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Abstract Techniques used in practice often differ from tools developed in aca-

demia. The lack of communication that may exist between academia and practice

can then have important consequences for many insurance companies or pension

funds. This issue is illustrated with what is currently happening in Switzerland.

Swiss pension funds use mortality tables that are regularly updated with new

observations. A new version of these tables has been recently published and

includes a procedure to forecast mortality until 2150. The method applied for these

projections is very different from the several forecasting models that have been

developed in academia over the last decades. In this paper, we compare mortality

forecasts used by practitioners in Switzerland and the forecasts resulting from two

simple approaches well-known in academia, the Lee–Carter model and the Helig-

man–Pollard function. These two approaches have the advantage of simplicity and

thus, all insurance companies and pension funds may implement them without any

difficulties. The analysis demonstrates that both academic methods forecast a more

important decrease in mortality than the approach applied by pension funds, espe-

cially in the long-run and for females. Impacts on pension liabilities are then

evaluated, enlightening the future challenges many institutions will face. Finally, a

few points which insurance companies or pension funds need to be cautious with,

when using mortality forecasts, are summarized.
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1 Introduction

Longevity risk became an important and highly discussed topic in nowadays

developed economies. When analyzed, this risk is often divided in two components,

an individual one and an aggregate one. The first one refers to random fluctuations

around an expected value and is due to the uncertainty in an individual’s lifetime.

Insurance companies reduce this risk by insuring a sufficiently large number of

persons. The second component is a systematic risk, that is a systematic deviation

from the expected lifetime due to unexpected mortality improvements. In such a

situation, individuals tend to constantly outlive their savings. Such mortality

improvements have significant financial impacts on insurance companies as well as

on the social security system of a country, on its health care system, and on many

other institutions including pension funds and banks. Indeed, an increasing life

expectancy is reflected in the potential costs of financing a growing proportion of

older aged retired individuals.

Mortality modeling has then attracted increased research attention over the last

decades in several disciplines. As life expectancy, and its associated costs to society,

has increased significantly, actuaries started to be interested in such models.

Demographers look for explanations of past evolutions. Biologists are interested in

estimates of the limit to human life span, that is the biologically maximum length of

life, and look to genetics as an explanation of the increase in life expectancy.

Economists analyze the impact of life expectancy on economic growth. Many

experts are also interested in knowing if the increase in life expectancy is due to

longer medicine intake or to improved health. Answers to such questions are key

factors to determine the costs of healthcare for the elderly. Several models were then

developed in academia in order to capture the features of mortality rates (see Booth

and Tickle [5] for a review).

However, in Switzerland, none of these techniques is used in practice. Indeed,

actuarial valuations for pension funds are mainly based on three different official

mortality tables. The first one refers to EVK (‘‘Eidgenössische Versicherungsk-

asse’’), based on the experience of the Federal Pension Fund, and is published every

10 years since 1950. The second one, published every 10 years from 1950 to 2000

and every 5 years since then, is called VZ (‘‘Versicherungskasse der Stadt Zürich’’)

and is mainly based on the experience of the pension fund of the City of Zurich and,

since 2005, also on the experience of several other public pension funds. Finally, in

2002, the first mortality tables based on the experience of private pension funds

were published, denoted BVG 2000 (‘‘Bundesgesetz über die berufliche Alters-,

Hinterlassenen- und Invalidenvorsorge’’) or LPP 2000 (‘‘loi sur la prévoyance

professionnelle vieillesse, survivants et invalidité’’). These tables are updated every

5 years.

The current tables are then first VZ 20051, based on the statistics of the years

2001–2005, second EVK 2000, based on 1993–1998 and no longer updated, and

third LPP 2010 based on the observations of 2005–2009. VZ 2005 and LPP 2010 are

different from previous tables since they include a forecasting approach for

1 A new version of these tables is expected for November 2011.
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mortality rates until 2150. Both forecasting approaches are based on a work

published by the statistical office of the canton Vaud (Menthonnex [16], updated a

few years later with Menthonnex [17]). The forecasts do not use any models

developed in academia, but mainly expert opinions or ‘‘informed judgement’’ on

potential future evolutions as well as ‘‘historical continuity’’2. Although this

approach does not rely on well-known techniques, it gives an interesting and

different perspective on the possible future trends.

One may wonder then what would be the financial impact for a pension fund if

techniques developed in academia were actually employed in practice. This paper

tries to answer this question by applying two different forecasting approaches to

Swiss mortality rates and comparing the financial impacts they have. Indeed, future

mortality rates are key components in assessing retirement liabilities within pension

fund valuations.

The first approach refers to the well-known Lee–Carter model (Lee and Carter

[12]), which has been successfully applied at the population level for the US data in

the past. This model has become a standard in mortality projections. It allows trends

to vary by age, while a single common factor across ages is used in order to

determine the general level of mortality improvement over time. Its popularity is

mainly related to its simplicity of use as a single time series needs to be projected in

order to forecast the complete age profile of mortality.

We suggest as well a second approach. A decade before the Lee–Carter model,

Heligman and Pollard [10] developed a mathematical expression for the graduation

of the age pattern of mortality. In contrast to the Lee–Carter model designed for

projections, their function is aimed at smoothing the age pattern of mortality, each

parameter having convenient demographic meaning. However, over the years,

several applications and extensions of the Heligman–Pollard model have been

suggested, including attempts to use this model as a tool to forecast mortality rates

over time (Bell [1], Felipe et al. [8], McNown and Rogers [14], Rogers and Gard

[20]). The principal benefit of the Heligman–Pollard function over the Lee–Carter

model is that it does take advantage of the strong constancy observed in the age

profile of mortality rates. Furthermore, the use of a parametric model enables

comparisons over time and across countries.

Ideally, the time series of the parameters should be modeled with multivariate

time series, which capture dependence between the parameters. However, univariate

AutoRegressive Integrated Moving Average (ARIMA) models have been com-

monly used in the past, as univariate forecasts are more easily understood and

applied. The approach introduced in this paper also uses univariate models, but not

traditional ARIMA processes. Indeed, the suggested method is even simpler as it

uses standard regression methods. Experts using such an approach may include in

their forecasts some prior-knowledge which accounts for the impact on mortality of

known factors. Several assumptions on the future evolutions may then be tested.

ARIMA processes can not anticipate a decline in mortality due to a new cure

against, for instance, cancer, in contrast to the approach presented in this paper.

Besides, including expert knowledge partly allows to include some dependences

2 Terminology used by McNown and Rogers [14].
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among the parameters in the model, as some implausible forecasted trends for the

parameters may be adjusted to the expert expectations, based on past observations.

These two forecasting methods are chosen because of their simplicity. They can

be easily implemented by practitioners as they do not require high qualifications in

specific fields, such as multivariate time series. These two models are presented in

the third section of the paper after an introduction to the dataset in Sect. 2. In

Sect. 4, the two models are tested on Swiss data. Based on the fitting period of

1876–1979, female mortality projections are performed until 2005, which enables

comparisons with actual data and thus, to measure the accuracy of the forecasts.

