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Abstract— Ultrafast ultrasound has recently emerged as
an alternative to traditional focused ultrasound. By virtue
of the low number of insonifications it requires, ultrafast
ultrasound enables the imaging of the human body at
potentially very high frame rates. However, unaccounted
for speed-of-sound variations in the insonified medium
often result in phase aberrations in the reconstructed
images. The diagnosis capability of ultrafast ultrasound
is thus ultimately impeded. Therefore, there is a strong
need for adaptive beamforming methods that are resilient
to speed-of-sound aberrations. Several of such techniques
have been proposed recently but they often lack paral-
lelizability or the ability to directly correct both transmit
and receive phase aberrations. In this article, we intro-
duce an adaptive beamforming method designed to address
these shortcomings. To do so, we compute the win-
dowed Radon transform of several complex radio-frequency
images reconstructed using delay-and-sum. Then, we apply
to the obtained local sinograms weighted tensor rank-1
decompositions and their results are eventually used to
reconstruct a corrected image. We demonstrate using sim-
ulated and in-vitro data that our method is able to success-
fully recover aberration-free images and that it outperforms
both coherent compounding and the recently introduced
SVD beamformer. Finally, we validate the proposed beam-
forming technique on in-vivo data, resulting in a significant
improvement of image quality compared to the two refer-
ence methods.

Index Terms— Aberration correction, adaptive beamform-
ing, ultrafast ultrasound.
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I. INTRODUCTION

IN THE last 20 years, ultrafast ultrasound has emerged as a
new paradigm rivalling traditional focused ultrasound [1].

It relies on the emission of unfocused waves by an ultrasound
transducer. The recorded echoes are then synthetically focused
to recover an image estimating the reflectivity of the human
soft tissues. To improve the image quality, images correspond-
ing to different insonifications can then be combined into
one, most commonly using coherent compounding [2]. Due
to the high frame-rate the method allows, ultrafast ultrasound
has enabled new diagnostic techniques such as shear-waves
elastography [3], [4], [5] or neurofunctional imaging [6],
among others.

To reconstruct an image, ultrafast ultrasound—as well as
traditional focused ultrasound—presupposes a constant speed
of sound (SoS) in the imaged tissues. This hypothesis is
however not met in practice since the SoS of human soft
tissues can vary up to the order of 10% and beyond [7].
In effect, SoS variations introduce high-order aberrations in
the reconstructed images that are ultimately detrimental to the
diagnostic capability of ultrasound imaging [8], [9]. Therefore,
there exists a strong impetus to design image reconstruction
techniques that are resilient to aberrations induced by SoS
variations.

Numerous aberration correction methods have thus been
proposed throughout the development of ultrasound imag-
ing [10], [11], [12]. A large part of these methods posits
the existence of a thin aberrating layer in front of the trans-
ducer. Angular aberrations are therefore supposed constant in
the medium. This hypothesis is justified in specific imaging
configurations. In general, however, such methods fail to
address the aberrations generated by a spatially varying SoS
distribution.

The recent years have witnessed the development of
pulse-echo SoS imaging methods [13], [14], [15], [16]. Their
goal is to reconstruct a map of the local SoS from pulse-echo
ultrasound measurements. To correct for SoS aberrations,
propagation delays can be deduced from the imaged SoS and
then used by delay-and-sum (DAS) and coherent compounding
to reconstruct an image [17], [18]. Especially relevant to our
work is the method presented in [19], where directional filters
applied to beamformed images are used to take into account
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aberrations. Several drawbacks of this general approach can
however be highlighted. First, such methods do not allow
a gain of performance compared to DAS in the absence of
aberrations. In particular, they do not alleviate diffraction—
side lobes, grating lobes—artifacts and multiple scattering
artifacts. Second, local SoS recovery currently lacks robust-
ness, which may lead to errors in the propagation delays
estimation. Finally, the estimation of SoS at a specific point
in the medium requires the knowledge of aberration delays
from the entire medium. This fact prevents the parallelization
of such methods with respect to zones of interest. The SoS
recovery from local aberration delays is furthermore a com-
putationally demanding operation and those two facts currently
prevent real-time implementations of pulse-echo SoS imaging
methods.

In contrast, novel approaches have emerged recently to
better exploit the coherence existing between insonifications.
These methods provide an increased robustness against SoS
aberrations along with other artifacts such as diffraction and
multiple scattering artifacts. The SVD beamformer introduced
in [20] and [21] is especially relevant to our work. Its basic
principle is to beamform using DAS a series of complex radio-
frequency (CRF) images—one per insonification—and extract
patches from them. A stack of patches can be interpreted as
a matrix and its leading right singular vector corresponds to
a patch of the corrected image. In addition, the leading left
singular vector corresponds to local aberrations and can be
used to estimate local SoS [22]. Computationally light and
easily parralelizable, SVD beamforming is however only able
to directly correct for transmit (Tx) aberrations. Receive (Rx)
aberrations are overlooked, penalizing in practice the perfor-
mances of the method. Another proposed approach exploiting
redundancy between insonifications is ultrasound matrix imag-
ing (UMI) [23], [24]. This technique constructs virtual emitters
and receivers in the imaged medium. Aberration correction—
among other features of UMI—is performed by maximizing
the energy of emitters-receivers pairs when placed at the same
location. However, the construction of the corrected focused
reflection matrix in UMI-based aberration correction is a
complex operation that must be iterated, hindering in practice
computation time of the method. In addition, we can cite
the locally adaptive Tx-Rx phase correction method proposed
in [25]. Full-synthetic-aperture data are acquired and the
local Tx phase aberrations associated with each element are
computed from beamformed images. The estimated aberration
phases are used to correct both Tx and Rx aberrations, thus
obtaining a new image, and this procedure is ultimately
iterated. However, the iterative process and the reliance on
full-synthetic-aperture data negatively impacts the computa-
tional complexity of the method. Furthermore it is unable to
provide any image improvement beside the correction of phase
aberrations.

Therefore, our goal in this article is to propose an adaptive
beamforming method for ultrafast ultrasound that adheres to
the following guidelines:

• It should be able to simultaneously correct for
spatially-varying Tx and Rx phase aberrations,

• It should also provide additional robustness to artifacts
such as multiple scattering and diffraction artifacts with
respect to coherent compounding,

• It should be easily parallelizable and thus avoid to itera-
tively reconstruct images or to compute a local SoS map.

To do so, we rely on the concept of change of basis from
the canonical sensor basis to a Rx plane waves (PWs) basis—
sometimes denoted as Radon domain—proposed recently or
ultrasound pulse-echo imaging [26], [27], [28]. Following [20]
and [24], the main rationale behind the proposed method is to
express the data into a local Rx PW basis to account for the
locality of the phase aberrations induced by SoS variations.

II. THEORY

In this section, we first describe the model of the received
signals. Then, we detail the theoretical argument underpinning
the proposed method.

