elastic framework (e.g., Puryear68

& Castagna, 2008; Rubino & Velis, 2009; Zhang et al., 2013; Romdhane & Querendez,69

2014; Huang et al., 2016). Since the theory of elasticity cannot account for fluid-solid70

interactions in heterogenoues porous rocks, this approach is likely to affect the accuracy71

of the estimated properties72

Conversely, using a poroelastic framework allows for an accurate physical descrip-73

tion of heterogenous porous rocks in general and thin layers saturated with different flu-74

ids, in particular. Evidence suggests that heterogenoues poroelastic media exhibit equiv-75

alent viscoelastic behaviors regarding attenuation and velocity dispersion in the seismic76

frequency range (e.g., Pride et al., 2004; Carcione & Picotti, 2006; L. Zhao et al., 2015,77

2021). This dispersive behavior is the consequence of an energy dissipation phenomenon78

known as wave-induced fluid flow or WIFF (e.g., Müller et al., 2010) that occurs when79

a passing seismic wave generates pressure gradients between different parts of a poroe-80

lastic medium that equilibrate by fluid flow. For typical seismic frequencies, WIFF oc-81

curs predominantly in the mesoscopic scale range (e.g., Pride et al., 2004; Müller et al.,82

2010). This refers to WIFF taking place between heterogeneities that are much larger83

than the prevailing pore size but much smaller than the wavelength (e.g., Norris, 1993).84

In this context, the substitution of a heterogeneous thin layer by the corresponding ho-85

mogenized viscoelastic representation can be deemed as an efficient technique to study86

its seismic reflectivity response. Indeed, previous work demonstrates the applicability87
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of the poroelastic-to-viscoelastic homogenization approach to frequency-dependent seis-88

mic reflection studies of thin layers. For instance, Rubino et al. (2011) and Rubino and89

Velis (2011) employ viscoelastic substitutes to represent thin sandstone layers present-90

ing different patchy saturations of CO2 to investigate the corresponding effects on zero-91

offset seismic reflection data as well as on the variation of amplitudes for different in-92

cidence angles. Similarly, He et al. (2020) use viscoelastic substitutes of thin fractured93

layers to investigate their impact on the P-wave amplitude variation with respect to the94

incidence angle and frequency. Moreover, Jin et al. (2017) employ an equivalent viscoelas-95

tic representation to replace a partially gas-saturated thin layer. In the same study, this96

model is later used to estimate gas saturation and layer thickness from seismic ampli-97

tude variations with the incidence angle and frequency.98

The pioneering work of White (1975) and White et al. (1975) is one of the first to99

show the equivalent viscoelastic behavior of simple poroelastic composites saturated with100

gas and water. In particular, their periodic model of alternating porous beds (White et101

al., 1975) has been used to represent heterogeneous thin layers with an internal strat-102

ification (e.g., Quintal et al., 2009; He et al., 2020). In this modeling approach, a porous103

thin layer is assumed to be embedded in an impermeable background and to consist of104

a stack of periodically alternating beds that are deemed poroelastic, homogeneous and105

isotropic. This hydraulically isolated thin-layer model is useful to represent relevant sce-106

narios for subsurface applications such as the case of a thin layer composed by a sand-107

shale sequence surrounded by impermeable shale (e.g., Li et al., 2020). Another perti-108

nent scenario corresponds to porous systems consisting of a main fault or fracture sur-109

rounded by a thin damage zone, that is embedded in impermeable intact rock (e.g., Caine110

et al., 1996; Mitchell & Faulkner, 2012). Several studies have applied the aforementioned111

model to investigate the frequency-dependent reflectivity response of thin layers of in-112
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terest. For instance, Quintal et al. (2009; 2011) compare the frequency-dependent reflec-113

tion coefficients at normal incidence of viscoelastic substitutes of thin-layer models con-114

sisting of a stack of periodically alternating sandstones with differing rock and fluid prop-115

erties embedded in elastic background. Whereas, He et al. (2020) utilize a particular ver-116

sion of this model to represent a thin layer containing fractures. They assume that the117

thin layer is embedded in impermeable shale and that one of its alternating beds rep-118

resents a horizontal fracture with a much higher permeability, softer moduli and smaller119

thickness than the other bed (Brajanovski et al., 2005; Kong et al., 2013). In their study,120

they use viscoelastic substitutes of these fractured thin layers to examine the effect of121

various saturating fluids and fracture properties on the variation of seismic amplitude122

as a function of the angle of incidence and frequency.123

A general assumption in the homogenization of a porous medium containing a de-124

terministic heterogeneous structure is its periodicity, for example, an ensemble of beds125

that repeats a sufficient number of times so that its equivalent behavior is, for practi-126

cal purposes, unaffected by the boundary conditions (BC) induced by the surrounding127

rock (e.g., Wenzlau et al., 2010; Quintal, Steeb, et al., 2011). Arguably, a more realis-128

tic way to conceptualize a stratified porous thin layer is to consider a model where the129

thin layer is comprised of a finite non-periodic stratigraphic sequence (Figure 1a). How-130

ever, in this case, boundary effects associated with the background embedding the thin131

layer inherently affect the estimation of the equivalent moduli. Classical homogeniza-132

tion methodologies are not readily applicable to this type of thin-layer models, and the133

development of alternative suitable procedures remain largely unexplored.134

In this work, we seek to alleviate this problem by proposing a method to homog-135

enize non-periodically stratified porous thin layers embedded in a background deemed136

impermeable for the frequencies of interest. The overarching objective is to use the ho-137
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mogenized medium to predict the seismic reflectivity of the porous thin layer. To this138

end, the proposed method, which we describe in the following, incorporates the influ-139

ence of the BC induced by the embedding background for the estimation of the corre-140

sponding equivalent moduli. We test the accuracy of the proposed method using a thin-141

layer model that consists of a sequence of two porous sandstone beds embedded between142

two impermeable half-spaces. We estimate the corresponding equivalent moduli by ap-143

plying the proposed homogenization procedure and then calculate P-wave reflectivities144

at the interface between the upper half-space and the homogenized equivalent represen-145

tation of the thin layer. Finally, we compare these results against those obtained using146

the original porous thin layer.147

2 Theory and Methods148

In this section, we first detail the theoretical aspects regarding the validity of the149

poroelastic-to-viscoelastic equivalence. Then, we introduce the proposed homogeniza-150

tion procedure to estimate the equivalent moduli of an infinite horizontal thin layer em-151

bedded in half-spaces that are deemed impermeable for the frequencies of interest. The152

evaluation of the reflectivity, using semi-analytical plane-wave solutions, for the proposed153

poroelastic thin-layer model and its corresponding viscoelastic equivalent are detailed154

in Appendices A and B, respectively.155

2.1 Mesoscale fluid pressure diffusion156

WIFF occurs when a seismic wave propagating through a heterogeneous poroelas-157

tic medium creates pressure gradients that equilibrate by fluid flow (Müller et al., 2010).158

We focus on WIFF prevailing between mesoscale heterogeneities since this is particu-159

larly relevant for seismic applications. Mesoscale heterogeneities have a characteristic160

size Lm that is much larger than the pore size Lp but much smaller than the wavelength161
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Figure 1. (a) Schematic illustration of a stratified thin-layer model composed of a sequence of

four distinct poroelastic beds B1, B2, B3 and B4. This thin layer is embedded in the half-spaces

Λ1 and Λ2 deemed impermeable for the frequencies of interest. The light blue box represents a

sample Ωe used for the proposed homogenization procedure. (b) Enlarged view of the sample

Ωe = Ωp ∪ Ωb, where Ωp is a representative section of the thin layer and Ωb = Ωb1 ∪ Ωb2 is a

portion of the background, with Ωb1 ⊂ Λ1 and Ωb2 ⊂ Λ2, respectively. Γ is the boundary of the

sample Ωe, with Γ = Γ+
1 ∪ Γ−

1 ∪ Γ+
3 ∪ Γ−

3 .

λw. For instance, for a thin layer consisting of a sequence of homogeneous porous beds,162

the size of the mesoscale heterogeneity is dictated by the thickness of these beds. For163

sufficiently low frequencies f , which are generally within the seismic range, the drag force164

at the solid-fluid interface associated with WIFF is viscous-dominated (Johnson et al.,165

1987) and, fluid pressure diffusion (FPD) is the mechanism driving WIFF (Pride, 2005).166

The reference frequency that is associated with the transition from viscous- towards inertia-167

dominated drag forces is Biot’s characteristic frequency fB (Biot, 1956; Dutta & Odé,168
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1979)169

fB =
1

2π

ηϕ

ρfκS
, (1)170

where ϕ is the porosity, κ the static permeability, η, the fluid viscosity, ρf the fluid den-171

sity, and S the tortuosity of the pore space. The aforementioned considerations regard-172

ing scales and frequencies that frame mesoscale WIFF driven by FPD can be thus sum-173

marized as174

Lp ≪ Lm ≪ λw,

f ≪ fB .

