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Abstract: In this paper we discuss the calculation of the Bayes premium for conditionally elliptical

multivariate risks. In our framework the prior distribution is allowed to be very general requiring only

that its probability density function satisfies some smoothness conditions. Based on previous results

of Landsman and Nešlehová (2008) and Hamada and Valdez (2008) we show in this paper that for

conditionally multivariate elliptical risks the calculation of the Bayes premium is closely related to Brown

identity and the celebrated Stein’s Lemma.
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1 Introduction

In the setup of classical credibility theory (see e.g., Bühlmann and Giesler (2006), Mikosch (2006), or

Kaas et al. (2008)) calculation of the Bayes premium is a central task. Considering the L2 loss function,

that task reduces to the calculation of the conditional expectation E{Θ|X} with Θ being some random

parameter with some probability density function h and X a random loss measure, say for instance the

net loss amount. When the conditional random variable X|Θ = θ has the Normal distribution function

with mean θ and variance σ2 (write X ∼ N (θ, σ2)), then for Θ ∼ N (µ, τ2), τ > 0 we have almost surely

(see Bühlmann and Giesler (2006))

E{Θ|X} = X +
σ2

σ2 + τ2
(µ−X). (1.1)

The identity (1.1) is a direct consequence of the fact that the conditional distributions of Gaussian

(or Normal) random vectors are again Gaussian. In fact, (1.1) can be stated for general Θ with some

probability density function h, in the form known in the literature as Brown identity (see e.g., DasGupta

(2010)), i.e,

E{Θ−X|X = x} = σ2E{h′(x+ Y )}
E{h(x+ Y )}

, x ∈ R, Y ∼ N (0, σ2), (1.2)
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provided that the derivative h′ of h exits and the ratio in the right-hand side above is finite.

Since the Gaussian distribution is a canonical example of elliptically symmetric (for short elliptical)

distributions, in this paper our main interest is to show Brown identity for X a d-dimensional elliptical

random vector, and thus deriving an explicit expression of Bayes premium for conditional elliptical models.

The parameter Θ, which in our framework below is a d-dimensional random vector, is assumed to possess

a probability density function h satisfying some regularity conditions. It turns out that Brown identity

is closely related to Stein’s lemma, which is recently discussed for elliptical random vectors in Landsman

(2006), Landsman and Nešlehová (2008), and Hamada and Valdez (2008).

Several influential papers such as Landsman and Valdez (2003), Goovaerts et al. (2005), Vanduffel et al.

(2008), Valdez et al. (2009) and among many others in the actuarial literature have derived tractable

properties of elliptical random vectors which allow for important applications in insurance and risk

management. Our results show that this class of random vectors is also tractable in the Bayesian paradigm

which is a key pillar of actuarial science and practice.

Outline of the rest of the paper: In Section 2 we give some preliminary results and definitions. The main

result is presented in Section 3. Proofs and some additional results are relegated to Section 4.

2 Preliminaries

We shall discuss first some distributional properties of elliptical random vectors and then we shall present

an extension of (1.1) to univariate elliptical risks. Let A ∈ Rd×d, d ≥ 1 be a non-singular square matrix,

and consider an elliptical random vector X = (X1, . . . , Xd)
> with stochastic representation

X
d
= RAU + µ, µ ∈ Rd, (2.1)

with R > 0 a random radius being independent of U which is uniformly distributed on the unit sphere

of Rd (with respect to L2-norm). Throughout in the following Σ = AA>, with A a d × d non-singular

matrix, h denotes the probability density function of the random parameter Θ (in the d-dimensional

setup we shall write instead Θ), and R will be referred to as the radial component of X.

Here
d
= and > stand for the equality of the distribution functions and the transpose sign, respectively.

For the basic distributional properties of elliptical random vectors see e.g., Cambanis et al. (1981), Valdez

and Chernih (2003) or Denuit et al. (2006).

It is well-known that the elliptically distributed random vector X as in (2.1) possesses a probability

density function f if and only if its radial component R possesses a probability density function. Moreover,

f is given by

f(x) =
1

c
√
det(Σ)

g
( (x− µ)>Σ−1(x− µ)

2

)
, ∀x ∈ Rd, (2.2)

where the positive measurable function g is the so-called density generator satisfying

c =
(2π)d/2

Γ(d/2)

∫ ∞
0

ud/2−1g(u) du ∈ (0,∞). (2.3)
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When the distribution function of R has a finite upper endpoint ω := sup{x ∈ R : P {R ≤ x} < 1} ∈
(0,∞), then we take g(x) = 0 for all x > ω. For any x > 0 set further

g̃(x) =

∫ ∞
x

g(s) ds,

which is well-defined if E{|X1|} < ∞ or equivalently E{R} < ∞. We note in passing that g̃ is also a

density generator if E{R2} <∞, see Lemma 4.1 below.