A. Signal Model and Beamforming
In this article, we restrict ourselves to the case of a linear

transducer. We suppose that it is aligned with the x axis and
that waves are emitted towards the positive z direction. An ele-
ment of the transducer is then defined by its position rel

=

[xel, 0]T . Furthermore, we assume that the transducer emits
N Tx PWs parametrized by their steering angles θTx. According
to [29], we model the CRF echo-signal m received by an
arbitrary sensor when an arbitrary steered PW is emitted as

m
(
θTx, xel, t

)
= vpe(t)∗t∫

r

[
h̃Tx(θTx, r, t

)
∗t h̃Rx(xel, r, t

)]
γ (r) dr, (1)

where the functions h̃Tx and h̃Rx designate the Tx and Rx spa-
tial impulse responses (SIRs), respectively, and ∗t represents
a temporal convolution. We denote by vpe the pulse-echo
waveform accounting for the electro-acoustic (Tx) impulse
response, acousto-electric (Rx) impulse response and electric
excitation waveform. We represent by γ the tissue reflectivity
function (TRF) which factors in the local fluctuations of
density and SoS generating scattered echo signals.

Following [30] and [31], we introduce Tx and Rx far-field
approximations. The convolutions with the SIRs h̃Tx / Rx in
(1) are therefore approximated by the composition of a spatial
multiplication with a function hTx / Rx and a temporal shift
according to the Tx/Rx wave propagation time. Moreover,
we assume that vpe is a complex analytic signal with center
frequency f0 = ω0/2π . Under these assumptions, we can
rewrite (1) as

m
(
θTx, xel, t

)
=

∫
r

hTx(θTx, r
)

hRx(xel, r
)
e− jω01τTx(θTx,r)

e− jω01τRx(xel,r)vpe

(
t − τTx(θTx, r)−τRx(xel, r)

)
γ (r) dr. (2)

Here, the functions hTx and hRx are assumed real and positive
and they factor in element directivity, decay and attenuation.
In (2), we split the Tx and Rx propagation times into two
distinct terms: the expected propagation times τTx, τRx and the
aberrations delays 1τTx, 1τRx. In-line with previous works
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on SoS estimation and aberration correction [15], [19], [20],
we reduce the effect of aberration delays to phase shifts by
assuming that vpe is narrow-band.

We compute the expected propagation times by positing a
uniform SoS c0 in the medium. The Tx propagation times are
then given by

τTx(θTx, r
)
=

1
c0

〈
u
(
θTx), r

〉
, with u

(
θ
)
=

[
sin(θ)

cos(θ)

]
, (3)

since we assume that the time origin t = 0 is defined as
the instant when the wave is emitted from the point r =
0 located at the center of the transducer. Furthermore, the Rx
propagation times are given by

τRx(xel, r
)
=

1
c0

∥∥r − rel∥∥. (4)

Aberration delays 1τTx / Rx are therefore the result of a
mismatch between the physical local SoS and the assumed
SoS c0.

We now suppose that DAS is applied independently to
the data obtained with each PW insonification. Moreover,
we assume that we have access to a continuous range of sensor
positions xel

∈
[
− xmax, xmax]. Under this hypothesis, DAS

can be expressed as

yDAS(
θTx, r ′

)
=

∫ xmax

xel=−xmax
aTx(θTx, r ′

)
aRx(xel, r ′

)
m

(
θTx, xel, τTx(θTx, r ′

)
+ τRx(xel, r ′

))
dr, (5)

where aTx and aRx denote real and positive apodization
weights. In particular, the sensor continuum hypothesis has
the practical effect of neglecting grating lobes altogether. The
resulting expression yDAS is a function of both the spatial
position in the image r ′ and the Tx angle θTx.

B. Local Angular Framework
To deepen our analysis, we focus on the vicinity V(rw)

of a point rw
= [xw, zw

]
T in the image series yDAS. We first

suppose that aTx / Rx, hTx / Rx, and 1τTx / Rx vary slowly in the
medium and thus can be assumed constant in V(rw) and equal
to their value at rw. In that regard, V(rw) is equivalent to the
isoplanatic patch used in [20] and [23]. Importantly, we posit
that the reflectivity γ is null outside of V(rw). We will address
in Section III-C how to enforce this hypothesis in practice.

First of all, we introduce a local Rx angle

θRx
= arctan

(
xw
− xel

zw

)
, (6)

and re-express each function of xel as a function of θRx.
Second, we posit that the Rx expected propagation time can
be assumed linear within V(rw) and expressed as:

τRx(θRx, r) ≈
1
c0

〈
u
(
θRx), r − rw

〉
+

zw

c0 cos
(
θRx

) , (7)

with u
(
θ
)

the vector defined in (3). Equation (7) stems from
the first order Taylor expansion of (4) around rw, combined
with the change of variable introduced in (6).

Lastly, we assume the following hypothesis

cos
(

θTx
−θRx

2

)
≈ 1, (8)

which holds true even for large difference between θTx and
θRx (10% of error for a 52◦ difference).

Let us now define the Radon transform R of an arbitrary
two-dimensional function g:

R(r) {g(r)} (θ, d) =

∫
r

g(r)δ
(
⟨u(θ), r⟩−d

)
dr, (9)

with u a unitary vector in the direction given by θ (3), and
d the distance along u with respect to r = 0. We define
its adjoint operator R∗, often designated as backprojection,
applied to a function h as

R∗(θ,d){h(θ, d)}(r) =
∫

θ

h
(
θ, ⟨u(θ), r⟩

)
dθ. (10)

Factoring in (2), the hypotheses introduced in this section,
and the definition of the adjoint Radon transform R∗, we can
rewrite (5) as:

yDAS(
θTx, r ′

)
=

R∗
(θmid,d)

{
s
(
θTx, 2θmid

− θTx, d
)} (

r ′ − rw)
, (11)

with

s
(
θTx, θRx, d

)
= lTx(θTx)lRx(θRx) f

(
θTx
+θRx

2 , d
)

, (12)

a series of sinograms, one per combination of Tx angle θTx

and window position rw. Here, d represents the distance to
the center of the patch rw along u. Also, we introduce in (11)
the mid angle

θmid
=

θTx
+ θRx

2
, (13)

which corresponds to the average between the Tx and Rx
angles. In (12), we denote by lTx / Rx two apodization/
aberration functions defined as

lTx(θTx)
= aTx(θTx)hTx(θTx)e− jω01τ

(
θTx

)
,

lRx(θRx)
=

zw

cos2
(
θRx

)aRx(θRx)hRx(θRx)e− jω01τ
(
θRx

)
,

(14)

since the Tx and Rx aberrations delays 1τTx
= 1τRx

= 1τ

are equal when expressed in the same angular basis. Note that
there is an implicit dependency of θRx, aTx / Rx, hTx / Rx, and
1τ , and therefore of lTx / Rx, f and s, to rw, omitted here
for conciseness. Furthermore, the additional term appearing in
the definition of lRx compared to lTx stems from the change
of variable (6) applied to the integral (5). In the definition
of s (12), f denotes a term factoring in the reflectivity and
the pulse-echo waveform. In fact, f represents the Radon
transform of an unapodized image free of aberrations restricted
to V(rw). Importantly, we must highlight that f is a function
of the mid angle. The definition of f and the computation of
(11) are detailed in Appendix I. The proposed mathematical
framework is inspired by [13] and [23]. In particular, the
importance of the mid-angle in the proposed framework can
be traced back to the latter article.
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TABLE I
TRANSDUCER AND SEQUENCE

Therefore, our proposition for an adaptive beamforming
method can be summarized as follows. We reconstruct using
DAS a series yDAS of one image per insonification. These
images are divided into zones (or patches) V(rw) to abide
by the strong hypotheses introduced in this section. For each
zone V(rw) we estimate first function s, then function f .
Ultimately, function f is used to reconstruct an aberration-free
image restricted to V(rw) and the local images obtained for
different zones are combined into a single one.