(2)175

It can be shown that the equation governing this FPD mechanism stems from Biot’s176

(1941) quasi-static equations (Dutta & Odé, 1979; Chandler & Johnson, 1981; Norris,177

1993), where the corresponding diffusion coefficient D together with its characteristic178

diffusion length Ld can be expressed as (Norris, 1993)179

D =
κ

η

MHd

H
,

Ld =

√
D

ω
,

(3)180

where M is Biot’s fluid storage modulus, Hd and H are the drained and undrained plane-181

wave moduli, respectively, and ω is the angular frequency ω = 2πf . The required rock182

physical properties are183

Hd = λd + 2µ,

H = Hd +Mα2,

λd = Km − 2

3
µ,

α = 1− Km

Ks
,

M =

(
α− ϕ

Ks
+

ϕ

Kf

)−1

,

(4)184

where λd is the drained Lamé modulus, µ is the shear modulus, α is the Biot-Willis equiv-185

alent stress coefficient, and Km, Ks, and Kf are the bulk moduli of the drained solid frame,186

the solid grains, and the pore fluid, respectively.187
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The frequency, the characteristic diffusion length Ld, and the size of the hetero-188

geneity Lm control the so-called relaxed and unrelaxed FPD regimes (Müller et al., 2010).189

The relaxed state prevails at sufficiently low frequencies, for which Ld ≫ Lm. In this190

regime, there is enough time for the pressure between the beds to equilibrate. Conversely,191

the unrelaxed state prevails at sufficiently high frequencies, for which Ld ≪ Lm. Con-192

sequently, there is insufficient time for pressure equilibration to take place and, hence,193

the different beds behave as hydraulically isolated. A transition zone exists at interme-194

diate frequencies, for which Ld ≈ Lm. This zone is associated with attenuation and dis-195

persion of body waves due to viscous dissipation. The maximum dissipation energy is196

related to a characteristic transition frequency fc = ωc/2π, which depends on the dif-197

fusion coefficient D and the characteristic size of the heterogeneity Lm (Müller & Rothert,198

2006)199

ωc ≈
D

(Lm)2
. (5)200

The described FPD relaxation mechanism produces a viscoelastic behavior of the201

thin layer under consideration. The frequency-dependent moduli that describe such vis-202

coelastic material can be estimated by solving Biot’s (1941) quasi-static equations over203

a representative sample of the thin-layer model (Figure 1) by performing oscillatory re-204

laxation tests (e.g., Wenzlau et al., 2010; Quintal, Steeb, et al., 2011). This is followed205

by volume averaging of the inferred strain and stress components which, are then used,206

to estimate the equivalent moduli. Hereinafter, we use the term FPD to refer specifically207

to the mechanism driving mesoscale WIFF for the frequencies of interest, which are gen-208

erally much lower than Biot’s characteristic frequency.209
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2.2 Proposed homogenization procedure210

As stated above, we consider a thin layer consisting of a finite non-periodic sequence211

of homogeneous poroelastic beds, which is embedded in the half-spaces Λ1 and Λ2 that212

are regarded as impermeable for the frequencies of interest (Figure 1a). We also assume213

that this thin layer-background system is defined in R2. In a poroelastic context, the frequency-214

dependent impermeable behavior of the background means that, for the frequencies con-215

sidered, the permeability of the background is sufficiently low so that, the unrelaxed FPD216

regime prevails and, hence no fluid flow occurs between the thin layer and its embedding217

background. The proposed homogenization procedure is based on the classical treatment218

described in Favino et al. (2020) but involves substantial modifications with regards to219

the extent of the sample as well as to the volume over which strain and stress compo-220

nents are averaged. Specifically, the proposed method considers a sample that includes221

both a part of the embedding background and a representative section of the thin layer.222

Then, after applying three different oscillatory relaxation tests, it performs stress-strain223

averaging only over the domain that pertains to the thin layer. These novel adaptations224

permit to naturally incorporate the BC induced by the embedding background in the225

estimation of the equivalent moduli of the thin layer. In more detail, we apply the ho-226

mogenization procedure described below over a sample Ωe = Ωp ∪Ωb (Figure 1b), where227

Ωp denotes a representative section of the thin layer and Ωb = Ωb1 ∪ Ωb2 is a portion228

of the background, with Ωb1 ⊂ Λ1 and Ωb2 ⊂ Λ2, respectively. In the following, we229

detail the governing equations and the corresponding oscillatory relaxation tests. The230

governing equations are solved numerically over the sample for each oscillatory relaxation231

test using a finite element methodology in the frequency domain following Favino et al.232

(2020). This methodology has the capability to refine adaptively the mesh over desired233

domains, which allows the automatic creation of meshes for strongly heterogenoous me-234
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dia. In its original form, this technique formulates the relaxation oscillatory tests using235

periodic conditions on the boundaries of the sample to homogenize, which inherently as-236

sumes the periodicity of the sample (e.g., Anthoine et al., 1997; Xia et al., 2006).237

2.2.1 Governing equations238

We solve Biot’s consolidation equations (Biot, 1941, 1962) over a sample Ωe of the239

thin layer of interest (Figures 1a and 1b) for each of the oscillatory relaxation tests spec-240

ified in the following. We express these equations in the solid displacement - pressure241

(u−p) formulation in the frequency domain (Quintal, Steeb, et al., 2011; Favino et al.,242

2020), with u = u(x, ω) and p = p(x, ω), where x ∈ Ωe is the position and ω ∈ F is243

the angular frequency, with F = (0,W ]. Then, we express Biot’s consolidation equa-244

tions as245

−∇ · σ = 0 in Ωe × F,

− i α∇.u− i
p

M
+

1

ω
∇ ·

(
κ

η
∇p

)
= 0 in Ωe × F,

(6)246

where σ is the total stress, i the imaginary unit and the term (κη∇p) is the Darcy flux247

of the fluid relative to the solid.248

The constitutive equation relating the total stress σ to the solid displacement u249

and pressure p is250

σ = 2µ ε+ (λd Tr(ε) − αp) I, with

ε =
1

2

(
∇u+ (∇u)T

)
,

(7)251

where ε is the strain tensor and I the identity tensor.252

2.2.2 Oscillatory relaxation tests253

In this subsection we detail the BC for the oscillatory relaxation tests. Hereinafter,254

we assume a Cartesian coordinate system in R2 with the associated basis vectors x̂1 and255

x̂3 parallel to the horizontal and vertical Cartesian axes, respectively. We also let the256
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sample Ωe be a quadrilateral with boundary Γ = Γ+
1 ∪Γ

−
1 ∪Γ

+
3 ∪Γ

−
3 , where Γ+

1 and Γ−
1257

are opposite boundaries with outer normal vectors x̂1 and −x̂1, respectively. Similarly,258

Γ+
3 and Γ−

3 are opposite boundaries with outer normal vectors x̂3 and −x̂3 (Figure 1b).259

To simplify the notation, we let n̂ be the outer normal vector of Γ.260

In the following, we define periodic BC for displacements (u), pressure (p), trac-261

tions (σ·n̂) and the component normal to the boundary of the Darcy flux of the fluid262

relative to the solid (κη∇p · n̂). We apply three different sets of displacement BC cor-263

responding to the vertical and horizontal compression as well as the shear oscillatory re-264

laxation tests. Here, we let ∆u be a real displacement difference in the frequency domain.265

For the vertical compressional test, the BC for displacements are266

u · x̂3 |Γ−
3
− u · x̂3 |Γ+

3
= −∆u,

u · x̂1 |Γ−
3
− u · x̂1 |Γ+

3
= 0,

u |Γ+
1
− u |Γ−

1
= 0.

(8)267

For the horizontal compressional test, the BC for displacements are268

u · x̂1 |Γ+
1
− u · x̂1 |Γ−

1
= −∆u,

u · x̂3|Γ+
1
− u · x̂3|Γ−

1
= 0,

u |Γ−
3
− u |Γ+

3
= 0.

