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Abstract

While the majority of plant species have combined sexes (hermaphroditism or monoecy), evolutionary

transitions to separate sexes (dioecy) have occured numerous times independently. In addition, there have

been multiple reversions from dioecy towards combined sexes. Little is known about the underlying genetics

of these convergent evolutionary transitions. In this thesis I explore genomic datasets to understand several

evolutionary genomic processes that can be involved in the evolution of separate sexes and other transitions

between plant sexual systems, focusing on the genus Mercurialis, in which dioecy is ancestral. Transitions

from dioecy to monoecy and androdioecy (coocurrence of males and monoecious individuals) have occured

in its annual clade and different lineages show variation in ploidy, and all monoecious and androdioecious

lineages are polyploids. I analyze several datasets, which are related to the evolution of sex chromosomes

in Mercurialis. As in animals, sex chromosomes determine sex in many dioecious plant species. However, it

is unclear if sex chromosomes in plants commonly follow the same evolutionary trajectories, which involve

the evolution of recombination suppression and sequence degeneration. Using a number of phylogenetic

markers, I show that annual and several related perennial lineages of Mercurialis share an ancestral XY

system of sex determination. In addition, I improve the understanding of phylogenetic relationships between

lineages and find evidence for several previously unknown allopolyploidization events. Also I show that

males in androdioecious populations of hexaploid M. annua lineages are the result of introgression of a Y

chromosome from a distantly related perennial lineage. This pattern is at odds with the strong contribution

of sex chromosomes to reproductive isolation, which has been observed in animals, but it may be explained

by the limited degree of recombination suppression, similarities in ploidy between both lineages and with a

strong outcrossing advantage of males in a monoecious background, which would favour the rapid spread of

a Y chromosome in populations in which dioecy had previously been lost. Using further genomic datasets, I

locate the Y chromosome in diploid, dioecious M. annua in a pericentromeric region with low recombination.

In addition, I find evidence for two independent extensions of the non-recombining region in annual lineages

of Mercurialis. These results show that plant sex chromosomes may evolve repressed recombination in a

similar fashion as is known in animals. Finally, I explore the genetic architecture underlying transitions

towards monoecy in experimental populations of diploid M. annua. In these populations, removal of males

resulted in a dramatic increase in females producing male flowers. I identify two independent regions in

which loci with strong antagonistic effects on male and female flower production are colocalized. This

implies that the genetic architecture underlying transitions towards monoecy can be based on few major

effect loci.



Résumé

Alors que la majorité des espèces végétales ont des sexes combinés (hermaphrodisme ou monoécie), des

transitions évolutives vers des sexes séparés (dioécie) se sont produites de nombreuses fois indépendamment.

De plus, il y a eu de multiples réversions de la dioécie vers les sexes combinés. On sait peu de choses

sur la génétique sous-jacente de ces transitions évolutives convergentes. En me concentrant sur le genre

Mercurialis chez qui la dioécie est ancestrale, j’explore, dans cette thèse, des ensembles de données

génomiques pour comprendre plusieurs processus évolutifs qui peuvent être impliqués dans l’évolution des

sexes séparés ainsi que dans d’autres transitions entre les systèmes sexuels des plantes. Des transitions

de la dioécie vers la monoécie et l’androdioécie (coexistance de mâles et d’individus monoïques) ont eu

lieu dans son clade annuel et différentes lignées montrent des variations de ploïdie. Toutes les lignées

monoïques et androdioïques sont polyploïdes. J’analyse plusieurs ensembles de données qui sont liés à

l’évolution des chromosomes sexuels chez Mercurialis. Comme chez les animaux, les chromosomes sexuels

déterminent le sexe chez de nombreuses espèces végétales dioïques. Cependant, on ne sait pas avec

certitude si les chromosomes sexuels des plantes suivent généralement les mêmes trajectoires évolutives qui

impliquent l’évolution de la suppression de recombinaison et la dégénérescence des séquences. En utilisant

un certain nombre de marqueurs phylogénétiques, je montre que les lignées annuelles ainsi que plusieurs

lignées pérennes apparentées au genre Mercurialis, partagent un système ancestral XY de détermination du

sexe. En outre, j’améliore la compréhension des relations phylogénétiques entre les lignées et je trouve des

preuves de plusieurs événements d’allopolyploïdie inconnus auparavant. Je montre également que les mâles

des populations androdioïques des lignées hexaploïdes de M. annua sont le résultat de l’introgression d’un

chromosome Y provenant d’une lignée pérenne lointainement apparentée. Ce schéma est en contradiction

avec la forte contribution des chromosomes sexuels à l’isolement reproductif qui a été observée chez les

animaux. Ce dernier peut être expliqué par le degré limité de suppression de recombinaison, les similitudes

de ploïdie entre les deux lignées et un fort avantage d’outcrossing des mâles dans un contexte monoïque

qui favoriserait la propagation rapide d’un chromosome Y dans les populations ayant précédemment perdu

la dioécie. En utilisant d’autres ensembles de données génomiques, je localise le chromosome Y chez

M. annua diploïde et dioïque dans une région péricentromérique à faible recombinaison. En outre, je

trouve des preuves de deux extensions indépendantes de la région de non-recombinaison dans les lignées

annuelles de Mercurialis. Ces résultats suggèrent que les chromosomes sexuels des plantes peuvent évoluer

vers une recombinaison réprimée de manière similaire à ce qui est connu chez les animaux. Finalement,

j’explore l’architecture génétique qui sous-tend les transitions vers la monoécie dans des populations

expérimentales de M. annua diploïdes. Dans ces populations, l’élimination des mâles a entraîné une



augmentation spectaculaire du nombre de femelles produisant des fleurs mâles. J’identifie deux régions

indépendantes dans lesquelles les loci ayant de forts effets antagonistes sur la production de fleurs mâles et

femelles sont colocalisés. Cela implique que l’architecture génétique qui est responsable des transitions

vers la monoécie peut être basée sur quelques loci à effet majeur.
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Chapter 1

Introduction

1.1 The evolution of plant reproductive diversity

Reproduction is one of the essential hallmarks of life, and all living organisms are the result of either

asexual or sexual reproduction. Sexual reproduction involves meiosis, which allows recombination of genetic

variation and fusion of gametes, which can be of similar size (isogamy) or which differ in size and motility

(anisogamy), with male gametes being smaller and motile and female gametes being larger and stationary.

Generally, recombination via sexual reproduction can both bring together alleles at different loci that

arose in different lineages, and it can break down associations between alleles at different loci. This has

fundamental consequences for evolution on the organismic and the genomic level, as it facilitates both

adaptive evolution and purifying selection against deleterious variants and allele combinations (Charlesworth

1993; Betancourt et al. 2009). In addition, recombination has a range of secondary effects, affecting gene

conversion (Marais 2003), the evolution of repetitive elements (Kent et al. 2017) and the genetic diversity

at a large proportion of the genome through linked selection (Slotte 2014). However, compared with

asexual reproduction, sexual reproduction can have a strong transmission disadvantage as male gametes

do not produce offspring (Smith 1978). In addition, recombination can break down coadapted allele

complexes, and sexual reproduction may come with additional fitness costs through sexual selection and

sexually transmitted diseases and parasites (Otto and Lenormand 2002).

The question of which of these factors are most important at maintaining sexual reproduction has been

the subject of controversial discussion for a long time (Felsenstein 1974; Barton and Charlesworth 1998;

Otto 2009). Nonetheless, sexual reproduction is extremely widespread among eukaryotes (Beukeboom and

4



Perrin 2014). Meiosis and fusion of gametes, which underly sexual reproduction at the cellular level, likely

come from a single common ancestor (Dacks and Roger 1999) and its underlying molecular machinery is

remarkably conserved across sexually reproducing eukaryotes (Villeneuve and Hillers 2001). In contrast,

there is a striking diversity in the way sex is expressed at the organismic level (Bachtrog et al. 2014).

This diversity is particularly great in plants, where extensive variation of sex expression is found in the

distribution of reproductive organs of each sex within and between individuals. Individuals can be either

male, female or express both sexes simultaneously, either in the same (hermaphroditism) or separate flowers

(monoecy). Individuals that express both sexes can vary in their relative expression of each sex, and both

combinations of male and hermaphrodite flowers (andromonoecy) and female and hermaphrodite flowers

(gynomonoecy) can be found on the same individual. There is also variation of the sexual system within

natural populations. Besides hermaphrodites, combinations of either males and females (dioecy), females

and hermaphrodites (gynodioecy) or, rarely, males and hermaphrodites (androdioecy) exist (Barrett 2002).

The distribution of these sexual systems and their mode of sex determination varies among different

clades of eukaryotes. While most vertebrates and a majority of invertebrates have separate sexes, the

majority of angiosperm species are hermaphrodites (The Tree of Sex Consortium 2014). This difference

between plants and animals can be traced back to differences in lifeform (Eppley and Jesson 2008) and

evolutionary history. Hermaphroditism has likely been the ancestral state of angiosperms (Sauquet et al.

2017), while basal animals have separate sexes and the occurrence of separate sexes in plants has been the

result of evolutionary transitions. Despite the dominance of hermaphroditism in angiosperms, separate

sexes are found in about half of all plant families, and it has been estimated that separate sexes evolved

up to 5000 times independently (Renner 2014). This high degree of evolutionary convergence makes the

study of these transitions a major question in evolutionary biology, and understanding which evolutionary

forces underly them is of general interest, as it touches on a wide range of questions and concepts.

1.2 Evolutionary theory of sexual system evolution

Evolutionary theory makes clear predictions about the ratio of male and female gametes in a population

based on the application of game theory to evolutionary genetics (Smith 1982; West 2009). As each

female gamete has to be fertilized by a male gamete, there is strong frequency-based selection resulting

in an equal investment in production and dispersal of male and female gametes. Genetic variants that

bias the investment into gametes of one sex will be selected against by variants of the opposite effect,

because the fitness of gametes of the opposite sex will increase as they become rarer (Fisher 1930). The
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investment into male and female gametes is thus expected to converge to an evolutionary stable strategy

where both sexes have equal fitness. This logic applies both to dioecious sexual systems, where it defines

the investment in sons or daughters, and to cosexual individuals, where it defines the reproductive effort

invested into male and female function by each individual.

Individuals have a limited amount of resources available for reproduction and, as a result, individuals

that express both sexual functions will allocate a subset of available resources to each of them, while

unisexual individuals will invest all resources into only one. The evolution and maintenance of different

sexual systems can be understood in this context: hermaphroditism will be an evolutionary stable strategy

if individuals maximize their fitness by investing into both sexual functions. In contrast, if fitness is

maximized by allocating resources into just one sexual function, dioecy will be stable. Conditions for the

maintenance of gynodioecy or androdioecy would be based on intermediate scenarios, where fitness is

maximized if resources are invested in one of the sexes and hermaphrodites (Charnov et al. 1976). These

fitness optima are determined by how fitness returns change for each sex function with increased allocation

into them. Sex allocation theory uses fitness gain curves to describe these fitness functions and it depends

on the interplay of fitness gain curves for both sexual functions if a specific sexual system will be favored.

Based on the combined effect of both fitness gain curves (the fitness set), the relative fitness contributions

for male and female functions determine if a specific sexual system is stable, or if it will be susceptible to

invasion by mutants that cause transitions (Charnov et al. 1976).

There is a complex interplay of different factors that shape fitness gain curves, and distinguishing them

experimentally can be challenging (Campbell 2000), but in general the shape of fitness gain curves is

determined by sexual specialization and selection for outcrossing or selfing (Charlesworth and Charlesworth

1981).

Sexual specialization is often related to sex-specific resource requirements. These can be either direct,

as production of male and female gametes has different resource requirements (e.g., pollen and seeds tend

to differ in their carbon-nitrogen ratio (Obeso 2002)) or indirect (there are often additional morphological

adaptations that favor reproduction of one sex (Lloyd and Webb 1977)). If resource requirements show

little overlap, the maintenance of hermaphroditism can be favored (Lloyd 1982), but not all investments

into one sex function will directly translate into the production of gametes, as there may be sex-specific

fixed resource requirements that have to be invested before gametes can be produced, and unisexual

individuals can be favored when they only have to invest fixed costs for one sex function (Charnov 1979).

In animals indirect sex-specific resource requirements can be substantial, as they are often related to

sexual dimorphism that may result from sexual selection. This can be understood in terms of Bateman’s
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Principle, which states that reproductive fitness is limited by resources for females, but by access to mates

for males (Bateman 1948). This may be less apparent in hermaphroditic animal-pollinated plants, where

pollinators are required for successful reproduction through both male and female functions. However, an

increased investment in attractive structures should largely result in accelerating fitness gains for the male

function if pollinators are abundant, because female fitness will not increase after all seeds are pollinated

(Charnov 1979). In wind-pollinated plants, very different structures facilitate male and female reproduction.

Male reproductive organs often are exposed and extruded to help spread pollen in the wind, while female

structures are optimized to capture pollen, which often involves morphological adaptations that differ from

male flowers (Culley et al. 2002).

In addition, the shape of fitness gain curves can be influenced by interactions between offspring.

Sex-specific gain curves will show diminishing returns if there is local competition among offspring of one

sex for resources or mates. In plants, competition can either happen at the seedling stage, where increased

pollen dispersal could cause siblings related through their male function to experience lower competition

among siblings (Lloyd 1982), or at the seed stage, when multiple seeds grow up in the same fruit, which

can have different fathers, but will always have the same mother (Bawa 2016). In principle, fitness gain

curves could also accelerate by differential cooperation among relatives of one sex. This effect has been

shown in animals (West 2009), but conclusive evidence from plants is lacking.

The other driver in sexual-system evolution is selection for outcrossing or selfing. It has been known for

a long time that offspring produced by relatives often have lower fitness than those of unrelated individuals,

and these differences in fitness are even stronger in offspring sired by selfing of cosexual plants, which will be

inbred to an even stronger degree than the offspring of immediate relatives (Darwin 1876). These negative

fitness effects can be explained by the decrease of heterozygosity because the probability of inheriting

two alleles identical by state will increase with the degree of inbreeding. There are two ways in which the

decrease in heterozygosity can affect offspring fitness. The overdominance hypothesis explains decreases in

fitness by the loss of variation at loci where it is advantageous to have different alleles (heterosis). The

partial dominance hypothesis explains fitness effects by recessive deleterious mutations being expressed

in a homozygous state (Charlesworth and Charlesworth 1987). Overall, empirical data shows that it’s

mostly recessive deleterious mutations that contribute to inbreeding depression, which is largely in favor

of the partial dominance hypothesis (Charlesworth and Willis 2009). Besides these direct fitness effects,

selfing can further hinder adaptive evolution by reducing effective population sizes and genetic diversity

(Charlesworth and Wright 2001) and result in more extended linkage disequilibrium (Nordborg 2000).

Besides these genetic reasons, selfing can also affect reproduction on the phenotypic level: transfer of
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self pollen between anther and style of the same flower (autogamy) or between different flowers of the

same plant (geitonogamy) can have additional fitness costs, as it can limit the amount of pollen available

for outcrossing, and it can reduce the rate of germination and seed set from outcrossed pollen by blocking

styles even if the self pollen does not germinate (Jong et al. 1993). There is a number of morphological

and genetic adaptations that reduce selfing and self-pollination. Anthers and stigma can be separated

spatially, either within the same flower (herkogamy) or in different types of flowers on the same (monoecy)

or on different individuals (Barrett 2002), or the presentation of pollen and receptivity of stigmas on the

same plant can be separated in time (Lloyd and Webb 1986). Genetic systems of self-incompatibility

have evolved multiple times independently and can involve different genetic mechanism of recognizing and

rejecting inbred gametes (Charlesworth, Vekemans, et al. 2005), which can be associated with reciprocal

differences in style and anther morphology (heterostyly) (Barrett 2019). Of all of these adaptations, only

complete dioecy can prevent all forms of these interactions between pollen and pistil on the same individual.

However not all effects of selfing are detrimental, and while only 10-15% of plant species are

predominantly selfing, a much larger proportion of plant species show mixed mating systems, where some

proportion of gametes is sired through selfing (Goodwillie et al. 2005). There are two selective hypotheses

that explain transitions to and the maintenance of selfing (Busch and Delph 2012): the transmission

advantage hypothesis is based on the fact that variants that favor selfing have a strong transmission

advantage, because they will be propagated through both sexual functions of the same individual (Fisher

1941). The reproductive assurance hypothesis states that selfing can be advantageous when pollinators or

mates are absent or rare, which is often the case in colonizing species or in species where populations are

subject to frequent extinction and recolonization. This higher colonization ability is also a likely explanation

for Baker’s law (Baker 1955), which accounts for the higher frequency of self-compatible species found on

islands than on the mainland (Grossenbacher et al. 2017). In addition, the deleterious effects of inbreeding

through recessive mutations, due to which selfing would have severe fitness effects in outcrossing plants,

tend to be purged from predominantly selfing populations (Lande and Schemske 1985). Selfing also tends

to result in stronger genetic differentiation between populations, by which it could favor speciation (Wright

et al. 2013).

Most of the theory underlying sex determination in plants is well understood, but still very little is

known about how transitions in sexual systems happen in detail. It is still unclear whether inbreeding

avoidance or sexual specialization are more important for transitions towards, and maintenance of, separate

sexes, and it is also not clear how common transitions from separate towards combined sexes are, and

which the selective factors causing them are.
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One kind of evidence that can be used to infer the evolutionary pathways underlying transitions is the

distribution of sexual systems across the tree of life (Weller and Sakai 1999). These types of studies show

broad scale patterns of the frequency and directionality of sexual system transitions. A general result is the

extreme rarity of androdioecy, which is in accordance with evolutionary models that predict that it would

require a very strong male outcrossing advantage to evolve (Pannell 2002). Another well-known result is

the scattered distribution of dioecy and the small size of dioecious clades (Heilbuth 2000), which resulted

in dioecy often being considered an evolutionary dead-end. However, analyses using newly-developed tests

for sister clade comparisons showed that dioecy is actually associated with slightly elevated diversification

rates (Käfer, Boer, et al. 2014), and the rarity of dioecy may in fact be related to frequent reversions

towards monoecy (Käfer, Marais, et al. 2017). There is a strong association of both dioecy and monoecy

at the family level (Renner and Ricklefs 1995), and dioecy and gynodioecy at the genus level (Dufay et al.

2014), which has been interpreted as evidence of dioecy evolving frequently both from either monoecy or

gynodioecy. However, an alternative explanation is that the association of monoecy and dioecy could have

resulted from a general clustering of labile sexual systems (Weiblen et al. 2000). In addition, associations

between traits and sexual systems can be indicative of the underlying selective pressures that cause

sexual-system transitions. Traits that are associated with dioecy are abiotic pollination, climbing growth

form (Renner and Ricklefs 1995) and animal dispersal through fleshy fruits (Vamosi and Vamosi 2004).

These observations are compatible with transitions towards dioecy caused by sexual specialization.

Both evolutionary theory and phylogenetic associations can provide insights into the selective pressures

causing changes in sexual systems. For a truly integrated understanding of these evolutionary processes,

it is necessary to understand how the variance, on which such selective processes act, is generated by

molecular changes underlying the genetic architecture that determines sex expression.

1.3 Genomics of sex determination

Individual sex can be determined by environmental cues or individuals can change sex during the course of

their lives (Vega-Frutis et al. 2014), but in most cases differences in sex expression have a strong heritable

genetic component (Bachtrog et al. 2014). When individuals in a population can express two clearly

distinct sexes, determined genetically, they are usually based on a single locus, while polygenic systems of

sex determination are rare for bisexual organisms (Moore and Roberts 2013). Much less is known in cases

where there is continuous, genetically determined variation in sex expression; in this case it is possible that

multiple loci across the genome can have a quantitative effect on sex expression.
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A common theme in animals is that orthologs of the same genes become involved in sex determination

independently. In vertebrates, a set of genes located at different positions in the genetic network involved

in sex determination acquired the role of master sex determination gene in diverged lineages (Capel 2017).

In holometabolous insects sex determination shares a conserved set of core genes, which can be activated

by a number of different mechanisms and can have a variety of downstream effects (Bopp et al. 2014).

1.3.1 The evolution of sex chromosomes

A common feature of single locus sex determination systems is the evolution of sex chromosomes. Sex

chromosomes were first discovered over a hundred years ago (Stevens 1906; Brush 1978) and have been

described in clades as diverse as animals (Kaiser and Bachtrog 2010; Miura 2017; Zhou et al. 2014; Graves

2006), plants (Ming et al. 2011), algae (Coelho et al. 2019) and fungi (Branco et al. 2017), and can be

found in organisms where the sexual phase is diploid as well as in organisms where the sexual phase is

haploid. Sex chromosomes are defined as the pair of chromosomes on which the sex-determining locus

is located, and in diploid sex-determination systems there is usually a heterogametic sex, where either

maleness or femaleness are determined by either a dominant sex determining locus (XY or ZW system) or

based on the copy number of the X chromosome (X0 system), while in haploid sex determination systems

sex is determined by two alleles at the same locus (UV system). In this thesis I will adopt the convention

to always refer to X and Y chromosomes when I discuss general patterns of sex chromosome evolution,

which would also apply for Z and W chromosomes. I will refer to Z and W chromosomes when I describe

specific sex chromosome systems or when I want to emphasize general differences between the evolution

of male and female heterogametic sex chromosome systems.

Sex chromosomes evolve from autosomes through two different mechanisms. In bisexual organisms,

which already have separate sexes, an autosomal locus can take over sex determination, a process called sex

chromosome turnover (Vicoso 2019). In plants, sex chromosomes often evolve from autosomes when there

is a transition from combined towards separate sexes (Charlesworth 2002). The rates of sex-chromosome

turnover can differ strongly between clades. While some old clades like mammals or birds have conserved

sex chromosomes, turnover is rapid in many groups of fish and amphibians. There is evidence in multiple

systems that not all autosomes have the same likelihood of becoming a sex chromosome, but that particular

autosomes repeatedly became sex chromosomes, likely as a result of the same locus repeatedly taking over

the top of the sex determination cascade (Jeffries, Lavanchy, et al. 2018).

Many sex chromosomes share features that are not required for sex determination. One of these is
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the evolution of recombination suppression. Here, recombination between both sex chromosomes in the

heterogametic sex is often suppressed around the sex determining locus, while both sex chromosomes can

freely recombine in the homogametic sex. The loss of recombination usually results in the accumulation of

sequence differences between the sex chromosomes. These can be caused by a variety of genetic processes

such as the accumulation of single nucleotide polymorphisms (SNPs), tandem repeats and transposable

elements, and often also on the chromosomal scale due to structural variants (Bachtrog 2013). As a

result, the gene content in the region of suppressed recombination diverges between both copies of the

sex chromosomes, either through loss of gene sequences or through the accumulation of loss-of function

mutations. Importantly, recombination suppression often happens in a stepwise fashion, which can result

in so-called evolutionary strata, discrete regions of the non-recombining part of the sex chromosome with

different degrees of sequence divergence and gene losses (Lahn and Page 1999).

The degree of recombination suppression and degeneration can vary strongly between lineages and can

range from homomorphic (microscopically indistinguishable) sex chromosomes, with a single SNP that

has no discernable recombination suppression around it determining sex (e.g., in tiger pufferfish (Kamiya

et al. 2012)), through strongly heteromorphic (microscopically distinguishable) sex chromosomes (e.g., in

mammals), to complete loss of one of the sex chromosomes resulting in an X0 system of sex determination

(e.g., in Caenorhabditis elegans (Madl and Herman 1979)). While these differences in recombination

suppression and sex-chromosome degeneration are often related to the relative age of the sex chromosomes,

there are examples of very old sex-chromosome systems that show little recombination suppression, e.g., in

rhatite birds (Yazdi and Ellegren 2014) and sturgeons (Kuhl et al. 2020).

These processes of sex-chromosome degeneration can have strong fitness consequences for the heteroga-

metic sex. Large-scale patterns of reduced adult sex ratio (Pipoly et al. 2015) in tetrapods and lifespan

(Xirocostas et al. 2020) as well as differences in sex ratio in dioecious plants (Field et al. 2013) in the

heterogametic sex may be related to these deleterious effects. These fitness effects can be the consequence

of a number of processes related to sex-chromosome degeneration. The loss of functional gene copies

on one of the sex chromosomes can result in the reduction of expression levels of dosage sensitive genes.

There has been convergent evolution of dosage compensation mechanisms in different clades through a

variety of mechanisms (Gu and Walters 2017), pointing to the importance of this effect. Furthermore sex

chromosomes are ideal targets for meiotic drive loci, which bias the sex ratio to favor their own transmission

(Jaenike 2001). Often the evolution of meiotic drivers selects for other loci that compensate the sex ratio

bias. In the absence of such compensation, the sex ratio biases can have severe fitness consequences on

the population level (including extinction). There is evidence for rampant gene duplications of loci likely

involved in these effects on the sex chromosomes of different Drosophila species (Ellison and Bachtrog
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2019). In addition, increased expression of repeats and accumulation of heterochromatin on the sex

chromosome can have fitness consequences for the rest of the genome (Nguyen and Bachtrog 2020).

These deleterious effects raise the question of why recombination suppression evolves in the first place.

The most common hypothesis for recombination suppression on sex chromosomes assumes some initial

selective advantage, which is caused by loci that are under sexually antagonistic selection (Charlesworth

and Charlesworth 1980; Rice 1987). When expressed, these loci would have positive fitness effects in one

of the sexes, but negative fitness effects in the other. Linkage between a sexually antagonistic locus and

the sex-determining locus could be one way to resolve the resulting sexual conflict over the expression of

these loci by ensuring that sexually antagonistic alleles co-segregate with the heterogametic sex. This idea

is conceptually related to so-called ’supergenes’, clusters of tightly linked loci that underly a variety of

adaptive phenomena in a wide range of species (Schwander et al. 2014).

While the theoretical predictions of sexual antagonistic selection seem clear, there has been limited

evidence that sexually antagonistic loci contribute to recombination suppression on sex chromosomes. One

promising system to find evidence for this effect has been the guppy fish, where male coloration loci increase

male fitness through sexual selection but decrease female fitness by making them more conspicuous to

predators; the alleles are inherited in a male-specific manner (Gordon et al. 2012). However, recent research

shows that recombination rates in males are limited on all chromosomes, which would allow for male-specific

inheritance of sexually antagonistic alleles without sex-chromosome evolution (Bergero, Gardner, et al.

2019). In addition, there appears to be only a small region of completely suppressed recombination on

the male Y chromosome, which precludes any effect of sexually antagonistic selection being involved in

the evolution of recombination suppression (Kirkpatrick et al. 2020). Another line of evidence comes

from naturally occurring variation in the degree of recombination suppression on sex chromosomes in

the common frog Rana temporaria. Unlike the prediction for sexually anatagonistic selection, males with

different sex chromosomes show no difference in fitness (Veltsos, Rodrigues, et al. 2019).

In light of the limited support for sexual antagonism as a cause of recombination suppression on sex

chromosomes, a number of alternative explanations have been proposed (Ponnikas et al. 2018). The

meiotic drive hypothesis proposes that a new sex determiner could arise if it is initially linked to a meiotic

drive locus. The initial region of suppressed recombination between driver and sex determining loci would

persist after an unlinked suppressor locus, which restores sex ratios, evolves (Ubeda et al. 2015). The

heterozygote advantage theory proposes that heterosis could select for recombination suppression by linking

the sex determination locus to loci that are advantageous when heterozygous. As the initial degree of

heterozygote advantage has to be higher than is usually expected through evolution by single mutational
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steps, this model is thought to apply mostly to the fusion between sex chromosomes and autosomes

(Charlesworth and Wall 1999). A third hypothesis proposes that genetic drift can cause, or at least

facilitate, the evolution of recombination suppression. This is because Y or W chromosomes have a lower

effective population size than autosomes and the X or Z chromosomes, and, at least in Y chromosomes,

there may be additional reductions due to variance in male reproductive success. This could increase

the probability of fixation of either inversions, or variants that increase sequence divergence between sex

chromosomes around the sex determining locus, both of which could decrease local recombination rates

(Jeffries, Gerchen, et al. 2021). In addition, repeats and transposable elements could play an significant role

in the evolution of recombination suppression, because they can increase the probability of inversions and

can induce sequence divergence between sex chromosomes (Kejnovsky et al. 2009). Most sex chromosomes

harbor a significant proportion of transposable elements (TEs) and repeats, and there appears to be a link

between TE accumulation and the emergence of young sex chromosomes in fish, though it is still unclear

if this is a cause or a consequence of recombination suppression (Chalopin et al. 2015).

In plants, models for the evolution of separate sexes from hermaphroditism add an additional role for

recombination suppression during sex-chromosome evolution. The canonical gynodioecy model proposes

that the evolution of dioecy from hermaphroditism requires three mutational steps. The first step in this

model is the evolution of gynodioecy through a recessive loss-of-male-function mutation, which results in

females when homozygous. In a second mutation step, a dominant suppressor of female function evolves

at a different locus, which converts hermaphrodites into males. Importantly, in a third step, selection

against neuters results in tight linkage between both loci, which results in a young sex chromosome with

a region of suppressed recombination (Charlesworth and Charlesworth 1978a). This model specifically

requires gynodioecy as an intermediate step. If androdioecy would be the intermediate step, the relative

outcrossing advantage of males compared to hermaphrodites (either through increased pollen production

or pollination efficiency, or through reduction of inbreeding depression) would have to be implausibly high

(Charlesworth 1984).