III. METHOD

In this section, we present the practical aspects of the
proposed method. We first detail the data acquisition and
beamforming processes. We describe thereafter which patches
V(rw) to select and how to obtain s for each patch, followed
by the computation of f using tensor rank-1 decomposition.
Finally, we present the reconstruction of the image, along
with our implementation of the SVD beamformer used as a
reference method.

A. Acquisition
All experimental data considered throughout this article

have been acquired using a GE9L-D ultrasound transducer (GE
Healthcare, Chicago, Illinois, USA) connected to a Vantage
256 system (Verasonics, Kirkland, WA, USA). In addition,
a geometric model of the transducer has been used in
numerical simulations. The transducer comprises a series of
N el
= 192 discrete sensors with positions xel

∈ RN el
.

We consider a Tx sequence consisting of N Tx PWs with
uniformly spaced steering angles θTx

∈ RN Tx
, where N Tx

= 9
and θTx

= −20◦,−15◦, . . . , 20◦ unless stated otherwise. The
echo signals are recorded using all N el elements for each
insonification. We directly apply the Hilbert transform to the
raw measurements so that they can be described by a series
of analytic signals gathered into a vector m ∈ CN Tx N el N t

. N t

denotes here the number of time samples considered after sam-
pling the recieved signals with frequency fs. The specifications
of the transducer and sequence are summarized in Table I.

B. Delay-and-Sum
Given the measurements m, we use DAS to compute the

beamformed PW images yDAS. In practice, we discretize (5)

as a sum over all sensors xel and we interpolate cubically
between time samples. Function yDAS is estimated at a series
of points r ′ = [x ′m, z′n]

T , m = 1, . . . , N x , n = 1, . . . , N z .
Therefore, it is represented by a vector yDAS

∈ CN Tx N x N z
.

To ease the implementation of the proposed method, we use
an isotropic grid with spatial spacings 1x ′ = 1z′ =
c0/(8 f0) = 38.5 µm selected to guarantee a 200% fractional
bandwidth [33]. The Tx apodization aTx is set to 1 whereas
a Tukey apodization with 42◦ half-aperture and 0.15 cosine
fraction is used as the Rx apodization aRx to reduce grating
lobe level.

We choose a 42◦ half-aperture because it corresponds to
the angle at which the directivity of the element reaches 6dB
below its maximum value. Assuming a soft baffle boundary
condition, we compute the theoretical angular directivity of a
narrow element in the far field according to [34], considering
the element width given in Table I.

C. Windowed Radon Transform
As detailed in Section II-B, beamformed images yDAS must

be restricted to a series of patches V(rw). Practically, we thus
window yDAS with a function w shifted by a series of vectors
rw, such that rw represents the center of the window and
V(rw) =

{
r ′ : w

(
r ′ − rw)

> 0
}
.

To estimate function s for a specific window position rw,
we can insert the windowing operation into (11). The result
can be rewritten as

w
(
r ′ − rw)

yDAS(
θTx, r ′

)
=

R∗
(θmid,d)

{
s
(
θTx, 2θmid

− θTx, d
)}

(r ′ − rw), ∀θTx. (15)

The inverse of the Radon transform is given by filtered
backprojection, the composition of a filtering self-adjoint
operator F and the adjoint of the Radon transform R∗ [35],
namely

R−1
= R∗F ⇐⇒

[
R∗

]−1
= FR. (16)

Equation (15) can thus be further re-expressed as

s
(
θTx, θRx, d

)
=

FR(r̃)

{
w

(
r̃
)
yDAS(

θTx, r̃ + rw)} (
θTx
+θRx

2 , d
)

, ∀θTx, (17)

with r̃ = r ′ − rw. We define the filtering operator F applied
to an arbitrary function g(d) as

F
{
ĝ
}
(ζ ) =

1
4π2 |ζ |ĝ(ζ ) (18)

in the frequency domain, with ĝ the Fourier transform of g
and ζ the spatial frequency associated with d. Equation (17)
without the filtering operation is known as a windowed Radon
transform [36].

In practice, we introduce a set of N Rx discrete uniformly
spaced Rx angles θRx

j , j = 1, . . . , N Rx to evaluate (17), and
we consider N d values of d such that the spatial spacing of d
is equal to the spatial grid spacing of the image 1x ′ = 1z′.
Furthermore, we consider a discrete grid of window centers
rw

q,p such that p = 1, . . . , N w,x , q = 1, . . . , N w,z , with
N w,x , N w,z the number of points in the x and z directions.
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The distance between two window centers is set to 1xw
=

1zw
= 241x = 0.924 mm to ensure a three quarters overlap

between windows since a sufficient overlap is necessary in
the image reconstruction step—c.f. Section III-E—. Finally,
we implement (18) as a filter in the spatial domain to recover
a bona fide estimation of s from the result of the windowed
Radon transform.

It is important to mention that the mathematical analysis
detailed in Section II-B neglects the windowing of the image
introduced in (17). A side effect of the windowing is the
limitation of the angular resolution of s with respect to θRx due
to the convolution in the frequency domain between the the 2D
spectrum of the window and the spectra of the images yDAS.
To minimize this phenomenon, one must choose a window
w with a narrow main lobe. Furthermore, the window must
must be smooth to avoid artifacts in the reconstruction—
c.f. Section III-E—. Thus, a Tukey window with 0.5 cosine
fraction is chosen as a trade-off. The radius Rw must also
achieve a critical trade-off. It needs to be sufficiently small to
enforce the hypotheses introduced in Section II-B, but large
enough to be resilient to local TRF variations. We determined
empirically that Rw

= 521x = 2 mm provides a good
compromise for the proposed imaging configuration.

In turn, the Rx angular spacing is constrained by the size
of the window. This constraint stems from the necessity to
sample the whole 2D frequency plane. If this condition is
not met, strong local grating lobe artifacts can appear in the
reconstructed image. Let us recall that the main lobe width of
a 2D Tukey window with radius Rw and 0.5 cosine fraction is
f w
= 0.902/Rw. We posit that the minimum distance between

two samples in the frequency plane must be at most equal to
the window main lobe width. In accordance with the size of the
image grid, we need to guarantee a 200% fractional bandwith.
Therefore, the maximum 2D spatial frequency magnitude we
must consider is f max

= 2 · 2 f0/c0. Under a small angle
hypothesis, the maximum angular spacing of the mid angle
is then given by f w/ f max

= 0.033 = 1.91◦. According to
(17), there is a one-half factor between the mid angle and the
Rx angle, the maximum Rx angular spacing is consequently
3.82◦. Regarding the maximum Rx angle, we set it such
that it corresponds to the last angle not affected by the Rx
apodization aRx, namely (1− 0.15)·42◦≈ 35◦.