(9)269

Finally, for the shear test, the BC for displacements are270

u · x̂1 |Γ+
3
− u · x̂1 |Γ−

3
= ∆u,

u · x̂3 |Γ+
3
− u · x̂3 |Γ−

3
= 0,

u |Γ1+ − u |Γ−
1
= 0.

(10)271
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For all relaxation tests, the respective BC for pressure, tractions and fluid flux rel-272

ative to the solid are273

p|Γ+
k
− p|Γ−

k
= 0,

(σ · n̂) |Γ+
k
− (σ · n̂) |Γ−

k
= 0,(

κ

η
∇p · n̂

)
|Γ+

k
−
(
κ

η
∇p · n̂

)
|Γ−

k
= 0,

(11)274

where the subscript k in Γ−
k and Γ+

k takes the value of 1 or 3 at a time to denote oppo-275

site boundaries.276

2.2.3 Equivalent viscoelastic moduli277

In this subsection, we detail the procedure to obtain the equivalent viscoelastic mod-278

uli from the three oscillatory relaxation tests. Overall, this procedure consists of com-279

puting the average of the stress and strain components over the sub-domain of interest280

Ωp ⊂ Ωe, which is that corresponding to the thin layer section. This is followed by an281

estimation of the equivalent viscoelastic moduli that best fit these values.282

For every oscillatory test t with t = {1, 2, 3}, we calculate, over the sub-domain283

Ωp, the average of the stress components ⟨σt
ij⟩Ωp

and of the respective strain components284

⟨εtij⟩Ωp , with i = {1, 3} and j = {1, 3}. The corresponding average quantities ⟨□⟩Ωp285

are computed as286

⟨□⟩Ωp
=

1

|Ωp|

∫
Ωp

□ dΩp, with |Ωp| =
∫
Ωp

dΩp. (12)287

In Voigt’s notation, the average strain and stress components are related through288

the homogenized stiffness matrix C = C(ω). We remark that the elements of C are289

complex-valued and frequency-dependent stiffness coefficients and we write this strain–290
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stress relationship in frequency domain as291


⟨σt

11⟩

⟨σt
33⟩

⟨σt
13⟩


=


C11 C13 C15

C13 C33 C35

C15 C35 C55




⟨εt11⟩

⟨εt33⟩

2 ⟨εt13⟩


. (13)292

Using this constitutive equation, a least squares minimization procedure is performed293

to find the best-fitting values of the viscoelastic moduli (Rubino et al., 2016). The ob-294

tained homogenized moduli are then used for reflectivity calculations as outlined in Ap-295

pendix B.296

3 Results297

We assess the proposed homogenization methodology using a thin-layer model of298

the type depicted by Figure 1a, which consists of a sequences of two sandstone beds B1299

and B2, with a total thickness of 1.2 m. The upper bed B1 is CO2-saturated whilst the300

lower one B2 is water-saturated. This thin layer is embedded in the half-spaces Λ1 and301

Λ2 deemed impermeable for the seismic frequencies (Figure 1a and Table 1). To test the302

proposed method, we follow the procedure described below:303

1. We first calculate the equivalent frequency-dependent moduli applying the pro-304

posed homogenization methodology. To this end, we use a sample Ωe similar to305

the one shown in Figure 1b that includes part of the half-spaces Λ1 and Λ2.306

2. Then, using these equivalent properties, we calculate PP reflectivities at the in-307

terface with the upper half-space Λ1. Appendix B details the methodology for the308

PP reflectivity calculation.309

3. Finally, to evaluate the accuracy of these reflectivity computations, we compare310

them against the reference results obtained using the model with the original poroe-311
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lastic thin layer. Appendix A details the corresponding PP reflectivity calculations312

derived in the context of Biot’s theory of poroelasticity (Biot, 1962).313

The rock and fluid properties used in the calculations are shown in Tables 1 and314

2, respectively. The properties listed for CO2 in Table 2 correspond to its supercritical315

state. Specifically, its bulk modulus and density were taken from the NIST Chemistry316

WebBook database (Lemmon et al., 2023) at 9 MPa and 39.2 ◦C. These estimates are317

based on the equation of state proposed by Span and Wagner (1996). The considered318

pressure and temperature conditions are within the range of the reservoir conditions of319

the Utsira sandstone (e.g., Zweigel et al., 2004; Chadwick et al., 2012). The rock phys-320

ical properties of the thin layer beds B1 and B2 emulate those of the Utsira sandstone321

(e.g., Rabben & Ursin, 2011; Rubino et al., 2011; Boait et al., 2012), while of the back-322

ground resemble those of a shale caprock (e.g., Rørheim et al., 2021). We remark that,323

for the homogenization procedure, the background is treated as a poroelastic medium.324

However, its low permeability of 10−9 D ensures that it behaves as impermeable within325

the seismic frequency range (Barbosa et al., 2016). We refer the reader to the Discus-326

sion section where we verify this point. Conversely, for the reflectivity calculations, the327

background is treated as an elastic medium (Appendices A and B). To test whether the328

proposed homogenization method is independent of the size of the sampled background,329

we consider samples with background thicknesses equal to 0.12 m, 0.24 m and 0.48 m,330

respectively.331

As stated in the methodology section, the poroelastic-to-viscoelastic equivalence332

is valid for frequencies that are below Biot’s characteristic frequency (Equation (1)). For333

the upper and lower sandstone beds these are 6.25 kHz and 8.06 kHz, respectively, and,334

thus, they are above the frequency range of interest for seismic studies. Indeed, the max-335
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Table 1. Physical properties of the upper and lower sandstone beds and the background,

respectively.

Property Upper sandstone B1 Lower sandstone B2 Background

Grain bulk modulus Ks (GPa) 37 37 22.6

Porosity ϕ 0.37 0.3 0.05

Frame bulk modulus Km (GPa) 2.5 3.2 8.1

Frame shear modulus µ (GPa) 0.81 1.2 6.0

Permeability κ (D) 2.5 2.0 1.e-9

Grain density ρs (Kg/m3) 2650 2650 2500

Tortuosity S 3 3 3

Thickness h (m) 0.72 0.48

Table 2. Physical properties of the pore fluids

Property Water CO2

Fluid density ρf (Kg/m3) 1000 524

Fluid bulk modulus Kf (GPa) 2.25 0.023

Fluid viscosity η (Pa.s) 1.e-3 5.5e-4

imum frequency we consider for the current study is 1 kHz. In the following, we present336

the results of the homogenization and reflectivity calculations.337

Figure 2 shows plots of the real part of the non-zero equivalent moduli as a func-338

tion of frequency obtained using samples that consider background thicknesses equal to339

0.12 m. 0.24 m and 0.48 m, respectively. The results demonstrate that the estimated mod-340
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Figure 2. Real part of the non-zero equivalent moduli as a function of frequency resulting

from the homogenization of a thin layer composed of a sequence of two poroelastic sandstone

beds, B1 and B2, embedded within half-spaces Λ1 and Λ2 deemed impermeable for seismic fre-

quencies (Tables 1 and 2). The moduli are obtained using three different samples Ωe (Figure 1)

that consider background thicknesses bg equal to 0.12 m, 0.24 m and 0.48 m, respectively.

uli are independent of the thickness of the sampled background, which implies that the341

only influence the background has is to affect the BC at the respective thin layer bound-342

aries. The homogenized medium is characterized by vertical transverse isotropy (VTI),343

which results from the stratification of the two sandstones that constitute the thin layer.344

Therefore, the elements C15 and C35 of its stiffness matrix are zero. Notice as well that345

Re(C55) (Figure 2d) is not frequency-dependent. This is because the shear relaxation346

oscillatory test, which is the analogous to a normal-incident S-wave, generates shear strains347

and stresses components parallel to the bedding planes of the thin layer. Consequently,348

such shear components cannot induce fluid pressure gradients for FPD to take place. More-349
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over, this element reads C55 = ⟨σ13⟩ /( 2 ⟨ε13⟩ ) and it can be shown that this is equiv-350

alent to C55 = (
∑

i fi/µi)
−1

, where fi is the height fraction of the ith layer and µi is351

the corresponding shear modulus (Backus, 1962; Salamon, 1968). This value is 0.93 GPa352

for our example. The moduli C11, C13 and C33 are affected by FPD effects and there-353

fore present a frequency-dependent behavior. Specifically, the pressure gradient for FPD354

is controlled by the water-saturated region due to its lower compressibility compared to355

the CO2-saturated counterpart. As a consequence, the deformation induced by the com-356

pressional relaxation oscillatory tests creates higher pressure in the water-saturated re-357

gion that equilibrates when water diffuses into the CO2-saturated pores of the adjacent358

sandstone bed. Similarly, the transition frequency of these moduli is controlled by the359

viscosity of water and thickness of the corresponding bed. Using Equations (3) and (5),360

we find that this transition frequency is approximately 11.8 Hz. It is important to note361

that the difference in compressibilities between the frame of the sandstone beds also has362

some impact on the magnitude of the pressure gradient generated. The more compress-363

ible frame of the CO2-saturated sandstone permits a larger deformation of the pores and,364

in turn, tends to promote a pressure increase in this region. However, since the compress-365

ibility contrast between the saturating fluids exceeds that of the frames by approximately366

two-orders of magnitude, this difference controls the overall induced pressure gradient.367