An alternative pathway for the evolution of separate sexes is the monoecy or paradioecy model (Lloyd

1980). Here, the separation of male and female reproductive organs into different flowers in the same

individual precedes the evolution of separate sexes, and, under some conditions, bisexuality may evolve

through a series of small effect mutations that reduce male and female fertility. This model is less explicit

about the number and types of mutations involved, but it proposes that linkage between loci involved in

male and female fertility could facilitate the evolution of dioecy (Charlesworth and Charlesworth 1978b).

Thanks to recent advances in next-generation sequencing (NGS) technology, an increasing number of
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sex-determination genes is being identified, allowing to test how often dioecy evolved via the gynodioecy

or monoecy pathway. Consistent with the gynodioecy pathway, sex is determined by two Y-linked genes,

that cause female sterility and male function in kiwifruit (Akagi, Pilkington, et al. 2019) and date palms

(Torres et al. 2018). In the case of the Y chromosome of asparagus, two putative sex determination genes

have been identified (Harkess, Zhou, et al. 2017; Harkess, Huang, et al. 2020), but the relative timing of

sterility mutations suggests that it did not evolve via gynodioecy, but rather via androdioecy, which does

not conform with theoretical expectations (Pannell and Gerchen 2018). Other species show some evidence

for a two-locus model, but identification or functional validation of sex-determination genes are still lacking.

There is a limited number of candidate genes for both recessive male sterility mutations and dominant

suppressor of female function in wild grape (Badouin et al. 2020). In Silene latifolia, deletion mapping

identified both a gene with stamen promoting and a gene with gynoecioum suppressing function located

on different parts of the Y chromosome (Kazama et al. 2016). In the wild strawberry Fragara virginia,

genetic mapping suggests the presence of two loci involved in sex determination. Importantly, in this

system hermaphrodites and neuters are produced at low frequencies as a result of incomplete recombination

suppression between both loci, consistent with expectations for the earliest stages of sex-chromosome

evolution (Spigler et al. 2008).

In contrast, several examples are known, in which plant sex is determined by a single gene (Renner

2016). In persimmon, the male sex-determining gene encodes a small RNA, named OGI, which represses

an autosomal gene, MeGI, which downregulates anther fertility (Akagi, Henry, et al. 2014). In monoecious

cucumber and melon species, a pathway for the evolution of a single locus dioecious sex determination

system has been shown experimentally (Boualem et al. 2015). Here, dioecy could be artificially induced by

a two-step mutational pathway, which is based on epistatic interactions between the gene acs11. This

gene is involved in ethylene biosynthesis, which inhibits the expression of wip11, a gene that in turn

inhibits carpel development. Dioecy could evolve when a loss-of-function mutation becomes fixed at

acs11, and a similar loss-of-function mutation keeps segregating at wip11, where it determines maleness

when heterozygous and femaleness when homozygous. More examples of single-locus sex determination

systems are found in Salicacea, where orthologs and partial copies of the type-A response regulator gene

have evolved sex-determination functions independently resulting in multiple different systems of sex

determination (Yang et al. 2020; Müller et al. 2020).

So far it is unclear how these different sex-chromosome systems relate to the evolution of recombination

suppression. Most plant sex chromosomes are homomorphic, which is likely due to their relatively young

evolutionary age (Ming et al. 2011), but there is increasing evidence that recombination suppression does

happen at the sequence level in similar ways as in animal sex chromosomes. In most plant systems in
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which sex chromosomes have been characterized at a molecular level, at least some region of repressed

recombination has been found around the sex determination gene(s), both in systems with single-gene

sex-determination (Akagi, Henry, et al. 2014; Yang et al. 2020) and around the two-gene sex-determination

system of kiwifruit (Pilkington et al. 2019; Akagi, Pilkington, et al. 2019), where it extends beyond the

range required to link both genes. In this context, it is also worth noting that preexisting regions of low

recombination may facilitate sex-chromosome evolution in plants, as both the sex chromosomes of kiwifruit

and papaya are found in low-recombination regions close to centromeres (Yu et al. 2007; Pilkington et al.

2019). In Rumex hastatulus, the sex-linked regions on both XY and XYY chromosomes are located in

regions of low recombination, which make up large parts of the genome (Rifkin et al. 2021). There is also

evidence for the presence of evolutionary strata on the Y chromosomes of both C. papaya (Wang et al.

2012) and Spinacia oleracea (She et al. 2020). In both of these cases, chromosomal inversions are found

in the region of suppressed recombination, and variation in the synonymous divergence of X- and Y-linked

genes in Silene latifolia across the length of the X chromosome may be indicative of evolutionary strata

as well (Bergero, Forrest, et al. 2007). Furthermore, there is evidence for the accumulation of repetitive

elements (Kejnovsky et al. 2009) and sequence degeneration on the sex chromosomes of almost all of

these systems, and pseudogenes are found in multiple species as well (Bergero and Charlesworth 2011;

Wang et al. 2012).

Similar to animals, it is unclear to what degree regions of suppressed recombination on plant sex

chromosomes affect plant fitness, and how selection affects the evolution of recombination suppression.

Unlike in animals, where sperm tend to express only a limited number of genes (Joseph and Kirkpatrick

2004), between 30 and 70% of genes are expressed in plant pollen (Sandler et al. 2018; Honys and Twell

2004), and pollen competition is thought to play a major role in plant evolution (Delph 2019). This allows

for extensive haploid selection at the pollen level, which is thought to have a number of consequences

for sex chromosome evolution (Sandler et al. 2018): First haploid selection may restrain the rate of

sex-chromosome degeneration, because purifying selection will be efficient at maintaining functional gene

copies on the Y chromosome required for pollen function. This is because due to the haploid nature of

pollen there will be no masking effect of functional copies on the X chromosome. Besides the young age

of many plant sex chromosome systems, this may be another main reason for the limited degree of plant

sex chromosome degeneration compared to many animal groups. Evidence consistent with this process

has been found in Silene latifolia (Chibalina and Filatov 2011) and in two species of Rumex (Sandler

et al. 2018), where genes on the Y chromosome with high expression in pollen show slower rates of

sequence degeneration and reduced loss of expression. Second, the presence of genes on the Y chromosome

that contribute to pollen competition can favor the evolution of recombination suppression on the Y
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chromosome. Linkage between these genes and the sex determining locus (Scott and Otto 2017) can be

favored because the Y chromosome is always present in pollen. In contrast, the X chromosome is present

in female gametes half of the time, where it does not experience competition. Third, these processes could

further favor the enrichment of genes that experience haploid selection on the Y chromosome, thereby

increasing both sequence and gene expression divergence between X and Y chromosomes. This process of

"pollenization" has been found in Rumex (Sandler et al. 2018). Also, translocation and duplication of

autosomal genes to the Y linked region, which could be involved in this process, have been found on the Y

chromosomes of Spinacia oleracea, with several of these genes being related to pollen tube growth (She

et al. 2020).

Haploid selection on pollen function is expected to result in male-biased sex ratios (Scott and Otto

2017), but later stages of sex-chromosome degeneration may compromise pollen fitness and result in

female-biased sex ratios. Comparison of sex ratios in flowering plants do indeed show that male-biased

sex ratios are more common, while there is a significant association of female-biased sex ratios with

possessing heteromorphic sex chromosomes (Field et al. 2013). Further experimental evidence of the

effect of sex-chromosome degeneration on pollen competitive ability comes from Rumex nivalis, where

sex ratios became more female biased with increased pollination intensity (Stehlik and Barrett 2006),

a process termed ’certation’. Certation is likely a consequence of sex chromosome-degeneration on the

XY1Y2 sex-chromosome system of R. nivalis.

These examples show that while sex-chromosome evolution in plants is shaped by many of the same

forces as in animals, there is likely also a strong contribution of plant-specific processes like haploid selection.

Disentangling these factors will require both a better understanding of the genetics of sex determination in

plants as well as the characterization of size, gene content and degeneration of non-recombining regions on

plant sex chromosomes. The rapid development of genomic sequencing technologies is making it feasible

to quickly and cost-efficiently generate these kinds of datasets for non-model species. The high degree of

evolutionary convergence with likely hundreds of independent origins of sex-chromosome systems in plants

will make these upcoming analyses interesting, allowing us to address questions beyond those relevant to

the evolution of sexual systems, such as the evolution of transposable elements, recombination and the

repeatability of genome evolution.
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1.3.2 Genetics of polygenic and quantitative sex determination systems

Even though multiple genes may be involved in plant sex determination, the evolution of recombination

suppression on sex chromosomes ensures that sex-determination systems act as a single bi-allelic Mendelian

locus. Such a system is an efficient and simple way to achieve equal sex ratios in bisexual systems.

However, in systems were sex is not completely binary but where heritable variation in sex expression within

individuals exists, more complex genetic systems can be involved in determining sex expression.

Examples for these kind of sexual systems are found in the stinging nettle, Urtica dioica and in the

castor bean, Ricinus communis. In U. dioica, male, female and monoecious individuals can be found in

the same population. Sex ratios from crosses between plants of all sexes from a single population of U.

dioica revealed sex ratios that largely conform with a hypothetical model where sex is determined by a

single locus with four alleles. However several crossing families showed deviations from the expected sex

ratios, suggesting a more complex mode of sex determination, likely involving multiple loci (Glawe and

Jong 2009). A larger crossing study, which also involved the completely monoecious subspecies U. gracilis,

suggested that sex expression of males, females, and monoecious individuals is determined by multiple

genetic mechanisms, probably also with a strong maternally inherited component (Shannon and Holsinger

2007). In R. communis, sex expression varies in both the sex of inflorescences and their relative position on

the plant and branches, and crossing experiments indicate that this is under polygenic control (George Jr

and Shifriss 1967). In addition, sex reversal from femaleness towards monoecy is found in some lineages,

where multiple genes control the timing of sex reversal (Shifriss 1956).

In many plants, sex expression is even more continuous. Continuous variation in sex expression is

particularly common in hermaphroditic and monoecious species, but also between individuals of the same

sex in dioecious species, where males or females can often express a varying degree of flowers of the

opposite sex (Ehlers and Bataillon 2007). If this kind of variation is heritable, it could both be involved

in transitions to dioecy (Charlesworth and Charlesworth 1978b) and in reversions from dioecy towards

combined sexes, possibly as a result of selection for reproductive assurance. A heritable genetic component

of variation in sex expression has been shown experimentally in Hebe subalpina (Delph and Lloyd 1991)

and in Solanum carolinense (Elle 1998), but the genetic architecture underlying these traits is unknown,

and further studies of genetics of polygenic and quantitative sex expression are required for a better

understanding of transitions of sexual systems.
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1.4 The effects of introgression, hybridization and polyploidy

on sexual system evolution

Besides the evolution of the genetics of sex determination themselves, two additional genomic and

population genetic processes, polyploidy and introgression, are very common in plants and have the

potential to influence the evolution of sexual systems.

1.4.1 Introgression and hybridization

Introgression is defined as gene flow across species barriers through hybridization and repeated backcrossing

with one of the parental species (Anderson and Hubricht 1938). Although hybridization has been

estimated to occur in as many as 25% of plant species (Mallet 2005), its evolutionary importance has

been underappreciated for a long time because allopatric speciation has been the dominant model of

speciation. However, the development of next generation sequencing technology has challenged this view

by uncovering genomic evidence of introgression events in a wide range of species, which show that low

rates of hybridization can allow gene flow across species boundaries while maintaining species identity

(Harrison and Larson 2014). Hybridization and introgression are being recognized as part of the speciation

process, in which they shape species boundaries and can form new hybrid species (Abbott et al. 2013).

This modern paradigm of speciation views different genomic regions as being differently permeable

to introgression (Wu 2001). Depending on species divergence, large parts of the genome may introgress

across species boundaries, while some loci will be affected by incompatibilities resulting in hybrid offspring

are either inviable, infertile or have other fitness disadvantages. In many species putative speciation loci

have been identified by their genomic signature of increased differentiation between hybridizing species

(e.g. Ellegren et al. 2012; Poelstra et al. 2014; Malinsky et al. 2015), although care has to be taken

to distinguish them from signatures of divergent selection (Cruickshank and Hahn 2014). In contrast,

other introgressed loci may be adaptive in their new genomic environment, and while on average 50%

of introgressed genome content gets lost at every generation of backcrossing, directional selection can

cause maintenance of these loci in the population. Prominent examples of such adaptive introgression

events are found between modern humans, Neaderthals and Denisovans (Racimo et al. 2015), as well as

in butterflies of the genus Heliconius, where a strong signal of introgression has been found at a wing

color locus involved in Müllerian mimicry (Pardo-Diaz et al. 2012). There are also numerous examples for

adaptive introgression in plants (Suarez-Gonzalez et al. 2018), where introgression has favored adaptation
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to serpentine barrens (Arnold et al. 2016), and where it has been both involved in domestication of crops

(Baute et al. 2015) and in the establishment of agricultural weeds (Le Corre et al. 2020).

The sexual system and the underlying genetics of sex determination can influence interspecific intro-

gression in a variety of ways. The degree of selfing or outcrossing can affect introgression rates (Pickup

et al. 2019). If a genetic system of self-incompatibility exists in both species, it may facilitate introgression

via strong frequency dependent selection of novel, interspecific self-incompatibility alleles (Schierup and

Vekemans 2008), but it may also result in asymmetries if one of the species rejects interspecific pollen. In

the absence of such genetic systems, introgression rates in predominantly selfing or outcrossing species

may be influenced by multiple factors. In general, outcrossers are expected to be more efficient at pollen

transfer, which should greatly facilitate introgression. However, subsequent selection may select against

hybrid ancestry if it comes with a high genetic load, which in turn can strongly depend on the mating

system (Pickup et al. 2019).

Sex chromosomes tend to play an outstanding role in the genomic introgression landscape. It has

long been recognized that it is usually the heterogametic sex that is more likely to be inviable or sterile

in interspecific crosses (Haldane 1922). This pattern, named Haldane’s Rule, has been found in a large

number of animal species (Schilthuizen et al. 2011), as well as in dioecious plants (Brothers and Delph

2010; Kasjaniuk et al. 2019). It is now thought that the sterility and decreased viability described by

Haldane’s Rule is most likely caused by sex chromosome evolution, as genetic data from both genome

scans and natural hybrid zones often show strongly reduced introgression patterns at markers located on

the non-recombining parts of the sex chromosomes (e.g. Saetre et al. 2003; Gowen et al. 2014; Geraldes

et al. 2008). There have been multiple, non-mutually exclusive explanations of the causes of Haldane’s

Rule (Delph and Demuth 2016), most of them related to sex chromosome evolution and recombination

suppression. The theory with the most empirical support, the dominance hypothesis, is based on the

evolution of partially recessive Bateson-Dobzhansky-Muller incompatibilities: sex-chromosome degeneration

results in the loss of functional and expressed gene copies on the Y, which cannot restore the function of

incompatible alleles on the hybrid X copy, resulting in sterility or inviability (Turelli and Orr 1995). This is

concordant with patterns from animal crosses, which indicate that sterility and inviability are associated

with increased sex-chromosome divergence (Lima 2014), but further evidence is required to test which

features resulting from sex-chromosome evolution and degeneration are associated with incompatibilities in

the heterogametic sex, and dioecious plants with their many independently evolved young sex chromosome

systems have a great potential for further insights into these questions.

Hybridization can also affect the evolution of sexual systems through introgression of genes that affect
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sex expression. Evidence for this "hybridization hypothesis" is found in the aquatic plant Sagittaria latifolia,

where both subdioecy and androdioecy are associated with strong signals of hybridization and introgression

between populations with dioecious and monoecious sexual phenotypes (Yakimowski and Barrett 2016). As

analysis of S. latifolia was performed on the basis of neutral genetic markers, the underlying genetics of the

phenotypic variation in sexual system remain unclear. Nonetheless, the example shows that hybridization

could be an important driver in sexual-system evolution, which has been largely overlooked and will require

further genomic analysis of hybridizing species with different sexual systems.

1.4.2 Polyploidy

Another important genomic feature that can substantially influence the evolution of sexual systems is

polyploidy. Polyploids have more than the usual two genome copies found in diploids, as a result of one

or multiple whole genome duplications. Polyploidy is very common in plants (Otto and Whitton 2000),

and there has been a rising appreciation of its evolutionary importance through the use of next-generation

sequencing. While polyploidy has been previously considered an evolutionary dead end (Soltis et al. 2014),

comparative studies using genomic and transcriptomic sequencing data have shown evidence of multiple

ancestral polyploidization events across the phylogeny of flowering plants (Jiao et al. 2011). Similarly,

ancient polyploidization has been inferred in many animal clades, and it is estimated that polyploidy has

been involved in about 15% of speciation events in plants (Wood et al. 2009). Generally, polyploids are

distinguished into autopolyploids, where duplicated chromosome sets originate from a single species, and

allopolyploids, where whole genome duplications coincide with hybridization and as a result genome copies

from different species are combined in the same individual (Stebbins Jr 1947). Auto- and allopolyploids

differ strongly in their recombination patterns, with autopolyploids tending to recombine freely between

homeologous loci (resulting in tetrasomic inheritance of chromosomes in progeny), while recombination

tends to be restricted between homeologs with a common origin in allopolyploids (resulting in disomic

inheritance). However, these two modes of polyploidy represent two extremes along a continuum, and

tetrasomic inheritance or intermediates are found in some genomic regions in allotetraploids.

Polyploidization can influence both genomic and phenotypic evolution, either through immediate effects

of polyploidization or by shaping their subsequent evolutionary trajectories. Immediate genomic effects

of polyploidization are often described with ’genomic shock’ and can include gene expression changes,

mobilization of transposable elements and meiotic irregularities. Most of these outcomes are probably

maladaptive factors, and have been overcome in the successful establishment of neopolyploids (Hollister

2015). Neopolyploidization can sometimes also result in immediate phenotypic and physiological changes
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(Chao et al. 2013), but mostly phenotypic changes are considered to be the consequence of subsequent

evolutionary processes, which can facilitate adaptation (Selmecki et al. 2015). Whole genome duplications

are thought to provide raw material for the evolution of novelty by providing redundant gene copies that

are free to acquire novel functions or allow the novel copies to diverge in functionality; these two processes

are called neo- and sub-functionalization, respectively. In allopolyploids, there can be additional effects

due to the combination of genomes from divergent lineages in a permanent heterozygous state, potentially

resulting in immediate transgressive gene expression patterns (Buggs, Zhang, et al. 2011). Such effects

can influence subsequent evolutionary trajectories, e.g. through chromosomal variation (Chester et al.

2012) and differential regulation of transposable elements (Parisod et al. 2010).

Polyploidization also affects hybridization and reproductive isolation. While allopolyploidization results

in the permanent combination of hybrid genotypes, polyploidy is often considered to result in immediate

reproductive isolation between cytotypes because the offspring of crosses between polyploids and their

diploid progenitors, or with relatives of different ploidy levels, usually show reduced fertility due to meiotic

mis-segregation (Ramsey and Schemske 1998). Alternatively, such hybrids may be inviable due to dosage

imbalance problems, for example during endosperm cellularization (Lafon-Placette and Köhler 2016).

However, recent studies suggest that the offspring of these interploidy crosses may not be completely

infertile, and may act as a so-called ’triploid-bridge’, allowing for gene flow between ploidy levels (Husband

2004). There is recent evidence of interploidy gene flow in natural populations (Zohren et al. 2016;

Monnahan et al. 2019), and there is even some evidence for adaptive introgression between ploidy levels

(Chapman and Abbott 2010).

Polyploidization can also affect the sexual system in various ways. A broad association between

polyploidy and transitions towards dimorphic sexual systems has been found in plants (Glick et al. 2016),

although there is substantial variation between clades, and there are also examples of clades where polyploidy

is associated with transitions from dioecy towards monomorphic sexual systems (Miller and Venable 2000;

Volz and Renner 2008). This variation reflects the many potential cause-effect relationships between

polyploidy and sexual system evolution. There may be either direct effects of whole-genome duplications,

with differences between auto- and allopolyploids, or subsequent selection for sexual-system transitions

as a result of polyploidization. Alternatively, changes in sexual systems may favor the establishment of

polyploids (Pannell, Obbard, et al. 2004; Ashman et al. 2013). Immediate effects of polyploidization on

the sexual system may be caused by dosage effects, or by the combination of two or more genomes with

divergent history and potentially divergent evolution of their sexual systems in allopolyploids. This could

result in male or female sterility, which could be a first step in the evolution of separate sexes (Ashman

et al. 2013). Polyploidy can also cause the breakdown of genetic systems of self-incompatibility, resulting
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in transitions to selfing, which in turn could select for the evolution of separate sexes as a new means

of inbreeding avoidance (Miller and Venable 2000). Subsequent effects of polyploidization can facilitate

the evolution of transitions of sexual systems, e.g., polyploidy can effect inbreeding depression and the

genetic load by facilitating the sheltering of recessive deleterious variants through the presence of multiple

redundant gene copies. These effects can be different between autopolyploids and allopolyploids. In

the former, inbreeding depression is low upon initial polyploid formation, but can increase in subsequent

generations of selfing (Ronfort 1999; Husband et al. 2008). In the latter, the lack of recombination between

homeologs can result in permanent masking of deleterious variants and reduction of inbreeding depression

(Vandepitte et al. 2011). It has been hypothesized that reproductive assurance through selfing can favor

the establishment of newly formed polyploids (Spoelhof et al. 2020), because it can prevent neopolyploids

from mating primarily with their more numerous diploid relatives, which would result in interploidy offspring

with low fitness (Levin 1975). However, it is unclear how often this has actually happened, as there is no

significant statistical association between polyploidy and loss of self-incompatibility at the species and

family level (Mable 2004): In general more research is needed to understand the complex associations

between polyploidy and sexual systems transitions and especially the underlying genetics.

1.5 Transitions between sexual systems in Mercurialis

The genus Mercurialis (Euphorbiaceae) consists of ten nominal species of perennial or annual herbs and

bushes. These species are found mostly in central Europe and around the Mediterranian Sea (Fig. 1.1),

with one species in southeast Asia (Krähenbühl et al. 2002). Dioecious M. annua was one of the first plant

species in which the Mendelian inheritance of sex was shown experimentally (Yampolsky 1919), and the

diversity of sexual systems in related lineages make Mercurialis an interesting clade to study the evolution

of sexual systems. While dioecy is ancestral in Mercurialis (Krähenbühl et al. 2002), within the annual

clade there are lineages in which populations contain either monoecious plants with both male and female

flowers (functional hermaphrodites), or monoecious plants and males (functional androdioecy) (Durand

1963, Tab. 1.1). Like in many other species in this area, the distribution of these annual lineages, which

are found in central Europe and across the Mediterranean Sea in North Africa and the Middle East (Fig.

1.1), is the result of range expansions from ice-age refugia after the last Pleistocene glacial maximum

(Obbard, Harris, and Pannell 2006). Patterns of genetic diversity suggest that different lineages recolonized

Europe from different refugia: dioecious M. annua recolonized central and eastern Europe from the middle

east, which resulted in strong signatures of genetic bottlenecks, an increase in the number of deleterious

mutations and limitations to adaptive evolution (Gonzalez-Martinez et al. 2017). Androdioecious M. annua

22



colonized the Iberian peninsula from Northern Africa, which resulted in a strong population bottleneck,

reflected in a lower genetic diversity in Spanish populations (Obbard, Harris, and Pannell 2006), as well

as a reduction of inbreeding depression (Pujol, Zhou, et al. 2009) and a reduction in the response to

selection (Pujol and Pannell 2008). There is evidence that this range expansion is an ongoing process: in

northeastern and nortwestern Spain, the dioecious lineage of M. annua is rapidly replacing populations of

the monoecious lineage in two independent contact zones, with estimates suggestting that their contact

zones have moved by 80 and 200 km respectively over a period of about 40 years (Buggs and Pannell

2006).

Figure 1.1: Distribution of lineages of annual Mercurialis species across Europe, northern Africa and the
Middle East. Green: diploid M. annua; purple: tetraploid M. annua; orange: hexaploid M. annua; yellow:
M. canarienesis; blue: M. huetii

Table 1.1: Mercurialis lineages used in this study. Two different chromosome counts were published for M.
elliptica, we assume the lower count to be more likely to be correct.

Lineage Sexual system Life history Chromosome count Ploidy
M. annua Dioecy annual 16 Diploid
M. annua Monoecy/Androdioecy annual 32 Tetraploid
M. annua Monoecy/Androdioecy annual 48 Hexaploid
M. canariensis Dioecy annual 32 Tetraploid
M. huetii Dioecy annual 16 Diploid
M. reverchonii Dioecy perennial 26 Tetraploid
M. tomentosa Dioecy perennial 26 Tetraploid
M. elliptica Dioecy perennial 42 (220) Hexaploid

Probably the most apparent feature of sex expression in Mercurialis is the location of male flowers on
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elongated stalks, so-called peduncules (Durand and Durand 1991), in males. This structure facilitates

outcrossing, and in experimental populations the presence of peduncules alone conferred a 60% outcrossing

advantage on pollen compared with pollen produced by monoecious plants (Eppley and Pannell 2007a),

in addition to the fact that males produce substantially more pollen than monoecious plants (Pannell

1997c). In contrast, male flowers on monoecious plants are usually located in a similar axillary position as

female flowers in both females and monoecious plants. However, monoecious populations with male flowers

also located on peduncules have recently been documented in southeastern Spain. These populations

exist in close proximity to populations in which monoecious plants do not show this trait, but crossing

experiments showed that both forms are reproductively isolated (Ma et al. 2019). While pedunculate

males usually make up about 50% of individuals in dioecious populations of diploid M. annua, M. huetii

and M. canariensis, their proportion can vary strongly when they co-occur with monoecious plants. In

these populations, there is also considerable variation in sex expression, and the monoecious plants can

display a wide range of sexual phenotypes, which can be almost completely male or female in extreme

cases (Pannell 1997b; Pannell, Eppley, et al. 2014). In addition, in both sexes of dioecious M. annua

females often produce small numbers of male flowers and vice versa (Cossard and Pannell 2019). This

kind of ’leakiness’ in sex expression is also found in females of M. canariensis (personal observation).

An essential factor for the establishment and maintenance of variation in sex expression in annual

Mercurialis species is its population structure. Populations are often found in spatially isolated patches of

disturbed habitats, which are characterized by frequent extinctions and recolonizations. In these kind of

metapopulations, plants that can self fertilize by producing gametes of both sexes can have a selective

advantage over strictly unisexual individuals. Specifically, unlike pure females, females that also produce

male flowers can self-fertilize in the absence of pollen produced by males (Hesse and Pannell 2011), which

allows them to colonize empty habitat patches. This ability of selfing individuals to colonize habitat patches

is similar to Baker’s Law (Baker 1955), and theoretical models predict that selection for reproductive

assurance will be greatest if patch abundance is low (Pannell and Barrett 1998). In addition to providing

a selective explanation for the evolution of monoecy from females, these metapopulation processes, in

combination with floral architecture of males, can also explain the evolution of functional androdioecy

(Pannell 2000), a mating system that would otherwise be difficult to evolve (Pannell 2002). As males have

a strong outcrossing advantage over monoecious plants (Eppley and Pannell 2007a), they should easily

invade populations consisting only of monoecious plants that emphasise their female function if population

densities are high (and if the population are thus largely outcrossing). According to this model, after females

evolve monoecy as a result of selection for reproductive assurance, males can still persist in a dynamic

state, where empty habitat patches are first colonized by few, largely selfing, monoecious individuals. As
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these populations grow in size, their increased population density will favor the establishment of males.

Populations of M. annua tend to turnover regularly, and modelling predicts that the maintenance of males

in the metapopulation is sensitive to the relative rates of immigration and population turnover (Pannell

1997a).

Natural populations of monoecious or androdioecious M. annua show variation in the proportion of

males, both on a local metapopulation scale and on a regional scale (Pannell, Eppley, et al. 2014). Thus,

while males are found in varying proportions over large parts of the range of monoecious populations in

Spain and northern Africa, they are largely absent at the edges of the species range in northeastern and

western Spain (Obbard, Harris, and Pannell 2006) as well as in a different lineage on the Atlantic coast in

Morocco (Durand 1963). This variation allowed to test some predictions of the meta-population model.

First, patterns of genetic variation within and between populations confirmed predictions that population

differentiation is higher and within-population diversity is lower in populations in which males are absent

(Obbard, Harris, and Pannell 2006). Second, populations consisting only of monoecious M. annua are

generally smaller and less abundant than those in which males and monoecious plants co-occur, in line with

predictions of relative rates of immigration and population turnover required for the maintenance of males in

a metapopulation (Eppley and Pannell 2007b). These patterns point to the importance of metapopulation

processes for the selection of sexual diversity in Mercurialis. They also suggest that such processes might be

of greater general importance for the evolution of sexual systems than has been previously appreciated, as

the canonical models that explain the evolution of sexual systems assume large, unstructured populations.

Despite the progress in understanding sexual system tansitions, it is still unclear how such transitions occur

in detail, and what specific role might be played by different historical biogeographic, genetic, genomic

and population genetic factors involved in these transitions (Pannell, Obbard, et al. 2004).