D. Tensor Rank-1 Decomposition

To recover lTx / Rx and f from s, we propose to solve the
following inverse problem

min
f, ∥lTx∥�Tx=1, ∥lRx∥�Rx=1

1
2

∥∥lTxlRx f Tx,Rx
−s

∥∥2
�Tx×�Rx×�d+

µ

2

∥∥ f
∥∥2

�mid×�d , (19)

with∥∥lTx / Rx∥∥2
�Tx / Rx =

∫
θTx / Rx∈�Tx / Rx

∣∣lTx / Rx(θTx / Rx)∣∣2 dθTx / Rx,

(20)∥∥ f
∥∥2

�mid×�d =

∫∫
θmid∈�mid,d∈�d

∣∣ f
(
θmid, d)

∣∣2 dθ dd, (21)

∥∥g
∥∥2

�Tx×�Rx×�d =

∫∫∫
θTx∈�Tx,θRx∈�Rx,d∈�d∣∣g(
θTx, θRx, d

)∣∣2 dθTx dθRx dd, (22)

for an arbitrary function g, and

f Tx,Rx(θTx, θRx, d
)
= f

(
θTx
+θRx

2 , d
)

. (23)

In (19), �Tx / Rx, �mid, and �d denote the ranges of θTx / Rx,
θmid, and d , respectively. Problem (19) can be interpreted as
a weighted and regularized rank-1 canonical polyadic (CP)
decomposition in the continuous domain.

The regularization term is necessary to prevent a divergence
of the solution, for instance if lTx and lRx are null for certain
angles. In fact, the regularization term enables a dynamical
apodization of the image. A small regularization parameter
µ implies that the proposed method compensates for the
angular directivity of the sensors, among other magnitude
effects acting on the received signals. Lateral resolution is
thus typically favored at the expense of robustness to multiple
scattering and diffraction artifacts. The opposite phenomenon
occurs when a large regularization parameter µ is chosen.
The proposed method is then more robust to artifacts at the
expense of lateral resolution. We determined empirically that
µ = 1 provides a good trade-off—c.f. Section IV-B—. It can
be tuned in practice if the user wants to favor contrast or
lateral resolution. The adaptive apodization of the proposed
method extends in effect the Tx adaptive apodization already
enforced by SVD beamforming. As presented in Section I, one
of the goal of the proposed method is to provide an increase
in performance compared to coherent compounding, even in
the absence of aberrations. This improvement—of contrast,
especially—is permitted in practice by the mechanism of adap-
tive apodization detailed above. In that regard, the proposed
method shares strong similarities with minimum variance
beamforming [37], [38]. Problem (19) can be interpreted as
finding the weights lTx and lRx minimizing the variance of
all the signals sharing the same mid angle, and the effect of
the regularizer is akin to diagonal loading of the covariance
matrix.

We solve (19) with alternating least-squares (ALS), a com-
mon method for CP decomposition [39]. Its fundamental
principle is to solve least-squares problems by fixing alterna-
tively two out of the three variables f , lTx, and lRx. The ALS
scheme with continuous signals is detailed in Algorithm 1,
where ·̄ denotes the complex conjugate. In practice, the main
ALS loop solves the following unconstrained problem

min
f,lTx,lRx

1
2

∥∥lTxlRx f Tx,Rx
−s

∥∥2
�Tx×�Rx×�d

+
µ

2

∥∥lTx∥∥2
�Tx

∥∥lRx∥∥2
�Rx

∥∥ f
∥∥2

�mid×�d . (24)

In a second time, Algorithm 1 rescales the solutions of (24)
to recover the solutions of the constrained problem (19).
The unit constraints on the aberration vectors ensure that the
amplitude of f remains consistent between different window
positions. To the best of our knowledge, there exists no proof
of convergence for ALS in the present case of weighted CP
decomposition. Convergence guarantees exist however for the
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Algorithm 1 Alternating Least Squares
lTx(θTx)

← 1;
lRx(θRx)

← 1;
for i := 1 to N iter do

f
(
θmid, d

)
←

2
∫
θTx l̄Tx

(
θTx

)
l̄Rx

(
2θmid

−θTx
)

s
(
θTx,2θmid

−θTx,d
)

dθTx

2
∫
θTx

∣∣lTx
(
θTx

)
lRx

(
2θmid−θTx

)∣∣2
dθTx+µ

∥∥lTx
∥∥2

�Tx

∥∥lRx
∥∥2

�Rx

;

lTx(θTx)
←∫∫

θRx,d f̄
(

θTx
+θRx

2 ,d
)

l̄Rx
(
θRx

)
s
(
θTx,θRx,d

)
dθRx dd

∫∫
θRx,d

∣∣∣∣ f
(

θTx
+θRx

2 ,d
)

lRx
(
θRx

)∣∣∣∣2 dθRx dd+µ
∥∥lRx

∥∥2
�Rx

∥∥ f
∥∥2

�mid×�d

;

lRx(θRx)
←∫∫
θTx,d f̄

(
θTx
+θRx

2 ,d
)

l̄Tx
(
θTx

)
s
(
θTx,θRx,d

)
dθTxdd

∫∫
θTx,d

∣∣∣∣ f
(

θTx
+θRx

2 ,d
)

lTx
(
θTx

)∣∣∣∣2 dθTx dd+µ
∥∥lTx

∥∥2
�Tx

∥∥ f
∥∥2

�mid×�d

;

end
nTx
=

∥∥lTx
∥∥

�Tx ;
nRx
=

∥∥lRx
∥∥

�Rx ;

lTx(θTx)
←

lTx
(
θTx

)
nTx ;

lRx(θRx)
←

lRx
(
θRx

)
nRx ;

f
(
θmid, d

)
← nTxnRx f

(
θmid, d

)
;

Return: f , lTx, lRx

unweighted regularized case [39]. Even if we are not certain
that ALS converges to a global minimum, we are guaranteed
that it will converge to a local minimum that is at least as
good—with respect to the loss—as the case where lTx and
lRx are uniform.

In practice, we need to discretize lTx, lRx, and f . First of
all, we can naturally express lTx as a vector lTx

∈ CN Tx
.

In addition, we can determine the discrete Rx angles θRx
∈

RN Rx
and mid angles θmid

∈ RN mid
such that interpolation can

be avoided in the implementation of Algorithm 1. To do so,
the Tx and Rx angular spacings should be multiples of one
another and the angular spacing of θmid should be half of the
minimum of the Tx and Rx angular spacings. Consequently,
we can infer that θRx

= [−35◦,−32.5◦, . . . , 35◦], since the
angular spacing must be inferior to 3.82◦ in accordance with
Section III-C, and that θmid

= [−27.5◦,−26.25◦, . . . , 27.5◦],
since the maximum mid angle is given by (35◦+20◦)/2 =
27.5◦, namely the average between the maximum Tx and Rx
angles. Practically, only a few iterations are necessary in order
for ALS to converge, in particular we set N iter=20. More-
over, ALS is computationally light and easily parallelizable,
as long as interpolation can be avoided in its implementation.
Its computational complexity followsO

(
N iter N d N mid) and the

time complexity of its GPU implementation can be reduced
to O

(
N iter log

(
N d N mid)). Ultimately, Algorithm 1 is run for

each window position rw
p,q .