Next, we present the reflectivity results using the homogenized medium as well as368

a comparison against the results obtained using the poroelastic thin layer. Figure 3a shows369

the absolute value of the PP reflection coefficients with respect to frequency for three370

different angles of incidence calculated for the poroelastic thin-layer model consisting of371

two sandstone beds that is embedded in elastic half-spaces and for the analogous model372

where the poroelastic thin layer is replaced by its homogenized viscoelastic equivalent.373

Notice that the reflectivities obtained using the homogenized medium show a good agree-374
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Figure 3. (a) Absolute value of the PP reflection coefficients as a function of frequency for

several angles of incidence calculated for the model consisting of the poroelastic thin layer com-

prised by two sandstone beds embedded in elastic half-spaces (curves labeled PTL) and for the

analogous model where the thin layer is replaced by its homogenized viscoelastic equivalent

(curves labeled HM). (b) Percentage errors of the absolute values of the PP reflection coefficients

as a function of frequency calculated for the model using the homogenized medium.

ment with the reference reflectivities, which demonstrates that estimated moduli are ca-375

pable to reproduce the reflectivity response of the porous thin layer. In more detail, Fig-376

ure 3b shows the percentage errors of the absolute value of the PP reflection coefficients377
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as a function of frequency of the model using the homogenized medium for the same an-378

gles of incidence used in Figure 3a. Here, we remark that for the model using the ho-379

mogenized medium, reverberations in the reflection coefficients are expected to appear380

at a frequency close to 325 Hz for normal incidence, as the first resonance occurs when381

the predominant wavelength is equal to four times the thickness of the thin layer. Thus,382

for frequencies equal or higher than the resonance frequency, different behaviors in the383

reflectivities from both models are expected. For frequencies below 325 Hz, our results384

show that the PP reflection coefficients obtained using the homogenized medium repro-385

duce, with errors below 3 %, those obtained using the poroelastic thin model.386

4 Discussion387

We have shown that considering a portion of the background in the sample per-388

mits to naturally incorporate the BC at the interface between the background and the389

thin layer into the homogenization procedure. In the following, we investigate the im-390

pact that substituting the background by different BC has on the estimated moduli. To391

this end, we test samples that disregard the background and, instead, incorporate the392

following BC on their pertinent boundaries: fully periodic BC and no-flow with periodic393

BC for displacements and tractions. Finally, we discuss about possible extensions of the394

proposed homogenization methodology to thin layers with more complex heterogeneous395

structures as well as particular limitations of the method such as those associated with396

backgrounds that behave as permeable for the frequencies of interest.397
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Figure 4. Real part of the non-zero equivalent moduli as a function of frequency obtained

after homogenizing the poroelastic thin layer considered in the Results section using samples

Ωe and Ωp, respectively and using the analytical procedure of White et al. (1975) and Krzikalla

and Müller (2011) for the homogenization of periodic altenating beds. Sample Ωe considers a

background thickness bg = 0.24 m, while sample Ωp disregards it (bg = 0 m) and, instead, incor-

porates fully periodic BC on the pertinent boundaries.

4.1 Testing samples that disregard the background398

4.1.1 Fully periodic BC399

We take a sample Ωp that consists only of a representative section of the poroe-400

lastic thin layer of the model described in the Results section. This is Ωp = Ωe \ Ωb401

(Figure 1b). We homogenize this sample using the procedure described in the Theory402

and Methods section, but, in this case, the corresponding equations are applied only over403

Ωp and on its boundaries, respectively. This homogenization procedure is equivalent to404
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considering the sample Ωp as periodic. Since the sample is composed of two porous beds,405

it represents White’s model of periodically alternating beds (White et al., 1975). Con-406

sidering a similar model, Favino et al. (2020) verify the agreement of the homogenized407

P-wave modulus obtained using the closed form proposed by White et al. (1975) and their408

numerical homogenization with periodic BC, which is the method we apply to homog-409

enize this sample.410

Figure 4 shows the real part of the non-zero equivalent moduli as a function of fre-411

quency obtained using the sample Ωp. We also present the real part of the analytical so-412

lutions obtained following White et al. (1975) and Krzikalla and Müller (2011) for the413

homogenization of periodically alternating beds. For comparison, we also show the pre-414

viously estimated moduli obtained using the sample Ωe that incorporates part of the back-415

ground as detailed in the previous section. The results confirm that the moduli obtained416

using the homogenization procedure that disregards the background are in agreement417

with those obtained analytically for periodically alternating beds. However, these results418

show a visible difference with those obtained including the background for the curves cor-419

responding to Re(C11), Re(C13) and Re(C33), with a maximum of around 0.4 GPa. These420

discrepancies evidence the impact of the different BC incorporated in the homogeniza-421

tion procedures. For the proposed method, the background in the sample imposes both422

a no-flow condition due to its impermeable character for the frequencies considered as423

well as continuity of displacements and tractions at the pertinent boundaries of the thin424

layer section. In contrast, the homogenization procedure that disregards the background425

in the sample imposes periodicity of these variables on analogous boundaries. As pre-426

viously explained, C55 is not frequency dependent because it is unaffected by the fluid427

effects and its closed form computation yields a value of 0.93 GPa, which, in this case,428

both homogenization procedures reproduce.429
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4.1.2 No-flow and periodic BC for displacements and tractions430

In the previous sub-subsection, we have stated that the background induces a no-431

flow condition at the interfaces with the thin poroelastic layer, which results from its im-432

permeable character for the frequencies considered, as well as continuity of displacements433

and tractions. Here, we investigate the extent to which this no-flow condition influences434

the estimation of the equivalent moduli. To this end, we take a sample Ωp of the thin-435

layer model used in the Results section, which disregards the background. Then, to in-436

corporate in the homogenization procedure the no-flow condition imposed by the back-437

ground, we formulate the corresponding BC on the relevant boundaries of the sample438

Ωp as part of the oscillatory relaxation tests. To achieve this, we replace Equation 11439

by440

∇p · n̂ = 0 on Γ+
3 ∪ Γ−

3 ,

p|Γ+
1
− p|Γ−

1
= 0,

(σ · n̂) |Γ+
k
− (σ · n̂) |Γ−

k
= 0,(

κ

η
∇p · n̂

)
|Γ+

1
−
(
κ

η
∇p · n̂

)
|Γ−

1
= 0.

(14)441

The first line of Equation (14) defines the no-flow condition at the top and bottom bound-442

aries of the sample Ωp. All other steps of the homogenization procedure are the same443

as the ones specified by Equations (6) to (13), but applied over Ωp and on its boundaries.444

Figure 5 compares the real part of the non-zero equivalent moduli obtained with445

the homogenization procedure that applies the no-flow BC on the pertinent boundaries446

of a sample Ωp against those obtained after applying the proposed method over a sam-447

ple Ωe that includes part of the embedding background. These results show that both448

procedures yield the same moduli. This further implies that, to homogenize a stratified449

porous thin layer comprised of a sequence of homogenous beds, it is sufficient to account450

for the no-flow condition induced by the background on the relevant boundaries of a sam-451
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Figure 5. Real part of the non-zero equivalent moduli as a function of frequency obtained

after homogenizing the thin-layer model considered in the Results section using samples Ωe and

Ωp, respectively. Sample Ωe considers a background thickness bg = 0.24 m, while sample Ωp dis-

regards it, and, instead, applies no-flow BC on the pertinent boundaries of the sample (nf, bg = 0

m) to emulate the impermeable character of the background.