It is not known, for example, what role polyploidy or hybridization might play. The chromosome

numbers of lineages with different sexual systems suggest an association between polyploidy and transitions

in sexual systems within the annual clade of Mercurialis: the dioecious lineage of M. annua and dioecious

M. huetii are diploid with a chromosome number of 2x=16 and only M. canariensis is tetraloid with double

the number of chromosomes (2n=32) (Obbard, Pannell, et al. 2006). In contrast, all hermaphrodite and

androdioecious lineages of M. annua are polyploids with chromosome numbers from 2n=32 to 2n=96

(Durand 1963) (Tab. 1.1). Early experiments, in which artificially induced whole genome duplications in

diploid, dioecious M. annua, using the mitosis inhibitor colchicine, caused the expression of male flowers

on females, indicated that whole genome duplications could be directly related to changes in the sexual

system (Durand 1963). However, it remains unclear to what degree these changes are the direct result of

polyploidization or the colchicine treatment. In addition, evidence from phylogenetic markers indicates

25



that at least two of the polyploid lineages (tetraploid M. canariensis and monoecious and androdioecious

hexaploid M. annua) are allopolyploids (Obbard, Harris, Buggs, et al. 2006). In this case, sexual-system

evolution may not only be affected by polyploidy, but by the combination of genomic information from

different lineages in the same individual as a result of historical hybridization events.

We are also beginning to build a picture of the genetics of sex determination in Mercurialis. Maleness

is determined by an XY system of sex determination in diploid M. annua, and crosses between annual

lineages resulted in mostly 50/50 sex ratios, which is consistent with an ancestrally shared system of sex

determination in these lineages (Russell and Pannell 2015). Although the sex chromosomes of M. annua

are homomorphic, analysis of transcriptome data and BAC clones identified a nonrecombining region on

the Y chromosome, with an estimated size between 14.5 and 19 mb (Veltsos, Cossard, et al. 2018), a

region that includes 500 genes (Veltsos, Ridout, et al. 2019). In addition, there is evidence of additional

genetic and plastic mechanisms that determine sex expression in monoecious plants that coexist with male

determining sex chromosomes in androdioecious populations. In experimental populations, monoecious

plants from androdioecious populations evolved a stronger female biased sex expression when males where

absent, while sex expression in plants did not change in the presence of males (Dorken and Pannell 2009).

These results imply that there is quantitative genetic variation in sex allocation in M. annua on which

selection might act. In addition, there is evidence for a plastic response of sex allocation to density, with

hermaphrodites producing more pollen when grown at lower densities in experimental populations (Dorken

and Pannell 2008). Recent experiments show that both quantitative genetic variation in sex expression

(Cossard et al. 2021) and a plastic response to pollen availability (Cossard and Pannell 2021) also apply

for leaky sex expression in diploid, dioecious M. annua.

1.6 Aims and outline of the thesis

In the following chapters I analyse genomic datasets from several species of the genus Mercurialis with the

aim of exploring several questions in plant sex chromosome evolution and in the genomics of transitions

between sexual systems. In Chapter 2 and Chapter 3, I address several questions in sex chromosome

evolution. Understanding the evolution of sex chromosomes is essential for understanding transitions in

sexual systems, since they are involved in the evolution of separate sexes, but they can also play essential

roles in transitions from dioecy towards combined sexes. In addition, their unique evolutionary trajectories

can have other important population genetic consequences, which can have secondary effects on sexual

system evolution. However, most of the expectations on plant sex chromosome evolution are based on
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animal systems and more data on plant sex chromosomes are needed. In Chapter 2, I want to test if plant

sex chromosomes contribute to reproductive isolation in the same way as has often been shown for animal

sex chromosomes. In addition, I also address the role of hybridization and polyploidization for sexual

system evolution. Both of these processes are very common in plants and they can have fundamental

influences on population genetics and genome evolution, and can influence the evolution of sexual systems

in different ways. Sex chromosome evolution, hybridization and polyploidy are all involved in transitions

towards androdioecy in hexaploid M. annua and I attempt to improve our understanding of their individual

roles. Specifically, I address the following questions:

• Are sex chromosomes always involved in reproductive isolation or are there circumstances where

they can introgress between lineages?

• What role can allopolyploidization and introgression play in transitions between sexual systems?

• What is the origin of the Y chromosome in androdioecious hexaploid M. annua?

I use a set of newly-developed phylogenetic markers to improve our understanding of the phylogeny and

history of hybridization and allopolyploidization of both autosomes and the sex chromosomes of annual

Mercurialis lineages and their perennial sister species. I discuss the results in relation to the origin and

maintenance of males in androdioecious populations of M. annnua.

In Chapter 3 I examine the role of recombination for the evolution of plant sex chromosomes. Recombi-

nation is essential for understanding the evolution of sex chromosomes because recombination suppression

often evolves on animal sex chromosomes. However, it is unclear what role it plays for the evolution

of separate sexes and if it does evolve on plant sex chromosomes after the evolution of separate sexes.

In addition, recent studies show that specifically plant sex chromosomes often evolve in regions with

reduced recombination and further studies are needed to understand how this relates to different genetic

architectures of bisexuality. I address the following questions in this chapter:

• What role does variation of recombination rates between sexes and on different parts of the

chromosome play for the evolution of sex chromosomes and separate sexes?

• Can recombination suppression evolve on plant sex chromosomes after the evolution of separate

sexes?

I use new genome assemblies, crosses and an exon-capture dataset to further explore the origin of the

Y chromosome of M. annnua. I use linkage maps to compare the recombination landscape on both sex
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chromosomes and the autosomes. In addition I test the extent of recombination suppression on the Y

chromosome of annual and perennial lineages of Mercurialis. These results are relevant for understanding

sex-chromosome evolution in M. annnua, but also in a wider sense, because they add an additional dataset

on the evolution of plant sex chromosomes. This dataset is one of the first plant datasets which compares

recombination suppression between diverged lineages which share the same ancestral sex chromosome

system.

In Chapter 4 I explore the genetic architecture of transitions towards combined sexes. Recent studies

show that transitions from separate towards combined sexes could be common in plants, but very little

is known about the underlying genetic architecture. In this chapter I analyze the genetics underlying

transitions from dioecy to monoecy, which were caused by selection on naturally occurring leakiness in

females in an experimental evolution setup. Selection on such leakiness is a plausible way how transitions

towards combined sexes could happen and I use this system to address the following questions:

• What kind of genetic architecture could be involved in transitions between separate and combined

sexes? Are many small effect loci or can transitions be caused by few loci with large effects?

• Do these loci effect the expression of one sexual function or do they regulate both sex functions at

the same time?

I use crosses between control and selection lines to perform QTL mapping with the aim of identifying

genomic regions involved in increased leakiness. This can help to better understand the genetics of

sexual-system transitions that involve quantitative genetic variance in sex expression, but it is also of wider

interest because little is known about the genetic architecture of major evolutionary transitions in general.

The final chapter provides a synthesis and general discussion of the key results of this thesis.
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Chapter 2

Phylogenetic analysis using

sex-linked, sex chromosomal and

autosomal phylogenetic markers

2.1 Introduction

Compared to the autosomal genome, sex chromosomes stand out by the frequent evolution of recombination

suppression and the uniparental mode of inheritance of the non-recombining segment. Both of these

features result in a specific molecular signature of sex chromosome evolution. Recombination suppression

in combination with its male-specific mode of inheritance can cause reduced levels of genetic diversity and

a reduction in the efficacy of purifying selection on the Y chromosome. This affects the gene content

on the Y chromosome through loss of functional gene copies and increased accumulation of repetitive

elements (Bachtrog 2013). The evolutionary trajectories of X chromosomes can also differ from the Y

chromosomes and from autosomes. X chromosomes can differ in effective population size and mutation

rates and selection on recessive variants may be more effective in the heterogametic sex (Vicoso and

Charlesworth 2006). Taken together, both of these effects cause an accumulation of sequence differences

between the X and the Y chromosome. Like in maternally inherited mitochondrial and chloroplast genes in

plants, the sex-specific mode of inheritance of sex chromosomes causes the distribution of these variants

across species to recapture the genealogical history of the non-recombining region, which can differ from

the history of the autosomal genome.
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Such differences in ancestry at the species level can have multiple causes. One main cause can be

sex-specific differences in reproductive isolation and hybridization between species. This can happen if one

of the sexes is more likely to hybridize, for example through sex-specific differences in dispersal (Brunelli

et al. 2010) or if hybrids of one sex are more likely to be affected by negative fitness effects, as predicted

by Haldane’s Rule (Haldane 1922). Another general cause for differences in ancestry between loci is

incomplete lineage sorting , which is less likely to happen in regions with a low effective population size

and low recombination rates (Pamilo and Nei 1988), like sex chromosomes. As a result, these regions

are thought to be more likely to reflect the true species tree in comparison with autosomal loci and in

the absence of introgression (Pease and Hahn 2013). In plants there can be additional processes that

cause divergent ancestries of cytoplasmic genes. Horizontal gene transfer, for example between parasitic

plants and their hosts (Davis and Xi 2015), often involves mitochondrial genes (Richardson and Palmer

2007) and chloroplast capture can result in divergent ancestries of chloroplast genes without leaving an

autosomal signal of introgression (Stegemann et al. 2012).

On sex chromosomes, such differences in ancestry can also be caused by the process of recombination

suppression. Recombination suppression between X and Y chromosomes causes divergent patterns of

ancestry between the sex chromosomes, because all of the copies of the Y chromosome are descendents

of a single ancestral sequence, while recombination reshuffles X-linked and pseudoautosomal sequences

(Dixon et al. 2019). These patterns can be found by comparing phylogenetic trees based on genetic

markers based on homologous loci located on both sex chromosomes, so-called gametologs (Garcia-Moreno

and Mindell 2000), and the autosomes of multiple species. Differences in topology can inform about the

timing of recombination suppression relative to the underlying speciation events. If phylogenetic markers

are located on parts of the sex chromosomes that stopped recombining in a common ancestor, gametologs

of different species will form monophyletic groups. In contrast, if Y-linked markers are located in regions

where recombination suppression happened after a speciation event, they are expected to cluster with

X-linked markers from the same species (Dixon et al. 2019). Such phylogenetic approaches helped to

estimate the relative timing of recombination surpression events on sex chromosomes in a number of

animal species like mammals (Marais 2003), birds (Handley et al. 2004) and snakes (Matsubara et al.

2016).

While most of these studies have focused on animal systems, phylogenetic analyses are of particular

interest in plants, where dioecy has evolved repeatedly from hermaphroditism. Phylogenetic analyses can

show if sex chromosomes are ancestral or the result of multiple independent transitions to dioecy in larger

dioecious clades (Yang et al. 2020). In addition, phylogenetic studies have the potential to test hypotheses

concerning the evolution of dioecy itself, because the canonical gynodioecy model for the evolution of
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dioecy assumes that the evolution of male sterility in females predates the evolution of female sterility

in males (Charlesworth and Charlesworth 1978), and in some situations this should be reflected in the

phylogenetic relationships of these genes between dioecious, hermaphrodite or gynodioecious relatives

(Pannell and Gerchen 2018).

Analysing the patterns of origins of sex chromosomes in dioecious clades has the potential to understand

sex chromosome evolution in a broader evolutionary context. The question whether different species with

separate sexes use the same or different sex chromosomes is important in the context of the repeatability of

evolution. While separate sexes evolved many times in plants (Renner 2014), it is unclear to what degree

this convergence is reflected in the underlying genetic architecture that determines separate sexes. In the

Salicacea, homologues of a single gene have been repeatedly and independently involved in the evolution

of sex chromosomes (Yang et al. 2020; Müller et al. 2020). This result suggests that at least in this

clade the situation may be similar to some animal groups, where similar genes have been coopted to take

over the sex determination cascade (Capel 2017), however it is unclear to what degree the same applies

within and between other clades where dioecy evolved independently. In addition, such analyses could also

help to better understand the evolution of recombination suppression on plant sex chromosomes. Here

comparative analysis between lineages that share an ancestral sex chromosome system may distinguish

whether recombination suppression evolved once in an ancestor or if non-recombining regions evolved

repeatedly in the same region on the sex chromosomes. In the latter case, comparative genomic analyses

of syntenic regions where recombination suppression evolved in some lineages, but not in others could help

to test if specific molecular features predispose genomic regions to evolve recombination suppression.

Phylogenetic studies have also been used to study the origin of genome copies in polyploids (Oxelman

et al. 2017). Distinguishing between autopolyploid and allopolyploid origins of polyploids using cytogenetic

approaches can be difficult, as chromosome counts and sizes are often similar between parental species in

allopolyploids. However, when individual copies of phylogenetic markers on two or more homeologs can be

distinguished, phylogenetics can help to disentangle complex origins of allopolyploids. If different copies of

the same locus in a polyploid individual are located on diverged branches in the resulting phylogenetic

tree it is a clear sign of an allopolyploid origin, and the location of other diploid species or homeologous

copies from other polyploids on the same branch indicate parental genome donors or their relatives. This

approach helped to understand the history of polyploidization in species like bread wheat (Marcussen,

Sandve, et al. 2014), Shephert’s purse (Douglas et al. 2015) and strawberry (Tennessen, Govindarajulu,

et al. 2014) and has been especially insightful in more complex cases, where the network-like relationships

between high level allopolyploids can be resolved using phylogenetics (Marcussen, Heier, et al. 2015).
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Most research on sex chromosome evolution has focussed on diploid plants and animals, and little

is known how polyploidy and the evolution of sexual systems and sex chromosomes are related. The

contrasting pattern of the prevalences of polyploidy and bisexuality in animals and plants has lead to the

hypothesis that there may be a negative relationship between polyploidization and bisexuality (Muller 1925).

One explanation implied that polyploidy would be less likely to evolve in organisms with sex chromosomes,

because it impede the evolution of dosage compensation mechanisms on sex chromosomes (Orr 1990).

However, dosage compensation mechanisms can differ strongly between animal groups (Gu and Walters

2017), and it is unlikely that this explanation applies for all animal groups (Mable 2004). In addition, a

broad association between polyploidy and transitions towards dimorphic sexual systems has been discovered

in plants (Glick et al. 2016), which does not support a negative association between polyploidization and

the evolution of separate sexes.

Polyploidy can be found in several clades of plants, in which the evolution of sex chromosomes

has been studied in dioecious lineages, like in Salix (Wagner et al. 2020), Silene (Popp and Oxelman

2007) and Rumex (Singh and Smith 1971). However, little research has been done in these lineages to

understand how sex chromosome evolution and polyploidy are related. One example where sex chromosome

evolution in polyploids was addressed is octoploid strawberries. Here, genomic analyses in combination

with phylogenetics showed that sex chromosomes evolved via translocation of a sex determining region

between homeologous copies of the same chromosome (Tennessen, Wei, et al. 2018). With successive

translocation events, the sex determining region captured parts of adjacent sequences, which resulted in

an extension of the non-recombing region. This shows that polyploidization can cause unusual dynamics

when sex chromosome evolution is involved and that it can affect the evolution of the non-recombining

region of the sex chromosomes.

The genus Mercurialis is a promising system to further understand the role of polyploidization and

hybridization in the context of the evolution of sex chromosomes and transitions between sexual systems.

Separate sexes are ancestral in Mercurialis (Krähenbühl et al. 2002), but there have been several transitions

towards monoecy and androdioecy (Obbard, Harris, Buggs, et al. 2006). In addition, there appears to be

an association between polyploidy and transitions between sexual systems in the annual clade, where all

monoecious and androdioecious lineages are polyploids (Tab. 1.1). Polyploidization and hybridization are

very common in plants, but the relevance of both of these processes for adaptive evolution and speciation

has only started to be appreciated in recent years (Jiao et al. 2011; Abbott et al. 2013; Suarez-Gonzalez et al.

2018). Understanding the role of polyploidization and transitions between sexual systems in Mercurialis

may improve our comprehension of how these processes could be involved in major evolutionary transitions

in general. Crosses between annual Mercurialis lineages suggest that a common mechanism can determine
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maleness in hybrids between dioecious, monoecious and androdioecious lineages (Russell and Pannell

2015). However, it is unclear if these are based on an ancestral sex chromosome system shared by all

lineages, or if different sex determiners can cause maleness in multiple lineages. In the first case, sex

chromosomes could both be involved in determining maleness in dioecious and androdioecious lineages,

and may have played an important role in the transitions between these sexual systems. Identifying the

origin of sex chromosomes in Mercurialis could thus help to understand how sex chromosomes can be

involved in transitions between sexual systems.

Previous studies aimed to infer the phylogeny of subgenomes in polyploid Mercurialis species. The

genomic internally transcribed spacer (ITS) locus, which is a commonly used genetic marker in plant

phylogenetics (Alvarez and Wendel 2003), was amplified and cloned with the aim of understanding the

origin of annual and perennial Mercurialis species (Obbard, Harris, Buggs, et al. 2006), and additional

information was generated using two chloroplast markers, which can help to assign putative paternal origins

to allopolyploid lineages. An additional study used the same set of phylogenetic markers, but extended the

dataset to include a newly described lineage of hexaploid M. annua with male-like inflorescences (Ma et al.

2019).

Based on these results, a model for the evolution of annual Mercurialis lineages has been developed

(Fig. 2.1). This model places all annual Mercurialis in a monophyletic clade, which is the sister clade to

perennial M. reverchonii, M. elliptica and M. tomentosa. The origin of tetraploid M. annua within the

annual clade could not be inferred with certainty. Only a single sequence could be cloned for the genomic

ITS marker, which would indicate that it’s an autopolyploid, derived from diploid M. annua. However,

the chloroplast marker does not place tetraploid M. annua as a direct relative to diploid M. annua, which

could be indicative of an allopolyploid origin of tetraploid M. annua, with diploid M. annua being the

paternal genome donor. In addition, approximate Bayesian computation using an exon-capture dataset

resulted in allopolyploidization as the preferred model explaining the origin of tetraploid M. annua (C.

Roux, unpublished results). In tetraploid M. canariensis, two divergent ITS sequences could be cloned, one

of which is closely related to diploid M. annua and the other belongs to an unknown and likely extinct

lineage, which is placed as sister lineage to all extant annual Mercurialis species. This is clear evidence for

an allotetraploid origin of M. canariensis, and chloroplast phylogenies indicated that diploid M. annnua is

the maternal pollen donor. Two genomic ITS sequences could also be cloned from hexaploid M. annua,

one closely related to tetraploid M. annua and the other related to M. huetii. This suggests that hexaploid

M. annua originated from an additional allopolyploidization event between these two lineages. Evidence

from the chloroplast phylogeny suggests that tetraploid M. annua is the maternal genome donor. Following

this logic, the Y chromosome, which determines maleness in androdioecious populations of hexaploid M.
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annua, would come from the paternal genome donor, M. huetii. The ITS phylogeny for newly described

hexaploid M. annua with male-like inflorescences agrees with that of other hexaploids, which would be

indicative of speciation from a single ancestral hexaploid lineage. However, the two lineages are placed in

divergent clades on the chlorplast phylogeny, which could mean that they are the result of independent

allopolyploid origins.

M. annua (6x)

M. annua (4x)

M. canariensis (4x)
Unknown

(2x)

M. annua (2x)

M. huetii (2x)
M. annua (6x)

M. annua (6x)
(pedunculate)

Perennial sister clade
(M. reverchonii, M. tomentosa, M. elliptica)

Other perennial Mercurialis species

Unknown
(2x)

P

M

P

M

P

Figure 2.1: Model for the evolution of polyploid Mercurialis lineages (Obbard, Harris, Buggs, et al. 2006;
Ma et al. 2019). Arrows indicate polyploidization events, with M indicating putative maternal and P
indicating putative paternal genome donors in allopolyploids. Bars indicate homoploid speciation events.

However, these models leave many open questions, especially about how this evolutionary history relates

to transitions between sexual systems. The main question is where the Y chromosome in androdioecious

populations in M. annua comes from. Androdioecy is a rare sexual system, which is found in only a few

plant species (Pannell 2002) and canonical models of sexual system evolution predict that androdioecy

should be hard to evolve (Charlesworth 1984). However, metapopulation models suggest that males in

androdioecious populations could be maintained by a combination of local mate competition and selection

for reproductive assurance (Pannell 2000). There is strong empirical evidence that supports the role of

these metapopulation processes in maintaining androdioecy in hexaploid M. annua (Obbard, Harris, and

Pannell 2006; Eppley and Pannell 2007b), and knowing the origin of the Y chromosome will help to

understand how the complex history of allopolyploidization in annual lineages of Mercurialis is related to

the evolution of androdioecy. The assumption that the Y chromosome comes from M. huetii is solely based
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on the fact that the chloroplast phylogeny places it it the same clade as tetraploid M. annua. However,

this is no evidence for the origin of the Y chromosome, which could have come from an additional, so far

undetected, allopolyploidization event. Also the origin of the Y chromosome in allotetraploid M. canariensis

is not clear, because it was inferred based on similar indirect evidence. In addition, we recently discovered

the presence of males in some tetraploid populations of M. annua in Morocco, which had been previously

assumed to be exclusively monoecious (Durand 1963; Obbard, Harris, Buggs, et al. 2006). Although we do

not know if maleness in tetraploid M. annua is determined by the same XY system of sex determination as

in diploid M. annua, no sequences that were related to M. huetii were found in monoecious plants in the

previous phylogenetic analysis (Obbard, Harris, Buggs, et al. 2006). Thus, an origin of the Y chromosome

from allopolyploidzation with M. huetii, which has been proposed for hexaploid M. annua (Obbard, Harris,

Buggs, et al. 2006), seems unlikely in tetraploid M. annua. This makes the origin of the Y chromosome in

tetraploid M. annua very interesting, because it could provide evidence for the independent evolution of

androdioecy in this lineage. Finally, the differences in the nuclear and chloroplast phylogenies of M. huetii

are not explained by the current models. Such patterns could be the result of chloroplast capture, but they

could also be the result of unrecognized allopolyploidization events.

In this study we address some of these open questions by developing a new set of phylogenetic markers,

located on all autosomes and the sex chromosomes. In addition we present a new phylogenetic marker

which shows sex-specific amplification. Using this dataset we uncover additional, previously unrecognized,

allopolyploidization events in both annual and perennial Mercurialis species and a divergent phylogeny of

the sex-linked marker, which we interpret as a sign of interspecific introgression of the Y chromosome.

We propose an evolutionary scenario to explain this unusual pattern, where the Y-linked male phenotype

confers a strong outcrossing advantage in populations consisting of monoecious plants.

2.2 Material and Methods

2.2.1 Development of a sex-specific PCR marker

Based on an exon-capture dataset of diploid M. annua (Gonzalez-Martinez et al. 2017), we previously

identified 17 exonic markers with Y-linked inheritance throughout the diploid species range and confirmed

them with PCR and sanger sequencing (Veltsos, Cossard, et al. 2018). We attempted to amplify them by

PCR using DNA from male and female/monoecious samples of other lineages of the M. annua complex.

Of the 17 markers, only one (g3639/gm56331), located on contig56631 of the M. annua genome assembly,
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was successfully amplified in a male-specific fashion in all annual Mercurialis lineages with separate males

(M. huetii, M. canariensis, androdioecious hexaploid populations; Fig. S1). While only a short (200 bp)

PCR product could be successfully amplified in all lineages, this is the first evidence of a common Y

chromosome in the M. annua species complex.

For this thesis, we developed a second exon-capture dataset, which is a subset of the first dataset

and includes all exon-capture probes that aligned to linkage group 1, which has been identified as the sex

chromosome (Veltsos, Cossard, et al. 2018), all probes that showed a male-specific pattern of sequencing

coverage, and a subset of probes located on the other autosomal linkage groups. Two overlapping 80 bp

probes were placed on each of the sites of the 120 bp probes of the initial dataset, resulting in a total of

39998 sites. This probeset was applied to a total of 128 samples of annual and perennial Mercurialis species

and sequenced with 150 bp paired end reads using Illumina NovaSeq S4. Probe synthesis, enrichment and

sequencing were done by Arbor Biosciences (Ann Arbor, USA).

We trimmed the raw exon-capture data using trimmomatic 0.38 (Bolger et al. 2014) with standard

parameters, aligned the reads to v1.3 of the M. annua reference genome assembly (Gonzalez-Martinez

et al. 2017) using BWA mem 0.7.17 (Li 2013) with standard parameters and marked PCR duplicates using

the MarkDuplicates function from PicardTools 2.90 (Picard toolkit 2018). We then used a custom Python

script to generate consensus sequences based on aligned exon-capture reads at the sex-linked contig for

males from annual and perrenial lineages of Mercurialis by doing a pileup using the Python implementation

of Samtools 1.9 (Li et al. 2009), and marking variable sites with Ns. We used these sequences to search

for PCR primers using primer3plus (Untergasser, Nijveen, et al. 2007).

To test for sex specificity we amplified the markers in males and females or monoecious plants of

annual and perennial Mercurialis species using 1x Hotstart PCR Buffer (Qiagen), 0.2 µm dNTPS, 0.2 µm

forward and reverse primer and 0.001 U/µl Hotstart Taq Polymerase (Qiagen). PCR protocol was 15 min

of initial denaturation at 95 ℃, followed by 35 cycles of amplification with initial denaturation for 30 s at

94 ℃, Annealing at 60 ℃ for 30 s and elongation at 73 ℃ for 1 min. Final elongation was at 73 ℃ for 5

min. Afterwards we visualized bands using gel electrophoresis and sent a subset of PCR products of males

that amplified successfully for Sanger sequencing to Microsynth (Balgach, Switzerland).

We aligned the Mercurialis sequences using MAFFT 7.475 (Katoh et al. 2002) and did a blast search of

one diploid M. annua sequence against the NCBI nucleotide collection (NCBI 2018) using blastn (Altschul

et al. 1990). We added the sequence of the resulting best blast hit as outgroup sequence to the alignment,

realigned the sequences using MAFFT and generated a phylogenetic tree by doing a full search with the

generalised time reversible (GTR) model and 100 bootstrap replicates using RAxML 8.2.12 (Stamatakis
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2014).

2.2.2 Development of phylogenetic markers located on autosomes and sex

chromosomes

Development of phylogenetic markers in allopolyploids poses particular challenges, because there are often

multiple homeologous copies of the same sequence, which have to be distinguished to infer origins of

allopolyploid subgenomes (Rothfels 2021). In this study we approach this problem by making use of recent

advances in longread sequencing, which allows us to obtain long reads, which span the complete amplified

region of PCR products without the need for time consuming cloning (Rothfels et al. 2017).

First we used aligned exon capture sequences to find genomic regions, which were conserved between

species. This allowed us to develop general PCR primer pairs, which amplify the regions in between. For

this we combined data from three different exon-capture datasets. For diploid M. annua samples, we used

the published dataset from Gonzalez-Maritinez et al. (2017), for two samples of monoecious hexaploid M.

annua with male-like inflorescences (Ma et al. 2019) we used an additional, unpublished dataset, in which

the probes that worked in the first dataset where applied to additional Mercurialis lineages, and for the

rest of the samples we used the previously described, newly-developed exon-capture dataset. Reads were

aligned against v1.3 of the M. annua genome assembly using the previously described pipeline. Then we

used a custom Python script which identified conserved regions and placed PCR primers in them.

This script uses the Python implementation of Samtools 1.9 (Li et al. 2009), Biopython 1.73 (Cock

et al. 2009) and the Python implementation of Primer3 2.3.7 (Untergasser, Cutcutache, et al. 2012). First

it does a pileup and builds new reference sequences, where all positions that are not conserved are masked

with Ns. In a second step Primer3 finds suitable primer pairs with at most one degenerate base in both

forward and reverse primers. From the output we selected a total of 24 primer pairs, with 15 primer pairs

located on linkage group 1, which is the sex chromosome (Veltsos, Ridout, et al. 2019), and one or two

primer pairs on each of the autosomes (Fig. 2.2, Tab. S1).

We amplified these primer pairs in 24 samples of perennial and annual Mercurialis species (Tab. S2)

using 1x Qiagen Hotstart PCR Buffer, 0.2 µm dNTPS, 0.2 µm forward and reverse primer and 0.001 U/µl

Hotstart Taq Polymerase (Qiagen). PCR protocol was 15 min of initial denaturation at 95 ℃, followed

by 35 cycles of amplfication with initial denaturation for 30 s at 94 ℃, Annealing at the primer-specific

annealing temperature (TA, Tab. S1) for 30 s and elongation at 73 ℃ for 1 min. Final elongation was at

73 ℃ for 5 min.
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Figure 2.2: Location of primer pairs on the female linkage map of M. annua. The region marked in red
has been determined to be the non recombining region.

After amplification, we pooled PCR products for each sample in approximately equimolar amounts

estimated based on the density of bands on agarose gels. Afterwards we cleaned pooled PCR products using

cleanNGS beads (Labgene) according to manufacturers instructions and quantified DNA concentrations

using a Qubit fluorometer (Fisher Scientific). In a second step we used these samples to build a barcoded

Oxford Nanopore sequencing library. We followed the recommendations for native barcoding using genomic

DNA using the ligation sequencing kit and the native barcoding extension 1-12 and 13-24 from Oxford

Nanopore: First we did an DNA repair and end prep step. We adjusted the pooled PCR products for each

sample to a volume of 24 µl and added 1.75 µl of NEBNext FFPE DNA repair buffer, 1 µl of NEBNext

FFPE DNA repair mix, 1.75 µl Ultra II End-prep reaction buffer and 1.5 µl Ultra II End-prep enzyme mix.