If X has stochastic representation (2.1) with generator g, then we write

X ∼ Ed(µ,Σ, g).

A canonical example of elliptically symmetric random vectors is an X being Gaussian with covariance

matrix Σ and density generator

g(x) = exp(−x), x > 0. (2.4)

Consequently, we have

g̃(x) = g(x), x > 0. (2.5)

We now present the extension of (1.2) to the elliptical framework for the 1-dimensional setup.

Theorem 2.1. Let Y ∼ E1(0, 1, g), and let Θ be a random parameter with differentiable probability

density function h. Assume that E{Y 2} ∈ (0,∞) and let Ỹ ∼ E1(0, 1, g̃). If X|Θ = θ ∼ E1(θ, 1, g) such

that for some x ∈ R

Mh(x) := E{h(x+ Y )} ∈ (0,∞), E{|h′(x+ Ỹ )|} <∞, (2.6)

then the Bayes premium is

E{Θ|X = x} = x+ c1
Lh(x)

Mh(x)
, c1 :=

∫∞
0
r−1/2g̃(r)dr∫∞

0
r−1/2g(r)dr

, (2.7)

with Lh(x) := E{h′(x+ Ỹ )}.

Remarks: a) For simplicity, in the above theorem we consider only σ = 1. The general case with

σ ∈ (0,∞) can be easily derived by multiplying the right hand side of (2.7) by σ2 since E{(Θ−X)|X} =

σ2c1
Lh(X)
Mh(X) , see the main result in the next section.

b) When the probability density function h of Θ satisfies h(x) ≤ a|x|α−1 exp(−b|x|c), x ∈ R with a, α, b, c

some positive constants, then condition (2.6) is satisfied. A particular instance is the Gaussian case which

we discuss below in some more details.

Example 1. (Gaussian risks) Under the setup of Theorem 2.1 consider the special case of generator

g(x) = exp(−x), x ∈ R and Y ∼ N (0, σ2), σ ∈ (0,∞). Clearly, Y is an elliptical random variable, i.e.,

Y ∼ E1(0, σ2, g). Let further Θ ∼ N (µ, τ2), µ ∈ R, τ ∈ (0,∞) be also a Gaussian random variable and

denote by h(x;µ, τ2) its probability density function. By (2.5) we have c1 = 1. In view of Theorem 2.1,

since

h′(s+ t;µ, τ2) =
µ− s− t

τ2
h(s+ t;µ, τ2), s, t ∈ R
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and by the fact that Ỹ and Y have the same distribution, we obtain

E{(Θ−X)|X = x} = σ2

∫
s∈R h

′(x+ s;µ, τ2)h(s; 0, σ2) ds∫
s∈R h(x+ s;µ, τ2)h(s; 0, σ2) ds

=
1

τ2

∫
s∈R

(µ− x− s)h
(
s; (µ− x)

σ2

σ2 + τ2
, (

1

σ2
+

1

τ2
)−1
)
ds

=
σ2

τ2
(µ− x)(1− σ2

σ2 + τ2
) =

σ2

σ2 + τ2
(µ− x)

for any x ∈ R. Consequently, the previous claim in (1.1) follows immediately.

3 Main Result

In this section we focus on multivariate d-dimensional conditional elliptical models. Let therefore X,Θ

be two d-dimensional random vectors such that

(X|Θ = θ) ∼ Ed(θ,Σ, g),

with Θ a d-dimensional random parameter with probability density function h. Again, as in the univariate

setup, the credibility premium is calculated (under L2 loss function) by the conditional expectation

E{Θ|X}, which for the Gaussian framework is closely related to Brown identity, see DasGupta (2010).

In the sequel, we consider Θ such that its probability density function h is almost differentiable, adopting

the following definition from Stein (1981).

Definition 3.1. A function q : Rd → R is almost differentiable if there exists ∇q : Rd → Rd such that

q(x+ z)− q(x) =

∫ 1

0

z>∇q(x+ tz)dt, ∀x, z ∈ Rd.

Note that ∇q is the vector function of component-wise partial derivatives, and it is almost surely unique.

We derive below the expression for the Bayes premium, which boils down to the multivariate Brown iden-

tity for elliptical risks. The importance of our result is that it also shows the direct connection between

Brown identity and Stein’s Lemma for elliptically symmetric risks.