ple Ωp. This outcome also suggests that, for this type of poroelastic thin layers, to im-452

pose either continuity of displacements and tractions at the the thin-layer-background453

interface on a sample Ωe or periodicity of these quantities on analogous boundaries on454

a sample Ωp do not have any impact on the estimation of the equivalent moduli. This455

is likely to be a consequence of the uniform stress-strain distribution along the background-456

thin layer interfaces resulting from the homogeneous character of the beds. In the fol-457

lowing, we therefore examine the effect that stress-strain concentrations at the background-458

thin layer interfaces has on the equivalent moduli.459
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Next, we consider a modified version of the thin-layer model used in the Results460

section, in which the upper bed B1 contains inclusions as shown in Figure 6. We remark461

that the proposed homogenization procedure specifically addresses porous thin layers com-462

posed of homogeneous beds, mainly because this assumption facilitates the verification463

of the reflectivity response by semi-analytical means. However, the methodology, as we464

show in the current example, can be applied to porous thin layers presenting more com-465

plex heterogeneous structures. Nonetheless, a formal verification of the reflectivity re-466

sponse would still be required as we further discuss in the next subsection. Taking this467

into consideration, the following comparison of BC focuses on assessing the capability468

of the methods to reproduce, in a physically meaningful way, the actual stress and strain469

concentrations that the inclusions induce at the interface of the thin layer with the em-470

bedding background and therefore, their ability to incorporate those strain-stress con-471

centrations in the estimation of the equivalent moduli.472

As stated above, the new model shown in Figure 6 incorporates inclined band-shape473

inclusions in the CO2-saturated region, where the bands have one of their tips terminat-474

ing at the upper boundary of the thin layer. These inclusions have stiffer mechanical prop-475

erties and a lower permeability than the embedding sandstone: Km = 33.1 GPa, µ =476

29.2 GPa, κ = 10−9 D, Ks = 37 GPa, ρs = 2700 g/kg3 and ϕ = 0.05. The fluid prop-477

erties correspond to those of water as specified in Table 2. We homogenize this poroe-478

lastic thin layer applying both the homogenization procedure that formulates the no-flow479

BC on the pertinent boundaries of a sample Ωp and the proposed homogenization pro-480

cedure that uses a sample Ωe. (Figure 6).481

Figure 7 shows the real part of the equivalent moduli as a function of frequency482

obtained after applying the two aforementioned homogenization procedures. The results483

show that there is some disagreement between the moduli estimations from the differ-484
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Figure 6. Poroelastic thin layer embedded in impermeable half-spaces Λ1 and Λ2. This model

consists of the same sandstone beds B1 and B2 considered in the Results section. However, the

upper sandstone contains inclined band-shape inclusions where the bands have one of their tips

terminating at upper boundary of the thin layer. The light blue boxes represent the samples Ωe

and Ωp used by the proposed homogenization and the one that imposes a no-flow BC on the rele-

vant boundaries to emulate the impermeability of the background, respectively.

.

ent methods. This is likely to be related to differences in the regions affected by the stress-485

strain concentrations. To further investigate this aspect, we compare the corresponding486

stress and strain density maps obtained in response to the vertical compressional relax-487

ation test for a frequency of 25.1 Hz. Figures 8a and 8b show maps of the real part of488

the vertical stress components for sample Ωe that includes background with thickness489

bg = 0.24 m and for sample Ωp, respectively. Similarly, Figures 8c and 8d show maps490

of the real part of the vertical strain components for the same samples Ωe and Ωp, re-491

spectively, for the same oscillatory test. Notice that, in both cases, the vertical compres-492
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Figure 7. Real part of the equivalent moduli as a function of frequency obtained after the

homogenization of the poroelastic thin layer shown in Figure 6 using samples Ωe and Ωp, respec-

tively. Sample Ωe considers a background thickness bg = 0.24 m,while sample Ωp disregards the

it, and instead, imposes no-flow BC on the relevant boundaries of the sample (nf, bg = 0 m) to

emulate the impermeable character of the background.

.

sional test creates stress-strain concentrations in the vicinity of the tips of the inclusions.493

However, the regions affected around the upper edges of the inclusions are different for494

the different samples. For the sample Ωe, these stress-strain concentrations affect a re-495

gion in the background in the vicinity of the upper interface with the thin layer (Fig-496

ures 8a and 8c). In contrast, for the sample Ωp the corresponding stress-strain concen-497

trations affect a region inside the thin layer in the vicinity of its bottom boundary as a498

consequence of the periodic character of the BC for displacements and tractions (Fig-499

ures 8b and 8d), which is an artifact due to the inappropriate BC. This shows that the500
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Figure 8. Maps of the real part of the vertical stress component obtained for the thin layer

samples a) Ωe and b) Ωp (Figure 6). Maps of the real part of the vertical strain component ob-

tained for the same samples c) Ωe and d) Ωp. The sample Ωe considers a background thickness

bg = 0.24 m. The maps are obtained in response to applying the vertical compressional oscilla-

tory test for a frequency of 25.1 HZ.
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homogenization procedure that formulates the no-flow BC on the relevant boundaries501

of Ωp considers an additional region of stress-strain concentration at the bottom bound-502

ary of the thin layer section when performing the averaging of these components. Hence,503

applying the proposed homogenization methodology is likely to reproduce more closely504

the actual stress-strain concentrations induced at the interface with the background. We505

also note that the induced stress-strain concentrations in the background imply that the506

considered background thickness should surpass this region to avoid the appearance of507

non-physical stress-strain concentrations at the bottom of the sample due to the peri-508

odic BC. For the reflectivity calculations, we can still assume that the upper half-space509

behaves as an homogeneous material despite of the region affected by the strain-stress510

concentrations because this region is in general much smaller than the considered wave-511

length.512

In this sub-subsection, we have shown that for the homogenization of stratified thin513

layers consisting of a sequence of homogeneous poroelastic beds embedded in imperme-514

able background, it is sufficient to impose no-flow BC on the relevant boundaries of a515

sample that takes only a representative section of the thin layer. This is, however, no516

longer the case for poroelastic thin-layer models that exhibit more complex heterogeneities,517

which can create stress-strain concentrations at the thin layer boundaries. For these lat-518

ter cases, our results suggest that the proposed homogenization methodology can repro-519

duce more reasonably the expected regions of stress-strain concentrations.520

It is evidently also possible to investigate the impact of imposing non-periodic BC521

for displacements and tractions on the relevant boundaries of a sample that disregards522

the background. Although we do not show these results, we have applied a set of non-523

periodic BC to estimate the equivalent moduli of the thin layer shown in Figure 6 us-524

ing the sample Ωp, which disregards the background. In particular, we have applied a525
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combination of Dirichlet and Neumann BC for displacements and tractions on the rel-526

evant boundaries of the sample, while maintaining the no-flow condition as in Rubino527

et al. (2016). The inferred moduli also show discrepancies with respect to those obtained528

after applying the proposed homogenization method. Overall, these results suggest that529

disregarding the background and, instead, imposing different types of displacements and530

tractions BC does not yield accurate estimates of the equivalent moduli of a thin layer531

presenting stress-strain concentrations at the thin-layer-background interface.532

4.2 Possible extensions and limitations of the proposed method533

4.2.1 Homogenization of porous thin layers with complex heterogeneous534

structures535

In this work, we have proposed an homogenization method to find the viscoelas-536

tic equivalent of non-periodically stratified porous thin layers embedded in impermeable537

background. We considered this simple porous thin-layer model to be able to compute538

its reflectivity response by a semi-analytical technique (Appendix A) to validate the ho-539

mogenization procedure. However, the proposed methodology can be extended to ho-540

mogenize porous thin layers that are strongly heterogeneous as it has been suggested in541

the previous subsection. In this case, to be able to take a representative sample Ωe, the542

thin layer should contain heterogeneities which, in the horizontal direction, are either543

periodical or statistically stationary as, for instance, those depicted in the bed B1 of Fig-544

ure 6. Nonetheless, for such models further research incorporating numerical wave prop-545

agation is needed to verify whether the reflectivities of the viscoelatic equivalent are in546

agreement with those of the heterogeneous porous thin layer.547

–31–



manuscript submitted to JGR: Solid Earth

4.2.2 Effect of the background permeability548

For this study, we have assumed that the background embedding the poroelastic549

thin layer is impermeable for the frequencies of interest. This assumption permits to rep-550

resent the background as an elastic medium for seismic applications and, at the same551

time, confine FPD effects within the poroelastic thin layer for such frequencies. These552

features are particularly amenable for finding the corresponding viscoelastic equivalent553

capable of reproducing the reflectivity response of the poroelastic thin layer, as it has554

been shown in the current study. Conversely, if the background behaves as permeable555

for the frequencies of interest, it would allow hydraulic communication with the porous556

thin layer and, consequently, FPD regimes other than the unrelaxed one would prevail.557