Following the same procedure as in the first part of the paper, mortality is then

projected over the period 2006–2075 in Sect. 5, giving key results on possible future

trends. A comparison with the forecasting approach of the LPP 2010 tables is

performed. Section 6 enlightens the impact of the mortality assumptions on the

valuation of pension liabilities through the pension conversion rate. The last section

draws some conclusions and highlights some cautions to be taken when forecasting

mortality.

2 Data

Mortality rates are defined as the number of persons for each age and sex who die in

a particular year, divided by the number of persons of that age and sex alive at the

beginning of the year. Such data are collected from the Human Mortality Database,

administered by the Department of Demography of the University of California and

by the Max Planck Institute for Demographic Research (Berkeley, USA and

Rostock, Germany [2]). This database contains demographic information by single

age (zero to 110) for years 1876–2005. Several countries are represented in it,

including Switzerland for which the main data source is the Swiss Federal Statistical

Office. Mortality tables introduced in this paper are based on the age-last-birthday

rule.

3 Models

3.1 Heligman–Pollard model

In 1980, Larry Heligman and John H. Pollard presented a new function to model the

age pattern of mortality based on the Thiel’s formulation (Thiel [23]). Their

function is a concise representation of mortality by age, since the most important

features of the changing age pattern of mortality are captured by a relative small set

of parameters. Several versions of the Heligman–Pollard function exist. Two of

them are described in some details thereafter, one with eight parameters, and the

other one with nine.

The Heligman and Pollard [10] function is defined as3

3 In order to avoid to overload the equations, the sex index is omitted.
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qx;t

px;t
¼ A

ðxþBtÞCt

t þ Dte
�EtðlnðxÞ�lnðFtÞÞ2 þ GtH

x
t ; ð1Þ

where

qx;t ¼ probability of dying at age x; in year t;

px;t ¼ 1� qx;t;

Zt ¼ value of the parameter Z at time t;

for Z 2 ðA;B;C;D;E;F;G;HÞ:
An interesting feature of this function is that each parameter has a demographic

and/or biological meaning. The function is a sum of three terms: the first one

represents the mortality rates during childhood ; the second one, the middle ages

(accident hump); and the last one, the mortality rates at older ages. This structure

allows the inclusion in the model of several assumptions about the effects that

changes in behavioral or socioeconomic variables may have (Tabeau et al. [22]).

The mortality rates during childhood are expressed as a function of three

parameters: Parameter A is the level of infant mortality, B describes the mortality

change between age zero and age one (the larger the value of B is, the smaller the

change) and C defines the speed at which the mortality rates decline at young

ages.

The accident hump is modeled by three parameters, as well. Parameter

D describes the severity of the accident hump (the larger the value is, the higher

the hump). Parameter E specifies the age range at which the accident hump occurs,

while F is the age for which the hump has the most impact.

Finally, the mortality at older ages is modeled by a Gompertz function. The

general level of mortality rates is reflected by the parameter G, and H is needed to

characterize the steepness of the curve.

Heligman and Pollard suggested as well some alternative representations of the

age profile of mortality. One of them is found by noting that Eq. 1 is almost

identical to

qx;t ¼ A
ðxþBtÞCt

t þ Dte
�EtðlnðxÞ�lnðFtÞÞ2 þ GtH

x
t

1þ GtHx
t

: ð2Þ

Indeed,
qx;t

px;t
� qx;t for young ages as px,t & 1. Equation 2 is only adjusted in its third

part, the one reflecting the mortality rates at older ages. This leads to an alternative

formulation of the form

qx;t ¼ A
ðxþBtÞCt

t þ Dte
�EtðlnðxÞ�lnðFtÞÞ2 þ GtH

x
t

1þ KtGtHx
t

: ð3Þ

An additional parameter K is added in order to have a better fit at older ages. It

allows the age pattern of mortality (the curve representing the logarithm of mortality

rates) to be concave upward, contrarily to Eq. 1. The difference is important here: A

concave downward curve means that the logarithm of mortality rates at older ages

increases, but at slower rates as age increases. It would indicate that the age pattern

of mortality has a global maximum. In contrast, a concave upward curve implies
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log-mortality rates growing at a faster pace as age increases. Depending on the data,

including parameter K in the Heligman–Pollard function may then be useful.

3.1.1 Estimation

The parameters of the Heligman–Pollard function are estimated by a weighted least

squares, the weights used implying a minimization of the relative error as suggested

by Heligman and Pollard [10]. The maximal age included in the model is increased

from 94 to 101 in 1970 as data for older ages become more reliable. The following

constraints are set on the parameters of the function:

• A;B;C;D;G 2 ð0; 1Þ;
• E, H [ 0;

• 15 B F B 100.

This weighted least squares results in a non-linear minimization. Several

algorithms exist to solve non-linear equations and many languages and environ-

ments for statistical computing contain such functionality. A non-linear minimi-

zation requires initial estimations for the parameters. Starting values need to be as

precise as possible for the algorithm to converge to an optimum, which may lead to

some difficulties. By plotting the Heligman–Pollard function on the same graph with

the actual mortality, one can read its initial values.

3.1.2 Forecasts

The estimation of the Heligman–Pollard function yields a set of observations on

each parameter over time. Univariate models can then be applied to the fitted values

of the parameters in order to forecast their temporal evolution and thus to project the

complete age profile of mortality. Three functions are considered to model the trend

of these parameters, that is

• Linear: a � t þ b;

• Exponential: b � exp a � ðt � 1875Þ½ �;
• Quadratic: a � t2 þ b � t þ c;

where t represents the considered year. These functions have a simple structure, few

parameters and give plausible forecasts, which are the required specifications in this

study.

Each of these functions is fitted by ordinary least squares. The retained

functions are the ones with the lowest Bayesian Information Criterion (BIC) for

which all coefficients are significantly different from zero at a one percent

significance level. However, in order to have sensible results, specific assump-

tions on the future trend of the coefficients of the Heligman–Pollard function are

also considered. Indeed, the practical meaning of the parameters gives us clues on

what might happen in the future and, then, should be taken into consideration in

the projections.
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Plots of the parameter history may show a marked change of pattern during the

beginning of the twentieth century, which may pose major problems in forecasting

the parameters. We experimented several models, both working on the complete set

of observations (1876–1979 or 1876–2005) as well as on smaller sets. We present in

the following analysis the most relevant model according to the forecasting

performance. Indeed, models predicting unreasonably high or low level of mortality

are discarded. Only the most credible functions and most appropriate periods are

used to forecast the value of the parameters.