Theorem 3.2. Let Y ∼ Ed(0,Σ, g) with 0 = (0, . . . , 0)> ∈ Rd be a d-dimensional elliptical random vector

with radial component R > 0. Assume that (X|Θ = θ) ∼ Ed(θ,Σ, g), where the random parameter Θ

has probability density function h which is almost differentiable. If E{R2} ∈ (0,∞) and for some x ∈ Rd

we have

Mh(x) := E{h(x+ Y )} ∈ (0,∞), E{|∇h(x+ Ỹ )|} <∞, (3.1)

with Ỹ ∼ Ed(0,Σ, g̃), then the Bayes premium is

E{Θ|X = x} = x+ cdΣ
Lh(x)

Mh(x)
, cd :=

E{R2}
d

, (3.2)

with Lh(x) := E{∇h(x+ Ỹ )}. Moreover we have

E{Y h(x+ Y )} = cdΣE{∇h(x+ Ỹ )}. (3.3)
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Remarks: a) In order to retrieve the expression of the constant cd appearing in Theorem 2.1 we need

to write it in terms of g and g̃ as

cd =

∫∞
0
rd/2−1g̃(r) dr∫∞

0
rd/2−1g(r) dr

.

When g(t) = exp(−t) by (2.5) we immediately get that cd = 1. Further in view of (2.4) both Ỹ ,Y have

the Gaussian distribution with mean zero and covariance matrix Σ. Consequently, by (3.3)

E{Y h(x+ Y )} = ΣE{∇h(x+ Y )}, (3.4)

where Y is a mean-zero Gaussian random vector with covariance matrix Σ. For Σ the identity matrix,

(3.4) appears in Lemma 2 of Stein (1981). In the case that Y is elliptically symmetric (3.3) is established

in Landsman (2006); see also Landsman and Nešlehová (2008) and Hamada and Valdez (2008).

b) Clearly, for non-Gaussian risks the Bayes premium is given by (3.2) and is in general not a credibility

premium.

c) In several tractable cases such as Gaussian scale mixture distributions the distribution of Ỹ can be

explicitly calculated, see Landsman and Nešlehová (2008).

d) The referee of the paper suggested the validity of our result when Σ is semi-positive definite. If we go

through our definitions and the results of Theorem 3.2, we see that Σ appears without its inverse matrix,

whose existence is not possible for Σ semi-positive definite. This observation suggests that the assumption

that Σ is positive-definite in our main result is redundant. In the bivariate setup, this condition has been

removed in Hamada and Valdez (2008). With some extra technical efforts (but with a different proof

that we give here), it is possible to drop that assumption. In the context of Bayes premium there is no

particular motivation to allow for singular matrices Σ. Therefore in order to avoid some extra technical

details, we shall postpone the proof to a forthcoming technical manuscript.

Example 2. (Multivariate Gaussian model) We denote the multivariate Gaussian distribution with mean

µ and covariance matrix Σ as Nd(µ,Σ). Its probability density function is denoted by f(x;µ,Σ),µ ∈ Rd.
Next, assume that X|Θ ∼ Nd(Θ,Σ) where Θ ∼ Nd(µ,Σ0). If both Σ and Σ0 are non-singular covariance

matrices, using further the fact that for the multivariate Gaussian density functions we have that (set

B := (Σ−10 + Σ−1)−1)

f(y; 0,Σ)f(x+ y,µ,Σ0) ∝ f(y,Σ−10 B(µ− x), B),

for any x,y ∈ Rd (with ∝ meaning proportionality), then with the proportionality constants canceling

out in the ratios of Eq. (3.2) we obtain

E{(Θ−X)|X} = ΣE{Σ−10 (µ− x− Y )},

where

Y ∼ Nd(Σ−10 B(µ− x), B).

Consequently,

E{(Θ−X)|X = x} = ΣΣ−10

(
µ− x− Σ−10 B(µ− x)

)
= ΣΣ−10

(
Id − (Id + Σ0Σ−1)−1

)
(µ− x)

= ΣΣ−10

(
Id + ΣΣ−10

)−1
(µ− x)
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=
(

Σ0Σ−1 + Id

)−1
(µ− x),

where Id denotes the d × d identity matrix. An interesting special case is when Σ = aΣ0 with a some

positive constant. Clearly, Σ is positive definite if and only if Σ0 is positive definite matrix. Applying

the formula above, we obtain

E{(Θ−X)|X} =
a

1 + a
(µ−X).

In particular, when Σ = σ2Id and Σ = τ2Id with σ, τ positive constant we obtain the result presented in

Example 1.