This would further imply that, for reflectivity computations, both the background and558

the thin layer should be treated as poroelastic media to account for the dissipated en-559

ergy due to FPD. In this case, a viscoelastic representation of the porous thin layer, as560

the one proposed in this study, can produce significant reflectivity deviations because561

it cannot incorporate FPD interactions at the interfaces with the background. Conversely,562

we have shown that a background with a permeability in the nano (10−9) Darcy range563

behaves as impermeable for seismic frequencies. Similarly, the work of Barbosa et al. (2016)564

shows the same impermeable behavior for a background presenting a permeability in the565

micro (10−6) Darcy range. Many background lithologies of interest, such as intact shale566

and crystalline rocks, exhibit permeabilities in the range of nano to micro Darcies (e.g.,567

Mitchell & Faulkner, 2012; Fisher et al., 2017; Wenning et al., 2018; P. Zhao et al., 2018).568

This can be considered as impermeable for seismic frequencies and hence permits to rep-569

resent the considered background-porous-thin-layer system by elastic and viscoelastic me-570

dia, respectively.571
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5 Conclusions572

We have proposed a homogenization approach that naturally incorporates the ap-573

propriate boundary conditions to estimate the equivalent moduli of stratified thin lay-574

ers composed of a finite non-periodic sequence of homogeneous poroelastic beds, which575

is embedded in a background deemed impermeable at the seismic frequencies. This is576

accomplished by, first, taking a sample that incorporates both a portion of the background577

and a representative section of the poroelastic thin layer to apply relaxation oscillatory578

tests and, second, by performing the averaging of stress and strain components only over579

the thin layer section of interest. Our results show that the proposed methodology yields580

equivalent moduli capable of closely reproducing the reflectivity of the original strati-581

fied thin layers. In contrast, the equivalent moduli obtained under the assumption of pe-582

riodicity of a set of beds composing the thin layer yields inaccurate results. We have also583

shown that the same moduli are reproduced when we use a sample that disregards the584

background but its influence is accounted by imposing a no-flow BC on the relevant bound-585

aries of this sample. However, our study suggests that this is no longer the case for thin586

layers containing heterogeneities that induce stress-strain concentrations at the interfaces587

with the background. For such cases, our study implies that the proposed homogeniza-588

tion procedure yields more reasonable estimates of the equivalent moduli than replac-589

ing the background by no-flow BC on the pertinent boundaries of the sample. This out-590

come further indicates that the proposed homogenization method can be applied to strongly591

heterogeneous poroelastic thin layers, even though further work that incorporate numer-592

ical wave propagation is needed to verify the reflectivity response of such heterogeneous593

models and their viscoelastic equivalents. Our study also suggests that to ensure the im-594

permeable character of the background for the frequencies of interest is vital to confine595

the FPD effects within the thin layer so that the background and the poroelastic thin596
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layer can be represented as elastic and viscoelastic media, respectively, for reflectivity597

calculations. In general, it is expected that background rocks with permeabilities in the598

micro Darcy range and lower behave as impermeable at seismic frequencies.599

Appendix A PP reflectivity at the uppermost interface of a stratified600

poroelastic medium embedded in elastic half-spaces601

A1 Governing equations602

We consider a model in R2 consisting of m-poroelastic strata Ωp1, Ωp2,. . . , Ωpm that603

are embedded in elastic half-spaces Λ1 and Λ2. Furthermore, we denote as Π1 the in-604

terface between the upper half-space Λ1 and the uppermost poroelastic stratum Ωp1 and605

as Π(m+1) the interface between the lowermost poroelastic stratum Ωpm and the lower606

elastic half-space Λ2. To compute the reflection coefficients, we formulate the correspond-607

ing poroelastic and elastic wave equations in the space-frequency domain. To specify the608

poroelastic wave equation, we let up = up(x, ω) and w = w(x, ω) be the solid dis-609

placement vector and the relative fluid displacement vector, respectively for any posi-610

tion x ∈ z with z = {Ωp1, . . . ,Ωpm} and angular frequency ω ∈ I, with I = (0,W ].611

Moreover, we let σp, be the total stress which acts upon the poroelastic medium. Then,612

we express the corresponding equation of motion as613

− ω2 ρb u
p − ω2 ρf w = ∇.σp in z × I,

− ω2 ρf u
p − ω2g(ω) w + i ω b(ω)w = −∇ pf in z × I.

(A1)614

The constitutive equations are615

σp = µ
(
∇up + (∇up)T

)
+ (λ∇.up + αM ∇.w) I,

pf = −αM ∇.up −M ∇.w,

(A2)616

where ρb and ρf are the bulk density of the saturated porous medium and the density617

of the pore fluid, respectively, λ is the undrained Lamé modulus, and g(ω) and b(ω) are618
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the mass coupling and viscous coefficients, respectively. The required material proper-619

ties are calculated as (e.g., Barbosa et al., 2016)620

ρb = (1− ϕ)ρs + ϕρf ,

λ = Km − 2

3
µ+ α2M,

g(ω) =
1

ω
Im

(
η

κd(ω)

)
,

b(ω) = Re

(
η

κd(ω)

)
,

(A3)621

where ρs is the density of the solid grain and κd(ω) is the dynamic permeability of the622

porous rock, which can be expressed as (Johnson et al., 1987)623

κd(ω) = κ

(√
1 +

4iω

njωB
+

iω

ωB

)−1

. (A4)624

Here, ωB is Biot’s angular characteristic frequency ωB = 2πfB , with fB defined in equa-625

tion 1, and nj is a pore geometry parameter. According to numerical and experimen-626

tal studies (e.g., Charlaix et al., 1988; Sheng & Zhou, 1988; Smeulders et al., 1992), nj627

= 8 is a reasonable approximation for most porous media.628

To formulate the elastic wave equation, we let ue = ue(x, ω) be the displacement629

vector for any position x ∈ n with n = {Λ1,Λ2} and angular frequency ω ∈ I, with630

I = (0,W ]. We also let σe be the stress tensor field acting upon the medium. Then,631

we express the corresponding equation of motion as632

− ρb ω
2 ue = ∇.σe in n× I. (A5)633

The associated constitutive equation is given by634

σe = µ
(
∇ue + (∇ue)T

)
+ λ∇.ue I. (A6)635

A2 Solution for displacements636

We assume that a P-wave propagates downwards, with wavevector components in637

x̂1 and x̂3, and strikes the interface Π1. Then, in the elastic half-spaces n, with n =638
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{Λ1,Λ2}, the propagating modes are P- and S-waves. In the poroelastic stratum z, with639

z = {Ωp1, . . . ,Ωpm}, fast P-, slow P- and S-waves are present.640

For a given poroelastic stratum z, we write the total solid displacement up
z and rel-641

ative fluid displacement wz as642

up
z =

∑
r

up
z r,

wz =
∑
r

wz r,

(A7)643

with r = {DP1, UP1, DP2, UP2, DS , US}. Here, D and U refer to the downgoing and644

upgoing waves, respectively, and subscripts P1, P2, and S refer to fast P-, slow P- and645

S-waves, respectively,646

For a given elastic-half space n, we express the total displacement ue
n as647

ue
n =

∑
j

ue
n j . (A8)648

Here, for n = Λ1, j = {DP , UP , US}; otherwise, for n = Λ2, j = {DP , DS}. Sub-649

scripts P and S refer to P- and S-waves, respectively.650

We propose the solution for displacements in the form of scalar and vector poten-651

tials. Then, we express the displacements for the elastic half-spaces as652

ue
n j1 = ∇Φe

n j1 , ue
n j2 = −∇×Ψe

n j2 .
(A9)653

For n = Λ1, j1 = {UP , DP }, while for n = Λ2, j1 = {DP } and j2 = j \ j1 for both654

cases. Φe
n j1

and Ψe
n j2

are the scalar potentials corresponding to solutions for P-waves655

and the vector potential corresponding to solutions for S-waves, respectively. The po-656

tentials can be specified as657

Φe
n j1 = En j1 exp (ikn j1 · x) ,

Ψe
n j2 = En j2 exp (ikn j2 · x) x̂2,

(A10)658

where En j1 and En j2 are the amplitudes for the scalar and vector potentials, respectively659

and kn j1 , and kn j2 are the wavenumber vectors for the P- and S-waves, respectively. The660
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wavenumber vectors can be expressed as knj = knj k̂nj , where k̂n j is the unit wavenum-661

ber vector and kn j is the scalar wavenumber for the corresponding wave j. This latter662

depends only on the properties of the medium and on the wave type, that is, P or S. The663

scalar wavenumber can be written as664

kn j1 = ω

√
ρn

λn + 2µn
,

kn j2 = ω

√
ρn
µn

.