3.2 Lee–Carter model

The initial model of Lee and Carter [12] decomposes the logarithm of the central

death rates in two components: one describing the age pattern of average mortality

rates; the other for a common time trend with differential impacts by age. In 2000,

Lee suggested to model the force of mortality instead of the central death rate so that

the implied death rates will be between zero and unity (Lee [11]). The model is then

defined as

ln lx;t ¼ ax þ bxjt þ �x;t; ð4Þ

where

lx;t ¼ force of mortality at age x, in year t;

ax ¼ mean value over time, at age x, of the logarithm of

the force of mortality;

bx ¼ relative speed of mortality change at age x.

It reflects the impact of the time trend represented by jt

on age, that is the higher its absolute value, the greater the impact

of mortality changes over time on age x;

jt ¼ mortality rate trend over time;

�x;t ¼ historical influences not captured by the model;

¼ errors with mean zero and variance r2 (homoscedasticity).

To allow this interpretation of the parameter ax, the sum over the estimator ĵt is

set equal to zero,

Xtmax

t¼tmin

ĵt ¼ 0: ð5Þ

Indeed, if N is the number of years under observation,

Ytmax

t¼tmin

lx;t ¼ exp âxN þ b̂x

Xtmax

t¼tmin

ĵt

 !

¼ exp âxNð Þ;
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which leads to

âx ¼
1

N

Xtmax

t¼tmin

ln lx;t; 8 x: ð6Þ

In order to have an identifiable model, another constraint on the parameters is

specified, which usually is

Xxmax

x¼xmin

b̂x ¼ 1: ð7Þ

The Heligman–Pollard function refers to mortality rates—qx,t—whereas the Lee–

Carter model focuses on the force of mortality. Age-specific mortality rates are

assumed to be constant within bands of age and time so that the force of mortality is

determined using

qx;t ¼ 1� px;t ¼ 1� expð�lx;tÞ;

where

lðxþdÞ;ðtþsÞ ¼ lx;t; 0� d; s\1:

3.2.1 Estimation

The parameters are estimated numerically using maximum likelihood estimation,

assuming that the number of deaths at age x follows a Poisson distribution with

mean lx;t � lx;t, lx,t being the population of age x alive at the beginning of year t (for a

complete and clear description of this approach, see Delwarde and Denuit [7],

pp 219–224). Several environments for statistical computing contain functions

fitting the Lee–Carter model on some datasets (see, for example, the demography
package for R of Hyndman, function lca).

3.2.2 Forecasts

A single common factor across ages is used for determining the general level of

mortality improvement over time, and thus, a single time series (jt) needs to be

projected in order to forecast the complete age profile of mortality. An ARIMA

process is fitted to the time series of jt, as suggested by Lee and Carter. The

appropriate ARIMA process is determined through the procedure described by

Pandit and Wu [19]. According to the forecaster’s preferences, the approach

introduced in Sect. 3.1.2 could be used instead.

The Heligman–Pollard model is fitted on smaller sets of observations than the

complete one, as described in Sect. 3.1.2. The same procedure needs to be applied

to model the time series jt. Indeed, as mentioned by Lee and Miller [13], assuming

that the relative speed of mortality decline does not change over time, that is

parameter bx is fixed over time, may produce non-realistic forecasts. Such an

assumption does not apply for extended periods as 1876–2005. The simple solution
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proposed by Lee and Miller [13] is to reduce the period on which the model is fitted

to 1950–2005, which is the approach followed in this paper.

4 Test on Swiss data

Before any forecasting attempts, one should verify that the Heligman–Pollard and

Lee–Carter models are good representations of Swiss mortality. Thus, the two

models are fitted to female mortality over the period 1876–1979 (and some smaller

sets) to produce forecasts through 2005, as described in Sect. 3. The obtained

estimates are then compared with the actual mortality rates over the same period,

1980–2005.

4.1 Heligman–Pollard model

4.1.1 Step 1: fit

The Heligman-Pollard function is fitted to the mortality rates over the period

1876–1979 (Fig. 1). The estimates for the parameters obtained through the

constrained minimization process are not all within the defined limits. Between

1949 en 1979, the accident-hump parameter F reaches the upper bound of 100 seven
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Fig. 1 Sample years of actual log-mortality rates (dots) and fitted Heligman–Pollard model (curve),
females: a 1885, b 1935, c 1979

Forecasting mortality: when academia meets practice 57

123



times. Hence, the accident-hump parameters D, E, F and the mortality-for-older-

ages parameter G are non significantly different from zero even at a ten percent

significance level. The same is true for the child-mortality parameters A and

B for the one year when B reaches the value of one. This issue is well-known

and is due to multicollinearity. Indeed, this multicollinearity causes irregular

changes of the parameter estimates from one year to another even if the

mortality rates of adjoining years are similar (Bell [1], Tabeau et al. [21]). The

solution usually adopted in the past is to fix the value of some parameters prior

to the fitting process (Gaille and Sherris [9], McNown and Rogers [15], Tabeau

et al. [21]). However, since such an approach yields to some loss in the fitting

precision and for simplification purpose, we prefer to discard these years from

further analysis.

4.1.2 Step 2: projection of the parameters

Univariate models are then applied to the fitted values of the parameters, so that

their future trend may be estimated, resulting in:

Parameter A: As this parameter reflects the level of infant mortality, it is

reasonable to observe a substantial decrease at the beginning of the twentieth

century (hygiene improvement, vaccination discovery, etc). The exponential form

is fitted by ordinary least squares over the period 1910–1979 and appears to be the

most appropriate one (Fig. 2a; Tables 1, 2).

Parameter B: The linear and exponential decreases have the same BIC and in both

cases coefficients are significant at a one percent significance level. However,

future infant mortality rates resulting from such a decrease would be absurdly

high. As parameter A declines over time, infant mortality is reduced. If parameter

B remains at a low level, there would still be an important mortality decrease

between ages zero and one. However, it is more reasonable to assume that

mortality rates at young ages are getting closer to each other, as medical

progresses with regard to birth conditions are more important than other medical

advances. It is then preferred to keep the parameter B constant at its median level

(Fig. 2b).

Parameter C: Its evolution is correlated with the one of the parameter A. Past

medical progresses with regard to birth conditions were more important than

other medical progresses. The infant mortality is then reduced more abruptly than

the child mortality. Therefore, parameters A and C decrease. The decline in

A reduces the level of the infant and child mortality, while the decrease in

C brings the rates closer to each other. Thus, the gap in mortality rates between

age zero and age ten is larger in the 1900s than in the 1970s. This decrease is

modeled with an exponential function (Fig. 2c; Tables 1, 2).

Parameter D: At the beginning of the twentieth century, medical progresses led to

the decrease of the general level of mortality, the accident hump being affected as

well. Once again, the exponential form is the most suitable one and is fitted over

the period 1910–1979 (Fig. 2d; Tables 1, 2). An interesting remark is that the

only aberrant value refers to 1918, the year of the Spanish flu. It is the only
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parameter which is affected by it. It confirms the already known fact that this flu

was deadly mainly among young adults.