E. Image Reconstruction

Once a single sinogram f per window position is obtained
using Algorithm 1, we recover an estimation of a local patch

Algorithm 2 Image Reconstruction

yf (
r ′

)
← 0;

n
(
r ′

)
← 0;

for p := 1 to N w,x and q := 1 to N w,z do
yf, w

(
r ′, rw

p,q

)
← w

(
r ′ − rw

p,q

)
yf, P

(
r ′, rw

p,q

)
;

n
(
r ′

)
← n

(
r ′

)
+ w2

(
r ′ − rw

p,q

)
;

yf (
r ′

)
← yf (

r ′
)
+ yf, w

(
r ′, rw

p,q

)
;

end
for i := 1 to N iter, out do

for p := 1 to N w,x and q := 1 to N w,z do
yf,0 (

r ′
)
← yf (

r ′
)
− yf, w

(
r ′, rw

p,q

)
;

v←
∫

r ′ yf,0 (
r ′

)
ȳf, w

(
r ′, rw

p,q

)
dr ′;

yf, w (
r ′

)
←

v
|v|

yf, w (
r ′

)
;

end
yf (

r ′
)
← 0;

for p := 1 to N w,x and q := 1 to N w,z do
yf (

r ′
)
← yf (

r ′
)
+ yf, w

(
r ′, rw

p,q

)
;

end
end
yf (

r ′
)
=

yf(r ′)
n(r ′) ;

Return: yf

by applying the backprojection operator R∗ to f , namely

yf, P(
r ′, rw)

= R∗
(θmid,d)

{
f
(
θmid, d, rw)} (

r ′ − rw)
, (25)

in the continuous domain. Backprojection is then repeated for
each window position rw

p,q .
As a final step, the patches obtained with (25) need to be

assembled into a single CRF image yf. Unfortunately, the
value of f for each window position rw is recovered up to an
arbitrary phase. We must therefore make sure that the patches
are added up in phase, otherwise detrimental artifacts are likely
to appear. We thus perform the image reconstruction using
Algorithm 2, where patches are added to the image yf after a
phase correction v that is updated N iter, out times. N iter, out is set
to 10 in practice. Moreover, we compute a normalization factor
n to correct magnitude variations induced by windowing. The
corrected image yf is discretized as a vector yf

∈ CN x N z
, using

the same grid than the initial images yDAS. The brightness
(B)-mode image is ultimately computed as

yf, B(
r ′

)
= 20 log10

∣∣yf(r ′
)∣∣. (26)

A visual summary of the proposed method is depicted in
Figure 1.

F. SVD Beamforming
To compare the performance of our approach to a state-

of-the art method, the SVD beamformer proposed in [20] is
implemented. The choice of the SVD beamformer is motivated
by its compatibility with the proposed PW sequence and its
conceptual similarities with our method. However, we must
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Fig. 1. Summary of the proposed method. Top row: beamforming of a single complex radio-frequency image per insonification, followed by
windowed Radon transform and filtering. Tensor rank-1 decomposition is then performed patch-wise according to (19) and Algorithm 1. The phase
and magnitude of complex numbers are encoded by the hue and darkness of the depicted colors, respectively. Bottom row: reconstruction of a patch
from the result of tensor decomposition, followed by the reconstruction of the output image from the whole set of patches according to Algorithm 2.

highlight that the Tx-only correction performed by SVD
beamforming allows for a computationally lighter method.

The implementation is performed as follows. First,
we define wSVD as a square window, such that the multipli-
cation of an image with wSVD shifted by rw corresponds to
a patch extraction. Consequently, we can solve the following
inverse problem

arg min
yf, P,∥lTx∥=1

∫
r ′

∫
θTx

∣∣yf, P(
r ′

)
lTx(θTx)

− yDAS(
θTx, r ′

)
wSVD(

r ′ − rw
)∣∣2 dθTx dr ′, (27)

for all the patch positions rw. The solution of (27) is a function
yf, P(

r ′, rw
)

that can be directly used by Algorithm 2 with
w = wSVD to reconstruct the corrected image yf. Similarly to
the proposed method, yDAS, yf, P and lTx can be represented
by discrete complex vectors. The solution of (27) is thus given
by the two leading singular vectors of the windowed series of
images expressed as a matrix.

We set the parameters of the SVD beamformer to be as close
as possible to the ones of the proposed method to ensure a
meaningful comparison. In particular the half-side of a square
patch is identical to the window radius Rw (2 mm) and the
same distance between patch centers is kept.

IV. EXPERIMENTS

In this section, we detail the experiments we perform to
check the validity of the proposed method and present their
results. We also compare our method to standard coherent
compounding and SVD beamforming. We first assess quan-
titatively the proposed method using simulated data, followed
by tests of the method with in-vitro and in-vivo data.

A. Simulation
We depict in Figure 2a, the numerical phantom designed

to quantitatively assess the performance of our method.

A SoS of 1540 m s−1 is set in the phantom background. Two
inclusions—one anechoic and one hypoechoic 6dB below the
background echogeneicity—and six scatterers are embedded
within the medium. Moreover, we add an irregular aberrating
layer with a SoS of 1500 m s−1 and an echogeneicity 6dB
above the background on top of the phantom. In particular,
the lower boundary of the aberrating layer is defined as

zmax(x) [mm] = 9+ 1.5 cos(2πx/16). (28)

We choose such a layer—in opposition to a flat layer or a phase
screen—for its capacity to generate complex phase aberrations
with strong lateral variations. Complex laterally-varying aber-
rations can typically occur in the imaging of the abdominal
wall due to the interweave of muscle and fat tissues. We simu-
lated using k-Wave [40] the data corresponding to 10 different
speckle realisations of the phantom.

In addition, figure 2a presents the zones considered to
evaluate the performance of our method. As detailed below,
four different features have been analyzed: contrast, scatterer
resolution, speckle statistics, and the ability to accurately
correct aberrations.
• To compare contrast, we compute the contrast ratio (CR)

between the two inclusions and their adjacent back-
grounds. The inclusions’ interiors used to estimate the
CRs are highlighted with purple and green lines and the
backgrounds are bounded by lighter lines. To account for
the apparent position displacement due to the aberrating
layer, the centers of both inclusions are shifted by 200 µm
along the z-axis in the coherent compounding, SVD
beamforming and proposed method cases.

• To compare resolution, we compute the axial and lateral
full width at half maximum (FWHM) of near and far
field scatterers. They are displayed in red and orange in
Figure 2a, respectively.

• To check if the first-order statistical properties of speckle
pattern are maintained by the proposed method, we test
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Fig. 2. Top row: B-mode images reconstructed from simulated data depicted with a 60 dB dynamic range, bottom row: examples of scatterers.
a) Phantom geometry with the top aberrating layer and the zones considered for the computation of the metrics highlighted. b) Coherent compounding
image reconstructed from a single speckle realisation of the phantom. c) Result of the SVD beamformer. d) Result of the proposed method.
e) Reference coherent compounding image obtained from data simulated without the aberrating layer.

how much the speckle patterns generated by the different
methods fit a Rayleigh distribution [41]. We perform
Kolmogorov-Smirnov (KS) tests between the measured
distributions of pixel magnitudes within the blue rectangle
in Figure 2a and Rayleigh distributions fitted with a
maximum likelihood estimator.

• Lastly, we check whether the proposed method is able
to correctly compensate for Tx and Rx aberrations
and recover speckle patterns coherent with a theoretical
unaberrated image. To do so, we generate a reference
image with DAS and coherent compounding from a
simulation without the top aberrating layer. We then com-
pute the maximum of the normalized cross-correlation
between a series of patches extracted from the target
CRF image and the corresponding patches in the ref-
erence CRF aberration-free image. The patches selected
to perform this analysis present speckle patterns that are
especially aberrated in the coherent compounding images.
These patches are highlighted in blue in Figure 2a.