We incubated this mixture at 20 ℃ for 5 min and then at 60 ℃ for 5 min. We then added 30 µl of AMPure

XP beads, incubated the mixture for 5 min at room temperature, pelleted the beads on a magnetic stand,

washed the sample two times with 500 µl of 70% Ethanol and eluted the cleaned DNA in 13 µl of DNAse

free water. Next we ligated an individual bardcode from the Native barcoding extensions 1-12 and 13-24

to each sample. For each sample we added 1 µl of an individual barcode solution and 10 µl of Blunt

TA/Ligase Master mix (NEB) to 9 µl of DNA, incubated it for 10 minutes at room temperature and

cleaned it using AMPure XP beads as described in the previous step. Afterwards samples were quantified

using Qubit, and pooled with volumes adjusted according to DNA concentrations and ploidy. For ligation

of sequencing adaptors, about 100 pmol of library were diluted to 65 µl in water and 5 µl Adaptor Mix

II, 20 µl NEBNext quick ligation buffer and 10 µl Quick T4 ligase were added and incubated at room
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temperature for 10 min. The library was purified using 50 µl AMPure XP beads, which were washed twice

using 250 µl short fragment buffer and resuspended in 15 µl elution buffer. Afterwards, about 100 fmol of

the final library, 34 µl sequencing buffer and 25.5 µl were loaded onto an Oxford Nanopore 9.4.1 Flowcell

and sequenced. Raw reads were basecalled and demultiplexed using Guppy 4.0.15 (Oxford Nanopore).

In polyploid samples, the resulting long reads represent a mixture of alleles from different homeologs.

Due to the high error rates of Oxford Nanopore reads, final alignments have to be based on a consensus

of multiple reads representing unique template sequences, which requires clustering of raw reads. This

problem has been addressed by the PURC pipeline, which was developed for doing polyploid phylogenetics

using Pacific Biosciences long reads (Rothfels et al. 2017). However, this pipeline requires optimization of

multiple parameters for each marker, which becomes unfeasible for the larger number of markers used

in this study and we developed a new approach, which clusters reads at each sample and locus. The

main parameters are the ploidy of the sample, p, the minimal proportion of reads supporting a variant, m,

which is based on sample ploidy, and the number of reads at the locus, c. We used Minimap2 2.17-r941

(Li 2018) to align longreads against the M. annua genome assembly. Then we used a custom Python

script to cluster reads and generate consensus sequences for alignments. For this, we first did a pileup

using the Python implementation of Samtools 1.9 (Li et al. 2009) and identified heterozygous variants

at each site based on whether the relative proportion of each nucleotide is larger than m. We then built

a distance matrix based on the relative proportion of shared variants between all reads and clustered

reads using kmeans clustering implemented in scikitlearn 0.23.2 (Pedregosa et al. 2011) with the number

of clusters equal to sample ploidy. This approach distinguishes diverged sequences well, but it tends to

build additional small clusters of reads, which have either multiple sequencing errors at variable sites or

which are chimeric reads, which often get produced in small proportions during PCR. To address this, we

discarded all clusters that have a smaller number of reads than c*m. We built consensus sequences using

freebayes 1.3.1 (Garrison and Marth 2012) to call variants on the final clusters with ploidy set to one and

then modified the original sequence from the M. annua genome assembly based on these variant calls.

Finally, we concatenated consensus sequences for all samples at each locus and built phylogenetic trees

using RaxML 8.2.12 (Stamatakis 2014) by doing a full search with the GTR model and 100 bootstrap

replicates and analyzed and plotted phylogenies using the online tool iTOL (Letunic and Bork 2019).
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2.3 Results

2.3.1 Sex-specific PCR marker

We developed individual primer pairs for diploid M. annua, M. huetii, tetraploid M. canariensis and a

combined primer pair for hexaploid M. annua, M. reverchonii, M. elliptica and M. tomentosa. These primer

pairs amplified only in male samples and never in females or monoecious plants, including two hexaploid

monoecious plants with male like inflorescences. Amplification was sucessful in all males of diploid M.

annua, hexaploid M. annua and M. tomentosa. No or very weak amplification was observed in a minority

of male samples of M. huetii (1 sample), M. canariensis (3 samples), M reverchonii (2 samples) and M.

elliptica (1 sample). In tetraploid M. annua no primer pair amplified in any male or monoecious samples

(Fig. S2).

The alignment of sequenced PCR amplicons had a total length of 707 bp shared between all Mercurialis

sequences and it included two deletions and one insertion which were specific to hexaploid M. annua,

M. reverchonii, M. elliptica and M. tomentosa and absent in the other annual lineages (Fig. S3). The

best blast hit (E=1e-117, 73% identity) of the male-specific Mercurialis sanger sequence was a mRNA

(XM_002528314.3) from Ricinus communis, with its function predicted as serine-rich adhesin for platelets.

The resulting phylogenetic tree placed the sex-linked sequence of hexaploid M. annua in one clade with

perennial Mercurialis species, while the other annual lineages formed a distinct clade (Fig. 2.3).

2.3.2 Phylogenetic markers on autosomes and sex chromosomes

We generated a total 2.2 gb of Oxford nanopore longreads. Upon visual inspection of alignments of

demultiplexed reads to the M. annua genome, we noticed that a significant proportion of reads for primer

pair 1_24 were much shorter than expected based on the location of primers at the M. annua genome

assembly. We interpreted this as a result of non-specific PCR amplification and excluded this marker from

further analyses. For the remaining markers, we excluded a total of 13 (2.4%) low coverage samples, which

had a sequencing depth smaller than ten times its ploidy at the target locus.

Many of the phylogenetic trees based on markers located on the autosomes and sex chromosomes

had low bootstrap support at the nodes defining the deeper relationships between perennial and annual

lineages of Mercurialis. However, there were several clades that were well supported in the majority of

trees. We coloured these clades in the plotted trees (Fig. S4). All sequences of M. perennis formed a
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Figure 2.3: Maximum-likelihood phylogeny of the sex-linked PCR marker in males of annual and perennial
Mercurialis species. Numbers below branches indicate bootstrap support.

single monophyletic group, except for a single sequence for marker 1_22. Based on previous analysis,

which placed M. perennis as basal relative to our focal lineages, we rooted our phylogenies on the branch

of this perennis clade (coloured red in Fig. S4). Sequences of annual Mercurialis lineages formed three

distinct clades. The huetii clade (coloured blue in Fig. S4) contained sequences from M. huetii, and

hexaploid Mercurialis lineages and formed a well supported clade in 13 trees. In addition, there were

five trees located on linkage group 1 in which only a single male sequence fell outside the huetii clade,

which was otherwise monophyletic. In both of these cases, in 14 trees this clade also contained sequences

of M. elliptica, which were either nested within the clade or formed a monophyletic group with it. The

annua clade (coloured green) contained sequences of diploid M. annua, tetraploid M. annua, hexaploid

M. annua and M. canariensis. It formed a monophyletic group in 12 trees, and in four cases it was

paraphyletic with sequences of either M. huetii or perennial lineages nested within it. The canariensis clade

(coloured orange), which contained sequences from M. canariensis, tetraploid M. annua and hexaploid

M. annua lineages, formed a monophyletic group in 17 trees. In addition, in one case it was paraphyletic

with perennial lineages nested within it. Perennial M. reverchonii, M. elliptica and M. tomentosa were

represented by two distinct monophyletic clades, each of which contained sequences from all three lineages,

in 15 trees. In M. elliptica, additional sequences were found, which either fell within the M. huetii clade or

formed a monophyletic group with it. All of these clades were coloured purple in Fig.S4.
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While these clades were well suppported in a majority of trees, their deeper relationships relative to

each other were much less clear. In many cases the nodes defining these relationships had low bootstrap

support and in cases where relationships were well supported they were often contradictory between loci.

There were three likely scenarios for the relationships between the annual huetii, canariensis and annua

clades (Fig. 2.4). Scenario a, which placed the canariensis clade as outgroup to the huetii and annua

clades and was also supported by the ITS marker (Obbard, Harris, Buggs, et al. 2006; Ma et al. 2019),

had the most support, as there was a well supported monophyletic clades containing all samples from the

annua and huetii clade and none from the canariensis clade in 5 loci.

canariensis

annua

huetii

canariensis

annua

huetii

canariensis

annua

huetii

a) b) c)

5 Loci + ITS 1 Locus           2 Loci 
+ sex-linked marker

Figure 2.4: Potential relationships between the three main clades of annual Mercurialis lineages based on
different phylogenetic datasets. The number of loci under each topology indicates the number of loci from
the 23 newly developed genetic markers located on the sex chromosomes and autosomes that support
them. ITS indicates the topology supported by the ITS locus (Obbard, Harris, Buggs, et al. 2006; Ma
et al. 2019), sex-linked marker indicates the topology of the male-specific phylogenetic marker developed
in this study.

For the two clades containing perennial M. reverchonii, M. elliptica and M. tomentosa also multiple

scenarios were possible. Similar to the ITS phylogeny, one of the clades was supported as being the

outgroup of the annual lineages and the other perennial clade was supported by 5 loci. The location of the

second clade within the perennial lineage varied substantially between loci, the most common pattern was

that this clade formed a monophyletic group with the huetii clade.
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2.4 Discussion

The male-specific pattern of amplification of the newly-developed sex-linked marker in annual and perennial

lineages of Mercurialis (Fig. S1, Fig. S2) is evidence for a common XY sex determination system. The

only lineage in which the sex-specific locus had neither sequencing coverage in the exon-capture data nor

showed any amplification with sequencing primers was tetraploid M. annua (Fig. S2). One possibility is

that tetraploid M. annua share the same Y chromosome as the other lineages, on which the region that

contains the sex-linked marker is missing. Alternatively, males could have evolved independently in this

lineage. A first approach to test this would be to cross these males into other lineages to see if maleness is

inherited in a Mendelian fashion.

We also generated additional phylogenetic markers located on the sex chromosomes and autosomes

(Fig. 2.2, Tab. S1). Our aim was to generate phylogenetic markers, which can distinguish homeologous

sequences in polyploids and use them to generate phylogenies. We generated our phylogenetic markers by

identifying conserved regions in an exon-capture dataset, where we placed PCR primers. Our preliminary

tests showed that we could only generate PCR primers that had good amplification success across lineages

when there was continuous sequencing coverage between prime-regions in all samples. The reasons

for this limitation are not completely clear, but they may involve variation in the content of repetitive

elements in intronic regions between exon-capture probes or even structural rearangements relative to

the diploid M. annua reference assembly against which we aligned our sequencing reads. As a result,

many of our phylogenetic markers were limited in length (Tab. S1). This may have limited the amount

of phylogenetically informative polymorphism, which likely contributed to the limited bootstrap support

at deeper nodes and to the disagreement between some nodes with high bootstrap support (Fig. S4).

Such disagreements could be either the result of homoplasy and incomplete lineage sorting. Alternatively,

differences between loci at deeper nodes could represent biologically meaningful differences in ancestry

across the genome, which could be caused by introgression or gene conversion. Since we cannot clearly

distinguish between these hypotheses, we will focus mostly on the relationships within clades that have

high bootstrap support in a majority of phylogenetic markers. We also propose hypotheses about the

deeper relationships between these clades, but we want to stress that they should be interpreted with

caution. Our results show that unambiguosly resolving phylogenetic relationships in polyploids remains

challenging. Approaches that could help to improve phylogenetic inference in these scenarios could use

longread sequencing of larger genomic fragments than those in our study, which were limited by the length

of amplicons, for example by using whole genome sequencing data, or by applying them to exon-capture

datasets. Alternatively, phylogenetic approaches could be developed that explicitely take allopolyploidization
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into account and estimate phylogenies based on genomewide polyploid SNP data without requiring phasing

of homeologous haplotypes (Rothfels 2021).

Despite these limitations, our newly-developed phylogenetic markers substantially change our model

of the origin of annual and perennial Mercurialis species (Fig. 2.5). We found additional sequences

in perennial M. reverchonii and M. tomentosa and in M. elliptica. All three species are found in two

monophyletic clades. We think that the most likely scenario involved a single alloploidization event, which

happened in a common ancestor prior to speciation. The additional sequence found in M. elliptica, would

be the result of an additional allopolyploidization event between an allotetraploid progenitor to M. elliptica

and a diploid species closely related to M. huetii.

We also showed that two diverged sequences are found in tetraploid M. annua, which are closely related

to sequences also found in hexaploid lineages of M. annua, but also to both sequences found in allotetraploid

M. canariensis. This data is consistent with an allopolyploid origin of tetraploid M. annua, similar to

that of M. canariensis. One implication of this additional allopolyploidization event concerns genome

size evolution in tetraploid M. canariensis. The genome size of M. canariensis has been estimated to be

25% larger than that of tetraploid M. annua (Obbard, Harris, Buggs, et al. 2006). Our new phylogenetic

analyses places the ancestral genome donors of tetraploid M. annua and M. canariensis in the same clades.

This makes it likely that this increase in genome size happened after the allopolyploidization event in

M. canariensis, probably as a result of the expansion of repetitive elements (Michael 2014). Like in the

previous model, the hexaploid lineages of M. annua could be the result of an additional allopolyploidization

event between tetraploid M. annua and M. huetii.

Despite the limited capacity of our dataset to resolve deeper relationships between clades, we discovered

clear evidence of hitherto unsuspected allopolyploidization events. Previous analyses missed allopoly-

ploidization events that affected 6 out of 7 polyploid lineages of interest. This shows that the ITS locus,

which is a commonly used genomic marker in plant phylogenetics (Alvarez and Wendel 2003), is not

suitable for reliable inference of the origin of polyploids, because it tends to show patterns of concerted

evolution in allopolyploids (Wendel et al. 1995), which, among other factors, can confound phylogenetic

inference (Alvarez and Wendel 2003).

Our data also sheds new light on the origin of Y chromosomes in males of M. canariensis and hexaploid

M. annua. Based on the fact that five genomic loci as well as the ITS locus agreed with scenario a, we

determined that it the most support for the origin of the subgenomes found in the three main clades of

annual Mercurialis lineages (Fig. 2.4). This scenario disagrees with the phylogeny of the sex-linked marker

(Fig. 2.3), which would imply that the Y chromosome in M. canariensis comes from the annua clade. This
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in turn seems to disagree with the previous inference of diploid annua also being the maternal pollen donor

of M. canariensis (Obbard, Harris, Buggs, et al. 2006). However, in the chloroplast tree M. huetii is not

placed in the annual clade, which means that the sistergroup relation of the annual and canariensis clades

are insufficient to infer maternal origins. We found a divergent phylogeny of the sex-specific PCR marker,

where the sequence of hexaploid M. annua is nested within the perennial clade, with M. elliptica being its

closest relative, a pattern which is confirmed by two shared deletions and one insertion (Fig. S3). There is

no evidence for such a pattern in any of the other markers located on autosomes and sex chromosomes.

We therefore think that the most likely explanation for this pattern is introgression of the sex determining

region of the Y chromosome from one of the perennial lineages (most likely a close relative of M. elliptica)

into hexaploid M. annua.

M. annua (6x)

M. annua (4x)

M. canariensis (4x)Unknown
(2x)

M. annua (2x)

M. huetii (2x)
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Y
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Figure 2.5: New model for the evolution of polyploid Mercurialis lineages. Arrows indicate polyploidization
events, dotted arrow indicates Y chromosome introgression. Lines indicate homoploid speciation events.

These new results also have implications for our understanding of transitions of sexual systems in

Mercurialis. One previous hypothesis was that either hybridization or polyploidization itself could have

resulted in transitions towards monoecy in polyploid lineages of M. annua (Pannell, Obbard, et al. 2004).

Here we showed that tetraploid M. annua does have an allotetraploid origin, which is similar to that of M.

canariensis. However, despite this similar evolutionary history, there has been no transition towards monoecy

in dioecious M. canariensis, which makes it unlikely that polyploidization or hybridization itself were the
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main cause of the transition to monoecy in tetraploid M. annua. Besides the effect of polyploidization,

a recent experimental evolution setup shows that transitions between sexual systems in Mercurialis can

happen quickly in diploids as well (Cossard et al. 2021), which further suggests that transitions towards

monoecy may not have been related to changes in ploidy, but rather be caused by selection for reproductive

assurance under pollen limitation.

In addition to these new allopolyploidization events, we discovered a pattern of introgression at a locus

which shows a clear pattern of male linkage in annual and perennial Mercurialis lineages. No such pattern

could be found at any other of the markers located on autosomes and sex chromosomes. Our interpretation

is that this is the result of a hybridization event between a male from one of the perennial lineages (likely

M. elliptica) and a monoecious hexaploid M. annua, followed by backcrossing with hexaploid M. annua.

As far as we can detect with our data, only the sex determining region of the perennial Y chromosome was

retained in hexaploid M. annua. Such a pattern is surprising, because the Y chromosome is thought to

play a disproportional role in the evolution of reproductive isolation (Qvarnström and Bailey 2009).

There are few examples where comparable patterns of sex chromosome introgression are found. In

the European house mouse hybrid zone unidirectional introgression of the Y chromosome of the eastern

house mouse Mus musculus musculus into the range of the western house mouse M. musculus domesticus

has been found across large parts of Europe (Macholan et al. 2019). Recent research showed negative

effects of having an introgressed Y chromosome on several fitness related traits in both species (Bimova

et al. 2020). However, M. musculus domesticus males that carry an introgressed M. musculus musculus Y

chromosome showed increased sperm quality, agressiveness and shorter generation cycles, which could be

a sufficient fitness advantage to overcome other negative fittness effects and promote introgression. A

second example comes from the ninespine stickleback, Pungitius pungitius. Here, a neo-Y chromosome

originated from introgression from the Amur stickleback, Pungitius sinensis (Dixon et al. 2019). However,

this case is different from the one found in Mercurialis, because the introgressed region was autosomal

in the Amur stickleback and only acquired sex determining function after it introgressed, which means

that it was not expected to show any specific patterns of sex chromosome evolution, which are thought to

contribute to reproductive isolation. A pattern of increased introgression has also been found on plant

sex chromosomes, between Populus alba and Populus tremula, but the data does not unambiguosly show

if the signal also affects the sex determining region of the W chromosome or only the pseudoautosomal

region immediately surounding it (Stölting et al. 2013).

In the case of Mercurialis, the signal of introgression was found at a single Y-linked marker, but not on

any of the markers located along the length of the M. annua sex chromosome, which indicates that the

62



introgressed region is smaller than the region of repressed recombination in diploid M. annua. Evidence

from crosses in animals showed an increase of reproductive isolation with increased sex chromosome

differentiation (Lima 2014), and a small sex determining region could have a limited effect on reproductive

isolation in Mercurialis as well. Another factor that may have facilitated gene flow between hexaploid M.

annua and M. elliptica in general could be similar ploidies and shared allopolyploidization events. The sex-

linked sequence in hexaploid M. annua is most similar to M. elliptica. The number of chromosomes differs

between hexaploid M. annua (2n=48) and M. elliptica for which two different chromosome counts were

published (2n=220, Krähenbühl et al. 2002, 2n=42 Obbard, Harris, Buggs, et al. 2006). A chromosome

number of 2n=42 would be concordant with an allopolyploidization event between an allotetraploid ancestor

of M. elliptica (2n=26) and M. huetii (2n=16), which would make M. elliptica allohexaploid. This is

supported by the fact that the sequences of both M. elliptica and hexaploid M. annua from our study fall

into three diverged clades in both lineages, which is indicative of allohexaploid origins. In addition, both

species share an allopolyploidization event with M. huetii or a close relative, which could further facilitate

hybridization.

The main difference between hexaploid M. annua and most other sex chromosome systems is the

presence of monoecious plants instead of females. This means that the Y chromosome likely introgressed

into populations where no other males and Y chromosomes were present, and in which seeds were

predominantly produced by selfing. If such populations became more outcrossed, then male immigrants

might have a large siring advantage, and their Y chromosome could spread. Such immigrants could come

from a different species through hybridization, and backcrossing with selection for maleness would retain

the SDR only. In this case, there would be no selection required to exlain the replacement of the old

Y chromosome with the newly introgressed one, but a selective advantage of maleness itself would be

sufficient to explain the spread of an introgressed Y chromosome. This advantage would just have to

be great enough to overcome potential initial fitness definciencies of hybrids. Previous studies showed

that males indeed have a strong outcrossing advantage over monoecious plants in hexaploid M. annua,

due to their strongly increased pollen production (Pannell 1997) and because of their specialized male

inflorescences, which in itself confers an outcrossing advantage over monoecious plants of approximately

60% per pollen grain produced (Eppley and Pannell 2007a). Additional fitness advantages could be

conferred by avoidance of inbreeding depression through increased outcrossing by males, which has been

found to be stronger in the North-African populations, which is likely the origin of hexaploid M .annua

(Pujol et al. 2009). It would be interesting to test the degree of reproductive isolation by crossing male M.

elliptica into monoecious hexaploid M. annua plants and see if these crosses result in viable and fertile

male offspring.
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Sex chromosome introgression would be an extension of the model of the evolution of androdioecy

in a metapopulation (Pannell 2000). In this model, selection for reproductive assurance during frequent

extinction and recolonization of patches would favor the establishments of cosexual individuals. Males

could invade these cosexual populations after local mate competition caused selection for female biased

sex allocation in monoecious populations. This would increase the outcrossing rates of invading males

and give them a selective advantage. Importantly, this model assumes that males persist somewhere in

the metapopulation at all times. In contrast, introgression of a Y chromosome from a different species

would allow males to become reestablished after they have been lost, which could happen during an early

phase when individuals are present at low densities. Another system where the evolution of androdioecy

via introgression seems possible is Sagittaria latifolia, where transitions to androdioecy are associated

with signals of introgression (Yakimowski and Barrett 2016). However, so far no evidence from sex-linked

markers is available for this system.
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Chapter 3

Sex chromosome evolution in the

genus Mercurialis

3.1 Introduction

Recombination suppression is a common pattern found on sex chromosomes (Charlesworth 2017) and has

evolved repeatedly in diverse lineages including animals, plants (Ming et al. 2011), algae (Coelho et al.

2019) and fungi (Branco et al. 2017). The causes of recombination suppression are still a matter of scientific

discussion (Charlesworth 2017), but due to recent advances in NGS technology, an increasing number of

independently evolved sex chromosome systems are being characterized at the molecular level. The majority

of these datasets represent animal sex chromosomes, where studies revealed several chracteristics that

are commonly found in the non-recombining region (Bachtrog 2013). In many cases they show a strong

enrichment in repetitive elements (Chalopin et al. 2015) and a loss of functional gene copies (Skaletsky

et al. 2003). Another pattern that has been found in multiple sex chromosome systems are ’evolutionary

strata’. Evolutionary strata are discreet regions within the non-recombining region, characterized by their

differences in their molecular signatures of genetic differentiation between both sex chromosome copies

(Lahn and Page 1999; Charlesworth 2017). These differences are interpreted as the result of a stepwise

cessation of recombination across the length of the Y chromosome and molecular signatures are indicative

of the time of recombination suppression.

Several hypothesis have been put forward to explain the evolution of recombination suppression on

animal sex chromosomes (Ponnikas et al. 2018). Recombination suppression has been explained by either
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adaptive processes, by which linkage of sexually antagonistic alleles to the sex determiner increases the

fitness of the sexes (Charlesworth and Charlesworth 1980; Rice 1987). Alternative explanations proposed

that recombination suppression could be the consequence of an evolutionary arms race between meiotic

drive loci and their suppressors (Ubeda et al. 2015), or recombination suppression has been interpreted as

largely neutral process, driven by reduced purifying selection due to reductions of effective population size

and recombination on the sex chromosomes (Jeffries et al. 2021).

Sex chromosome evolution in plants differs from animals because in many dioecious plants, separate

sexes and sex chromosomes evolved from combined sexual systems (Renner and Ricklefs 1995), while this

is rare in animals where new sex chromosomes most commonly evolve through sex chromosome turnover

(Vicoso 2019). This difference lead to the idea that recombination suppression on plant sex chromosomes

may be intrinsically linked to the evolution of separate sexes, and several evolutionary models of the

evolution of separate sexes include recombination suppression (Charlesworth and Charlesworth 1978a;

Charlesworth and Charlesworth 1978b). An additional difference in plants is that unlike animal sperm,

plant pollen expresses a large proportion of genes during its haploid pollen growth state, which results

in a strong potential for haploid selection, which could also effect the evolution of sex chromosomes in

different ways (Delph 2019; Scott and Otto 2017; Sandler et al. 2018; Chibalina and Filatov 2011).

These differences lead to question of whether processes of sex chromosome evolution that are commonly

found on animal sex chromosomes also happen on plant sex chromosomes. As dioecy is often found

at the tips of phylogenetic trees, plant sex chromosomes are often young (Charlesworth 2019). This

makes it difficult to distinguish if plant sex chromosomes are homomorphic because they had less time

to evolve recombination suppression or if they are less prone to evolve recombination suppression. In a

review, Müller and Renner argued that plant sex chromosomes do not evolve recombination suppression in

the same way as in animals after the initial establishment of separate sexes (Renner and Müller 2021).

Their argument is based on a lack of correspondence between the estimated extent of recombination

suppression and the age of plant sex chromosome systems that have been characterized on a molecular

level. However, there are several problems with this argument. Comparing the degree of recombination

between independently evolved sex chromosome systems assumes that recombination suppression evolves

at a constant or predictable rate in different clades. However, there is no evidence that this is the case in

animal sex chromosomes. There are multiple examples of old animal sex chromosomes that show limited

recombination suppression (Yazdi et al. 2020; Kuhl et al. 2020) and the presence of evolutionary strata

suggests that recombination suppression can evolve in discrete steps and not at a constant rate (Lahn and

Page 1999; Charlesworth 2017). Also their analysis is based on the limited number of plant systems for

which sufficient molecular data are available. It is technically easier to sequence sex chromosomes with a
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more limited degree of recombination suppression. As a result, there may be a bias in this dataset which

excludes sex chromosomes with a greater degree of recombination suppression, which have not yet been

sufficiently characterized on a molecular scale.

A better way to test hypotheses about the evolution of recombination suppression on plant sex

chromosomes would be to compare sex chromosomes of multiple related species from dioecious clades

that share an ancestral sex chromosome system. This would allow to distuinguish between situations

where recombination suppression evolved as a consequence of the evolution of separate sexes and where it

evolved or extended afterwards. Alternatively, if sex chromosome turnover events are identified in dioecious

clades of plants, it could be of particular interest to test if their evolutionary trajectories differ from sex

chromosomes that originate from transitions towards separate sexes. However, despite the fact that there

are likely hundreds of independently evolved sex chromosome systems in plants (Renner 2014), the number

of such datasets is very limited so far (Torres et al. 2018; Yang et al. 2020).

The molecular analysis of sex chromosomes has been met by particular challenges that in many systems

have still not been completely overcome. The high repeat content of sex-linked regions makes their assembly

difficult (Simpson and Pop 2015) and many genome assembly projects focussed on the homogametic sex,

thereby excluding information on sex chromosome evolution (Tomaszkiewicz, Medvedev, et al. 2017). In

addition, when sequencing genomic DNA of the heterogametic sex, genomic reads will contain reads from

both sex chromosomes. Since the sex chromosomes usually have a common autosomal ancestor, many

parts of both sex chromosomes share ancestral homology and it is difficult to assign reads to either sex

chromosome. As a result, assemblies of sex chromosomes often include chimeric contigs that are based on

reads from both gametologs that can confound inferences based on them.

There are different approaches for studying sex chromosomes in the face of these difficulties (Tomaszkiewicz,

Medvedev, et al. 2017). It is not always necessary to generate perfect assemblies of sex chromosomes to

study sex chromosome evolution and a number of bioinformatics approaches that use short read data from

individuals or populations to identify sex-specific reads and variants have been developed (Palmer et al.

2019). In addition, segregation analysis in sexed offspring of crosses can be used to identify sex-linked

variants (Muyle et al. 2016). Also there are technical approaches that can help to selectively sequence

a single degenerate sex chromosome copy. For the single haplotype iterative mapping and sequencing

approach genomic DNA is cloned into bacterial artificial chromosomes (BACs), and BAC clones that

contain sex-specific sequences are identified using genetic markers. These regions can then be iteratively

extended by identifying additional genetic variants in overlapping BAC sequences (Hughes et al. 2010).

Alternatively, if sex chromosomes differ strongly in their size, repeat content or GC content from each other
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and from autosomes, it is possible to use flow sorting to enrich and sequence specific sex chromosomes

(Tomaszkiewicz, Rangavittal, et al. 2016).

In microscopically indistinguishable (homomorphic) sex chromosomes, in which recombination suppres-

sion is limited, different approaches for generating complete sex chromosome assemblies are possible. If

the non-recombining region is small and has a limited repeat content, modern long read technology can

be sufficient to generate complete assemblies of both sex chromosomes (Müller et al. 2020). Additional

technologies like HiC mapping (Van Berkum et al. 2010) or optical mapping (Neely et al. 2011) can help to

scaffold contigs in fragmented longread assemblies. In some cases it is also possible to generate individuals

that have only the sex chromosome that is specific to the heterogametic sex. This is the case if either

haploid individuals or tissues can be generated or, in diploids, if it is possible to generate viable offspring

with two copies of the Y or W chromosome (Harkess et al. 2017; She et al. 2020). Viable YY males can

sometimes be generated in species with a limited degree of sex chromosome degeneration, although data

on this is sparse (Ming et al. 2011).

Previous analyses used several of these techniques to infer the extent and gene- and repeat content of

the non-recombining region in diploid M. annua (Veltsos, Cossard, et al. 2018; Veltsos, Ridout, et al. 2019).