Parameter E: This evolution is more complicated to model. Indeed, since the

1960s, the value increases. The quadratic and linear functions have significant

coefficients at a one percent significance level. An increasing value for E causes a

concentration of the accident hump on a narrower band of ages, which implies a

more visible hump. Notwithstanding, it seems more appropriate to assume a

hump decreasing over time and becoming less noticeable. Under such consid-

erations, the median value is preferred (Fig. 2e).
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Fig. 2 Evolution of the Heligman–Pollard’s parameters, females. The estimation of the Heligman–
Pollard function over the period 1876–1979 yields a set of observations on each parameter over time.
Univariate models described in Sect. 4.1.2 are then applied to the fitted values of each parameter in order
to forecast their temporal evolution until 2005 and thus to project the complete age profile of mortality.
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Parameter F: The coefficients of a quadratic function are non significant. The

linear and exponential functions lead to similar results, that is a decreasing age at

which the accident hump has the largest effect. From further analysis, the linear

function is retained (Fig. 2f; Tables 1, 2).

Parameter G: The most suitable function to fit this parameter appears to be the

quadratic form (Table 2). However, an increasing value for G would imply an

unreasonably high level of mortality at older ages in future. Since the level of

parameter G becomes to some degree more stable over time, it looks more

appropriate to fit an exponential function over the period 1935–1979 (Fig. 2g;

Tables 1, 2). The decrease states that senior citizens live longer. Besides, the

small number of older-age survivors at the beginning of the observed period

explains the large variations in value.

Parameter H: The coefficients of linear and exponential functions are clearly non

significant, while the ones of a quadratic function are significant at a five percent

significance level. However, a quadratic function would lead to a decreasing

value for H in future and so an impossibly low mortality level at older ages.

Besides, this parameter oscillates around a constant level, the fluctuations being

small in relative terms and consequently, the median value is applied in future

years (Fig. 2h). Similarly to the parameter G, its value becomes more stable over

time, and the important fluctuations we observe during the first years may be due

to the small size of the population.

Parameter K: As the coefficients of a quadratic function are non significant at a

ten percent significance level, the most suitable model appears to be the linear one

(Fig. 2i; Tables 1, 2). Parameter K is positive until the 1960s, implying that the

logarithm of the Heligman–Pollard function is concave downward at older ages.

Then, K gets negative and thus, the logarithm of mortality rates at older ages

follows an exponential trend.

4.1.3 Step 3: mortality forecasts

The mortality rates are found with the Heligman-Pollard formula (Eq. 3), using the

projected values of the parameters. In Fig. 3a–c, the circles define the observed

mortality rates, while the curves represent the projections. As it can be noticed, the

model overestimates a bit the mortality rates around age ten.

The accident hump seems to be a temporary element and, thereby, to affect the

mortality rates only on a short term basis. It is already diminishing and will probably

disappear in the coming years. In the future, it might be possible to remove the

elements of Eq. 3 related to this hump.

4.2 Lee–Carter model

4.2.1 Step 1: fit

As previously mentioned, the model is fitted over the period 1950–1979 by

maximum likelihood. Besides, the last ages are grouped under ‘‘100 and over’’, as
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the model can not be applied at single older ages (missing data). The fitted model is

introduced in Fig. 4, while the parameters resulting from the maximum likelihood

estimation are presented in Fig. 5.

4.2.2 Step 2: projection of jt

Lee and Carter [12] suggest the use of a simple random walk with a drift, that is an

ARIMA(0,1,0) process, in order to model the time series jt. Following the

procedure described by Pandit and Wu [19], our analysis confirms an ARIMA(0,1,0)

process with a drift of -2.15 as the best model (Fig. 5c).

4.2.3 Step 3: mortality forecasts

The mortality projections resulting from the Lee–Carter model are introduced in

Fig. 3d–f. The main difference with the forecasts resulting from the Heligman–

Pollard (HP) model is reflected around the age of 20, since in the HP model, we

assume a decreasing impact of the accident hump.

Table 1 Estimates of the curves fitted to the parameters of the Heligmai–Pollard model, females

Parameters Estimate Std error t value p value

Parameter A—exponential function

a -0.04093 0.00206 -19.86 \2E-16

b 0.07259 0.00709 10.24 8.67E-15

Parameter D—exponential function

a -0.04063 0.00502 -8.092 3.41E-11

b 0.02471 0.00589 4.195 9.14E-05

Parameter G—exponential function

a -0.01903 0.00305 -6.25 3.64E-07

b 0.00009 0.00002 4.355 1.11E-04

Parameter C—exponential function

a -0.00884 0.00033 -26.71 \2E-16

b 0.26502 0.00389 68.21 \2E-16

Parameter F—linear function

a -0.05902 0.02003 -2.95 4.05E-03

b 142.47743 38.55462 3.70 3.69E-04

Parameter K—linear function

a -0.01910 0.00182 -10.47 \2E-16

b 37.63755 3.51132 10.72 \2E-16

All coefficients are significant at a one percent level
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4.3 Model validations

The forecasts are further compared with the actual data over the period 1980–2005.

The life expectancies at birth and at age 65 are presented in Fig. 6. Circles define the

observed life expectancies, while the curves reflect the forecasted ones. With both

models, projections follow accurately the data.

Beside demographic statistics, pension funds are more interested in measuring

the impact of the mortality forecasts on their retirement liabilities. Thus, the net

single premium of a whole life annuity-due calculated using forecasted mortality is

Table 2 Bayesian information

criterion of the curves fitted to

the parameters of the Heligman–

Pollard model, females

Bayesian information criterion

Parameters Exponential Linear Quadratic

A -630 -583 -626

C -514 -502 -511

D -651 -644 -650

F 620 620 624

G -795 -792 -798

K 174 160 161
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Fig. 3 Forecasted mortality rates over the period 1980–2005, females. Resulting forecasted mortality
rates according to the Heligman–Pollard model (HP) or the Lee–Carter one (LC), as described in Sect. 4
circles reflect the observed mortality rates, while the curves are the projections. The last age-group for the
Lee–Carter model was set at 100 and over, as the model could not be applied at older ages (missing data
for older ages). a HP, 1980, b HP, 1990, c HP, 2000, d LC, 1980, e LC, 1990, f LC, 2000
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compared with the net single premium based on actual mortality. The net single

premium of this annuity is defined as

€ax ¼
X1

k¼0

ð1þ iÞ�k � kpx; ð8Þ

where

kpx ¼ probability of surviving between ages x and xþ k;

i ¼ interest rate;

¼ 0:04:

The results are presented in Table 3. The differences between the two models and

the actual data are smaller than one percent. It confirms that these two models are

good approximations of the reality in Switzerland, as already demonstrated in

several studies for other countries (Tuljapurkar et al. [24], McNown and Rogers

[14]).