Figures 2b-2d depict the results of coherent compounding,
SVD beamforming and the proposed method using data from
a single speckle realisation of the phantom. Close-ups of
a near-field and a far-field scatterers (in red and orange in
figure 2a) are also presented in the bottom row. Figure 2e
displays the reference aberration-free image. Furthermore,
we summarize in Table II the different metrics, averaged over
10 speckle realisations of the phantom. The standard deviation
is given between parentheses.

From the results presented in Table II, we can observe
that the most noticeable benefit of the proposed method with
respect to coherent compounding and SVD beamforming is
its capacity to accurately reconstruct scatterers. As depicted in
the close-ups of Figure 2, the SVD beamformer improves the
quality of the far-field scatterer—even if it is not reflected on
its lateral FWHM—but fails to correct the near-field scatterer.
On the contrary, the proposed method recovers scatterers that
are qualitatively and quantitatively comparable to the ones
of the reference image. Nevertheless, we can notice that the
axial displacement in the apparent positions of the scatterers

TABLE II
SIMULATION RESULTS

compared to the reference image is not compensated by the
SVD beamforming and the proposed method.

Regarding the anechoic inclusion, we can notice that both
SVD beamforming and the proposed method provide contrast
improvements compared to coherent compounding. The pro-
posed method achieves however a better contrast ratio—even
outperforming the contrast ratio of the reference image—and
a better reconstruction of the inclusion’s shape. With regard
to the hypoehoic inclusion, all four methods achieve similar
average contrast ratios with similar standard deviations.

Finally, from the normalized cross-correlation with the ref-
erence image, we observe that our method highly outperforms
SVD beamforming and coherent compounding. The SVD
beamformer allows only a limited improvement compared to
coherent compounding. In contrast, the image reconstructed
using the proposed method consistently correlates with the
reference image to a high degree, thus accurately compen-
sating for aberrations and maintaining speckle coherence.
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Fig. 3. Influence of the regularization parameter µ on the average image
quality metrics. The metrics are computed over 10 speckle realizations
of the phantom and depicted with their standard deviations.

The proposed method also maintains the speckle statistics
with respect to the reference image. A slight improvement
compared to the reference methods can be observed, but the
uncertainty of the results prevents any conclusion.

B. Regularization Parameter
One of the key enablers of our method is the regulariza-

tion parameter. To quantify its impact on imaging quality,
we reconstruct the images corresponding to the 10 speckle
realizations of the phantom with different values of the regu-
larization parameter µ. We present in Figure 3 the evolution
of the metrics—at the exception of axial resolution of the
scatterers which is only weakly affected by the aberrations,
as seen in Table II—with respect to µ. We depict in the same
figure the metrics associated with coherent compounding,
SVD beamforming and the reference image, which are all
independent from the regularization parameter. The plain lines
and shaded areas represent the mean and standard deviation
of the metrics over the 10 speckle realisations, respectively.

We can notice that the trade-off between resolution and
robustness described in Section III-D is confirmed experimen-
tally. Indeed, the lower the regularization parameter is, the
smaller the lateral resolution becomes. The resolution of the
reference image is even outperformed with both the near and
far-field scatterers when µ < 1. By contrast, the contrast ratios
of the anechoic inclusion—and to a lesser degree the hypoe-
choic inclusion—worsen, a sign that the proposed method
becomes more sensitive to diffraction and multiple scattering

Fig. 4. B-mode examples of scatterer and anechoic inclusion recon-
structed using different values of the regularization parameter µ. They
are compared with a reference aberration-free image and displayed with
a 60 dB dynamic range.

artifacts. This sensitivity to artifacts can also be observed
on the normalized cross-correlation, since it also decreases
when µ diminishes. The change in cross-correlation cannot
however be solely explained by the presence of artifacts since
the speckle is tightened when µ decreases. For illustration,
we depict in Figure 4 a scatterer and the anechoic inclusion
for three values of µ, along with the reference image. Finally,
no significant variation can be observed regarding the fitting
of the speckle pattern to a Rayleigh distribution.

To conclude, we determine the default regularization param-
eter µ = 1 as the value at which the lateral resolution achieved
by the proposed method is at least equal to the one of the
reference image.

C. Number of Insonifications
We also test the influence of the number of insonifications

on the quality of the images. To do so, we perform addi-
tional simulations, varying for each new sequence the number
of PWs emitted N Tx but keeping the same steering angle
range, namely −20◦ to 20◦. The number of PWs considered
N Tx ranges from 5 to 80, since the result of the proposed
method are incoherent if N Tx < 5. We believe this limit
arises when the number of unknowns in (19) is too large in
comparison with the size of the available data.

Figure 5 represents the contrasts, speckle distribution, and
speckle correlation with respect to the number of PWs con-
sidered N Tx. The plain lines and shaded areas represent the
mean and standard deviation of the metrics over the 10 speckle
realisations, respectively. The scatterers’ FWHMs are omitted
due to the limited influence of the amount of PWs. With
regard to the proposed method, both the Rx angles θRx

and mid angles θmid are updated for each new number of
transmit angles N Tx to comply with the criteria disclosed in
Section III-D.

From Figure 5, we can observe an improvement of the ane-
choic CR with the number of PWs, regardless of the method
applied. Notably, the relative difference between the four
cases stays approximately constant. A noteworthy exception
occurs when N Tx > 40, the results of the proposed method
become worse than the reference image. As the number of
insonifications N Tx grows, the number of mid angles N mid,
and therefore the size of f , must be increased to avoid
interpolation in Algorithm 1. We believe that the size increase
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Fig. 5. Evolution of the average image quality metrics with respect to
the number of insonifications. The metrics are computed over 10 speckle
realizations of the phantom and depicted with their standard deviations.

of f beyond the minimum size necessary for patch reconstruc-
tion likely increases the variance of the patch reconstruction.
Therefore, the sensitivity of the result to noise and imaging
artifacts relatively to the other methods is negatively impacted.

The influence of the number of PWs on the hypoechoic CR,
speckle distribution, and speckle correlation is more limited.
Nonetheless, an improved stability of the correlation with
respect to NTx can be observed with SVD beamforming and
the proposed method, especially when NTx < 10. Overall,
we can conclude that the proposed method does not require a
specific range of PWs to be effective.

D. In-Vitro Phantom

In addition to simulated data, the proposed method is
also assessed with data measured on an in-vitro phantom.
We employ a CIRS model 054GS general-purpose ultrasound
phantom (Sun Nuclear, Melbourne, FL, USA) figuring a series
of scatterers embedded within uniform speckle. We perform
10 experiments, each consisting of N Tx

= 9 PW insonifica-
tions. We move the transducer perpendicularly to the imaging
plane between each experiment.