4 Proofs

Next we provide a lemma which clarifies the properties of g̃ needed to proceed with the proofs of the

main result.

Lemma 4.1. Let Y ∼ Ed(0, Id, g) be a given elliptical random vector. If E{R2} ∈ (0,∞), then g̃ is a

density generator of a d-dimensional elliptical random vector, and moreover∫ ∞
0

rd/2−1g̃(r) dr =
E{R2}
d

∫ ∞
0

rd/2−1g(r) dr ∈ (0,∞). (4.1)

Proof: The random vector Y has radial decomposition with positive radial component R which has

probability density function fR given by (set K :=
∫∞
0
rd/2−1g(r) dr)

fR(r) =
rd−1g(r2/2)

2d/2−1K
, r > 0. (4.2)

Since g is a density generator, partial integration implies∫ ∞
0

rd/2−1g̃(r) dr =

∫ ∞
0

rd/2−1

(∫ ∞
r

g(s) ds

)
dr

=

∫ ∞
0

g(s)

(∫ s

0

rd/2−1 dr

)
ds

=
2

d

∫ ∞
0

sd/2g(s) ds

=
K

d

∫ ∞
0

td+1 g(t2/2)

2d/2−1K
dt

=
K

d

∫ ∞
0

t2fR(t) dt

=
K

d
E{R2} ∈ (0,∞),

hence the claim follows. 2

Proof of Theorem 2.1 By the assumption (X|Θ = θ) ∼ E1(θ, 1, g) it follows that the conditional

random variable Θ|X = x has probability density function q(·|x) given by

q(θ|x) =
h(θ)g((x− θ)2/2)∫

R h(θ)g((x− θ)2/2)dθ
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=
h(θ)g((x− θ)2/2)

Mh(x)
,

with

Mh(x) := E{h(x− Y )} = E{h(x+ Y )}

for x such that P {X ≤ x} ∈ (0, 1). Consequently,

Mh(x)E{(Θ−X)|X = x} = E{Y h(x− Y )}.

Since Y is symmetric about 0, i.e., Y
d
= −Y we have further

Mh(x)E{(Θ−X)|X = x} = E{Y h(x+ Y )},

with Y ∼ E1(0, 1, g). By the assumptions and Lemma 4.1 g̃ is a density generator with some normalising

constant c̃ ∈ (0,∞) as in (2.3). Since we assume that E{Y 2} ∈ (0,∞), then

c1 =

∫∞
0
s−1/2g̃(s)ds∫∞

0
s−1/2g(s)ds

=
c̃

c
E{Y 2}

is finite with c ∈ (0,∞) the normalising constant of g. By Lemma 2 of Hamada and Valdez (2008) (see

also Theorem 1 of Landsmann (2006)) for any x ∈ R we obtain

E{Y h(x+ Y )} = c1E{h′(x+ Ỹ )},

with Ỹ ∼ E1(0, 1, g̃), and thus the claim follows. 2

Proof of Theorem 3.2 Let Y ∼ Ed(0,Σ, g) with 0 = (0, . . . , 0)> ∈ Rd and let A be a square matrix

such that AA> = Σ. Note first that as in the univariate case we have Y is symmetric about origin, i.e.,

Y
d
= −Y .

As in the proof of Theorem 2.1 for any x ∈ Rd in the support of X we have

E{Θ|X = x} = x+
E{Y h(x+ Y )}
Mh(x)

, (4.3)

provided that Mh(x) := E{h(x + Y )} is finite and non-zero. Applying Lemma 3 of Landsman and

Nešlehová (2008) we obtain∫
Rd

vh(v)g(v>v/2) dv =

∫
Rd

∇h(v)

(∫ ∞
v>v/2

g(u) du

)
dv

=

∫
Rd

∇h(v)g̃(v>v/2) dv.

Hence with c as in (2.3) and Ỹ
d
= AV ∼ Ed(0,Σ, g̃) we may further write

E{Y h(x+ Y )} =
1

c
Σ

∫
Rd

∇h(x+Av)g̃(v>v/2) dv

=
1

c
Σ

∫
Rd

1√
det(Σ)

∇h(x+ y)g̃(y>Σ−1y/2) dy

=
c̃

c
ΣE{∇h(x+ Ỹ )}.
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In view of Lemma 4.1
c̃

c
=

∫∞
0
ud/2−1g̃(u)du∫∞

0
ud/2−1g(u)du

=
E{R2}
d

and thus the rest of the proof proceeds as in the univariate case, hence the claim follows. 2
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