For illustration purpose, the Lee–Carter model is also fitted over the entire period

under observation, 1876–1979, and projections are performed using the new

parameter values. As expected, fixing bx over a long fitting period imposes past
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Fig. 4 Sample years of actual log-mortality rates (dots) and fitted Lee–Carter model (curve), females.
a 1960, b 1970, c 1979
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trends from long ago into the future which is clearly not valid. Indeed, the relative

speed of decline at different ages may vary through time (Lee and Miller [13]). It

highlights the need for care in how a forecasting method is applied.

5 Future trends

The analysis performed in previous sections suggests that the Heligman–Pollad and

Lee–Carter models are both reliable to model Swiss mortality. We may then wonder

what future trends in regard to mortality these models will forecast. In this section,

the univariate models applied to the parameters of the Heligman–Pollard function

and Lee–Carter model are re-estimated through 2005 to produce forecasts of

mortality through 2075. Male and female projections are performed independently.

Demographic results are presented in this section, while impacts on pension

liabilities are introduced in the following one. Only representative forecasts are

discussed in the analysis in order to highlight the key results. Graphs and tables for

all statistics and forecasted years are available from the author upon request.

0 20 40 60 80 100

−
8

−
6

−
4

−
2

Age

α

0 20 40 60 80 100

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Age

β

Time

κ
t

1950 1960 1970 1980 1990 2000

−
10

0
−

50
0

50

(a) (b)

(c)

Fig. 5 Parameters of the Lee–Carter model, females. The Lee–Carter model is fitted to Swiss mortality
rates over the period 1950–1979. The resulting parameters are introduced in this figure. Parameter jt is
forecasted until 2005 using the ARIMA(0,1,0) process with a drift of -2.15. A confidence interval of
95% for the projection is presented as well in the graph. a Parameter ax, b Parameter bx, c Parameter jt
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5.1 Model fit

5.1.1 Heligman–Pollard

Re-estimation of the univariate models applied to the parameters of the Heligman–

Pollard function for females yields only small differences from the results reported

in Sect. 4.1.2, except for parameters B, C and E. Indeed, the three parameters start

to increase after the 1980s. The exponential function appears then to be the most

appropriate one to model parameters B and E, while the quadratic function is used

for parameter C.

Male mortality differs substantially from female mortality especially at middle

and older ages, which is reflected in the time series of the parameters of the

Heligman–Pollard function. First, the age pattern of mortality displays a steeper

curve at older ages, but at a lower level for females than for males (parameter H is

higher and G lower for females). Parameter K for males does not follow a clear

structure, fluctuating mostly between minus one and two, and thus, Eq. 1 is fitted,

that is without including parameter K in the model. Second, the accident hump

affects more male mortality, parameter D being higher. From the 1980s, the

accident hump is shifted to older ages (parameter F increases and takes a value close
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Fig. 6 Forecasted life expectancy over the period 1980–2005, females. Resulting forecasted life
expectancy according to the Heligman–Pollard model (HP) or the Lee–Carter one (LC), as described in
Sect. 4. Circles reflect the observed life expectancy from 1876 to 2005, while the curves are the
projections. a Forecasted life expectancy at birth, HP. b Forecasted life expectancy at age 65, HP.
c Forecasted life expectancy at birth, LC. d Forecasted life expectancy at age 65, LC
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to 30 in 2000, while it was close to 20 in the 1980s), which is expected to reflect

Human Immunodeficiency Virus (HIV) at the beginning of the 1980s, as this virus

was mostly diagnosed on young males. Parameter F is modeled with a quadratic

function. The impact of the accident hump on males is also noticed with parameter

E. From the 1900s, its value increases considerably until the 1980s, followed by a

decrease. The increase appears then to be unusual and temporary, and causes a

concentration of the hump on a narrower age range. It could be due to the growth of

car accidents arising from the development of these means of transportation. As

Table 3 Net single premium of a whole life annuity-due at age 65, females

Year Real

(X)

Computed

HP (Y)

Delta(HP)

= (X-Y)/

X (%)

Computed

LC (Z),

1876–1979

Delta (LC)

= (X-Z)/

X (%)

Computed

LC (W)

1950–1979

Delta (LC)

= (X-W)/

X (%)

1980 12.69 12.78 -0.75 12.56 0.97 12.81 -0.94

1981 12.78 12.85 -0.53 12.60 1.38 12.87 -0.72

1982 12.90 12.91 -0.09 12.64 2.01 12.94 -0.29

1983 12.90 12.97 -0.60 12.68 1.71 13.00 -0.81

1984 13.13 13.04 0.72 12.71 3.19 13.07 0.51

1985 13.13 13.10 0.22 12.75 2.89 13.13 0.01

1986 13.20 13.16 0.27 12.79 3.12 13.19 0.06

1987 13.30 13.23 0.54 12.82 3.57 13.25 0.34

1988 13.36 13.29 0.49 12.86 3.71 13.32 0.30

1989 13.47 13.35 0.84 12.90 4.24 13.38 0.66

1990 13.37 13.42 -0.35 12.93 3.27 13.44 -0.52

1991 13.51 13.48 0.23 12.97 4.02 13.50 0.08

1992 13.59 13.54 0.35 13.00 4.32 13.56 0.22

1993 13.66 13.61 0.38 13.04 4.53 13.62 0.27

1994 13.74 13.67 0.48 13.08 4.80 13.68 0.40

1995 13.72 13.73 -0.05 13.11 4.47 13.74 -0.10

1996 13.80 13.79 0.01 13.15 4.71 13.80 0.02

1997 13.82 13.86 -0.28 13.18 4.61 13.86 -0.27

1998 13.94 13.92 0.13 13.22 5.18 13.91 0.18

1999 13.95 13.98 -0.20 13.25 5.04 13.97 -0.13

2000 14.00 14.04 -0.29 13.28 5.13 14.03 -0.18

2001 14.13 14.10 0.20 13.32 5.77 14.08 0.35

2002 14.14 14.17 -0.17 13.35 5.59 14.14 0.03

2003 14.10 14.23 -0.87 13.39 5.10 14.19 -0.64

2004 14.29 14.29 0.00 13.42 6.09 14.25 0.28

2005 14.36 14.35 0.10 13.45 6.35 14.30 0.43

Real represents a whole life annuity-due at age 65 computed with actual mortality rates, Computed HP
represents a whole life annuity-due at age 65 computed with forecasted mortality rates under the Heligman–

Pollard model, Delta(HP) represents a gap in a whole life annuity-due at age 65 between the actual data and

the Heligman–Pollard model, Computed LC represents a whole life annuity-due at age 65 computed with

forecasted mortality rates under the Lee–Carter model, Delta(LC) represents a gap in a whole life annuity-

due at age 65 between the actual data and the Lee–Carter model. The last ages are grouped under ‘‘100 and

over’’ for the Lee–Carter model, as this model can not be applied at older ages (missing data)
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from the 1980s the value decreases, one can expect it to reach again its original level

in 2040 (assumed to be equal to the median over the period 1876–1899).