(A11)665

For the poroelastic strata, we also express the solid and relative fluid displacements666

in term of potentials667

up
z r1 = ∇Φp

z r1 , up
z r2 = −∇×Ψp

z r2 ,
(A12)668

669

wz r1 = ∇Θz r1 , wz r2 = −∇× Tz r2 ,
(A13)670

where r1 = {DP1, UP1, DP2, UP2} and r2 = r \ r1, Φp
z r1 and Θz r1 are the scalar po-671

tentials corresponding to solutions for P1- and P2-waves for the solid and the relative672

fluid displacements, respectively. Likewise Ψp
z r2 and Tz r2 are the vector potentials cor-673

responding to solutions for S-waves for the solid and the relative fluid displacements, re-674

spectively. The scalar and vector potentials can be further specified as675

Φp
z r1 = Bz r1 exp (ikz r1 · x) ,

Θz r1 = Wz r1 exp (ikz r1 · x) ,

(A14)676

677

Ψp
z r2 = Bz r2 exp (ikz r2 · x) x̂2,

Tz r2 = Wz r2 exp (ikz r2 · x) x̂2,

(A15)678

where Bz r1 and Wz r1 are the amplitudes of the scalar potentials corresponding to the679

solid and relative fluid displacements, respectively. Likewise, Bz r2 and Wz r2, are the am-680

plitudes of the vector potentials corresponding to the solid and relative fluid displace-681

ments, respectively. Moreover, kz r1 is the complex wavenumber vector for P1- and P2-682

waves and kz r2 is the one for S-waves. Besides, the presence of the enclosing elastic half-683
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spaces induces inhomogeneous waves in the poroelastic strata. This is because Snell’s684

law imposes the continuity of the horizontal component of the wavenumber vectors across685

the different media and the presence of the an elastic media enforces this component to686

be real. Thus, attenuation can only prevail in the vertical direction. Then, we can spec-687

ify the complex wavenumber vector as688

kzr = κκκzr − iαzr, (A16)689

where αzr is the attenuation vector which has only a component in x̂3 and κκκzr is the690

real wavenumber vector. This latter can be expressed as κκκzr = κzrκ̂κκzr, where κzr and691

κ̂κκzr are the real wavenumber and unit vector, respectively. For a given incidence angle692

striking at the interface between the upper half-space and the top most poroelastic stra-693

tum, Snell’s law states that the horizontal component of the real wavevector of the trav-694

eling waves are equal to that of the incident wave pi. This is pi = knj · x̂1 = κκκzr ·695

x̂1 = κzr sin(θzr), where θzr is the angle of the real wave vector with respect to the ver-696

tical. We express the missing vertical component of the complex wavenumber vector as697

follows: kzr · x̂3 = κzr cos(θzr)− i αzr, where αzr is the attenuation factor. Following698

Borcherdt (1982) we find699

κ2
zr = p2i +

(
Re [

(
k2zr − p2i

)1/2
]
)2

,

α2
zr =

(
Im [

(
k2zr − p2i

)1/2
]
)2

,

(A17)700

where kzr is the complex wavenumber of the wave r, which depends on the wave type,701

that is P1, P2 or S, and the associated rock physical properties (Borcherdt, 1973, 1982).702

To calculate the corresponding values, we follow the procedure employed by Barbosa et703

al. (2016).704
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A3 PP reflection coefficients705

If we assume that the amplitude of the incident P-wave is one, then the reflection706

coefficient RPP at interface of the uppermost poroelastic stratum with the upper half-707

space is equal to EΛ1 UP (equation (A10)). To solve for the unknown amplitudes, we as-708

semble a set of equations by imposing suitable continuity conditions at the interfaces.709

In this regard, we distinguish two types of interfaces: elastic-poroelastic and purely poroe-710

lastic ones. At the elastic-poroelastic interfaces Πq, with q = 1 and q = m+ 1, where711

m is the number of poroelastic strata, we impose continuity of solid displacements and712

tractions and we set to zero the relative fluid displacements (Deresiewicz & Skalak, 1963)713

(ue
n − up

z)|Πq
= 0 ,

(ten − tpz)|Πq
= 0 ,

wz|Πq
= 0 .

(A18)714

For q = 1, the corresponding media are n = Λ1 and z = Ωp1; for q = m + 1, they715

are n = Λ2 and z = Ωpm. Moreover, ten and tpz are the tractions on the Πq interface716

at the elastic and poroelastic sides, respectively. These tractions are ten = σe
n · x̂3 and717

tpz = σp
z · x̂3, respectively.718

At the purely poroelastic interfaces Πq with q = 2, . . . ,m, we impose the conti-719

nuity of solid displacements, relative fluid displacements, tractions, and fluid pressures720

(Deresiewicz & Skalak, 1963)721 (
up
z − up

(z+1)

)∣∣∣
Πq

= 0 ,

(
wz −w(z+1)

)∣∣
Πq

= 0 ,(
tpz − tp(z+1)

)∣∣∣
Πq

= 0 ,

(
pf z − pf (z+1)

)∣∣
Πq

= 0 ,

(A19)722

where z = Ωp(q−1) and (z+1) = Ωpq. To complete the system of equations, we express723

the amplitudes of the relative fluid displacement in terms of the solid displacement through724

–39–



manuscript submitted to JGR: Solid Earth

γzr = Wzr/Bzr. This ratio can be obtained from the properties of the porous medium725

(Barbosa et al., 2016).726

Appendix B PP reflectivity at the upper interface of a viscoelastic medium727

embedded in elastic half-spaces728

B1 Governing equations729

We assume a domain in R2 consisting of an anisotropic viscoelastic layer Ωv em-730

bedded in the same elastic half-spaces Λ1 and Λ2 as in Appendix A. We denote as Π1731

the interface between the viscoelastic layer Ωv and the upper half-space Λ1 and as Π2732

the interface between the viscoelastic layer Ωv and the lower half-space Λ2.733

To compute the reflection coefficients, we formulate the corresponding viscoelas-734

tic and elastic wave equations in the space-frequency domain. To specify the viscoelas-735

tic wave equation, we let uv = uv(x, ω) be the solid displacement vector for any po-736

sition x ∈ Ωv and angular frequency ω ∈ I, with I = (0,W ]. Moreover, we let σv, be737

the stress which acts upon the viscoelastic medium. Then, we express the correspond-738

ing equation of motion as739

− ρvb ω
2 uv = ∇ · σv in Ωv × I, (B1)740

where ρvb is the bulk density of the viscoelastic medium. Using Voigt’s notation, the as-741

sociated constitutive equation can be written as742


σv
11

σv
33

σv
13


=


C11 C13 C15

C13 C33 C35

C15 C35 C55




εv11

εv33

2 εv13


,

with εvij =
1

2

(
uv
i,j + uv

j,i

)
.

(B2)
743
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The equations for the elastic wave and its constitutive relation are those presented744

in equations (A5) and (A6).745

B2 Solution for displacements746

We assume that an incident P-wave propagates downwards, with wavevector com-747

ponents in x̂1 and x̂3, and strikes the interface Π1. Then, the propagating modes present748

in the elastic media Λ1 and Λ2 are P- and S-waves. In the viscoelastic medium Ωv quasi-749

P (qP) and quasi-S (qS) body waves are present. Then, to find the total displacements750

in each medium, we sum the displacements produced by the corresponding propagating751

waves.752

For the viscoelastic medium Ωv, the total displacement uv is753

uv =
∑
r

uv
r . (B3)754

Here, r = {DqP , UqP , DqS , UqS}, where subscripts qP and qS refer to qP - and qS-waves.755

For the elastic half-spaces, the corresponding total displacements have been already de-756

tailed in equation (A8).757

We propose plane-wave solutions for the displacements. For the elastic media they758

take the following form759

ue
nj = Enj exp(−iknj · x) ûnj , (B4)760

where, n = {Λ1,Λ2}. Furthermore, for n = Λ1, j = {DP , UP , US}; otherwise761

for n = Λ2, j = {DP , DS}. Enj is the amplitude of the plane wave, knj is the wavenum-762

ber vector and its definition is the same as detailed in equations (A10) and (A11), x is763

the position vector and ûnj is the wave polarization unit vector that describes the di-764

rection of particle displacement. For P-waves, this vector is parallel to the wavenumber765

vector knj and for S-waves, this vector is perpendicular to it.766
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For the viscoelastic medium Ωv, the plane-wave solution takes the form767

uv
r = Vr exp(−ikr · x) ûr, (B5)768

where Vr is the amplitude of the plane wave, kr is the complex wavenumber vector and769