In a first study, Veltsos et al. (2018) used a combination of RNA seq data and a previously published

exon-capture dataset (Gonzalez-Martinez et al. 2017) to identify potential candidate genes and to identify

sex-specific PCR markers. These markers were then used to screen BACs, which were sequenced and their

gene and repeat content was analyzed. Overall, these results pointed to an SDR in M. annua with low

gene density that is strongly enriched for repetitive elmenents. In an additional study, Veltsos et al. (2019)

used a de novo genome assembly and transcriptomic data from crosses to further characterize the sex

determining region using linkage maps in combination with SexDetector, a maximum-likelihood approach

to identify sex-linked transcripts from cross data (Muyle et al. 2016). Combined data from both analyses

estimated the size of the SDR to be between 14.5 and 19 Mb and to contain about 500 genes. However,

a much smaller region on the SDR showed molecular patterns usually associated with sex chromosome

evolution, like an elevated F ST between male and female samples. These patterns were interpreted as

evidence for the existence of two evolutionary strata on the Y chromosome of M. annua. The old stratum

showed a signature of genetic differentiation, while the younger stratum around it was mostly defined by

the absence of recombination in genetic crosses (Veltsos, Ridout, et al. 2019).

Both of these studies on M. annua had limitations. The BAC sequences represented only a subset of

the estimated size of the sex determining region, which is insufficient to make clear inferences about the

gene content in the non-recombining region. In contrast, the segregation-based analysis can only identify
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regions for which an expressed gene copy exists on either both the X and the Y chromosome or on the X

chromosome, but not for genes that are completely Y-linked and have no copy on the X chromosome. In

addition, the size of the non-recombining region was estimated based on a segregation analysis of three

crosses, which had a limited number of offspring. Estimating the extent of the SDR in this way can

be problematic as the number of recombination events will be limited by the number of offspring. Sex

differences in recombination rates are common in animals and plants and may affect different regions of

the genome (Sardell and Kirkpatrick 2020). If the nonrecombining region is located in a region that has

low recombination in the heterogametic sex, which has been shown to be the case for several plant sex

chromosomes (Zhang et al. 2008; Pilkington et al. 2019; Kersten et al. 2014), rare recombination events

could be missed and the extent of the SDR could be overestimated. A better measure for estimating

the size of the SDR may be the presence of sex-specific variants inferred from population data. This has

also been done in the same study and there appears to be a much smaller region that shows significant

differences in male vs. female F ST.

In the present study we improve the information on sex chromosome evolution in diploid M. annua

and study the evolution of the non-recombining region in a phylogenetic context. We use new M. annua

genome assemblies for both a YY male and an XX M. annua female. We use population data and

comparative whole genome sequencing data between YY and XX individuals to infer molecular signatures

of sex chromosome evolution and combine them with the result from a newly-developed linkage map of

diploid M. annua males and with a linkage map based on a selfed F 2 cross from Chapter 4 of this thesis.

We then use these newly-developed genomic resources to align additional population genomic data of

diploid and polyploid lineages to determine the extent of the non-recombining region in other annual and

perennial Mercurialis clades.

We find that the non-recombining region of the sex chromosomes in diploid M. annua is likely located

in a pericentromeric region. In combination with a lack of molecular evidence of differentiation between

males and females across large parts of this region, this challenges the conclusion by Veltsos et al. (2019)

that a second evolutionary stratum is present on the sex chromosome of M. annua. However, our data

from other lineages of Mercurialis suggests that there have been substantial independent extensions of the

non-recombing region in M. canariensis and M. huetii, which indicates that recombination suppression did

evolve after the evolution of separate sexes in these lineages.
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3.2 Material and Methods

3.2.1 Genome assembly

The plants used for whole genome sequencing were generated by selfing a single M. annua male, which

was feminized by external application of cytokinin (Li, Veltsos, et al. 2019) and was placed in a closed

crossing box. We used a restriction enzyme based assay to identify YY males (Li, Veltsos, et al. 2019) and

used a single YY male and XX female for further analyses. We did two rounds of high molecular weight

DNA extraction from each individual using two different protocols.

First we extracted high molecular weight DNA from extracted nuclei. For this we first ground 5 grams

of fresh leaves in liquid nitrogen and added 50 ml isolation buffer (15 mM Tris, 10 mM EDTA, 130 mM

KCI, 20 mM NaCI, 8% (m/V) PVP-10, 0.1% Triton X-100, 7.5% (v/v) 2-Mercaptoethanol, pH 9.4).

Nuclei suspension was filtered through 50 µl mira-cloth, 500 µl Triton X-100 were added and pelleted

by centrifuging at 2000g at 4 ℃ for 10 min. Ten ml of Carlson lysis buffer (100 mM Tris pH 9.5, 2%

CTAB, 1.4 M NaCl, 1% PEG 6000, 20 mM EDTA, prewarmed to 74 ℃) and 25 µl of 2-Mercaptoethanol

were added and the solution was incubated at 74 ℃ for 2 h. Samples were extracted twice by adding one

volume of 24:1 chloroform/isoamyl alcohol to the aqueous phase and centrifuging at 5000 g for 10 min at

4 ℃. 0.1 volume of 3 M NaOAc were added and DNA was precipitated by adding 1 volume of isopropanol

and incubating overnight. After centrifuging at 4500 g for 90 min, pellets were washed by adding 10 ml of

70% EtOH and centrifuging at 4500 g for 90 min. Supernatant was discarded and pellets were air dried

for 10 min and resuspended in Qiagen G2 buffer. We added 2 µl/ml RNase A (Qiagen, 100 mg/ml) to

the resuspended DNA pellets, mixed and incubated for 5 min at room temperature and added 10 µl/ml

Proteinase K. We incubated the sample at 50 ℃ for 1 h and cleaned it using Qiagen Genomic Tip 500/G

columns following standard instructions. We added 10.5 ml of room temperature isopropanol to the eluted

DNA and precipitated DNA overnight. We then centrifuged at 4500 g for 90 min at 4 ℃, discarded the

supernatant and added 40 ml of ice cold 70% EtOH, centrifuged at 4500 g for 30 min at 4 ℃, discarded

the supernatant, let the pellet air dry for 10 min and resuspended the DNA in 10mM TrisCl (pH 8).

For a second high molecular weight DNA extraction, 5 grams of fresh leaves were ground in liquid

nitrogen and 40 ml of Carlson lysis buffer with 2.5 % (v/v) 2-Mercaptoethanol and 80 µl of RNase A

(Qiagen, 100 mg/ml) were added. Samples were incubated at 65 ℃ for 1 h and after cooling to room

temperature samples were extracted by adding 1 volume of 24:1 chloroform/isoamyl alcohol to the aqueous

phase and centrifuging at 3500 g for 15 min at 4 ℃ and retaining the aqeuous phase. DNA was precipitated

by adding 0.7 volumes of isopropanol and incubating at -80 ℃ for 15 min. The sample was centrifuged at
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3500 g for 15 min at 4 ℃ and the supernatant discarded. The pellet was resuspended in Qiagen G2 buffer

and cleaned using Qiagen Genomic Tip 500/G columns following standard instructions. 0.7 volumes of

isopropanol were added to the eluted DNA and DNA was precipitated at -20 ℃ overnight and centrifuged

at 3500 g for 45 min at 4 ℃. The supernatant was discarded and the pellet was washed by adding 10 ml

of ice cold 70% EtOH and centrifuging at 3500 g for 10 min at 4 ℃. The supernatant was discarded and

the pellet was air dried for 10 min after being resuspended in 10 mM TrisCl (pH 8).

We sequenced genomic DNA on Oxford Nanopore flowcells (v. 9.4.1) using an Oxford Nanopore Minion.

Libraries were prepared using either ligation sequencing kit (SQK-LSK109) following standard instructions

or the rapid sequencing kit (SQK-RAD004) from Oxford Nanopore following standard instructions. In

addition, genomic DNA was sequenced on the Illumina NovaSeq S6 platform with 150 bp paired-end reads

by Novogene UK.

Raw Oxford Nanopore reads were base-called using Guppy 4.2.2 (Oxford Nanopore). We assembled

genomes using Flye 2.8.1 (Kolmogorov et al. 2019). We used the internal polishing function in Flye

to do a first round of polishing with the raw Nanopore longreads. We then aligned short reads to our

assembly using Minimap2 2.17-r941 (Li 2018) and sorted and indexed alignments using Samtools 1.3.1

(Li, Handsaker, et al. 2009) and polished our genome assemblies using Hypo 1.0.3 (Kundu et al. 2019).

We generated a coverage histogram using PurgeHaplotigs 1.0.4 (Roach et al. 2018) to determine if a

substantial number of allelic duplicate contigs are present in the assemblies, in which case we identified

and removed them using the PurgeHaplotigs pipeline. We built a de novo repeat library from the male

assembly using RepeatModeler2 2.01 (Flynn et al. 2020) and used RepeatMasker 4.1.1 to mask repetitive

regions in both our genome assemblies and benchmarked completeness of our genome assemblies using

Busco 5.1.2 (Seppey et al. 2019) using the eudicots_odb10 lineage dataset.

3.2.2 Linkage mapping

We built a new combined male linkage map for M. annua from three interspecific crosses between a male M.

annua and a female M. huetii. DNA was extracted using either a robotic BioSprint 96 workstation (Qiagen)

and the BioSprint DNA Plant kit (Qiagen) or using the DNeasy Plant Mini kit (Qiagen). Extracted DNA

was quantified using the Qubit dsDNA HS Assay Kit on a Qubit fluorometer.

We generated Genotype data using a modified ddRad protocol (Peterson et al. 2012). For each sample

we first digested about 100 ng DNA diluted to 22 µl by adding 2.5 µl Smartcut buffer (NEB), 0.4 µl

EcoRI-HF (NEB) and 0.4 µl Taq1 (NEB) restriction enzymes and incubating at 37 ℃ for 30 min, 65 ℃ for
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30 min and 80 ℃ for 20 min. We then ligated P1 and P2 adapters described in Peterson et al. (2012),

which were diluted to 40 µM in 1x annealing buffer (50mM NaCl, 10 mM). We added 3 µl rATP (10 mM),

2 µl annealed P2 adapter (3 µM), 0.8 µl 10x T4 ligase buffer (NEB) 1 µl T4 ligase (400 U/µl, NEB),

22 µl digested DNA and 2 µl annealed P1 adapter (0.3 µM) and incubated for 20 min at 23 ℃ followed

by 10 min at 65 ℃. We then size selected 300 µl of pooled samples for each library to 550 bp. For this

we first added 0.57x volume of Ampure XP beads incubated for 10 min at room temperature and saved

the supernantant, to which we added 0.12x volume of Ampure XP beads (Beckman Coulter), incubated

on magnetic stand, washed the beads with 70% ethanol and eluted DNA in 30 µl water for 2 min. We

selected for biotin-labeled P2 adapters using M-270 Dynabeads (Invitrogen). We washed 15 µl Dynabeads

3 times in 1x bind and wash buffer (5 mM Tris-HCl pH 7.5, 0.5 mM EDTA, 1M NaCl), resuspended

them in 30 µl 2x bind and wash buffer, added the size selected DNA and incubated for 15 min at room

temperature. We discarded the supernatant, washed the beads three times using 1x bind and wash buffer

and resuspended the beads in 45 µl water. We then amplified size selected fragments by PCR. We used

single indexed primers recommended by the modified ddRAD protocol (Peterson et al. 2012). We added

45 µl bead suspension, 3 µl forward primer (10 µM), 3 µl reverse primer (10 µM) and 50 µl KAPA HiFi

Hotstart Ready Mix (Roche). PCR program was 2 min at 95 ℃ initial denaturation and 11 cycles at 98 ℃

for 20 s, 65 ℃ for 20 s and 72 ℃ for 30 s. We cleaned PCR products in 0.7x Ampure XP beads according

to manufactorers instructions and eluted PCR products in 20 µl water. Libraries were sequenced using 150

bp single end reads by the Genomics Technologies Facility (GTF) at the University of Lausanne.

We demultiplexed and quality filtered raw illumina reads using Stacks 2.55 (Catchen et al. 2013). For

this study, we were interested in the male M. annua linkage map and we wanted to only reconstruct alleles

that were specific to the M. annua fathers. To this end, we ran a modified version of the Stacks pipeline.

We first ran the ustacks program on all samples, allowing a maximum of four nucleotides distance between

stacks. Then we ran cstacks and build the allele catalogue using only the fathers from all families, allowing

a maximum of four mismatches between samples. We then ran the sstacks, tsv2bam and gstacks scripts

on all samples with standard parameters. We first ran the populations program and removed low coverage

samples in which fewer than 50% of loci could be genotyped. Then we ran the populations program on

samples from each cross separately and kept loci, which were found in at least 60% of samples. We ran a

principal component analysis using adegenet 2.1.3 (Jombart 2008) to identify and remove outlier samples,

which are likely the result of pollen contamination. We then ran populations a second time for all crosses

(removing previously filtered samples), keeping markers that were found in 60% of samples in at least one

of the crosses. Since we built the catalogue of alleles only from male M. annua samples, all genotype calls

in the offspring should be homozygous for alleles inherited from their fathers and we allowed a maximum
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heterozygosity of 0.1 in the populations script. We then used a custom Python script that further filters

the output of the populations program and prepares the dataset for construction of linkage maps. This

script filtered offspring genotypes that were heterozygous or contained alleles that were not one of the

two major alles in the family and infered missing paternal genotypes from the offspring genotypes and

it removed loci from families where the minor allele frequency was lower than 0.2. It added a dummy

maternal sample genotype that was homozygous for the reference allele at all loci and also replaced one of

the alleles of homozygous offspring genotypes with the reference allele. LepMap3 0.2 (Rastas 2017) was

used to build the linkage map. We separated loci into linkage groups by adjusting the lodLimit parameter

of the SeparateChromosomes2 module until markers formed eight major linkage groups. We added single

markers using the JoinSingles2All module, with the distortionLod and iterate parameters activated and a

LodLimit of five. We then ordered markers on linkage groups by running 20 runs of the OrderMarkers2

module for each linkage group and chose the result with the highest log likelihood.

3.2.3 Scaffolding of genome assemblies

We scaffolded our genomic contigs by using linkage map information from the new male M. annua linkage

map developed in this chapter and the F 2 linkage map from cross 2 described in Chapter 4 of this thesis.

We determined the genomic location of markers from the linkage maps by aligning either loci built by

stacks for the male M. annua map or 100 bp genomic sequences around each marker extracted from the

unscaffolded XX genome assembly that was used to build the female linkage map in Chapter 4, using

Minimap2 2.17-r941 (Li 2018) with the ’sr’ mode. We kept markers which unambiguously aligned to a

single contig and had an alignment quality larger than 40. We combined the information from both linkage

maps and built a scaffolded assembly using ALLMAPS 1.1.8 (Tang et al. 2015). ALLMAPS allows to set

different weights for the linkage maps used for scaffolding, so that in case of conflicts between linkage

maps, the ordering supported by the linkage map with the greatest weight is chosen. For both linkage

maps we set the weight of the F 2 linkage map to 2 and the weight of the new male map to 1, because we

wanted to order contigs within the non-recombining region based on the female F 2 cross. For comparison

with the linkage maps from Veltsos et al. (2019) we aligned assembled transcripts against the scaffolded

genome assembly using the ’splice’ mode in Minimap2 2.17-r941 (Li 2018) and kept transcripts with a

minimum alignment quality of 20. We used these scaffolded assemblies to test for associations between

repeat density and recombination frequencies across all linkage groups. We fitted a loess regression model

of the position of genetic markers on the linkage map against their position on the scaffolded YY genome

assembly on both the newly-developed male M. annua linkage map and the F 2 linkage map using the
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’loess’ function in R 3.6.1 (R Core Team 2019) with the smoothing parameter (span) set to 0.1 and the

degree of the polynomial set to 1. We then determined the proportion of sequence that was marked as

repetitive in 100 kb windows and used the ’predict’ function to determine the genetic position on the

beginning and end of each window based on the loess model. We fitted linear models of repeat density

against the genetic distance in each window for each linkage group.

3.2.4 Identification of sex-linked genomic regions

We used two types of data to identify sex-linked regions in diploid M. annua. We used whole genome

resequencing data from the two individuals used for genome assembly, which has the advantage of covering

the whole genome assembly, and since we are comparing a YY and an XX individual, there will always be

only one of the sex chromosomes present in either dataset. In principle it should be possible to identify

regions that are specific to the Y or X chromosomes by comparing genomic data from both individuals.

However, since this analysis relies only on genomic data from two individuals, such an analysis is expected

to have a high rate of false positives. These false positives occur because it is not possible to distinguish

between regions that are truly sex-linked and regions that just show differences between both samples. We

combined this information with a second, already published exon-capture dataset, which includes 20 males

and 20 females across the M. annua species range (Gonzalez-Martinez et al. 2017). This dataset is based

on more than 400000 hybrid capture probes that represent large parts of the non-repetitive fraction of an

older male M. annua genome assembly. We first aligned the sequences of the exon-capture probes against

our male and female genome assemblies using the ’sr’ mode of Minimap2 2.17-r941 (Li 2018). We filtered

our alignments and kept alignments with an alignment quality greater than 20.

We used additional population genetic data to estimate the extent of the non-recombining region in

hexaploid M. annua as well as in M. huetii, M. canariensis and in the perennial lineages M. reverchonii, M.

tomentosa and M. elliptica. To this end we used the newly-developed exon-capture dataset described in

Chapter 2. It included between 5 and 11 samples from each sex from each lineage (Tab. S3).

We trimmed and quality filtered the raw Illumina reads of the exon-capture datasets using trimmomatic

0.38 (Bolger et al. 2014) with standard parameters, aligned the reads against the male and female genome

assemblies using BWA mem 0.7.17-r1188 (Li 2013) and marked PCR duplicates using PicardTools 2.90

(Picard toolkit 2018). In addition, we aligned both male and female whole-genome resequencing reads

against both genome assemblies using BWA mem 0.7.17-r1188 (Li 2013).
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3.2.5 Identification of Y- and X-hemizygous regions

We identified putative Y-hemizygous and X-hemizygous regions based on the mean sequencing depth

of exon-capture data and of genomic resequencing data at the location of exon-capture probes in both

genome assemblies using the bedcov function of samtools 1.11 (Li, Handsaker, et al. 2009) with a quality

threshold of 20. We then used a custom Python script that estimates the mean sequencing depth of male

and female samples for the exon-capture probeset. Only probes with a mean sequencing depth larger than

4 in at least 75% of the probes of at least one of the sexes were included in further analyses. In addition,

the relative sequencing depth of male (YY) and female (XX) genomic resequencing reads was calculated

at each of these probe locations for diploid M. annua. For this we first calculated the mean sequencing

depths d̄XX and d̄YY across all probes in the XX and the YY datasets respectively. We then calculated

the relative sequencing depths dYY and dXX for the YY and XX dataset for each probe by dividing the

observed sequencing depth at the probe by d̄YY or d̄XX. We then calculated the relative female genomic

coverage as cf = dXX

dXX+dY Y
.

We identified putative Y-hemizygous probes for all lineages. Probes located in these regions should be

found exclusively in males. We determined probes to be male-specific if the mean male coverage based on

the exon-capture data was larger than 4 and the mean female coverage was smaller than 0.1. For diploid

M. annua we used additional information from the genomic resequencing data and we only determined

probes to be sex-linked if their relative female genomic coverage was smaller than 0.1 in addition to being

male-specific, based on the exon-capture data.

For diploid M. annua, we also identified putative X-hemizygous probes. These should have half the

sequencing depth in males compared to females in the exon-capture data, but should be completely missing

in the genomic resequencing data based on the YY male. We determined probes to be female-specific

if mean females coverage was at least 1.9 times the coverage of males in the exon-capture dataset and

the relative female genomic coverage was 1. We did not attempt to identify female-specific probes in the

other Mercurialis lineages, because we expect reduced statistical power to detect these probes for multiple

reasons. First, we don’t have any genomic resequencing data available for any species other than diploid

M. annua, which we could use as an additional source of evidence. Second, the lower number of samples

would result in a reduced power to detect these differences in general. Third, the relative difference in the

number of X copies between males and females or monoecious individuals decreases with increasing ploidy,

and all other lineages except for M. huetii are polyploids.
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3.2.6 Identification of sex-linked genetic variation

For diploid M. annua and M. huetii, we called variants of exon-capture reads aligned to the male (YY) M.

annua genome assembly using freebayes 1.0.2 (Garrison and Marth 2012) with standard parameters. We

used a custom Python script which filters variants. We first discarded variants with a QUAL score smaller

than 20. We then filtered genotypes with a sequencing depth smaller than 20 and kept variants with at

least 75% of genotypes of both sexes remaining and we excluded low frequency variants by discarding

sites where the frequency of any allele was greater than 0.7. At each of these sites we estimated Weir

and Cockerham’s F ST (Weir and Cockerham 1984) between male and female samples using the wcFst

module from vcflib 1.0 (https://github.com/vcflib/vcflib). For diploid M. annua we estimated median

F ST on both the sex chromsome and autosomal linkage groups in 100 kb sliding windows with at least five

variants and we determined empirical percentiles from the distribution of F ST values on autosomes. For

the allopolyploid lineages, we estimated F ’ST, an alternative measurement of differentiation. F ’ST is based

on the average number of alleles by which pairs of individuals differ, which accounts for the presence of

fixed differences between homeologs in allopolyploids (Obbard et al. 2006). We filtered genotypes with a

sequencing depth smaller than five times its ploidy and kept variants with at least 75% of genotypes of

both sexes remaining and we excluded low frequency genotypes by discarding sites where the frequency

of any genotype was greater than 0.7. We then estimated F ’ST for each site as described in Obbard et

al. (2016). The exon-capture dataset for other lineages than diploid M. annua included a much lower

density of autosomal exon-capture probes, so that calculating median F ST or F ’ST in sliding windows

on the autosomes was not possible. We estimated the percentiles of F ST or F ’ST for autosomal variants

from the distribution of 10000 replicate estimates of the median of randomly sampled autosomal variants

instead. Since the number of variants in each window can differ, we drew the number of variants from the

empirical distribution of the number of variants in sliding windows on linkage group 1 for each replicate.

3.2.7 Genetic correlations on linkage group 1 in M. annua and M. huetii

Sex chromosomes are expected to show an increased signature of linkage disequilibrium in and around the

sex-linked region (Kirkpatrick, Guerrero, et al. 2010). The classical definition of linkage disequilibrium

requires phased genotypes (Lewontin and Kojima 1960). However, our short read exon-capture data does

not allow to phase genotypes on a chromosomal scale. We used pairwise correlations between the number

of minor allele copies for bi-allelic variants, as an alternative measurement in diploid M. annua and M.

huetii. For each sex, we filtered bi-allelic variants, which had a sequencing depth of at least 20 in 75% of

the samples and which had a minor allele frequency greater than 0.3. We then calculated the squared
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Pearson correlation coefficient (R2) between the number of minor allele copies for all pairs of variants on

linkage group 1 and estimated the median R2 in 100 kb sliding windows across the length of linkage group

1.

3.3 Results

3.3.1 Genome assembly

We generated a total of 16.1 Gb (approximately 25.15x sequencing depth) and 15 Gb (approximately

23.44x sequencing depth) of Oxford Nanopore sequencing data for the XX and YY samples respectively.

The raw assemblies had a total length of 744.61 Mb and 525.53 Mb and an N50 of 112406 bp and 155799

bp for the XX and YY assemblies respectively. On the coverage histogram from PurgeHaplotigs, a peak

indicative of the presence of duplicated sequences was evident in the XX but not in the YY assembly. After

running the PurgeHaplotigs pipeline on the XX assembly, the total length of the assembly was reduced to

494.59 mb and the N50 increased to 183581 bp. In comparison with v. 1.4 of the M. annua assembly

(Veltsos, Ridout, et al. 2019), both our newly-developed genome assemblies have a higher contiguity and a

greater number of complete universal single-copy orthologs used for benchmarking (BUSCOs) (Tab. 3.1).

A total of 67.62% of the male and 65.94% of the female genome assembly were marked as repetitive.

Table 3.1: Comparison of the new M. annua genome assemblies with v1.4 of the M. annua genome
assembly (Veltsos, Ridout, et al. 2019).

Assembly New YY assembly New XX Assembly Old XY assembly
Total size [Mb] 523.23 494.59 546.38
N contigs 20358 5488 720537
N contigs (>1kb) 16602 5372 74927
N50 [bp] 155684 183581 6398
Largest contig [bp] 3898311 4716000 329358
Complete BUSCOs 97.8% 97.5% 77.7%
Complete and single-copy BUSCOs 90.4% 89.1% 73.3%
Complete and duplicated BUSCOs 7.4% 8.4% 4.4%
Fragmented BUSCOs 0.7% 0.6% 11.3%
Missing BUSCOs 1.5% 1.9% 11%

3.3.2 Linkage mapping

We generated a total of 330 Gb of RadSeq data. From a total of 469 F 1 offspring we removed 82

individuals that had low sequencing depth. We then identified 11 individuals (1 individual in Cross 1, 1
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individual in Cross 2 and 9 individuals in Cross 3) that were outliers in the principal component analysis and

likely the result of pollen contamination (Fig. S5). We built a combined linkage map from the remaining

376 F 1 offspring. Our newly-developed male M. annua linkage map consisted of 5915 genetic markers,

with a total linkage map size of 521.34 cM. We could align 2924 and 3002 of these markers and 1804

and 2180 markers from the female F 2 M. annua map against the YY and XX assemblies respectively. For

the YY male genome assembly, ALLMAPS anchored 1003 contigs with a total length of 257174394 bp

(48.9% of the total genome assembly size) to chromosomal scaffolds. Fourhundred of these contigs with

a total length of 163391262 bp (31.1% of the total genome assembly size) were oriented. For the XX

female genome assembly, ALLMAPS anchored 1294 contigs with a total length of 259410467 bp (52.4%

of the total genome assembly size) to chromosomal scaffolds. 488 of these contigs with a total length

of 137707992 bp (27.8% of the total genome assembly size) were oriented. We aligned 9293 and 9487

transcripts from Veltsos et al. (2019), which were associated with male and female linkage map positions,

against the scaffolded YY and XX assemblies respectively.

On our male M. annua linkage map, we identified an extended region of low recombination on linkage

group 1, which spans approximately 19 Mb on the scaffolded YY genome assembly (Fig. 3.1 a). This is

slightly smaller than the low-recombination region on the male linkage map from Veltsos et al. (2019) (Fig.

3.1 c), which spans approximately 22 Mb on the scaffolded male genome assembly. In addition, we found

variation in recombination rates of both male and female linkage maps across the length of autosomes and

regions of reduced recombination are found in the centers of all autosomes except for linkage group 4,

where a region of reduced recombination is found at the beginning of the linkage group (Fig. 3.1 a-d). We

also found variation in the proportion of sequences, which were masked as repetitive, along the length of

both the X and the Y chromosomes and across all autosomes (Fig. 3.1 e). There was a highly significant

negative association between the proportion of repetitive sequences with recombination rate (p<0.001) on

all linkage groups for both the new male M. annua linkage map and for the F 2 linkage map (Fig. S6).

3.3.3 Identification of Y- and X-hemizygous regions

Diploid M.annua

We could align a total of 334869 and 340755 of the original exon-capture probe sequences against the YY

and XX genome assemblies respectively. Based on the aligned exon-capture reads, we retained 262521 and

265403 of these probes that had sufficient sequencing depth of reads in at least one of the sexes in the

YY and XX assemblies respectively. We identified 519 male-specific probes, located on 60 contigs with a
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total size 10267342 bp. None of these contigs were anchored to the scaffolded genome assembly. We also

identified 330 female-specific probes, which were located on 8 contigs with a total length of 1421383 bp.

4 of these contigs were anchored to the XX assembly, two of which were located close to the center of

linkage group 1 (contig_18631: 32 probes, contig_4957: 233 probes), while one was placed on linkage

group 5 (contig_21714: 15 probes) and one on linkage group 6 (contig_4169: 2 probes) (Fig. 3.2).

Figure 3.2: Male versus female sequencing depth of exon-capture data aligned against in the male (YY) and
female (XX) genome assemblies of diploid M. annua. Color shading indicates relative female sequencing
depth of genomic sequencing reads from the male (YY) and the female (XX) individual used for whole
genome sequencing.

Other Mercurialis lineages

The exon-capture dataset in the other lineages consisted of a smaller number of probes than in diploid

M. annua, with 40787 probes in M. huetii, 48655 probes in M. canariensis, 46730 in hexaploid M. annua,

43263 probes in M. reverchonii, 42516 probes in M. tomentosa and 45877 probes in M. elliptica. We

determined a total of 206 probes to be male-specific in M. huetii. Out of these probes, 173 probes were

anchored to linkage group 1 on the scaffolded genome assembly, 7 probes were anchored to other linkage
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groups (one on linkage group 2, one on linkage group 3, two on linkage group 6, two on linkage group

7 and one on linkage group 8). In M. canariensis, 37 probes were determined to be male-specific. Four

of these probes were anchored to linkage group 1. We identified a single male-specific exon-capture

probe in hexaploid M. annua, six male-specific exon-capture probes M. reverchonii and three male-specific

exon-capture probes in M. tomentosa, none of which were anchored to the scaffolded M. annua genome

assembly. In M. elliptica, three male-specific probes were found, one of which was anchored to linkage

group 4 of the M. annua genome assembly. A single exon-capture probe (located on contig_3334) was

found to be male-specific in all lineages, except for M. huetii, where it was missing.

Figure 3.3: Male versus female/monoecious coverage of exon-capture from different lineages of annual
and perennial Mercurialis species aligned against in the male (YY) genome assembly of M. annua. Probes
colored in red were determined to be male-specific.