5.1.2 Lee–Carter

The Lee–Carter model is fitted as well over the period 1950–2005. The same procedure

as in Sect. 4.2 is applied. The time trend jt is approximated with an ARIMA(2, 1, 1)

process for females and an ARIMA(1,1,0) for males, as summarized in Table 4.

5.1.3 LPP 2010

As previously mentioned, the new official mortality tables (LPP 2010) were released

in Switzerland at the end of 2010. These mortality tables are based on the actual

mortality of 14 large pension funds observed over the period 2005–2009. These

mortality rates are assumed to reflect the mortality as of first of July 2007. For the

following years, a forecasting option based on reduction factors is included in the

tables. The reduction factors are issued from two works published by the statistical

office of the canton Vaud (Menthonnex [16, 17]). In these works, Swiss mortality is

forecasted until 2150, mainly based on expert knowledge. The percentage decrease

(reduction factor) between mortality rates of two adjacent years issued from

Menthonnex’s work is then applied to the observed pension fund mortality of 2007

and thus mortality is forecasted until 2150. We applied the same reduction factors to

our dataset, so that mortality forecasts until 2075 can be performed.

5.2 Results

The resulting age profiles of mortality rates are introduced in Fig. 7 for the three

models. As mortality for ages above 100 are non reliable for a population as small as

in Switzerland, the models are fitted on ages up to 100. However, one of the features

of a parametric function such as Heligman–Pollard is that it allows to forecast

mortality for older ages and thus forecasts for ages up to 110 can be performed

under this model. It is important to note that the forecasts resulting from the Lee–

Carter model and from the reduction factors of Menthonnex’s work are not smooth

in Fig. 7. However, smoothing methods are applied in the LPP 2010 tables and

Table 4 Fitted ARIMA (p, d, q) processes on parameter jt of the Lee–Carter model

Females, jt:ARIMA(2, 1, 1) Males, jt:ARIMA(1, 1, 0)

Values CI 95% Value CI 95%

l -1.92 -2.29 -1.55 -1.73 -2.14 -1.31

u1 -1.24 -1.47 -1.01 -0.31 -0.57 -0.06

/2 -0.56 -0.79 -0.32

/1 0.94 0.79 1.10
P

e2
t

217.31 229.76
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extensions of the Lee–Carter method may produce smooth forecasts as well. As

these extended models have no impact on the analysis conducted thereafter, we

choose to keep the simpler models previously introduced.

The assumption made in the Heligman–Pollard model of a decreasing impact of

the accident hump is clearly reflected in Fig. 7. Indeed, mortality for ages 15–40 is

forecasted to be lower with the Heligman–Pollard model. In contrast, the accident

hump is emphasized in the Lee–Carter model. In the past 60 years, the accident
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Fig. 7 Sample years of forecasted mortality. Resulting forecasted mortality according to the Heligman–
Pollard model (HP), the Lee–Carter model (LC) and the factors used in official tables used by pension
funds (LPP 2010). The Heligman–Pollard model forecasts mortality for ages up to 110, while the other
two models project mortality for ages up to 100. a 2030, males. b 2030, females. c 2055, males. d 2055,
females. e 2075, males. f 2075, females
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hump appeared and so this trend is repeated in projections, as the Lee–Carter

method assumes a constant pattern in the rate of change of mortality rates

(represented by bx). Besides, the Lee–Carter and Heligman–Pollard models forecast

a more important decrease of mortality at young ages, especially for males. Even if

the mortality for ages below 17 is not used by pension funds, it is interesting to note

that Swiss experts from the statistical office expect a slow down in mortality

decrease at young ages, which is not reflected in models using past evolutions to

perform their forecasts. Finally, as already mentioned by Bongaarts [3], assuming a

fixed relative speed of decline of mortality at different ages (a fixed bx over time)

may be potentially problematic with the Lee–Carter model as differences in bx value

for different ages may produce increasing differences in forecasted mortality across

ages. This is particularly obvious with female forecasts for ages above 50 in Fig. 7.

In contrast, with the Heligman–Pollard function, the age structure of mortality

remains plausible, even with long time horizon forecasts.

A more convenient and intuitive way to compare these forecasts is through the

life expectancy, introduced in Fig. 8. To make such a comparison, it is important to

compute the life expectancies on the same basis for the three methods. Thus, the last

age is set at 101 and is associated with a mortality rate of one. It is interesting to

note the following: First, the Heligman–Pollard model forecasts the highest life

expectancy at birth and at age 65 in the long-run. Second, the LPP 2010 tables

assume a slow down in mortality improvements, as reflected in the life expectancy

increasing at a slowing rate. This assumption is such that even if the forecasted life

expectancy is higher for this model than the other two models at the beginning of

the forecasting period (males), the Heligman–Pollard model projects a higher life

expectancy at age 65 from 2022, while the Lee–Carter model is higher from 2066.

Third, the differences between the two forecasting approaches presented in this

paper and the one used in the LPP 2010 tables are more important for females. Even

if it is not clear which projection is preferable, both models based on past evolutions

predict further mortality decrease than the LPP 2010 tables.

In Fig. 8, life expectancy results from an age pattern with maximal age of 101.

Thus, this life expectancy does not truly reflect the complete mortality pattern as it

is indeed possible to live until age 110 or even at older ages. As a parametric

function allows to have mortality rates at older ages, we computed life expectancies

including all ages until 110 and thus assuming that the probability to die at age 111

is one. The resulting 2075 life expectancies are introduced in Table 5. Including

older ages increases life expectancy considerably. For ages below 100, a difference

between half a year and one year and a half is noticed between the forecasted life

expectancies of the two Heligman–Pollard models. At age 100, a more important

gap is noticed, as one may expect. This table highlights how important are the

assumptions used to forecast mortality for the centenarians.

6 Impacts on future pension liabilities

For a pension fund, it is even of more interest to measure the impact of the mortality

assumptions on the valuation of pension liabilities. In Switzerland, the second pillar
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Fig. 8 Forecasted life expectancy. Resulting forecasted life expectancy according to the Heligman–
Pollard model (HP), the Lee–Carter model (LC) and the factors used in official tables used by pension
funds (LPP 2010). We assume a probability of one to die at age 101. a Life expectancy at birth, males,
b Life expectancy at birth, females, c Life expectancy at age 65, males, d Life expectancy at age 65,
females