ûr is the wave polarization unit vector. In viscoelastic media, plane waves are in gen-770

eral inhomogeneous, meaning that the real wavenumber vector κκκr is not parallel to the771

attenuation vector αr. In a smilar way to equation (A16), the complex wavenumber vec-772

tor can be expressed as773

kr = κκκr − iαr. (B6)774

We can also express the real wavenumber vector as κκκr = κr κ̂κκr, where κ̂κκr and κr are775

the real unit vector and wavenumber, respectively. This latter can be related to the r-776

wave velocity vr as follows: κm = ω/vr. For the present model, the presence of elas-777

tic half-spaces together with Snell’s law implies that the horizontal component of the wavenum-778

ber vector is real. As a consequence, the attenuation vector αr has only a vertical com-779

ponent. Then, for a given incidence angle at the interface between the upper elastic half-780

space and the viscoelastic medium, Snell’s law stipulates that the horizontal component781

of the wavevectors of the subsequent of the propagating waves are equal to that of the782

incident wave pi, that is, pi = κκκr · x̂1 = knj · x̂1.783

The missing vertical component k3 = kr·x̂3 of the wavevector kr and the corre-784

sponding polarization vector û of waves propagating in the viscoelastic medium can be785

found by solving the equation that arises after substituting equations (B2) and (B5) into786

(B1). Here, without loss of generality, we assume that the amplitude Vr is equal to 1.787

We also drop the subscript r. Then, the equation to solve is788

(Γ− ρvb ω
2 I) û = 0, (B7)789
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where790

Γ = LC LT , with

L =

pi 0 k3

0 k3 pi

 ,

(B8)791

where C is the stifness matrix as given by equation (B2). Equation (B7) have solutions792

if det(Γ−ρb ω
2 I) = 0. This leads to a fourth-order equation in k3, with solutions cor-793

responding to vertical components of upgoing and downgoing qP- and qS-waves. After794

this, the corresponding unit polarization vectors û can be found from equation (B7). How-795

ever, in anisotropic viscoelastic media, the direction of the real wavenumber vector does796

not necessarily coincide with the direction of the average energy-flux vector S or ray path.797

Then, to select unequivocally the solutions for upgoing and downgoing waves, the direc-798

tion of the average energy flux should be established for the corresponding wavenum-799

ber vectors. This average energy flux vector S is the real part of the complex energy-800

flux vector P , that is, S = Re (P ) (Carcione & Cavallini, 1993; Červený & Pšenč́ık,801

2006). The components of P can be calculated as (Carcione, 2007)802

Pi = −1

2
ω Cijkl kl ûk û

∗
i . (B9)803

Here, indices take values of 1 and 3, and (·)∗ denotes complex conjugate. Furthermore,804

Cijkl are the components of the stiffness tensor. The conversion of the indices of the sitff-805

ness tensor from tensorial to Voigt notation is as follows: double indices ij or kl with806

values 11, 13, 31 and 33 convert to a single indices 1, 5, 5 and 3, respectively. For instance,807

C3113 in tensorial notation is equivalent to C55 in Voigt notation.808

B3 PP Reflection coefficients809

As in in Appendix A, we assume that the amplitude of the incident P-wave is one810

and, hence, the reflection coefficient RPP at the interface of the viscoelastic medium with811
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the upper half-space is then equal to EΛ1 UP (equation (B4)). To solve for the unknown812

amplitudes, we assemble a set of equations by imposing continuity of displacements and813

tractions at the elastic-viscoelastic interfaces Πq with q = 1, 2814

(ue
n − uv)|Πq

= 0 ,

(ten − tv)|Πq
= 0 .

(B10)815

Here, n = Λq, t
e
n and tv are the tractions on the elastic and viscoelastic sides of the in-816

terface, respectively. Moreover, tv = σv · x̂3. The traction ten on the elastic side has817

already been defined in Appendix A.818

Open Research819

The data used to create the figures containing the results of this study are avail-820

able at the Zenodo repository via https://doi.org/10.5281/zenodo.8434140 (doi:10.5281/zenodo.8434140)821

with Creative Commons Attribution 4.0 International Public License (Sotelo et al., 2023).822

Acknowledgments823

This work is supported by the grant 200020-178946 from the Swiss National Science Foun-824

dation. J. G. R. gratefully acknowledges the financial support received from CONICET825

(PIP 11220210100346CO)826

References827

Anthoine, A., Guedes, J., & Pegon, P. (1997). Non-linear behaviour of reinforced828

concrete beams: From 3D continuum to 1D member modelling. Computers &829

Structures, 65 (6), 949–963. doi: https://doi.org/10.1016/S0045-7949(95)00260830

-X831

Backus, G. E. (1962). Long-wave elastic anisotropy produced by horizontal lay-832

ering. Journal of Geophysical Research, 67 (11), 4427–4440. doi: 10.1029/833

–44–



manuscript submitted to JGR: Solid Earth

JZ067I011P04427834

Bakke, N. E., & Ursin, B. (1998). Thin-bed AVO effects. Geophysical Prospecting ,835

46 (6), 571–587. doi: 10.1046/J.1365-2478.1998.00101.X836

Barbosa, N. D., Rubino, J. G., Caspari, E., Milani, M., & Holliger, K. (2016).837

Fluid pressure diffusion effects on the seismic reflectivity of a single fracture.838

The Journal of the Acoustical Society of America, 140 (4), 2554–2570. doi:839

10.1121/1.4964339840

Biot, M. A. (1941). General theory of three-dimensional consolidation. Journal of841

Applied Physics, 12 (2), 155–164. doi: 10.1063/1.1712886842

Biot, M. A. (1956). Theory of propagation of elastic waves in a fluid-saturated843

porous solid. II. Higher frequency range. The Journal of the Acoustical Society844

of America, 28 (2), 179–191. doi: 10.1121/1.1908241845

Biot, M. A. (1962). Mechanics of deformation and acoustic propagation in porous846

media. Journal of Applied Physics, 33 (4), 1482–1498. doi: 10.1063/1.1728759847

Boait, F. C., White, N. J., Bickle, M. J., Chadwick, R. A., Neufeld, J. A., & Hup-848

pert, H. E. (2012). Spatial and temporal evolution of injected CO2 at the849

Sleipner field, North Sea. Journal of Geophysical Research: Solid Earth,850

117 (B3), 3309. doi: 10.1029/2011JB008603851

Borcherdt, R. D. (1973). Energy and plane waves in linear viscoelastic me-852

dia. Journal of Geophysical Research, 78 (14), 2442–2453. doi: 10.1029/853

jb078i014p02442854

Borcherdt, R. D. (1982). Reflection—refraction of general P-and type-I S-waves in855

elastic and anelastic solids. Geophysical Journal International , 70 (3), 621–638.856

doi: 10.1111/j.1365-246X.1982.tb05976.x857

Brajanovski, M., Gurevich, B., & Schoenberg, M. (2005). A model for P-858

–45–



manuscript submitted to JGR: Solid Earth

wave attenuation and dispersion in a porous medium permeated by aligned859

fractures. Geophysical Journal International , 163 (1), 372–384. doi:860

10.1111/j.1365-246X.2005.02722.x861

Caine, J. S., Evans, J. P., & Forster, C. B. (1996). Fault zone architecture and per-862

meability structure. Geology , 24 (11), 1025–1028. doi: 10.1130/0091-7613(1996)863

024⟨1025:FZAAPS⟩2.3.CO;2864

Carcione, J. M. (2007). Waves in Real Media: Wave propagation in anisotropic,865

anelastic, porous and electromagnetic media. Elsevier.866

Carcione, J. M., & Cavallini, F. (1993). Energy balance and fundamental relations in867

anisotropic-viscoelastic media. Wave Motion, 18 (1), 11–20. doi: 10.1016/0165868

-2125(93)90057-M869

Carcione, J. M., & Picotti, S. (2006). P-wave seismic attenuation by slow-wave dif-870

fusion: Effects of inhomogeneous rock properties. Geophysics, 71 (3), O1–O8.871

doi: 10.1190/1.2194512872
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