3.3.4 Identification of sex-linked genetic differentiation

A single peak of differentiation between male and female samples of diploid M. annua was found at 23.7

Mb at the center of the scaffolded chromosome 1 assembly. In M. huetii, large regions with a strong
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signal of differentiation between males and females were found along a 29.6 Mb region (67.6% of the

total length of the scaffolded chromosome assembly) of chromosome 1 of the M. annua genome assembly.

In this region, also 173 male-specific exon-capture probes were located. In M. canariensis, four peaks

of differentiation were found in a 19.7 Mb region across chromosome 1 (45% of the total length of the

scaffolded chromosome assembly). In this region, also four male-specific exon-capture probes were found.

In contrast, no clear peaks of differentiation were found on chromosome 1 in hexaploid M. annua. In

M. reverchonii, a single narrow peak of differentiation was found at 17.9 Mb of the M. annua genome

assembly. No peaks of differentiation were found for M. tomentosa and M. elliptica (Fig. 3.4).

3.3.5 Genetic correlations on linkage group 1 in M. annua and M. huetii

In diploid M. annua males and females, a small region with high median genetic correlations was found at

approximately 19 Mb (Fig. 3.5). This region coincided with the peak of genetic differentiation between

male and female samples (Fig. 3.4)

In M. huetii males large regions with strong median genetic correlations were found across large parts

of linkage group 1 (Fig. 3.6). These regions coincided with regions where strong genetic differentiation

between male and female samples were found (Fig. 3.4) In contrast, no strong genetic correlations were

found in the females of M. huetii.
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Figure 3.4: F ST between males and females in M. annua and M. huetii and F ’ST for polyploid Mercurialis
lineages on linkage group 1. Orange lines indicate the median F ST or F ’ST across 100 kb sliding windows
and dotted blue lines indicate the percentiles of these estimates based on autosomal markers. Blue triangles
on the top of the plots of M. huetii and M. canariensis indicate the location of male-specific exon-capture
probes. The bottom panel indicates genetic positions of the male M. annua linkage map.
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Figure 3.5: Median pairwise genetic correlations in 100 kb windows for male and female diploid M. annua
across the whole length of linkage group 1 (a). Dashed red lines indicate the region where a peak of high
genetic differentiation between male and female M. annua is found, which is enlarged in subfigure b.
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Figure 3.6: Median pairwise genetic correlations in 100 kb windows across linkage group 1 for male and
female M. huetii.

3.4 Discussion

Our newly-developed male M. annua linkage map shows an extended region of reduced recombination

on linkage group 1 (Fig. 3.1), while our analysis of an exon-capture dataset identifies a much smaller

region of genetic differentiation between males and females within this region (Fig. 3.4). These results

are concordant with the main results from Veltsos et al. (2019), who interpreted this as evidence for

two evolutionary strata, one older stratum in which a clear signal of genetic differentiation is found and

a surrounding younger stratum, where recombination is suppressed, but no substantial accumulation of
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genetic differences between X and Y sequences has taken place yet (Veltsos, Ridout, et al. 2019). We

used additional genome assemblies of an XX female and a YY males to analyze the density of repetitive

sequences on sex chromosomes and autosomes (Fig. 3.1 e, Fig. S6). The accumulation of repetitive

sequences is one of the hallmarks of sex chromosome degeneration (Kejnovsky et al. 2009) and we found

a region of increased repeat density, which coincides with the region of reduced recombination on the

Y chromosome. However, we found regions of increased repeat density, which coincide with reduced

recombination, on all other autosomes and on the X chromosome (Fig. 3.1).

Such a pattern of reduced recombination (Anderson et al. 2003; Jensen-Seaman et al. 2004) and

increased density of repeats (Willard 1990; Ma et al. 2007) is commonly found in pericentromeric regions of

plants and animals. In M. annua, there is a similar increase at the center of the XX and YY assemblies (Fig

3.1), which has been identified as the sex determining region (Veltsos, Cossard, et al. 2018; Veltsos, Ridout,

et al. 2019). In addition, the correlation between repeat density and recombination rates is greater in the

F 2 map than in the male M. annua map (Fig. S6). This suggests that the majority of repeats in this region

did not accumulate as a result of sex chromosome evolution, but rather that the sex determining region is

located in a pericentromeric region, where the increased repeat density predates the evolution of the sex

chromosomes. In many plant and animal species, there are sex-specific differences in recombination rates

around the centromeres (Sardell and Kirkpatrick 2020) and linkage maps may not be reliable indicators

of the size of the non-recombining region of sex chromosomes that are located in these regions. More

robust estimators of sex determining regions are peaks of differentiation between male and female samples

and the buildup of genetic correlations between variants in males, which are expected in and around the

sex-linked region (Kirkpatrick, Guerrero, et al. 2010).

We found a single peak of genetic differentiation between males and females at 19.6 Mb on the

scaffolded Y chromosome assembly of M. annua, and it makes up only a minor proportion of the region

of reduced recombination on the male M. annua linkage map (Fig. 3.4). In addition, increased levels of

pairwise genetic correlations, which are expected to build up in non-recombining regions, are limited to a

small region around this peak of differentiation as well (Fig. 3.5). However, the presence of sex-specific

exon-capture probes on unscaffolded contigs suggests that there is likely additional sex-linked sequence

in diploid M. annua that is not included in the scaffolded genome assembly. Based on the total size

of unscaffolded contigs, on which male-specific exon-capture probes were found, we estimate that this

additional region has a size of approximately 10 Mb. However, this could be an underestimate, since there

could be a substantial amounts of additional repetitive sequence that is not included in these contigs.

In addition, we detected a smaller number of female-specific exon-capture probes, indicative of further

differentiation between X and Y chromosomes at the sequence level.
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Using additional exon-capture data, we tested for signatures of differentiation between male and female

or monoecious samples in other lineages of Mercurialis as well. We identified several regions that show

both a strong signal of differentiation between males and females (Fig. 3.4) and a strong signal of genetic

correlations in M. huetii (Fig. 3.6). These regions cover a major part of the scaffolded assembly of linkage

group 1, which is larger than the region of reduced recombination on the male M. annua linkage map. At

the same time there is a large number of male-specific exon-capture probes located in or close to these

regions of differentiation (Fig 3.4). These patterns suggest that there has been a substantial extension

of the non-recombining region on the sex chromosomes of M. huetii. The high degree of differentiation

suggests that the sex chromosomes are differentiated at the sequence level. Most of the exon-capture

probes that are male-specific on linkage group 1 of M. huetii show no sex bias in sequencing depth in

diploid M. annua, which suggests that copies were lost from the X chromosome. Due to limited statistical

power to detect female-specific probes in our M. huetii samples, we can’t test if a similar or greater

number of exon capture probes were also lost from the Y chromosome. Usually genetic degeneration on

sex chromosomes is assumed to affect the Y chromosome (Bachtrog 2013), but due to its hemizygosity in

males the X chromosome can also show unusual evolutionary patterns compared to autosomal sequences.

However these are usually thought to cause accumulation of additional sex-biased genes (Vicoso and

Charlesworth 2006) and large scale gene loss on the X chromosome would be unexpected. Further analysis

of genomic data could be used to test if such an unusual pattern does exist on the X chromosome of M.

huetii.

In M. canariensis we found four peaks of differentiation between males and females as well as four

male-specific exon-capture probes, located on linkage group 1 of the scaffolded genome assembly (Fig.

3.4). These signals of differentiation are found in a region, which is approximately equivalent to the region

of reduced recombination on the male M. annua linkage map. These data suggest that there has been

an extension of the non-recombining region on the Y chromosome of M. canariensis as well, although

both the extent of the non-recombining region and the level of sequence divergence are smaller than in M.

huetii, suggesting a more recent extension.

In contrast, we did not find a peak of differentiation between males and monoecious plants on linkage

group 1 of hexaploid M. annua. Similarly, we did not find a peak of differentiation between males and

females in perennial M. tomentosa and M. elliptica. In perennial M. reverchonii, a single peak was found at

17.3 Mb of linkage group 1 (Fig. 3.4). In addition, we found a low number of male-specific exon-capture

probes in hexaploid M. annua and the perennial lineages, but we found a single exon-capture probe which

is male-specific in all lineages except M. huetii, where it is missing (Fig. 3.3). All of this points to a

much smaller extent of recombination suppression around a common sex determining region in perennial
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Mercurialis lineages and in hexaploid M. annua.

When interpreting these patterns, it is important to take the limitations of our datasets into account.

Our genome assemblies are a substantial improvement both in terms of contiguity and of completeness

over the previous M. annua genome assembly (Tab. 3.1). Nonetheless, the size of contigs is still limited

and our assemblies are far from being chromosome scale assemblies. With our scaffolding approach we

could only anchor about half of the sequence in both genome assemblies to linkage map markers. From

these we can infer the orientation for an even lower proportion of contigs, on which more than one marker

is present. For the region of reduced recombination on the male linkage map, the order of contigs in the

assembly is based on the female map, even though it is possible that the true order of contigs on the male

map may differ. As only non-repetitive markers can be used to anchor contigs to linkage maps, contigs

with a higher proportion of repeats will be underrepresented in the scaffolded genome assembly. As a

consequence, our assembly likely underestimates the size of the repeat rich pericentromeric regions in

which the sex determining region in diploid M. annua is located. As a result, only a small proportion of

the sex-linked region is included in the scaffolded genome assembly, while the majority of male-specific

exon-capture probes are located on unscaffolded contigs. In addition, such a scaffolding approach strongly

relies on the correctness of the linkage maps. Our scaffolding uses information from two linkage maps.

We used the F 2 linkage map as reference and markers that disagree between it and the male M. annua

linkage map are located in positions outside the curve of markers. This can be seen in Fig. 3.1 a and b.

However, the degree of disagreement between linkage maps is much smaller than with the old linkage

maps developed by Veltsos et al. (2019), where a much larger number of markers is located in positions

beyond the curve (Fig. 3.1 c and d). Such a level of disagreement cannot only be explained by the smaller

number of offspring in the crosses used by Veltsos et al. and is probably caused by less thorough data

filtering and lack of manual curation of markers on linkage maps. These results illustrate the fact that

linkage maps are not perfect and genome assemblies that are scaffolded using linkage maps can inherit

these errors. In addition, there may be errors in the genome assembly itself, which may be the case for the

two contigs on which we identified female-specific exon-capture probes, but which were anchored to the

autosomes and not the sex chromosomes.

The diploid M. annua exon-capture dataset contains a large part of the non-repetitive proportion of the

M. annua genome (Gonzalez-Martinez et al. 2017) and with a total of over 260000 probes that remained

after filtering, on average one probe is located at every 2.5 kb of the genome. With such a dense dataset it

seems unlikely that our analysis missed large portions of the non-repetitive fraction of the sex chromosomes

and a sample size of 20 males and females should give sufficient statistical power for detecting sex-linkage

of probes and variants. When designing our new exon-capture dataset for other lineages of Mercurialis, we
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intended to cover multiple lineages of Mercurialis, which limited both the number of exon-capture probes

and the number of samples for each sex in each of the lineages. As a consequence, we used only a subset of

exon-capture probes and it is likely that we missed sex-specific exon-capture probes that were not included

in this probeset. In addition, the lower number of samples from each sex increases the background level of

differentiation between sexes, which can obscure a true signal of sex-linkage. This may be the case in M.

canariensis, where we only found peaks of differentiation in a larger region that is likely sex-linked as well

(Fig. 3.4). Similarly, despite a strong signal of differentiation in M. huetii across a large proportion of

linkage group 1, there are still smaller interspersed regions, which show a low signal of differentiation as

well as low genetic correlations in males (Fig. 3.4, Fig. 3.6). Alternatively, such a fragmented landscape

of differentiation could also be the result of structural rearrangements, like inversions, translocations or

chromosomal fusions, on the sex chromosomes of M. canariensis and M. huetii. Such rearrangements have

been shown to be associated with the evolution of recombination suppression on sex chromosomes in other

systems (Wang et al. 2012; Pennell et al. 2015), however it is not possible to test this with our current

dataset.

Despite these limitations, several clear inferences about sex chromosome evolution in Mercurialis can

nevertheless be made. Our analyses show that the sex chromosomes of diploid M. annua are likely located

in a pericentromeric region with reduced recombination and increased repeat density (Fig. 3.1). Several

other plant sex chromosome systems, where the sex determining region is located in such pericentromeric

regions, are known. In papaya, the SDR, which makes up only about 15% of the size of the sex chromosome,

includes the centromeres (Zhang et al. 2008) and the SDR in kiwifruit has been shown to be located in a

pericentromeric region as well (Pilkington et al. 2019). Similarly, the sex-linked region in Populus tremuloides

is located in a pericentromeric region (Kersten et al. 2014), and in Rumex hastatulus, recombination is

restricted to the tips of chromosomes, and the SDR is located in the central, non-recombining part of the

sex chromosome (Rifkin et al. 2021).

One explanation for why sex chromosomes should be located in pericentromeric regions has been

that limited recombination could facilitate the evolution of separate sexes and the establishment of

sex chromosomes (Charlesworth 2019). In the canonical gynodioecy model of plant sex chromosome

evolution, the evolution of recombination suppression between a suppressor of female function and a male

promoting variant is an essential step, as it prevents the formation of unfit recombinants (Charlesworth

and Charlesworth 1978a). This model is plausible for kiwifruit, where it has been shown that sex is indeed

determined by two loci with reduced recombination between them (Akagi et al. 2019). In papaya, the

genetic architecture of sex determination is not known yet, but the presence of modified Y chromosomes,

that result in hermaphrodites instead of males (Wang et al. 2012), could also be concordant with such
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a model. The genetic architecture underlying sex determination in annual Mercurialis species is not

known yet, but both the presence of leaky individuals of both sexes and the fact that species in the

family Euphorbiaceae are either dioecious or monoecious (always lacking bisexual flowers) suggests that

separate sexes evolved via monoecy in an ancestor of Mercurialis. In such a situation where successive

mutational steps shift quantitative sex expression towards male and femaleness, reduced recombination may

facilitate sex chromosome evolution as well (Charlesworth and Charlesworth 1978b). Alternatively, reduced

recombination around sex determining regions could also facilitate the evolution of sexually antagonistic

variants (Charlesworth and Charlesworth 1980; Rice 1987). Generally, such sexually antagonistic variants

could have helped to maintain separate sexes after sex chromosomes evolved. In addition, if the evolution

of sexually antagonistic variants predates the evolution of sex chromosomes, reduced recombination could

also favor the evolution of separate sexes by linking sexually antagonistic variants with sterility mutations

(Olito and Connallon 2019).

Our data also allows us to critically reevaluate the conclusion by Veltsos et al. (2019), that the largest

part of the region of reduced recombination on the Y chromosome represents a second evolutionary stratum.

Recombination rates differ between sexes in many species of plants and animals (Sardell and Kirkpatrick

2020) and the presence of an extended region of reduced recombination in males does not have to be caused

by sex chromosome evolution, even if the sex determining region is located within this region. Recent

discussions about the extent of recombination suppression on the guppy sex chromosome highlighted the

importance of critical data analysis for identifying regions of suppressed recombination (Kirkpatrick, Dixon,

et al. 2020). Based on whole genomic resequencing data, Wright et al. (2017) proposed the presence of

two evolutionary strata with lengths of 3 and 7 Mb on the guppy sex chromosome. Further analysis of

crosses showed the presence of strong heterochiasmy, with low recombination across the length of the

chromosome (Bergero et al. 2019). However, the original results by Wright et al. were questioned by

the presence of rare recombination events in a location which has previously been described as belonging

to the non recombining region by Wright et al. (Charlesworth, Bergero, et al. 2020). In a recent study,

Kirkpatrick et al. revisited the available evidence and concluded that the sex determining region is likely

much smaller (1̃Mb). They argued that the statistical method used, which compares male vs. female SNP

ratios with the autosomal average, is unsuitable to unambiguosly identify non-recombining regions on sex

chromosomes. In addition they cautioned against overinterpreting the lack of crossing overs in mapping

studies (Kirkpatrick, Dixon, et al. 2020).

The main evidence for the presence of a second evolutionary stratum on the M. annua Y chromosome

has largely been based on the lack of recombination in a cross and on an increase of male vs. female

heterozygosity. This is a similar evidence to that used by Wright et al. (2017). At the same time, a signal
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of increased genetic differentiation between males and females of M. annua is limited to a much smaller

region (Veltsos, Ridout, et al. 2019). We focused on a more robust analysis that used patterns of genetic

differentiation between males and females and genetic correlations between male and female samples. Our

evidence points to a much smaller region in which a clear signal of differentiation was found (Fig. 3.4,

Fig. 3.5). These results are consistent with the buildup of genetic correlations in males, which were found

in a similarly limited region. Unlike in M. huetii (Fig. 3.6), we also found a similar buildup of genetic

correlations in females of diploid M. annua (Fig. 3.5). Such a result could be explained by the reduced

effective population size on the X-linked region compared with autosomes. Overall, besides the lack of

recombination in the genetic cross, our results do not find any evidence for recombination suppression

across the previously proposed second evolutionary stratum and, in line with the critical approach outlined

by Kirkpatrick et al. (2020), we think that it is more likely that the region of suppressed recombination is

limited to a smaller region defined by molecular signatures of differentiation.

On a phylogenetic scale our results point to an extension of the non-recombining region on the

Y chromosomes of M. huetii and M. canariensis. In Chapter 2, we showed that the Y chromosome

of M. canariensis is derived from a close relative of diploid M. annua, which implies that the loss of

recombination happened independently in M. huetii and M. canariensis. Such a pattern of repeated

evolution of recombination suppression in species that share the same sex chromosome system, has rarely

been shown in plants. A comparable pattern has been found in the date palm genus Phoenix (Torres

et al. 2018). However, with approximately 5.5 Mb, the total increase in the size of the non-recombining

region in Phoenix has been smaller than our estimates for M. canariensis and M. huetii. In addition,

substantial recombination suppression may have evolved after the evolution of sex chromosomes in hemp

and hops, where there is strong evidence for a shared sex chromosome with a large non-recombining region

(Divashuk et al. 2014; Prentout et al. 2021). A recent study proposed the presence of an additional region

of suppressed recombination, which independently evolved in both species (Prentout et al. 2021). However,

this region was determined to be sex-linked based on evidence from genetic crosses, which could have

resulted in an overestimate of the size of the SDR in the same way as we proposed for diploid M. annua.

Additional population genetic data will be required to confirm the presence of evolutionary strata in this

system. To our knowledge, the only other studies on plant sex chromosomes where a similar or larger

extension of the SDR after the evolution of sex chromosomes has been shown are systems with fusions

between sex chromosomes and autosomes (Barlow and Wiens 1976; Rifkin et al. 2021).

These results imply that recombination suppression on plant sex chromosomes can evolve in similar

ways as in animal sex chromosomes after the initial evolution of separate sexes. The different Mercurialis

lineages are a promising system to better understand the reasons for the evolution of recombination
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suppression. An additional genome assembly in M. huetii in combination with linkage maps could allow

for more detailed comparisons between the sex chromosomes in diploid M. annua and M. huetii. Such an

analysis could help to understand how the large extension of the SDR evolved in M. huetii and it could show

whether structural rearrangements or an increase of repetitive elements were involved in recombination

suppression. In addition, M. canariensis could be useful for testing hypotheses regarding the role of haploid

selection in plant sex chromosome evolution, because the pollen of tetraploid M. canariensis is diploid

and may not underly the same selective pressures as the haploid pollen in diploid plants. In addition,

hexaploid M. annua could be helpful to understand how sex chromosome evolution acts as a barrier to

gene flow. Additional genomic data could be used to confirm the limited size of the non-recombining

region in this lineage, which could have facilitated introgression of the Y chromosome from perennial

lineages into hexaploid M. annua, which we showed in Chapter 2 of this thesis. Furthermore, such a study

could help to narrow down the genes that are common to sex chromosomes of all Mercurialis species, and

identify candidates for master sex determining genes.
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Chapter 4

QTL analyis of the genetic basis of

enhanced leakiness in experimental

populations of M. annua

4.1 Introduction

Dioecy has long been considered an evolutionary dead end (reviewed in Käfer et al. 2017). This view was

based on its low frequency (Renner and Ricklefs 1995) and its scattered distribution across the plant tree of

life. In addition, phylogenetic analyses found a lower species richness in dioecious clades using sister group

comparisons between clades with different sexual systems (Heilbuth 2000). However, recent studies using

newly-developed statistical methods challenged these results and showed that dioecious clades actually had

higher diversification rates (Käfer et al. 2017) and no consistent negative effect of dioecy on diversification

rates was observed in genera in which both dioecious and nondioecious species were present (Sabath et al.

2016).

Frequent reversions from dioecy towards cosexuality are a plausable mechanism that could help explain

these seemingly contradictory patterns (Käfer et al. 2017; Renner 2014). Such reversions have been shown

in several clades of plants (Lloyd 1975; Schaefer and Renner 2010; Volz and Renner 2008). The selective

pressures that cause these reversions may be very different than those that caused transitions towards

separate sexes in the first place. While separate sexes are thought to evolve because of selection for
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inbreeding avoidance (Charlesworth and Charlesworth 1978a) and sexual specialization (Charnov et al.

1976), reversions towards combined sexes are caused by the capability to self fertilize, which can be

promoted by either selection for reproductive assurance or automatic selection of selfing variants (Busch

and Delph 2012).

The genetic changes that underly these transitions can differ substantially depending on how dioecy

evolved in the first place. In the case of the canonical gynodioecy model, dioecy is determined by two

loci, one of which is a recessive loss of male function mutation in females and the other is a dominant

suppressor of female function in males (Charlesworth and Charlesworth 1978a). Transitions of males to

hermaphroditism would require a single loss of function mutation or a recombination event with the X

chromosome at the dominant suppressor of female function on the Y chromosome. In contrast, male

function is not expected to be easily restored in females, and reversions are thought to happen mostly

via the male sex (Crossman and Charlesworth 2014). Evidence for the gynodioecy model has been

shown experimentally in Silene latifolia, where deletion mutations on the Y chromosome resulted in either

hermaphrodites or neuters (Kazama et al. 2016). Similarly, in grapevine naturally occuring hermaphrodite

lineages show evidence of either loss of expression through accumulation of transposable elements upstream

of the putative suppressor of female function, or of loss of this allele through recombination with the X

chromosome (Badouin et al. 2020) and in papaya, domestication selected for the Yh haplotype, which is

derived from the Y chromosome, but determines plants to be hermaphrodites instead of males (VanBuren

et al. 2015).

If separate sexes evolved from monoecy, different pathways for reversions to monoecy are conceivable.

In persimmon, where separate sexes evolved from monoecy, maleness is determined by a Y-linked small

RNA, which represses the function of an autosomal active suppressor of male function (Akagi et al. 2014).

While it is not clear yet how often separate sexes evolve via such epistatic interactions, such systems could

revert to combined sexes via loss of function mutations at the dominant suppressor of male function in

females. Alternatively, multiple small effect mutations, which affect relative expression of flowers of both

sexes, could be involved in transitions from monoecy to dioecy (Charlesworth and Charlesworth 1978b),

but they could also be involved in the reverse direction and sex expression of either males or females could

be shifted towards combined sexes in the same way. Such shifts may be caused by selection on variants

that cause males or females to produce small numbers of flowers of the opposite sex. So-called leaky sex

expression is found frequently in plants with dimorphic sexual systems, where males are more often the

inconstant sex (Ehlers and Bataillon 2007; Cossard and Pannell 2019).

The theoretical framework that explains how selection could act on variation in sex expression and
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causes transitions in sexual systems is sex allocation theory (West 2009). Sex allocation theory describes

the conditions under which specific sexual systems are expected to be stable and under which they are

susceptible to invasion of variants that influence the expression of the phenotypic sex (Charnov et al. 1976;

Charlesworth and Charlesworth 1981). One of the fundamental assumptions of sex allocation theory is

the existence of tradeoffs between sex functions (Charnov 1982). Most theories for the evolution of plant

sexual systems include such tradeoffs, among them theories for evolution of separate sexes (Charnov et al.

1976) and those explaining the maintenance and relative contributions of male and female function in

hermaphrodites (Charlesworth 1991). However, the empirical evidence supporting the presence of such

tradeoffs has been limited. One of the predictions has been a negative genetic corellation between sex

functions in hermaphrodites (Charlesworth 1991), but this has been shown in a limited number of plant

species (Campbell 2000; Ashman 2003). So far, most of this evidence has been phenotypic and little is

known about what the genetic architecture of these tradeoffs could look like. Sex allocation theory is not

explicit about the genetics underlying transitions between sexual systems, but this information could help

to integrate these models with population genetics.

An increasing number of loci underlying adaptive traits are being identified in a wide range of species.

This allows to address a number of general questions including the maintenance of standing genetic

variation and its role in adaptation, the role of convergence and pleiotropy, and that of genetic and genomic

architecture in adaptive evolution (Lee et al. 2014). These questions are also important for understanding

the evolutionary pathways that result in transitions between sexual systems. A major question concerning

the genetic architecture of these transitions is if single large effect loci can cause large shifts in sex

expression, as during the evolution of plant sex chromosomes (Ming et al. 2011), or if selection favors

the evolution of multiple loci with a smaller, quantitative effect on sex expression that affect each sex

function independently. In addition, dominance relationships can be important to understand how new

mutations with effects on sex expression could spread and be maintained in natural populations. This may

be particularly important in metapopulations like in M. annua (Pannell et al. 2005).

Identifying the genetic changes underlying transitions between sexual systems can be challenging.

Transitions that involve mutations on the sex chromosomes can leave remainders of the previously evolved

non-recomining region in the genome, which can be identified using comparative analysis with dioecious

relatives (VanBuren et al. 2015; Badouin et al. 2020). However, transitions that involve autosomal loci

may be much harder to identify in natural populations, especially if transitions are caused by many small

effect loci. One alternative approach for both determining the effects of different selective factors and

the underlying genetics is experimental evolution. Experimental evolution allows us to observe phenotypic

changes under controlled conditions on contemporary timescales (Kawecki et al. 2012) and comparative
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population genomic approaches between selection and control populations can be used to identify candidate

loci associated with different selection regimes (Schlötterer et al. 2015). Most commonly, model organisms

like Escherichia coli (Lenski et al. 1991), Saccharomyces cerevisiae (Zeyl 2006) and Drosophila melanogaster

(Burke et al. 2010) are used for these types of experiments. Their short generation times allow to observe

many generations in a single experiment and in addition their well developed genomic resources facilitate

genomic analyses. However, recent experiments showed that experimental evolution can also result in

significant effects on plant mating systems and related traits, despite the fact that the generation time of

the plant species limited the experiments to few generations (Voillemot et al. 2019; Ramos and Schiestl

2019).

Such an experiment has been set up for diploid M. annua with the aim to test if pollen limitation could

cause changes in the distribution of male flower production on leaky females. Leaky sex expression is also

commonly found in males and females of diploid M. annua (Cossard and Pannell 2019) and experimental

populations were set up in private gardens and on the campus of the University of Lausanne in a way

that they were spatially separated from each other and naturally occuring populations of M. annua. The

first generation of these populations was grown from seeds sampled from a natural metapopulation of M.

annua from Spain. The experiment consisted of two experimental treatments. Control lines were made up

of males and females at a 50/50 sex ratio, while selection lines consisted exclusively of genotypic females.

This treatment ensured that all offspring in the selection lines were sired by pollen produced by leaky

females, while the offspring in control populations was almost exclusively sired by males. Plants were left

to openly pollinate, and bulk seeds were collected and used to set up the next generation in the following

year (Cossard, Gerchen, et al. 2021).
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Figure 4.1: Fold change in male flower production after the first four generations in selection (S1-S3, blue)
and control (C1-C3, red) lines of the experimental evolution setup. Stars indicate significant differences
(*** p <0.001) in male flower production in selection lines. Figure modified from Cossard et al. (2021).

The effects of this treatments on sexual phenotypes were highly significant (Fig. 4.1). In the first

generation of the experiment, leaky females in the selection lines produced a greater number of male

flowers than females from the control lines (Cossard and Pannell 2021). Such an effect suggests a plastic

response of sex expression on the mating environment. A similar effect has been observed in experimental

populations of monoecious hexaploid M. annua, where plants changed their sex expression depending on

population density (Dorken and Pannell 2008). In the following generations, both the number of leaky

females and the number of male flowers on leaky females increased. After four generations of selection,

there was a 23 fold increase in the selection lines, but no significant change in the control populations

(Fig. 4.1). This is indicative of a response to selection on sex expression in a similar way as selection for

reproductive assurance is expected to act under natural conditions. In an additional mating experiment,

where evolved females were placed in a mating array with males, female biased offspring sex ratios showed

that these evolved females were able to sire significant amounts of seeds through selfing in the presence of

males (Cossard, Gerchen, et al. 2021).

These results show experimentally how reproductive assurance under pollen limitation could select for

increased leakiness in females, resulting in a rapid breakdown of dioecy. In this chapter I report on a study

in which we use plants derived from both control and selection lines of the previously described experiment,

which has been continued for four further generations, to study the underlying genetics. A common

approach to determine the genomics underlying different selection regimes in experimental evolution studies

are so-called evolve and resequence setups (Kofler and Schlötterer 2014). In these studies, genomic data
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of control and selection lines are sequenced at multiple timepoints. Targets of selection are identified by

comparing allele frequency trajectories between selection and control lines. However, this approach works

best when a large number of generations and replicates are included, which are limited in the experimental

setup with M. annua. Due to these limitations, we chose to do a QTL mapping approach instead (Lynch

and Walsh 1998).