Table 5 Forecasted life expectancies, 2075

Age Males Females

Heligman–

polland,

age 0–110

Heligman–

polland,

age 0–100

Lee–

Carter,

age

0–100

Lpp

2010,

age

0–100

Heligman–

polland,

age 0–110

Heligman–

polland,

age 0–100

Lee–

Carter,

age

0–100

Lpp

2010,

age

0–100

0 89.48 88.95 87.36 86.67 94.46 93.22 92.37 90.22

10 80.47 79.94 77.37 76.92 84.58 83.34 82.40 80.42

20 70.49 69.95 67.45 67.05 74.59 73.35 72.45 70.50

30 60.56 60.03 57.78 57.41 64.61 63.37 62.55 60.63

40 50.70 50.16 48.02 47.70 54.67 53.43 52.64 50.78

50 40.91 40.37 38.28 38.01 44.81 43.57 42.80 41.03

60 31.33 30.78 28.73 28.50 35.14 33.88 33.08 31.40

70 22.23 21.66 19.62 19.44 25.85 24.56 23.45 21.97

80 14.16 13.52 11.38 11.34 17.28 15.90 14.10 13.06

90 7.83 6.92 4.94 5.38 9.93 8.24 6.20 6.09

100 3.72 0.91 0.79 0.87 4.29 0.94 0.84 0.88
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law sets some minimal rules, and thus minimal pension amounts, that have to be

followed by all pension funds. In this system, employees, and their employer, have

to pay contributions to a fund. These contributions are accumulated in a saving

account until the retirement age. At the retirement age, a factor, called the pension

conversion rate, is applied to the accumulated capital in order to transform this

capital into an annual pension amount. This conversion rate is now set at a level of

6.8%. With the increase of life expectancy, many discussions hold among

politicians, economists and actuaries in order to decide if this rate should be

reduced. Thus, an interesting approach would be to determine the impact of the

mortality assumptions on this pension conversion rate.

The retirement age is fixed at 65 for males and 64 for females in Switzerland.

Thus, the pension conversion rate is defined as the inverse of the sum of four

discounted annuities: first a discounted annuity value for a male age 65 (female age

64), second a 60% reversionary widow’s (widower’s) pension, third a 20%

reversionary orphan’s pension and forth a 20% pension for the children of a retired

person. The discount rate for the annuities is set at 3.5% and children receive a

pension until age 25. The average number of children a person may have, the

average age of the children a person may have, the probability to be married and the

average age of the spouse are assumed constant over time and found in the EVK

2000 mortality tables, as the LPP 2010 tables were not made available to us.

Besides, the mortality rates of a widow or widower differing from the mortality of

the general population, the percentage differences between the general mortality and

the widow/widower’s mortality of the EVK 2000 tables are assumed constant over

time and applied to the forecasted mortality introduced in previous sections.

Results are presented in Fig. 9. Two different conversion rates are introduced.

In the upper graphs, conversion rates according to the mortality of a specified year

are presented. In the two lower graphs, conversion rates of a specified generation

are shown. For example, for the generation born in 1920, a male reaches the

retirement age of 65 in 1985. The pension conversion rate for the 1920 generation

is then based on the probability to die at age 65 in 1985, the probability to die at

age 66 in 1986 and so on. If the age pattern of mortality includes ages up to 100,

one needs 35 years of observation (or forecast) to compute the pension conversion

rate, as there are 35 years from age 65 to age 100. Thus, the last generation for

which the pension conversion rate is found is the generation reaching the

retirement age of 65 in 2040, and thus born in 1975. If the age pattern of mortality

includes ages up to 110, one needs 45 years of observation (or forecast) so that the

last generation for which we compute the pension conversion rate is the generation

born in 1965. Past mortality is used until 2005, while the forecasted rates

according to one of the three models are employed from 2006. For the generation

born before the 1930s, the pension conversion rate is then mostly based on past

mortality (observed mortality) which explains the fluctuations we observe for the

first years in Fig. 9c, d.

According to the three models, a pension conversion rate of 6.8% is too high and

will continue to decrease in the coming years. The two forecasting approaches based

on past observations (Lee–Carter and Heligman–Pollard) forecast a more important

decrease, especially for females. The more conservative assumptions lying in the
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forecasting approach applied in the LPP 2010 tables slow down the expected future

mortality decline, which reflect the views of many experts across the world.

However, past evolutions, if replicated in future, tend to indicate that mortality may

decline more than expected.

Another important remark refers to the very old ages. When considering ages up

to 110 in the Heligman–Pollard model, the forecasted decline of the pension

conversion rate is emphasized over time. As mortality declines, a greater proportion

of the population will reach the centenarian group. It will then become a more

important matter to accurately model mortality for these ages.

We present a concrete example of the financial impact of the mortality

assumptions for Swiss pension funds. A female reaches the retirement age with a

saving account of CHF 500’000. According to the law, the pension fund should pay

a retirement pension of CHF 34’000 per year (500’000 9 6.8%). If she reaches the

retirement age in 2010, the periodic pension conversion rates according to the

Heligman–Pollard model (last age set at 100 (HP100) or 110 (HP110)), the Lee–

Carter model (LC) or the LPP 2010 tables are 6.63, 6.62, 6.48 and 6.53%

respectively. The corresponding pensions are CHF 33’150, CHF 33’100, CHF
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Fig. 9 Pension conversion rate according to the Swiss law. Resulting forecasted pension conversion rate
according to the Heligman–Pollard model (HP), the Lee–Carter model (LC) and the reduction factors
used in official tables used by pension funds (LPP 2010). We assume a probability of one to die at age
101, except for the curve ‘‘HP110’’ which takes into account mortality until age 110 and has a probability
of one to die at age 111. Periodic table: the mortality rates of the year specified on the X-coordinate are
used. Generation table: the X-coordinate indicates the year of birth. a Periodic table, males, age 65,
b Periodic table, females, age 64, c Generation table, males, age 65, d Generation table, females, age 64
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32’400 and CHF 32’650. However, according to the generation table of a female

born in 1946 and thus being age 64 in 2010, the pension should be as low as CHF

31’300 (pension conversion rate of 6.26%, HP100), CHF 31’150 (6.23%, HP110),

CHF 30’850 (6.17%, LC) and CHF 31’250 (6.25%, LPP2010), that is an amount

lower of around CHF 1’500–2’000 per year. If the retirement age of 64 is reached in

2029, the periodic tables suggest a pension of CHF 30’900 (6.18%, HP100), CHF

30’850 (6.17%, HP110), CHF 30’400 (6.08%, LC) and CHF 30’900 (6.18%,

LPP2010), while the generation tables would require a pension of CHF 29’300

(5.86%, HP100), CHF 29’050 (5.81%, HP110), CHF 29’150 (5.83%, LC) and

29’900 (5.98%, LPP2010). It represents a decrease close to CHF 2’000 between the

two periodic tables for the Heligman–Pollard and Lee–Carter models, while it is a

decrease of only CHF 1’700 according to the LPP 2010 tables. The decreases are

less important between the generation tables, namely around CHF 2’000, CHF

1’700 and CHF 1’300 for the Heligman–Pollard models, Lee–Carter model and LPP

2010 tables respectively. Finally, the periodic tables for 2075 give a pension of CHF

27’200 (5.44%, HP100), CHF 26’800 (5.36%, HP110), CHF 27’450 (5.49%, LC)

and 28’600 (5.72%, LPP2010), which represent an annual decrease of around CHF

6’000 (HP100 and HP110), CHF 5’000 (LC) and 4’000 (LPP2010) compared to

2010 and even a further annual decline of CHF 1’000 if compared to the actual

pension conversion rate of 6.8%.