Since the previous experiments considered only a specific
aberration severity, we propose to test the influence of the
aberration delays on the performance of the proposed method.
To do so, we simulate the presence of a thin uniform aberrating
layer in front of the transducer by introducing Tx and Rx
aberration delays during delay-and-sum. This approach was
chosen, in opposition to a physical aberrator, to parameterize
precisely the strength of the aberration. In fact, to investigate
the behaviour of the proposed method to different aberration
strength, we consider 21 aberration values—defined as the
one-way aberration delay of an unsteered PW—ranging from
−1 µs to 1 µs. For each aberration value, we compare the
results of coherent compounding with the proposed method
using µ = 0.1, µ = 1, and µ = 10 as regularization

Fig. 6. In-vitro phantom results. a) Example of an unaberrated B-mode
image with the zones considered for the metrics computation highlighted.
b) Lateral FWHM of a mid-field scatterer with respect to the unsteered
one-way aberration delay of the thin aberrating layer simulated during
delay-and-sum. c) Separability of adjacent scatterers located at 300 µm
from one another, for the unaberrated coherent compounding image
and the images reconstructed with the proposed method. d) Sepa-
rability of adjacent scatterers located at 500 µm from one another.
e) Cross-correlation with unaberrated coherent-compounding images.
f) Cross-correlation with the result of the proposed method applied to
unaberrated data. The metrics are computed for 10 transducer positions
and depicted along with their standard deviations.

parameters. Unfortunately, we must disclose that the proposed
aberrating layer does not capture the complex nature of in-vivo
aberrations. A phantom study with physical aberrators can be
performed in the future to further assess our method.

In line with Section IV-A, we compute the lateral FWHM
of a mid-field scatterer—in orange in Figure 6a—and the
maximum cross-correlation of a series of patches—in blue
in Figure 6a—with respect to an unaberrated coherent com-
pounding image. The results are depicted in Figure 6b and
Figure 6e respectively, along with their standard deviation
over the 10 experiments. In Figure 6f, we also depict the
cross-correlation of the corrected image with the proposed
method applied to unaberrated images. The resulting metric is
therefore agnostic to the changes of speckle density induced
by different regularizers µ. Furthermore, scatterer FWHM do
not necessarily provide an accurate resolution metric in the
case of non-linear beamformers [42]. To circumvent this issue,
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Fig. 7. Two in-vivo images of an abdominal wall (top and bottom row), using 9 plane wave insonifications and displayed with a 60 dB dynamic range.
Results of coherent compounding, SVD beamforing and the proposed method are depicted. Areas of interest are highlighted in blue.

we compute the separability between three scatters—in red in
Figure 6a—located at 300 µm and 500 µm from one another.
The separability S between two scatterers located at positions
r1 and r2 in a B-mode image yB is defined as

S[d B] = min
{

yB(
r1), yB(

r2)}
− min

t∈[0,1]
yB(

t r1
+ (1− t)r2). (29)

The influence of the aberration strength on the separability
is depicted in Figure 6c and 6d, respectively, along with
their standard deviation. Since separability is ill-defined for
an aberrated image due to interferences between the aberrated
PSFs of the scatterers, we only depict the separability of the
unaberrated coherent compounding image.

The main conclusion that can be drawn from Figure 6 is
that the FWHM and cross-correlation concur to define a sharp
boundary to the range of validity of the proposed method. This
boundary occurs around an absolute aberration value of 0.6 µs
to 0.7 µs. To put this value into perspective, it corresponds
to the aberration delay generated by a 2 cm-thick layer of
subcutaneous fat with SoS 1476 m s−1 [7]. The separability
of the scatterers does not depict the same sharp transition but
generally decreases with the aberration strength. We can notice
that the separability values are coherent with the FWHM
results and validate the resolution improvement allowed by
the proposed method. Also, the resolution improvement with
regard to coherent compounding, even without aberration,
observed in Section IV-B for small values of the regularizer
is confirmed by the scatterer separability. More generally, the
conclusions obtained with simulated data are confirmed by the
in-vitro phantom experiments.

E. In-Vivo
To assess the in-vivo performance of the proposed method,

we acquired two sets of data on the abdominal wall of a
healthy volunteer (27 years old male), using 9 PW insonifica-
tions. The ultrasound sequence has been approved for research
with human subjects by the Cantonal Ethics Committee of the
Canton of Vaud, Switzerland. We reconstruct the images with
coherent compounding, SVD beamforming and the proposed
method, for both scanning positions. The resulting B-mode
images are depicted in Figure 7, along with close-up of four
areas of interest.

We can notice in each image the complex structure of the
medium, with a series of non-parallel muscle and fat layers.
Both types of layer typically possess distinct SoS, different
from the expected c0 =1540 m s−1 [7]. Therefore, the complex
interweave of layers present in both scanning positions likely
generates non-negligible aberrations.

We can first observe that the SVD beamformer and pro-
posed method both improve contrast with respect to coherent
compounding. The contrast improvement is especially visible
in the median layer—between 2 and 3 cm—of both images
and corroborates the results obtained with simulated data.
However, the most noteworthy effect of the proposed method
is its capacity to reconstruct scatterers. It can be observed
in the top area of interest of the first image. An ovoidal
scatterer is reconstructed, whereas it lacks definition with the
two reference methods. It can also be seen in the bottom
zone of interest of the second image. The proposed method
reveals the presence of five scatterers whereas their presence
can only be guessed from the two reference methods. Overall,
our method permits a general qualitative improvement of the
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images. As an illustration, we can see in the top zone of
interest of the second image the reconstruction of an interface,
whereas it appears faint with coherent compounding or split
in half with SVD beamforming.

V. DISCUSSION

In this article, we introduce a novel adaptative beamforming
method able to correct aberrations caused by SoS variations
in the imaged medium. We show using simulated and in-vitro
data that our method accurately corrects phase aberrations
and recovers images that correlate to a high degree with
ideal aberration-free images. In particular, the reduction in
scatterer FWHM and the capacity to separate adjacent scat-
terers, confirm a large improvement in lateral resolution.
We also establish that the proposed method allows a contrast
improvement with respect to DAS even when aberration-free
data are considered. Lastly, we present qualitative in-vivo
results confirming, in particular, an improvement in scatterer
resolution with regard to both coherent compounding and SVD
beamforming.

A. Computation Time and Generalizability
As desired, our method is highly parallelizable. Specifically,

the bulk of the proposed technique can be performed simulta-
neously for each patch. The windowed Radon transform—the
most computationally heavy operation of our method—can
be parallelized further with respect to the Tx angles. The
main temporal bottleneck is then given by the two iterative
algorithms (Algorithms 1 and 2), but the numbers of iterations
N iter and N iter, out remain small in practice. Our prototype GPU
implementation using 9PWs currently runs in 30 seconds on
an Nvidia GeForce 2080 Ti GPU (Nvidia Corporation, Santa
Clara, CA, USA). In particular, the computational time cur-
rently achieved by the proposed method do not compare with
the one of the SVD beamformer, for which real-time computa-
tion has been reported [20]. The current implementation relies
on Numba CUDA [43], a just-in-time GPU compiler of Python
code. We consider that a bona fide CUDA implementation of
the method can achieve a significant performance improve-
ment with regard to the current implementation. In particular,
the memory management can be greatly improved. The choice
of the different parameters of the proposed method can also be
optimized with computation time in mind. Overall, we believe
that the computation time can be reduced to allow real-time
image reconstruction.

More generally, we believe that the local PW basis proposed
in this article is well-suited for limiting the computational
complexity of local aberration correction. As discussed in
Section III-C, restricting an image to a patch bounds the
maximum angular resolution of its Radon transform. Selecting
the Rx angles to approximate this bound leads to a reduction
of data to process compared to an explicit spatial alignment of
the measured signals [25]. Moreover, waves emitted using the
transducer’s full set of elements allow data acquisition with a
high signal-to-noise ratio compared to a sequence of single-
element insonifications. The number of insonifications, and
thus the amount of data to process, can therefore be reduced
compared to methods relying on the latter sequence.