QTL analyses identify molecular markers that correllate with variation of a quantitative trait (Mauricio

2001). However, QTLs usually explain only a subset of the phenotypic variance observed in a cross. An

important source of unexplained variance can be environmental factors and phenotypic plasticity. This may

be important in M. annua, because previous analyses suggest that leakiness can depend on the mating

environment (Cossard and Pannell 2021). Furthermore, the amount of variance that can be explained also

depends on the statistical power of the QTL analysis. Even with large crossing populations there is a lower

limit to the effect size of QTLs that can be detected (Lynch and Walsh 1998), and QTL analyses have

been critized for focussing on large effect loci, while small effect loci are not accounted for (Rockman

2012). An additional source of error that can reduce the amount of variance explained by QTL analyses

are experimental errors that can occur both during phenotyping and genotyping. Also, QTL analyses can

only detect variants that are present within the cross. In the context of our experimental evolution setup it

is likely that these crosses do not represent all variants with effects on sex expression that are segregating

within experimental populations. Despite these limitations, QTL analyses are able to directly identify

genomic regions associated with phenotypic changes. This is an advantage over evolve and resequence

studies, where associations are only indicative of a locus being affected by selection.

Based on a QTL analyses of two crosses between individuals from control and selection populations,

we identify multiple QTLs involved in enhanced production of male flowers on leaky females. At two

different loci, QTLs with antagonistic effects on male and female flower production were colocalized, which

could be indicative of a tradeoff between male and female flower production. We identify additional QTLs

with smaller effect sizes, which affect only male reproductive effort, without having an effect on female

reproductive effort.
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4.2 Material and Methods

4.2.1 Crosses

For a QTL mapping approach, we generated F 2 crosses between plants from the selection and control

populations. We grew our parental plants from seeds collected from plants from the seventh generation of

the experiment. Besides regular selection populations, where the next generation grown from pooled seeds

from all individuals in the population, additional artificial selection populations have been established in

the previous generation. Plants from the artificial selection populations were grown from seeds, which were

among the top 20% of the pollen producers. The plants in this treatment showed an even stronger increase

in pollen production than the regular selection populations (Xinji Li, unpublished results). As pollen donors,

we chose to use plants with high pollen production from an artificial selection population (cross 1) and

from a regular selection population (cross 2). As seed donors we chose female plants from one of the

control populations, which did not show any leakiness (Fig. 4.2). Seeds were planted in horticultural soil

and plants were grown in greenhouses until they started producing inflorescences. A single selected female

as pollen donor and multiple females as ovule producers from the control lines were transferred to closed

crossing boxes. In these boxes, plants were left to openly pollinate for several weeks after which seeds and

tissue samples for DNA extraction were collected.

We grew F 1 plants from seeds and made crosses the same way as we did with their parents with the

difference that only single individuals were transferred to crossing boxes, so that all seeds were the result

of selfing. We grew F 2 plants from the resulting seeds in the greenhouse until they reached maturity. We

collected, dried and weighed all male (Wm) and female flowers including seeds (W f) and also collected,

dried and weighed the remaining plant material (W p). However, after phenotyping the first plants from

cross 1 we realized that this phenotyping protocol would be too time intense and we changed the protocol

and collected male and female flowers on every second branch. For these samples we multiplied Wm and

W f times two in the denominator of the calculations of MRE and FRE. In addition we collected tissue

samples, extracted DNA using a TECAN extraction robot and quantified it using a Cybr Green protocol

on a TECAN Plate reader.

113



n=210

n=210

n=210n=210

Selection (males removed)

n=210

n=210

n=210

Control (1:1 sex ratio)

 Cross 1 F
1
  Cross 2 F

1
 

artificial selection

 Cross 1 F
2

   (n=258) 

 Cross 2 F
2

     
(n=376) 

Gen. 1

Gen. 6

Gen. 7

M

M

PP

Figure 4.2: Schematic origin of the two crosses used in this study. Hexagonal shapes represent populations
from the selection lines, large white arrows indicate generations founded by bulk seeds from the previous
generation, the large red arrow indicates artificial selection (only seeds from the top 20 % of pollen
producing females were used). Curved arrows indicate the directions of crosses, with P indicating pollen
donors and M indicating maternal seed donors. Arrows pointing back on the same cross indicate selfing.
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For each plant we calculated male reproductive effort, MRE, as the proportion of male flower biomass

relative to total plant biomass,

MRE =
Wm

Wm +Wf +Wp

female reproductive effort, FRE, as the proportion of female flower biomass relative to total plant biomass,

FRE =
Wf

Wm +Wf +Wp

and relative male allocation, rMA, as the proportion of male reproductive effort relative to the total

reproductive effort.

rMA =
MRE

MRE + FRE

.

4.2.2 Genotyping

We generated genotype data using a modified ddRad protocol (Peterson et al. 2012). For each sample we

first digested about 100 ng DNA diluted to 22 µl by adding 2.5 µl Smartcut buffer (NEB), 0.4 µl EcoRI-HF

(NEB) and 0.4 µl Taq1 (NEB) restriction enzymes and incubating at 37 ℃ for 30 min, 65 ℃ for 30 min

and 80 ℃ for 20 min. We then ligated P1 and P2 adapters described in Peterson et al. (2012), which

were diluted to 40 µM in 1x annealing buffer (50mM NaCl, 10 mM). We added 3 µl rATP (10 mM), 2

µl annealed P2 adapter (3 µM), 0.8 µl 10x T4 Ligase buffer (NEB) 1 µl T4 Ligase (400 U/µl, NEB), 22

µl digested DNA and 2 µl annealed P1 adapter (0.3 µM) and incubated for 20 min at 23 ℃ followed by

10 min at 65 ℃. We then size selected 300 µl of pooled samples for each library to 550 bp. For this we

first added 0.57x volume of Ampure XP beads incubated for 10 min at room temperature and saved the

supernantant, to which we added 0.12x volume of Ampure XP beads (Beckman Coulter), incubated on a

magnetic stand, washed the beads with 70% ethanol and eluted DNA in 30 µl water for 2 min. We selected

for biotin-labeled P2 adapters using M-270 Dynabeads (Invitrogen). We washed 15 µl Dynabeads 3 times

in 1x bind and wash buffer (5 mM Tris-HCl pH 7.5, 0.5 mM EDTA, 1M NaCl), resuspended them in 30 µl

2x bind and wash buffer, added the size selected DNA and incubated for 15 min at room temperature. We

discarded the supernatant, washed the beads three times using 1x bind and wash buffer and resuspended

the beads in 45 µl water. We then amplified size selected fragments by PCR, using dual indexed primer

pairs. We added 45 µl bead suspension, 3 µl forward primer (10 µM), 3 µl reverse primer (10 µM) and 50

µl KAPA HiFi Hotstart Ready Mix (Roche). PCR program was 2 min at 95 ℃ initial denaturation and 11

cycles at 98 ℃ for 20 s, 65 ℃ for 20 s and 72 ℃ for 30 s. We cleaned PCR products in 0.7x Ampure XP
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beads according to manufactorers instructions and eluted PCR products in 20 µl water. Cleaned libraries

were sequenced using 150 bp paired-end reads on the Illumina Novaseq S6 platform by Novogene UK.

We demultiplexed and quality filtered raw illumina reads using Stacks 2.55 (Catchen et al. 2013) and

aligned reads against the diploid female M. annua genome assembly using BWA mem 0.7.17-r1188 (Li

2013) and used the gstacks module from Stacks 2.55 to generate reference guided variant calls, from which

we kept variants that had a minor allele frequency greater than 0.2 and that were present in 60% of all

samples. We identified unrelated offspring individuals, which are likely the result of pollen contamination,

by doing do a principal component analysis in adegenet 2.1.3 (Jombart 2008). We plotted the first two

principal components and visually identified and removed outlier samples.

4.2.3 QTL analysis

We wrote a custom Python script, which identified alleles for which unambiguos genotype phase of the

parental plants could be inferred and generated input files for R/Qtl 1.47-9 (Broman, Wu, et al. 2003)

and LepMap3 0.2 (Rastas 2017). We used functions implemented in R/Qtl to further filter problematic

markers, which were found in less than 50 % of samples or showed a strong signal of segregation distortion

(p<1e-10), and individuals, which had more than 50% of missing genotypes. We then performed an

initial round of separation of markers into linkage groups by adjusting minimum LOD values until markers

separated into 8 major linkage groups. R/Qtl infers if the phase of the parents has been flipped due to

genotyping errors. We used this information to correct genotypes of affected markers, formed new linkage

groups and discarded all remaining markers that did not fall into the 8 major linkage groups. Since R/Qtl

cannot efficiently determine the marker order on linkage groups containing hundreds of markers, as in our

dataset, we used LepMap3 (Broman, Wu, et al. 2003) to determine marker order on the final linkage

maps. We did 100 replicate estimates of marker orders for each linkage group, selected the ordering with

the highest likelihood and estimated sex averaged linkage map positions. We then identified problematic

markers, which are typically located at the ends of linkage groups and have a much larger estimated

recombination frequency than the rest of the linkage map. We removed these types of markers if their

distance to the closest marker was greater than 10 cM.

We scanned these datasets for QTLs for MRE, FRE and rMA using R/QTl2 0.24 (Broman, Gatti,

et al. 2019). We used Haley-Knott regression to establish genotype/phenotype associations (Haley and

Knott 1992) and ran a permutation test with 1000 replicates to estimate significance thresholds for LOD

scores. We estimated QTL effects and identified the position with the maximum LOD peak and inferred
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95% Bayesian credible intervals for each QTL. We inferred genotypes with maximum marginal probability

for QTL peaks. Based on these genotypes, we estimated the mean values of phenotypes for genotypes

that were heterozygotes (µSC) or homozygotes for alleles inherited from the control and the selection lines

(µCC and µSS). In addition, we calculated additive and dominant effects (a and d) using the scan1coef

function from R/Qtl2 and did an anova on genotypes and phenotypes to calculate the proportion of

variance explained by each QTL (R2).

4.3 Results

A total of 258 and 376 F2 plants were used for the analyses of cross 1 and cross 2 respectively. There was

substantial variation in MRE and FRE in both crosses. In addition, relative male allocation reached from

0 (completely female) to 1 (completely male) in both crosses (Fig. 4.3).
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Figure 4.3: Distribution of male reproductive effort (MRE ), female reproductive effort (FRE ) and relative
male allocation (rMA) of F2 crosses.

We generated a total of 265.4 Gb and 385.4 Gb of Illumina sequencing data for cross 1 and cross 2

respectively. The results of the PCA on variant calls showed 4 and 3 outlier samples in cross 1 and cross 2

respectively (Fig. S7). We considered these samples to be the result of pollen contamination and removed

them from further analyses. From each of the crosses we removed one suspicious marker from the linkage

map, because of its location and distance to other markers. The final linkage maps had a total length

of 640.32 cM and 653.3 cM and included 2267 and 4009 genetic markers and we retained 239 and 332

individuals for QTL analyses in cross 1 and cross 2 respectively.
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For cross 1, we estimated the p<0.05 significance level to be at LOD scores >3.64 for all phenotypes

measured. We identified QTLs with LOD scores which are clearly above this level on linkage groups 4

and 5 as well as a marginally significant QTL on linkage group 7 (Fig. 4.4). On linkage group 5, large

effect QTLs were discovered for all three phenotypic measurements that we analyzed. At these three QTLs

alleles inherited from the selection line had a positive and largely additive effect on male reproductive effort

(MRE ), a negative and largely recessive effect on female reproductive effort (FRE ) and a largely additive

effect on relative male allocation (rMA). The credible Bayesian intervals of these three QTLs overlapped

(Tab. 4.1). For the additional QTLs on linkage groups 4 and 7 alleles inherited from the selection line had

a negative and largely additive effect on MRE.
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Figure 4.4: Results of the QTL analysis of male reproductive effort (MRE ), female reproductive effort
(FRE ) and relative male allocation (rMA). The dotted red line indicates the p<0.05 significance threshold.

Table 4.1: QTLs found in cross 1. LG: linkage group on which the QTL is located. CI: Bayesian credible
intervals of QTL location. µSS, µSC, µCC: Mean trait values for genotypes SS, SC and CC. Values in
brackets are standard errors. a: additive effects. d : dominance effects. R2 proportion of variance explained.

LG Trait Location [cM] CI [cM] µSS µSC µCC a d R2

4 MRE 54.86 40.75 - 62.04 0.010 (0.002) 0.015 (0.001) 0.023 (0.001) -0.0062 -0.0018 0.12

5 FRE 39.26 15.29 - 47.66 0.013 (0.003) 0.033 (0.002) 0.041 (0.003) -0.013 0.006 0.15

5 MRE 50.80 27.71 - 54.16 0.023 (0.002) 0.017 (0.001) 0.007 (0.002) 0.008 0.002 0.17

5 rMA 39.26 36.74 - 39.26 0.644 (0.028) 0.361 (0.018) 0.195 (0.028) 0.226 -0.054 0.37

7 MRE 6.33 0 - 16.1 0.012 (0.002) 0.016 (0.001) 0.026 (0.003) -0.007 -0.003 0.07
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For cross 2, we estimated the p<0.05 significance level at LOD scores >3.72 for all phenotypes

measured. We found QTLs with significantly higher LOD scores on linkage groups 4 and 7 (Fig. 4.5,

Tab. 4.2). On linkage group 4, we identified marginally significant QTLs, where alleles inherited from the

selection line had mostly additive positive effects on rMA and and a mostly dominant positive effect on

MRE. On linkage group 7 we identified major QTLs for FRE, MRE and rMA , all of which are in relative

proximity, and the credible intervals between rMA and FRE as well as between rMA and MRE, but not

between MRE and FRE overlap. Alleles inherited from the selection line had an additive negative effect on

FRE, a partly recessive positive effect on MRE and a partly recessive positive effect on rMA (Tab. 4.2).
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Figure 4.5: Results of the QTL analysis of male reproductive effort (MRE ), female reproductive effort
(FRE ) and relative male allocation (rMA). The dotted red line indicates the p<0.05 significance threshold.

Table 4.2: QTLs found in cross 2. LG: linkage group on which the QTL is located. CI: Bayesian credible
intervals of QTL location. µSS, µSC, µCC: Mean trait values for genotypes SS, SC and CC. Values in
brackets are standard errors. a: additive effects. d : dominance effects. R2 proportion of variance explained.

LG Trait Location [cM] CI [cM] µSS µSC µCC a d R2

4 MRE 42.55 0 - 54.55 0.014 (0.001) 0.012 (0.001) 0.006 (0.001) 0.004 0.002 0.06

4 rMA 41.03 17.19 - 51.20 0.313 (0.028) 0.209 (0.022) 0.132 (0.030) 0.090 -0.014 0.06

7 FRE 47.53 45.70 - 55.15 0.030 (0.004) 0.053 (0.002) 0.073 (0.003) -0.022 0.002 0.21

7 MRE 60.00 58.94 - 61.84 0.023 (0.001) 0.008 (0.001) 0.005 (0.001) 0.009 -0.006 0.31

7 rMA 60.00 54.99 - 61.84 0.499 (0.026) 0.159 (0.017) 0.098 (0.026) 0.197 -0.143 0.33
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4.4 Discussion

We observed substantial variation in male and female reproductive effort (MRE and FRE ) as well as in

relative male allocation (rMA) in both F 2 crossing lines analyzed in this study (Fig. 4.4, Tab. 4.1, Fig. 4.5,

Tab. 4.2). We identified 10 QTLs which showed associations with this variation in sexual phenotypes. In

both crosses, major QTLs with antagonistic effects on female and male reproductive effort were located on

the same linkage groups. Unsurprisingly, this was also true for relative male allocation, however this trait is

based on the relative proportion of MRE and FRE, which means that it is expected to be colocalized with

both of these traits. In cross 1, the Bayesian credible intervals of QTLs for FRE and MRE overlapped

(Tab. 4.1). This was not the case for FRE and MRE in cross 2, but the distance between both confidence

intervals was just 3.79 cM (Tab. 4.2). These results show that the major QTLs for FRE and MRE in

both crosses could comprise either single loci that have an antagonistic effect on both FRE and MRE or

multiple loci that affect both traits, which are in close linkage.

Besides these main effect QTLs we detected additional QTLs, that affected male flower production

without having a significant effect on female flower production. In both crosses, one of these minor

QTLs was located on linkage group 4 (Tab. 4.1, Tab. 4.2). In addition, their Bayesian credible intervals

overlapped, however this result has to be interpreted with caution, as this location refers to two independent

linkage maps. Both additional QTLs identified in Cross 1 had a negative association with MRE, and

individuals that inherited both alleles from the control population had a greater MRE than those that

inherited it from the selection populations (Tab. 4.1). One interpretation would be that loci with a

negative effect on male flower production would have been segregating in the selection population, from

which the pollen donor in Cross 1 originated. This interpretation seems counterintuitive, since selection is

expected to favor variants with an opposite effect in the experimental evolution setup. However, despite a

substantial increase in male flower production in leaky females, there were still pure females (that produced

no male flowers) present in the experimental populations after four generations (Cossard and Pannell 2021).

Alleles that affect male flower production would only be visible to selection via the male function and given

the limited number of generations in the experiment it seems conceivable that such alleles could still be

segregating in the experimental populations. Alternatively, alleles that have positive effects on MRE could

have been inherited from the control population. Low frequencies of leaky females were found in control

populations, and the alleles underlying leakiness could have been sampled by chance. We did not observe

any leakiness in the maternal seed donors from the control population, but leakiness did show a plastic

response to pollen limitation in the initial populations of the experimental evolution setup (Cossard and

Pannell 2021). Given that the pollen donors in the crosses were individuals that produced large amounts
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of pollen, alleles that favor leakiness may not have been expressed in these individuals. Our experimental

design did not allow direct comparisons of the effects of phenotypes of parents and offspring, and as a

consequence we could not distinguish between these interpretations.

Individual QTLs identified in our study explained between 6 and 31% of the observed variance in

MRE, between 15 and 21% of the observed variance in FRE and between 6 and 37% of the observed

variance in rMA. These results are in the range of other QTLs discovered in plants, although individual

QTLs explaining more than 20% of the phenotypic variance can be considered to be located in the upper

tail of the distribution (Kearsey and Farquhar 1998). A particularly large effect size is observed for the

major QTLs for rMA. The mean difference in rMA between individuals that where homozygous for alleles

inherited from the control population and those that were homozygous for alleles inherited from the

selection populations at the large effect loci was greater than 0.4. This means that in these individuals

on average more than 40% of the total drymass invested in reproduction are invested in male instead of

female reproduction. This indicates that each of the two main QTLs for rMA would be sufficient to cause

substantial shifts in the sexual systems by itself.

While these results imply that leakiness has a strong, heritable genetic basis our analysis still leaves a

large proportion of residual variance unexplained. Taken together, the QTLs identified in this study explain

between 21% and 39 % of the variation of a specific trait in the offspring from a single cross. A likely

reason is that further QTLs of smaller effect exist, but our analysis does not have sufficient statistical

power to detect them. Potential examples of this effect can be found on linkage groups 2 and 3 in cross 1,

where we did not consider smaller peaks in MRE and FRE, which could be indicative of additional QTLs,

because they did not reach the threshold of statistical significance (Fig. 4.4). An additional likely source

of unaccounted variation in our study are environmental factors and developmental plasticity. Male flower

production in leaky females has been shown to have a strong plastic component, which depends on the

degree of pollen limitation (Cossard and Pannell 2021). In addition, other environmental factors could

contribute to variation in sexual phenotypes in Mercurialis. For example, simulated herbivory has been

shown to increase sex inconstancy in both males and females of Mercurialis (Villamil et al. 2021), and

personal observations suggest that the expression of leaky phenotypes can differ between plants that were

grown in greenhouses or under artificial light.

Our results allow to connect phenotypic measures of sex expression with the underlying genetics, which

can be understood in the context of sex allocation. In our experimental populations, sex allocation refers to

the absolute amounts of reproductive effort invested in inflorescences of each sex. In addition, the relative

allocation of male and female reproductive effort indicates if an increase in the number of inflorescences of
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one sex will result in a decrease in the number of flowers of the opposite sex. We identified a number

of QTLs and their effect sizes and dominances, which are associated with changes in sex allocation in

M. annua. The patterns of antagonistic effects on male and female flower production at the major effect

loci, which cause a shift in relative sex allocation, are consistent with the presence of tradeoffs predicted

by sex allocation theory (Charnov et al. 1976). However, we also find additional QTLs with an effect on

MRE, but without apparent effects on FRE (Tab. 4.1), which does not seem to agree with a tradeoff

model. The resolution of our dataset is limited both by the number of recombination events within the

crosses and by the density of Rad-loci used for genotyping. As a result, the QTLs identified in our study

could also contain multiple loci with effects on sexual phenotypes. These could be either few large effect

loci with effects on FRE, MRE or both, or many small effect loci with cumulative effects on FRE and

MRE, that are enriched in genomic regions represented by the QTLs found in our study. Due to these

limitations, we can’t precisely identify the genes involved in these changes in sexual phenotypes with our

current dataset and different scenarios are possible.

The first scenario for the genes underlying these QTLs is that they could be controlling which proportion

of meristems develops into male and female inflorescences. This could happen by affecting the relative

ratios of auxin and cytokinin, which have been proposed to be involved in the sexual differentiation of

inflorescences in M. annua (Khadka et al. 2019). Such a genetic architecture would be a parsimonious

explanation for the function of the major effect loci with antagonistic effects on male and female sex

expression. However, we also found additional QTLs that only affect MRE without significant effects

on FRE, which seems to contradict this hypothesis. The effect size of these loci is smaller, and it is

conceivable that the relationship of the antagonistic effects between FRE and MRE could be non-linear, so

that at smaller effect sizes an increase of male flower production could happen without affecting production

of female flowers. This could be concordant with results from the experimental evolution setup that

found no consistent evidence of a tradeoff between male and female flower production on the population

level (Cossard and Pannell 2021; Cossard, Gerchen, et al. 2021). A second scenario implies that different

molecular pathways could be affecting male flower production, some of which have antagonistic effects

on FRE, while others don’t. For example, the loci with antagonistic effects on MRE and FRE could

be replacing female flowers with male flowers, while the loci that only have an effect on MRE could

increase male flower production in locations where no other female flowers would have grown otherwise.

A third scenario would imply that loci that affect FRE and MRE are different types of loci, which are

in close linkage at the major effect sites and have a combined effect on rMA. Such a scenario could be

comparable with the model for the evolution of separate sexes in plants, where suppressed recombination

links variants with antagonistic effects on male and female sex expression (Charlesworth and Charlesworth
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1978a; Charlesworth and Charlesworth 1978b). However, the selective forces that cause selection and

linkage of these variants are expected to be different than those that cause the breakdown of dioecy.

The evolution of separate sexes is expected to be driven by evolution for outcrossing (Charlesworth and

Charlesworth 1981) or sexual specialization (Charnov et al. 1976). In contrast, transitions towards combined

sexual systems are expected to be driven by selection for reproductive assurance or by automatic selection

of variants that increase selfing (Busch and Delph 2012). In the absence of any antagonistic effects

on MRE it seems unlikely that selection would favor alleles that decrease FRE, since both selection for

reproductive assurance and automatic selection would favor some degree of selfing, which would imply

selection for increased investment in female function (Lloyd 1987). Distinguishing between these scenarios

would require additional fine mapping of these loci and the use of improved genomic resources. A promising

approach to find potential candidate genes in could be to generate additional genomic sequencing data

or gene expression data for individuals which are homozygous for either alleles inherited from control or

selection lines. Sequence variation or significant differences in gene expression in the regions surrounding

the inferred QTL peaks of main effect loci could be indicatitive of potential candidate loci. While QTL

analyses are generally considered to have more limited power than other genomic analysis for precisely

locating genes of interest, studies where the location of genes was known showed a high concordance with

inferred QTL locations (Price 2006) and the credible intervals around our identified QTLs with effects on

relative male allocation could be small enough to make such an approach feasible.

The fact that these main QTLs identified in both crosses are located on different chromosomes suggests

that multiple independent large effect QTLs are segregating in natural metapopulations of M. annua. It

seems surprising that such large effect variants should be maintained in dioecious populations, where it

is unlikely that the limited amount of pollen produced on leaky females could compete with the strong

outcrossing advantage of males, while the negative effect on female flower production would decrease

reproductive success through female function. A possible explanation could be that females of diploid M.

annua frequently experience pollen limitation in low density situations, which happen due to metapopulation

processes especially during range expansions (Gonzalez-Martinez et al. 2017). In these situations, leakiness

could provide reproductive assurance through selfing. In addition, the phenotypic effects of these two

main QTLs on the reduction of female reproductive effort are largely recessive in cross 1 (Tab. 4.1) and

additive in cross 2 (Tab. 4.2). This implies that the negative effect on female flower production may

be moderate when these loci are heterozygous, which could facilitate the maintenance of these alleles in

dioecious populations. However, in situations of pollen limitation leaky individuals can sire a great number

of offspring through their male function either through selfing or by outcrossing with other females. As

a result, homozygosity at these loci will increase and populations could rapidly shift towards a selfing
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sexual system, similar as in the experimental populations. This genetic architecture suggests that the sex

expression of these leaky females could also revert quickly if pollen from males from dioecious populations

starts invading these populations. Individual based modeling could help to show under which conditions

loci with the observed effect sizes and dominance could be maintained in natural metapopulations.

Our results also have implications for our understanding of the evolution of sex chromosomes and

separate sexes in M. annua. There are no significant QTLs located on linkage group 1 in either cross,

which are the sex chromosomes (Fig. 4.4, Fig. 4.5). This means that the sex chromosomes do not play a

major role in the transition towards monoecy in the crosses analyzed in this study. In other plant species,

reversions towards combined sexes have been shown to be involved with mutations or recombination events

on the Y chromosomes (VanBuren et al. 2015; Kazama et al. 2016; Badouin et al. 2020). These reversions

are largely concordant with the canonical model of plant sex chromosome evolution, in which a recessive

male sterility mutations becomes linked with a dominant suppressor of male function (Charlesworth and

Charlesworth 1978a). In contrast, we showed that QTLs located on the autosomes can have a major effect

on sex expression in M. annua. At the same time we observe substantial leakiness in both sexes of M.

annua (Cossard and Pannell 2019). These patterns disagree with the presence of male sterility mutations

on the sex chromosomes. However, such a system could be concordant with the monoecy model, where

selection on variants with quantitative effects on male and female sex expression can cause a gradual shift

towards separate sexes (Charlesworth and Charlesworth 1978b). Our results suggests that some of these

variants could have rather large efffect sizes (Fig. 4.1, Fig. 4.2), and may have antagonistic effects on male

and female sex expression. It is conceivable that similar variants with a greater effect size or linkage of

multiple variants with additive effect could cause a complete shift to maleness in M. annua. However, the

fact that these variants are either recessive or codominant suggests that the molecular pathways underlying

the production of male flowers on leaky females could be different than those underlying dominant male

determining genes located on Y chromosomes in males of M. annua.
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Chapter 5

Conclusions

In this thesis I adressed questions regarding the genetics underlying transitions between sexual systems

in plants. The majority of angiosperms have combined sexes (The Tree of Sex Consortium 2014) and

this is also their most likely ancestral state (Sauquet et al. 2017). Only about 6% of angiosperms are

dioecious, however these are found in more than 40% of families and it has been estimated that they

evolved up to 5000 times independently (Renner 2014). In addition, there is evidence that transitions from

separate towards combined sexes are common as well (Käfer et al. 2017). Currently we know little about

the genomics underlying these transitions, however this knowledge will be essential to understand in detail

how major evolutionary transitions, like those between sexual systems, work. The aim of this thesis was to

better understand the genomics underlying sex determination in dioecious plants, but also those underlying

transitions from dioecy towards monoecy and androdioecy. In addition I explored how two other important

genomic and population genomic processes in plants, polyploidization and hybridization, can be involved

in these processes. I used plants from the genus Mercurialis as a model system, because while dioecy is

ancestral in Mercurialis, there have been multiple transitions towards monoecy and androdioecy in this

clade (Krähenbühl et al. 2002; Obbard et al. 2006). I analyzed a number of different genomic datasets to

further understand the genomics underlying these transitions.

One important genomic component involved in transitions between sexual systems in plants are sex

chromosomes (Ming et al. 2011). Unlike in most animals, where sex chromosomes commonly evolve via

sex chromosome turnover (Vicoso 2019), the evolution of sex chromosomes in plants is often a direct

consequence of the evolution of separate sexes (Charlesworth 2002). Besides their role in the evolution

of separate sexes, sex chromosomes have also been shown to be involved in the breakdown of dioecy

(Crossman and Charlesworth 2014; Wang et al. 2012; Zou et al. 2021). In addition, their haploid mode of
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sex-specific inheritance can cause the sex-linked regions to differ in their evolutionary trajectories from

the rest of the genome, which can have a number of effects on individual fitness and genetic diversity

within and between populations (Bachtrog 2013). Understanding the genomic and population genetic

consequences of the evolution of sex chromosomes is essential for understanding the evolution of separate

sexes as well as reversions towards combined sexes. I adressed several questions regarding sex chromosome

evolution in Chapter 2 and Chapter 3.