The above issue may be analyzed under a different angle. For a female to get a

pension conversion rate of 6.8% in 2010 (that is a retirement pension of CHF 34’000

in previous example), the retirement age should be fixed at 65 according to the

periodic-HP models or 66 for the other two periodic models. In accordance with the

generation tables, a female retiring in 2010 should be between 67 and 68. There are

small differences between the three models at the beginning of the forecasting

period. However, these differences increase over time, such that in 2075, the

retirement age should be set at age 74 (HP100), 75 (HP110), 73 (LC) or 71

(LPP2010) for females. Due to the more important improvements in mortality under

the HP and LC models, pension funds should then start to pay retirement pensions

approximately three years later than what is expected with the LPP 2010 tables. For

males, results are more similar: retirement age of 75 for both HP models and 73 for

LC and LPP 2010 in 2075.

With this simple example, we want to highlight the need for alternative models.

One can easily see that the current LPP 2010 mortality forecasts used give the most

costly results. Among the models considered, the pension funds using LPP 2010 pay

the highest amount per year or should start paying at a younger age, both leading to

higher financial costs.

7 Conclusion

In this paper, we compare two mortality forecasting approaches developed in

academia with the method currently applied in official mortality tables used by

pension funds in Switzerland. Among the few approaches developed for mortality

modeling, the Lee–Carter and Heligman–Pollard models are chosen for several

Forecasting mortality: when academia meets practice 73

123



reasons. First, they were successfully applied in the past in several countries

(McNown and Rogers [14], Rogers and Gard [20], Tuljapurkar et al. [24]), and the

tests conducted on Swiss data in Sect. 4 reveal good performances. Second, they can

be easily fitted through maximum likelihood estimation (LC) or non-linear

minimization (HP) using pre-existing functions developed in statistical programs

such as R. Third, their structure is easily interpreted in demographic terms which

eases the forecasting procedure. It allows to include specific assumptions about the

future in the forecasting model. As an example, this study assumes a diminishing

accident hump through the Heligman–Pollard model. Fourth, the proposed

univariate models used to forecast the value of the parameters are more easily

understood and applied than multivariate approaches.

In 2006, the statistical office of the canton Vaud already forecasted mortality

based on data available until 2004 (Menthonnex [16]). In 2009, the office updated its

forecasts using the data of 2005–2008 (Menthonnex [17]). By doing so, the expected

future mortality improvements, and thus the life expectancy, increased. However,

our results reveal that forthcoming mortality decrease may still be more important

than these revised forecasts, used in the LPP 2010 tables, especially for females.

Over the second half of the 20th century, the improvement in life expectancy has

been a consequence of a decrease in mortality at older ages, caused by progresses in

cardiovascular diseases and tumors (Münz and Wanner [18]). As a consequence, the

Lee–Carter and Heligman–Pollard models repeat for future years the improvement in

mortality rates at older ages. If past evolutions are believed to continue in the future,

the conservative approach applied in the LPP 2010 tables may be inadequate, as the

assumed slow down in the mortality decrease might be too consequent.

Financial consequences were also enlightened. Depending on the chosen

forecasting approach, pension funds might have to pay higher pensions than what

they can afford. It is then important to consider several forecasting models,

including models developed in academia. Several alternatives should be considered

when analyzing the impact of mortality risk on the financial stability of a pension

fund.

Dynamic mortality rates are then important considerations for actuarial

valuations. It increases the adequacy between the contributions paid by the

employees and employers and the pensions paid, in return, by the pension funds.

However, some cautions are required with the use of mortality forecasts, which

results in the following suggestions.

First, the fitting period of a chosen model needs to be carefully selected. As

discussed in Sect. 4.3 and demonstrated with the Lee–Carter model, using a long

fitting period imposes past trends from long ago into the future, an assumption

which may not hold over some extended periods. As a consequence, we suggest to

fit a model over the complete time frame, but as well on smaller sets. The period

1950 onward gives good results, as in other countries (Lee and Miller [13]), and

thus, should also be considered.

Second, convention and caution do not recommend to forecast mortality over a

period longer than the fitting period (Booth et al. [4]). Indeed, a model can not

reflect the whole historical and future profile of mortality. For example, in the Lee–

Carter model, the trend of jt can not be valid over the complete historical period as
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it would lead to impossibly high mortality rates in the eighteenth century. The same

analysis can be applied to the evolutions of the Heligman–Pollard parameters.

Parameters A, D and G follow an exponential decrease and thus, tend to infinity as

we go further in the past. It was then decided not to forecast mortality after 2075.

Consequently, the forecasting mortality approach available in the LPP 2010 tables

and allowing to project mortality until 2150 seems non-reliable. Even if generation

tables are theoretically appealing for actuarial valuations used in pension funds,

such as for the ‘‘best estimate’’ requirements of the IAS19 (International Accounting

Standard No 19)4, they need mortality forecasts over a too extended time horizon to

be fully reliable. If a pension fund still wishes to use generation tables, its

shortcomings should be kept in mind and the forecasts regularly updated with new

data.

Third, we recommend to forecast mortality with several models, as it gives a

broader picture of the possible future. They may be looked as different scenarios.

Another option would be to forecast probabilistic intervals along with the expected

values. The Lee–Carter model allows to do it easily as the forecast of the parameter

jt contains a forecast interval issued from the univariate time series theory (as in

Fig. 5c). However, several sources of errors exist (such as model misspecification

and parameter estimation), some of them not being included in the model proposed

by Lee and Carter [12]. Thus, their prediction interval is known to be overly narrow.

The accuracy of forecast intervals has been widely studied recently for several

models and an interesting review of this matter is found in Booth and Tickle [5].

Forecasting models based on essentially non-statistical methods, especially the use

of ‘‘informed judgement’’ in projecting mortality, do not offer the nice feature of

prediction intervals. Therefore, assessing the precision of the forecasts used in the

LPP 2010 tables is more difficult. However, as previously mentioned, several

scenarios may give a good estimation of such intervals.

Finally, our last suggestion refers to the use of a summary statistic such as the life

expectancy. Depending on the last age included in the life tables, result may vary.

This issue will become even more important in future as the probability for a person

to live until age 100 and over is increasing. Thus, assumptions on future mortality

rates for the centenarians are key components and have important impacts on life

expectancy and discounted annuity values. As data for these ages are missing, only

expert opinions or senescent mortality models (such as Coale and Kisker [6] or

Bongaarts [3]) may be used. We recommend then to compute life expectancies and

discounted annuity values first excluding and second including the very old ages. It

gives the forecaster a good approximation of the impact assumptions on

centenarians have on pension liabilities.
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