We limit ourselves in this article to ultrafast PW imag-
ing. However, both focused ultrasound imaging and ultrafast
imaging using diverging waves suffer from the same SoS
aberrations that the proposed method aims to correct. This
raises the question as to whether the proposed method can
be used in these cases as well. The proposed theoretical
framework can be easily adapted to other insonifications, with
the caveat that the angles of the incident waves θTx vary with
the window position rw. However, additional difficulties arise
in the implementation of Algorithm 1. Since the Tx angles
θTx are not necessarily uniformly spaced anymore, the Rx
angles θRx and mid angles θmid cannot be selected to allow
a direct discretization of Algorithm 1. Its performances are
therefore expected to be ultimately impeded compared to PW
imaging.

Nonetheless, the proposed method can be directly applied to
data acquired with any linear transducer emitting a sequence
of uniformly spaced PWs. The proposed image grid size
1x = 1z, distance between window centers 1xw

= 1zw and
window Radius Rw are defined in function of the wavelength
c0/ f0. They must be therefore updated if the beamforming
speed c0 or the excitation frequency f0 are changed. Moreover,
the Rx apodization weights aRx and the maximum mid and
Rx angles must also be updated according to the directivity of
the transducer elements.

B. Limitations

According to the principle of acoustic reciprocity, the phases
of the angular aberrations functions lTx and lRx are equal in
theory (14). Moreover, their amplitude can also be assumed
equal under mild hypotheses, provided matching Tx and Rx
apodization functions. However, the proposed method fully
disregards the principle of acoustic reciprocity and posits that
the Tx and Rx aberrations are independent, in stark contrast
with other recent Tx/Rx aberration correction methods [24],
[25]. The rationale behind this choice is twofold:

1) Introducing a single aberration vector, or an equality
constraint between the Tx and Rx aberration vectors,
would complexify the minimization problem and prevent
the use of ALS for its resolution.

2) Tissue movements may occur between insonifications
and can be interpreted as Tx phase shifts. Considering
distinct Tx and Rx aberrations likely provide additional
robustness to in-vivo movement artifacts compared to
methods positing identical Tx and Rx aberrations. This
property can be especially relevant for applications
where tissue displacements are expected, such as elas-
tography, or when large numbers of insonifications are
considered.

However, imposing the Tx and Rx aberrations to be equal—or
penalizing their difference—can increase the robustness of the
method if the tissue movements are negligible, especially when
the number of PWs emitted is small. For example, considering
a unique aberration vector could in theory extent the validity of
the method to cases where N Tx < 5. Therefore, it would be of
interest to seek an efficient way to integrate such a constraint
into the proposed method. Comparisons could ultimately be
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performed to quantify the usefulness of the Tx-Rx split-
ting of aberrations, beyond the fact that it enables the use
of ALS.

A fundamental limitation of the proposed method is its
failure to retrieve the absolute position of reflective structures.
This drawback arises from the estimation of time delays by
phase shifts and from the inability of our method to recover
the global phase of lTx / Rx. A reconstruction of the SoS map is
therefore probably necessary to address this shortcoming. The
parallelizability of such a method would however be impaired.
The phase-shift hypothesis also limits the maximum aberration
delay our method can correct, as seen in Section IV-D. The
applicability of our method to cases where strong aberrations
are present is therefore hindered, including most probably
transcranial imaging.

C. Applications
Since the proposed method is able to recover aberration

vectors lTx / Rx for a series of points in the medium, one
can imagine using their magnitude and phase to recover
the spatial distribution of attenuation and SoS, respecively.
Unfortunately, we advise against the direct use of the proposed
method to that end. First, it has been shown that the phase
modulation neglected by the proposed method (8) is important
for the accuracy of the measurement model in pulse-echo SoS
imaging [13]. Second, the regularization term introduced in
(19) tends to bias the magnitude of the aberration vectors
lTx / Rx, therefore reducing their interest as a feature for attenu-
ation imaging. Nonetheless, we believe that windowed Radon
transform can act as a powerful framework for quantitative
pulse-echo ultrasound imaging in the future, but that a different
way to estimate local angular aberrations must be devised with
this specific application in mind.

SoS aberrations affect the quality of displacement tracking
between consecutive frames. The performances of methods
such as shear-wave elastography are therefore diminished.
A first possible application of the proposed method could be
the improvement of displacement-tracking-based techniques as
a consequence of our method’s capacity to correct for Tx
and Rx aberrations. Further reaserach is however necessary
to quantify the impact of the proposed method in that case.
Nonetheless, we can state that our method is useful to improve
B-mode imaging, as indicated by both the controlled exper-
iments and the in-vivo examples. Due to the low number of
insonifications it requires, our method can be useful to improve
the quality of ultrasound imaging with portable transducer
since the amount of data they can acquire and transmit is likely
to be limited. Finally, the proposed method can be especially
relevant to the challenging case of overweight patients, since
the presence of fat is likely to generate SoS aberrations and
thus to impact negatively the diagnosis capability of ultrasound
imaging [8], [9], [44].

APPENDIX I
LOCAL BACKPROJECTION

Let us replace in (5) the measurements m and the expected
transmisison times τTx, τRx by their definition according to

(2), (3) and (7), respectively. The beamformed images can then
be expressed locally as

yDAS(
θTx, r ′

)
≈

∫
θRx

lTx(θTx)lRx(θRx) ∫
r
γ (r)

vpe

(
2
c0

cos
(

θTx
−θRx

2

) 〈
u

(
θTx
+θRx

2

)
, r ′ − r

〉)
dr dθRx,

(30)

where lTx and lRx are the aberration/apodization functions
introduced in (14). We propose to perform the following
change of variable

r = rw
+ α∥u

(
θTx
+θRx

2

)
+ α⊥u⊥

(
θTx
+θRx

2

)
, (31)

where u⊥ denotes a vector perpendicular to u and α∥ and α⊥

are integration variables along the directions given by u and
u⊥, respectively. Taking (8) into account, (30) can therefore
be rewritten as

yDAS(
θTx, r ′

)
≈

∫
θRx

lTx(θTx)lRx(θRx) ∫
α∥

vpe

(
2
c0

[〈
u

(
θTx
+θRx

2

)
, r ′ − rw

〉
− α∥

])
∫

α⊥
γ

(
α∥u

(
θmid)

+ α⊥u⊥
(
θmid)

+ rw
)

dα⊥ dα∥. (32)

We introduce the intermediary variable

d =
〈
u

(
θTx
+θRx

2

)
, r ′ − rw

〉
(33)

as the distance between the image position r ′ and rw along
the direction given by u. Equation (32) is then equivalent to

yDAS(
θTx, r ′

)
≈

∫
θRx

s
(
θTx, θRx,

〈
u

(
θTx
+θRx

2

)
, r ′ − rw

〉)
dθRx (34)

with

s
(
θTx, θRx, d

)
= lTx(θTx)lRx(θRx) f

(
θTx
+θRx

2 , d
)

, (35)

and

f
(
θmid, d

)
=

∫
α∥

vpe

(
2
c0

(
d − α∥

))
∫

α⊥
γ

(
α∥u

(
θmid)

+ α⊥u⊥
(
θmid)

+ rw
)

dα⊥ dα∥. (36)

Finally, (34) can be rewritten as (11) factoring in the definition
of the backprojection operator (10).
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