In Chapter 2, I asked whether there are circumstances under which plant sex chromosomes can introgress

between lineages. In addition, I wanted to explore what role allopolyploidization and introgression can

play in transitions between sexual systems. To this end I developed a new set of phylogenetic markers for

annual and perennial lineages of Mercurialis. Based on these markers I showed that the two main annual

and perennial clades share the same ancestral sex chromosomes (Fig. S1, Fig. S2). I also found that the

history of polyploid Mercurialis lineages is more complex than previously thought. I discovered multiple

previously unknown allopolyploidization events and I showed that all polyploid lineages in this dataset are

allopolyploids (Fig. 2.5). In addition, I found a signal of Y chromosome introgression from one of the

perennial lineages (most likely M. elliptica) into hexaploid M. annua (Fig. 2.3, Fig. 2.5).

Such a pattern of sex chromosome introgression has rarely been shown, and it is usually assumed that

sex chromosomes are disproportionately involved in reproductive isolation (Coyne 2018). In this case there

may be multiple factors which facilitated introgression of the Y chromosome. The fact that only a single

male-specific marker, but none of the markers located across the length of the sex chromosome, showed

a signal of introgression implies that the size of the non-recombining region could be very small. This

observation is concordant with the observations from Chapter 3 of this thesis, where I found only a single

male-specific exon-capture probe in hexaploid M. annua (Fig. 3.3). Empirical observations suggest that

the degree of reproductive barriers is greater on heteromorphic sex chromosomes (Lima 2014), which

implies that sex chromosomes with a small non-recombining region, like in hexaploid M. annua, could be

less likely to be involved in reproductive isolation.

Another important factor in this system may be polyploidy. The dominance hypothesis explains the

commonly observed reduction of fitness in offspring of the heterogametic sex in interspecific crosses

(Haldane’s Rule (Haldane 1922)) with the effect of recessive deleterious mutations, which are expressed

if a functional copy on one of the sex chromosomes is missing (Turelli and Orr 1995). In polyploids,

multiple redundant functional copies can be expressed (Comai 2005). This means that additional genome

copies could shelter recessive deleterious variants even if a functional copy is missing on one of the sex

chromosomes. Differences in ploidy are also thought to cause reproductive isolation by itself. This may
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be important to understand how the Y chromosome introgressed from perennial Mercurialis lineages

into hexaploid M. annua. The perennial lineage, which is the most likely origin of the Y chromosome in

hexaploid M. annua, is perennial M. elliptica. Both of these lineages are hexaploids, and in addition both of

them contain a subgenome that is closely related to diploid M. huetii (Fig. 2.5). Taken together polyploidy

may have either facilitated introgression in hexaploid M. annua, or at least similarities in ploidy and genome

content may have avoided the formation of reproductive barriers commonly observed in interploid hybrids.

The introgression of the Y chromosome into hexaploid M. annua probably caused a transition from

monoecy to androdioecy. Due to the strong outcrossing advantage of males in monoecious populations

(Eppley and Pannell 2007), Y chromosomes are expected to be under strong positive selection. This would

make Y chromosome introgression into these populations more likely than into dioecious populations,

where introgressing Y chromosomes would have to replace other male determiners already present in the

population. It has been previously hypothesized that hybridization may have played an important role in

the evolution of the few known androdioecious plants (Yakimowski and Barrett 2016). My results show

that this has likely been the case in hexaploid M. annua.

Overall, Chapter 2 shows that there are a number of factors that can potentially cause plant sex

chromosomes to behave differently than what is expected from observations based on diploid, bisexual

animal systems. Both the small size of the non-recombining region and polyploidy may have contributed to

facilitate introgression. However, it was possibly positive selection involved with a transition from monoecy

towards androdioecy that had the greatest effect in causing the pattern of sex chromosome introgression

in this system. The importance of introgression for adaptive evolution is being increasingly recognized.

Introgression has been shown to be involved in adaptive evolution a number of animal species (Hedrick

2013), including humans (Racimo et al. 2015), and in plants (Suarez-Gonzalez et al. 2018). The discovery

of the introgression of part of a Y chromosome in hexaploid M. annua adds a novel and unusual example

to these cases, and shows that interspecific gene flow can play an important role in evolutionary transitions

between sexual systems.

In Chapter 3, I wanted to further explore the role of recombination in the evolution of plant sex

chromosomes. Recombination is thought to play an outstanding role in the evolution of sex chromosomes

(Charlesworth 2017). On animal sex chromosomes recombination suppression often evolves around the sex

determining region of sex chromosomes, which can have a number of consequences on the molecular scale,

like the accumulation of repetitive elements and the loss of functional gene copies, up to the evolution of

microscopically observable differences between sex chromosomes on the chromosomal scale (Bachtrog

2013). Regions of suppressed recombination have also been observed on plant sex chromosomes. However,
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in plants recombination suppression may also be involved in the initial evolution of separate sexes, as

proposed by theoretical models (Charlesworth and Charlesworth 1978a; Charlesworth and Charlesworth

1978b), and it is not clear to what degree recombination suppression can evolve on plant sex chromosomes

after that. In addition, it has been shown that in many cases sex chromosomes evolve in regions of

reduced recombination (Charlesworth 2019), which can make it difficult to determine if regions of low

recombination around the sex determiner are actually the result of sex chromosome evolution.

In Chapter 2, I showed that several annual and prennial lineages of Mercurialis share a common XY

system of sex determination (Fig. S2). This makes this genus very useful to study the evolution of

recombination suppression on plant sex chromosomes, because it allowed me to identify regions of repressed

recombination that must have evolved after the evolution of separate sexes. In Chapter 3, I wanted to

explore what role variation of recombination rates between sexes and on different parts of the chromosome

play for the evolution of sex chromosomes and separate sexes and I wanted to test if recombination

suppression can evolve on plant sex chromosomes after the evolution of separate sexes. To this end I

developed a set of new genomic resources to build new genome assemblies and linkage maps for diploid

M. annua. I combined information from these datasets to improve our understanding of the structure

and origin of the sex chromosomes of diploid M. annua. Based on the patterns of repeat abundance

and recombination rates on the sex chromosomes and autosomes I showed that the Y chromosome of

M. annua likely evolved in a pericentromeric region, where limited recombination and increased repeat

density predated the evolution of sex chromosomes (Fig. 3.1, Fig. S6). This pattern has been found in

several other plant sex chromosomes (Zhang et al. 2008; Pilkington et al. 2019; Kersten et al. 2014),

which implies that there may be selective reasons why sex chromosomes should evolve in these particular

regions (Charlesworth 2019).

I also reevaluated a conclusion from a previous publication that claimed that a region of limited

recombination on the M. annua Y chromosome is evidence for the presence of a second region of suppressed

recombination with more limited divergence between sex chromosomes, a so-called evolutionary stratum

(Veltsos et al. 2019). I did not find any evidence for such a stratum in diploid M. annua, which challenges

this claim and stresses the fact that the lack of recombination in a genetic cross is not equivalent to

complete recombination suppression (Kirkpatrick et al. 2020). This observation is in line with the idea

that even very rare recombination events are sufficient to stop degeneration commonly associated with

recombination suppression.

I used additional datasets to test if recombination suppression did evolve in any of the other Mercurialis

lineages. I found molecular signatures commonly associated with the evolution of recombination suppression
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on a major part of the sex chromosomes of M. huetii and M. canariensis (Fig. 3.4). Based on the

phylogenies of the sex-linked marker from Chapter 2, I could also show that recombination suppression

evolved independently in both of these lineages (Fig. 2.5). These results challenge the idea that evolution

of recombination suppression does not evolve in the same way as on animal sex chromosomes (Müller

et al. 2020) and they suggest that the region of suppressed recombination on plant sex chromosomes can

extend after the evolution of separate sexes.

The results from Chapter 2 and Chapter 3 show that sex chromosomes played a dynamic role in the

evolution of sexual systems in the genus Mercurialis. They were involved in transitions towards androdioecy

in hexaploid M. annua through introgression. They also evolved recombination suppression over wide

parts of the sex chromosome, while reduced recombination may have played a major role in the initial

evolution of sex chromosomes. However, not all changes in sexual systems are related to the evolution

of sex chromosomes. While sex chromosomes can also be involved in reversions towards combined sexes

(Crossman and Charlesworth 2014), it is also likely that loci located on other genomic regions can cause

the expression of the opposite sex in either males or females in dioecious plants. Such leakiness has been

observed in many dioecious plant species (Ehlers and Bataillon 2007; Cossard and Pannell 2019), however

almost nothing is known about the underlying genetic architecture.

In Chapter 4 I used plants from an experimental evolution setup in diploid M. annua, where removal of

males caused a strong increase in leaky sex expression on females after a limited number of generations

(Cossard, Gerchen, et al. 2021). I wanted to test what kind of genetic architecture could be involved

in such an increase of leakiness, which has been strong enough to constitute a transition from separate

towards combined sexes. Specifically, I wanted to test if these effects were caused by many small effect

loci or by few loci with large effects and if these loci effect the expression of one sexual function or if they

regulate both sex functions at the same time.

I identified QTLs for expression of both sexual functions based on F 2 crosses between control and

selection lines and identified major effect QTLs in both crosses (Fig. 4.4, Fig. 4.5). QTLs that increased

the expression of male flowers and decreased the expression of female flowers, were colocalized and had

recessive or codominant effects (Tab. 4.1, Tab. 4.2). In each cross the major effect loci were located

on a different linkage group. In addition I identified minor effect loci in both crosses, which explained a

lower amount of the variance in male flower production observed in the cross (Tab. 4.1, Tab. 4.2). These

results imply that leakiness in M. annua has a strong heritable genetic component, which is based on few

large effect loci. The fact that different major effect loci were found in each cross implies that multiple

of these loci segregate in natural metapopulations of diploid M. annua. The presence of loci with such
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a strong effect on leakiness poses the question how they are maintained in natural metapopulations of

diploid M. annua. Theoretical studies predict that selection for reproductive assurance could select for

leakiness during recurrant periods of low population densities (Crossman and Charlesworth 2014). Such a

pattern would be concordant with both the strong metapopulation dynamics in M. annua and its history

of colonization of central Europe after the last glacial maximum (Obbard et al. 2006; Cossard and Pannell

2021; Cossard, Gerchen, et al. 2021). The fact that large effect loci with antagonistic effects on male

and female sex expression are found on the same linkage groups implies that they could cause a tradeoff

between both sex functions. Such tradeoffs are predicted by sex-allocation theory (Charnov et al. 1976;

West 2009; Campbell 2000) and Chapter 4 of this thesis is one of the first studies that shows what their

genetic architecture might look like.

I showed that transitions between separate sexes in Mercurialis are largely based on Mendelian loci

with large effects on sex expression. Maleness is determined through dominant male determiners located

on the Y chromosome. Inrogression of these Y chromosomes also caused transitions to androdioecy in

hexaploid M. annua. In experimental populations, transitions from femaleness towards combined sexes

are determined by different autosomal loci, which may be recessive or codominant, but have a strong

effect on the expression of both sexes. This information adds a genetic component to our understanding of

variation in sexual systems in Mercurialis, which has been largely based on phenotypic data from natural

and experimental populations. Such a combination of phenotypic and genetic information can be a powerful

tool to understand the evolution of transitions between sexual systems in other plant species as well. With

a further decrease in the costs of genomic analyses, more such datasets can be expected in the future.

This will allow comparative analyses between species, which can address more general questions, such as

whether the same genes and gene networks become involved in transitions in sexual systems in different

lineages.

My results touch on questions in evolutionary biology that go beyond transitions of plant sexual

systems. One important question concerns whether adaptive changes are caused by novel mutations or by

standing genetic variation (Barrett and Schluter 2008). In the case of transitions towards combined sexes in

Mercurialis, my results suggest that transitions from separate to combined sexes can be based on standing

genetic variation maintained in natural metapopulations of M. annua. In addition, introgression and

hybridization are being increasingly recognized as sources of adaptive genetic variation (Suarez-Gonzalez

et al. 2018). My example of Y chromosome introgression is an example of how geneflow between species

can be the cause of substantial evolutionary change.
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5.0.1 Perspectives for further research

My results pointed to several questions in sex chromosome evolution which could be adressed in the genus

Mercurialis, but also in other species. I found evidence for a common XY sex chromosome system in

annual and perennial Mercurialis lineages. However, I was not able to amplify the male-specific PCR

marker in recently discovered tetraploid M. annua males. Due to limited sampling it is unclear if these

males do not share the same XY system of sex determination, or if the male-specific PCR marker did not

amplify due to mutations in the prime region, or because it is located on a region of the Y chromosome

that is missing in these samples. Further sampling and genomic data analyses will help to test if maleness

has the same genetic basis as in other lineages of Mercurialis, or if it evolved independently, which would

be of high interest. Also my dataset is limited to the three perennial lineages that are the closests relatives

to annual Mercurialis species (Krähenbühl et al. 2002). Genomic analysis of other more distantly related

dioecious perennial lineages of Mercurialis could test if the XY system is ancestral in the whole clade.

I showed that sex chromosomes are able to introgress between lineages under certain circumstances. This

observation has been contrary to previous conceptions of sex chromosomes contributing disproportionally

to reproductive isolation. I proposed that either the small size of the non-recombing region, similarities in

ploidy, or positive selection through increased outcrossing success of males are potential factors that could

have contributed to this pattern. The effect of each of these factors can be further explored by artificial

introgression of sex chromosomes between lineages. Since there is variation in ploidy, sexual system and in

the extent of the non-recombining region on Y chromosomes, it may be possible to further narrow down

which of these factors is most relevant for allowing or promoting introgression of sex chromosomes using a

full factorial experimental design.

In Chapter 3 I showed that the sex chromosomes of M. annua likely evolved in a region of reduced

recombination. It has been proposed that this reduction of recombination may have facilitated the

evolution of separate sexes (Charlesworth 2019), based on models for the evolution of separate sexes in

plants (Charlesworth and Charlesworth 1978a; Charlesworth and Charlesworth 1978b). These models

propose that recombination suppression will link loci with effects on male and female sex expression,

which seems plausible for several plant species, whose sex chromosomes have been found to be located

in the pericentromeric regions as well (Wang et al. 2012; Pilkington et al. 2019). In order to test this

hypothesis in Mercurialis, it would be necesseary to identify the genes responsible for sex determination.

My new estimate of the size of the sex-linked region on the Y chromosome in diploid Mercurialis annua is

approximately 10 Mb, which means that it could still contain dozens or hundreds of genes and it will be

necessary to narrow down this region further. One approach that could be used to do this would be deletion
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mapping of Y chromosomes (Kazama et al. 2016), however, this can be time and labor intensive. A

promising alternative could involve further analysis of the sex-linked content of hexaploid M. annua, or the

perennial lineages, since my results suggest that the size the non-recombining region may be smaller than

in diploid M. annua. Comparing male-specific genes that are shared between Y chromosomes of related

lineages has been shown to be an efficient way to narrow down candidate genes for sex determination

(Torres et al. 2018). In addition, it will be of high interest to generate further genomic data for M. huetii

and M. canariensis, since I showed that there have been independent extensions of the sex-linked region

(Fig. 3.4). Based on this data, patterns of molecular evolution can be compared between sex chromosomal

regions that are shared between all Mercurialis lineages and those that evolved recombination suppression

in specific lineages. It will be of particular interest to test if regions that evolved recombination suppression

at a later stage will follow the same evolutionary trajectories as non-recombining regions on animal sex

chromosomes. Main questions will be to what degree the region suppressed recombination Mercurialis

accumulated repetitive elements, if there has been genetic degeneration and if chromosomal translocations

or inversions were involved in the evolution of recombination suppression.

In Chapter 4 I analyzed two crosses, each representing one experimental line, and identified large effect

loci with a strong effect on leaky sex expression in females. I plan to extend these analyses with samples

from further crosses between the two remaining experimental lines from the experimental evolution setup.

This can show if further loci with different effect sizes were involved in changes in sexual phenotypes. In

addition, it would be interesting to generate further genomic data, which, in combination with improved

genome assemblies, could help to narrow down the number of potential candidate genes responsible

for changes in sexual phenotypes. While it seems unlikely that it will be possible to identify single

candidate genes based on the current crosses, further crosses could be generated for fine scale mapping

and characterization of variants. If these variants are better characterized it would also be possible to

study their distribution in natural populations of Mercurialis, which could give hints to their maintenance.

Additional genomic analyses of these regions in tetraploid and hexaploid M. annua can show if similar

variants could have been involved in their transition to monoecy. Similar leakiness has been observed in a

large number of plant species (Ehlers and Bataillon 2007; Cossard and Pannell 2019), and it would be

interesting to explore the underlying genetics in these species as well.
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Chapter 6

Supplementary Material

Figure S1: Agarose gel of a 200 bp sex-linked PCR marker in diploid M. annua, M. huetii, M. canariensis
and hexaploid M. annua, including a hexaploid lineage with male-like inflorescences. In the rightmost lanes
is a BenchTop 100 bp DNA ladder (Promega). Symbols under lanes indicate sample sex, hermaphrodite
symbols with a small plus indicate monoecious plants with male-like inflorescences.
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Table S1: Primers used for phylogenetic analyses.

Marker Linkage Group Position [cM] Size [bp] TA [C] Sequence Forward Primer Sequence Reverse Primer
sl_an Y - 780 60 CAAGCCCTCCTAGTGCTCAA ATGATTTTCACAAGCATACCTCAA
sl_hue Y - 780 60 CAAGCCCTCCTAGTGCTCAA AAGATTTCCACGAGCATACCTC
sl_can Y - 780 55 GGATGATGTCTCAAGCCCTTC TTTTCACGAGCATACCTCAATG
sl_6n_per Y - 780 55 GATGCCTCAAGCCCTCCTA AAGATTTCCACGAGCATACCTC
1_20 1 0 783 60 HGCTATGGTTGTCAATAAATTCA TTGCACTTGAACCCACTCCC
1_23 1 7.48 2234 60 ATCCGTGGCCAYATTTTGCA AATGGTGCCTCTTCCTCTGC
1_28 1 9.33 940 60 ACCTTGAGCTGAYCCTACTGCA MATTCAGAACTTGCAGAAGC
1_30 1 18.59 848 60 YCAAGCTTGTTCTGTGCAAA ACATTCCCTTTTGTYCTTAAGGC
1_27 1 24.3 1451 60 RGCTTTCTACAAGCAGCTCA TGCTGTAGGAACTAGTGGCC
1_31 1 40.59 1031 60 TATGGTGGACACTTGGCAGC RCCTCATAGCCCAATCCAA
1_32 1 42.74 717 60 TGAGGGRAATCCAAGAGCAC AGAAGCTGGTCWGGAATGGACT
1_22 1 44.14 1442 60 AACTGCATGGGAGTGGGAAG RCATATTGCACCAAGCCCAT
1_33 1 46.44 847 60 CCTCTCTARCCACCCACCGG KCTTGTTCAGATCCCCATGTG
1_34 1 48.3 880 60 TCACTTCACTGCARAAATCAGCA CTTCGCTGCAACATTGTGGT
1_25 1 53.85 1825 60 CCCCTCCAATTGCTGTCGAA CTGGCCCTAGCAAGTCCTTC
1_38 1 56.76 924 60 TCAGGCACRTAAGGCATTAAGTGAACG GGGCAAAGAACACAAGGYTGCTT
1_46 1 60.33 985 60 ATGCAGGTGGAAGCAGAGTG CTGCGAGCCTCTTTTTGCAR
1_43 1 68.67 1266 60 GAGCAAGTCCTTGARACCCAG CCCCATTTGTTCAGCAATYCCC
1_24 1 77.93 1839 60 RAGTCCAAATGAAATAGCCAGT GCAAGTCTMTTGAGTGCTTGTGC
1_21 1 85.34 1052 60 RCTGGCTTCTACAATGGCAC GAAGGGAGGTTCARGTTGGC
2_4 2 9.48 864 60 RTGGAAAGAAGTCAAAGCCCA TCAATGCCAAAGCTTCATGCA
3_5 3 65.27 718 60 TGATGTTACTTTCTTGAGCTTGCT SATGGCTACATGACAATCACT
3_6 3 93.05 727 60 AGGACKTGTGTTGGACAGTGT AGCTTCTCTGTCAAGTCCACGT
4_4 4 37.48 700 60 AGATGGTTGATGTGGTTTGTGG ATGAAATCRCTGGTTATCCCAACAT
5_5 5 61.56 1012 60 TGTTGCACACTCWGGAGCCATCA AGTGCATGATTTGTCAAAGAAGGG
6_4 6 37.11 1005 60 ACCCTTRAGTCCTTTCCGGA ATGGTGCTGCAYAAGTTTGG
7_5 7 57.94 875 60 TTCCTYGCTCTCACATCCCC RGTGACACTAGTAATGCTTTTGA
8_7 8 16.95 876 60 AGAATGCTCCTYCTCCCAAGAA RGGGATTCACTAGTCGATCG
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Table S2: Samples used for phylogenetic analyses in Chapter 2. Ped indicates monoecious plants with
male-like inflorescences.

Sample Lineage Sex Origin Ploidy

2nm1 M.annua (2n) male Spain 2x

2nf1 M.annua (2n) female Spain 2x

2nm2 M.annua (2n) male Turkey 2x

2nf2 M.annua (2n) female Turkey 2x

4nm M. annua (4x) male Morocco 4x

4nf M. annua (4x) monoecious Morocco 4x

6nm1 M. annua (6x) male Spain 6x

6nh1 M. annua (6x) monoecious Spain 6x

6nm2 M. annua (6x) male Spain 6x

6nh2 M. annua (6x) monoecious Spain 6x

6nped1 M. annua (6x) Ped monoecious, ped Spain 6x

6nped2 M. annua (6x) Ped monoecious, ped Spain 6x

Canm M. canariensis male Teneriffe 4x

Canf M. canariensis female Teneriffe 4x

Huem M. huetii male Spain 2x

Huef M. huetii female Spain 2x

Revm M. reverchonii male Spain 4x

Revf M. reverchonii female Spain 4x

Tomm M. tomentosa male Spain 4x

Tomf M. tomentosa female Spain 4x

Ellm M. elliptica male Spain 6x

Ellf M. elliptica female Spain 6x

Perm M. perennis male Switzerland 6x

Perf M. perennis female Switzerland 6x
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Figure S2: Agarose gel of a 700 bp sex-linked PCR marker in annual and perennial lineages of Mercurialis.
Symbols under lanes indicate sample sex, hermaphrodite symbols with a small plus indicate monoecious
plants with male-like inflorescences. In the leftmost lanes is a BenchTop 100 bp DNA ladder (Promega).
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Figure S4: Maximum-likelihood phylogenetic trees based on phylogenetic markers located on the sex
chromosomes and autosomes. Numbers below branches indicate bootstrap support. Samples belonging to
the perennis clade are coloured red, samples belonging to the annua clade are coloured green, samples
belonging to the canariensis clade are coloured orange and samples belonging to the other perennial
lineages are coloured purple.
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Table S3: Samples used for exon-capture data in Chapter 3. For sex, M indicates male, F indicates female,
Mon indicates monoecious individuals.

Lineage Sex Sample ID Origin Ploidy

M. annua (2x) M 1B France 2x

M. annua (2x) M 13A Spain 2x

M. annua (2x) M 21A Greece 2x

M. annua (2x) M 33A Greece 2x

M. annua (2x) M 38A Turkey 2x

M. annua (2x) M 43A United Kingdom 2x

M. annua (2x) M 49A Spain 2x

M. annua (2x) M 56A Spain 2x

M. annua (2x) M 7B Turkey 2x

M. annua (2x) F 4B France 2x

M. annua (2x) F 16A Spain 2x

M. annua (2x) F 24A Greece 2x

M. annua (2x) F 34A Greece 2x

M. annua (2x) F 40A Turkey 2x

M. annua (2x) F 46B United Kingdom 2x

M. annua (2x) F 52A Spain 2x

M. annua (2x) F 58A Spain 2x

M. annua (2x) F 10A Turkey 2x

M. huetii M H16_1_1M Spain 2x

M. huetii M H16_1_3M Spain 2x

M. huetii M H16_2_3M Spain 2x

M. huetii M H16_2_4M Spain 2x

M. huetii M H16_3_1M Spain 2x

M. huetii M H16_3_3M Spain 2x

M. huetii M H16_3_8M Spain 2x

M. huetii M H16_4_1M Spain 2x

M. huetii M H16_4_4M Spain 2x

M. huetii F H16_2_1F Spain 2x

M. huetii F H16_2_2F Spain 2x
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M. huetii F H16_2_6F Spain 2x

M. huetii F H16_3_1F Spain 2x

M. huetii F H16_3_9F Spain 2x

M. huetii F H16_3_10F Spain 2x

M. huetii F H16_4_1F Spain 2x

M. huetii F H16_4_2F Spain 2x

M. huetii F H16_4_6F Spain 2x

M. canariensis M Can212M Teneriffe 4x

M. canariensis M Can213M Teneriffe 4x

M. canariensis M Can212_19M Teneriffe 4x

M. canariensis M Can209m4 Teneriffe 4x

M. canariensis M Can209m3 Teneriffe 4x

M. canariensis M Can209_M2 Teneriffe 4x

M. canariensis M Can209m1 Teneriffe 4x

M. canariensis M Can210M1 Teneriffe 4x

M. canariensis F Can212f3 Teneriffe 4x

M. canariensis F Can212f2 Teneriffe 4x

M. canariensis F Can212f1 Teneriffe 4x

M. canariensis F Can209f3 Teneriffe 4x

M. canariensis F Can209f2 Teneriffe 4x

M. canariensis F Can207_2f Teneriffe 4x

M. canariensis F Can207_42f Teneriffe 4x

M. canariensis F Can209_26f Teneriffe 4x

M. annua (6x) M A30_28 Spain 6x

M. annua (6x) M A30_30 Spain 6x

M. annua (6x) M A29_28 Spain 6x

M. annua (6x) M A29_29 Spain 6x

M. annua (6x) M A20_29 Spain 6x

M. annua (6x) M A20_30 Spain 6x

M. annua (6x) M A11_28 Spain 6x

M. annua (6x) M A11_30 Spain 6x

M. annua (6x) M A5_29 Spain 6x

M. annua (6x) M A5_30 Spain 6x
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M. annua (6x) Mon A30_1 Spain 6x

M. annua (6x) Mon A30_2 Spain 6x

M. annua (6x) Mon A29_2 Spain 6x

M. annua (6x) Mon A29_3 Spain 6x

M. annua (6x) Mon A20_4 Spain 6x

M. annua (6x) Mon A20_5 Spain 6x

M. annua (6x) Mon A11_2 Spain 6x

M. annua (6x) Mon A11_3 Spain 6x

M. annua (6x) Mon A5_2 Spain 6x

M. annua (6x) Mon A5_3 Spain 6x

M. tomentosa M Tom_M1 Spain 4x

M. tomentosa M Tom_M2 Spain 4x

M. tomentosa M Tom_M3 Spain 4x

M. tomentosa M Tom_M4 Spain 4x

M. tomentosa M Tom_M5 Spain 4x

M. tomentosa M Tom_M7 Spain 4x

M. tomentosa M Tom_M8 Spain 4x

M. tomentosa M Tom_M9 Spain 4x

M. tomentosa F Tom_F1 Spain 4x

M. tomentosa F Tom_F2 Spain 4x

M. tomentosa F Tom_F3 Spain 4x

M. tomentosa F Tom_F4 Spain 4x

M. tomentosa F Tom_F5 Spain 4x

M. tomentosa F Tom_F7 Spain 4x

M. reverchonii M Rev1_m1 Spain 4x

M. reverchonii M Rev1_m2 Spain 4x

M. reverchonii M Rev1_m3 Spain 4x

M. reverchonii M Rev1_m4 Spain 4x

M. reverchonii M Rev2_m1 Spain 4x

M. reverchonii M Rev2_m2 Spain 4x

M. reverchonii M Rev2_m3 Spain 4x

M. reverchonii M Rev2_m4 Spain 4x

M. reverchonii M Rev2_m5 Spain 4x
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M. reverchonii M Rev2_m6 Spain 4x

M. reverchonii F Rev1_f1 Spain 4x

M. reverchonii F Rev1_f2 Spain 4x

M. reverchonii F Rev2_f1 Spain 4x

M. reverchonii F Rev2_f2 Spain 4x

M. reverchonii F Rev2_f3 Spain 4x

M. elliptica M Ell_M1 Spain 6x

M. elliptica M Ell_M2 Spain 6x

M. elliptica M Ell_M4 Spain 6x

M. elliptica M Ell_M6 Spain 6x

M. elliptica M Ell_M7 Spain 6x

M. elliptica M Ell_M8 Spain 6x

M. elliptica M Ell_M9 Spain 6x

M. elliptica M Ell_M10 Spain 6x

M. elliptica M Ell_M11 Spain 6x

M. elliptica F Ell_F1 Spain 6x

M. elliptica F Ell_F3 Spain 6x

M. elliptica F Ell_F4 Spain 6x

M. elliptica F Ell_F5 Spain 6x

M. elliptica F Ell_F6 Spain 6x

M. elliptica F Ell_F7 Spain 6x

M. elliptica F Ell_F9 Spain 6x

M. elliptica F Ell_F10 Spain 6x

M. elliptica F Ell_F11 Spain 6x
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Figure S5: Plots of the first two principal components from a principal component analyses based on male
M. annua genotypes of three crosses between male M. annua and female M. huetii used in Chapter 3.
Black points represent individual samples, red triangles indicate outlier samples that were removed from
the dataset. Values in square brackets indicate the proportion of variance explained by each principal
component.
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Figure S7: Plots of the first two principal components from a principal component analyses based on the
genotypes of F 2 offspring of both crosses used in Chapter 4. Black points represent individual samples, red
triangles indicate outlier samples that were removed from the dataset. Values in square brackets indicate
the proportion of variance explained by each principal component.
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