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Abstract
Marine cold-air outbreaks (MCAOs) create conditions for hazardous maritime
mesocyclones (polar lows) posing risks to marine infrastructure. For marine
management, skilful predictions of MCAOs would be highly beneficial. For this
reason, we investigate (a) the ability of a seasonal prediction system to pre-
dict MCAOs and (b) the possibilities to improve predictions through large-scale
causal drivers. Our results show that the seasonal ensemble predictions have
high prediction skill for MCAOs over the Nordic Seas for about 20 days start-
ing from November initial conditions. To study causal drivers of MCAOs, we
utilize a causal effect network approach applied to the atmospheric reanalysis
ERA-Interim and identify local sea surface temperature and atmospheric cir-
culation patterns over Scandinavia as valuable predictors. Prediction skill for
MCAOs is further improved up to 40 days by including MCAO predictors in the
analysis.
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1 INTRODUCTION

Marine cold-air outbreaks (MCAOs) are surges of cold air
escaping from the inner Arctic and becoming exposed
to the relatively warm ocean surface (Rasmussen, 1983).
MCAOs over the Nordic Seas usually occur within the
northerly flow associated with large-scale anomalous
anticyclonic circulation over Greenland and anomalous
cyclonic circulation over Scandinavia (Kolstad et al.,
2009; Mallet et al., 2013; Papritz and Grams, 2018;
Afargan-Gerstman et al., 2020). Given the importance of
MCAOs for the formation of severe weather events such
as polar lows (PLs; Rasmussen, 1983; Kolstad, 2011; Land-
gren et al., 2019), and for driving the ocean convection
in the North Atlantic (Kolstad and Bracegirdle, 2008), we
evaluate predictability of MCAOs using a seasonal predic-
tion system and by identifying MCAO precursors. We focus
on the North Atlantic and in particular on the Barents Sea
MCAOs as this is one of the regions that is exposed to
frequent and strong MCAOs (Rasmussen, 1983; Fletcher
et al., 2016). Furthermore, this region exhibits a high vul-
nerability due to the presence of marine infrastructure
with a need to improve marine services (Orimolade et al.,
2017; Aarnes et al., 2018).

With respect to the role of MCAOs in the genesis of PLs,
Ese et al. (1988) and Noer et al. (2011) describe MCAOs
as a necessary yet not a sufficient condition. Sustained dry
cold conditions are required for several days before PLs
can develop. PLs may occur at the outer edges of MCAOs
or as thermal-instability phenomena inside the cold air
masses (Rasmussen, 1983; Terpstra et al., 2016). There-
fore, previous studies consider the diagnostic index used
to detect MCAOs as a large-scale proxy for PLs (Claud
et al., 2007; Kolstad et al., 2009; Landgren et al., 2019).
Whereas individual PLs can be predicted by nowcasting
systems up to two days in advance (Kristiansen et al.,
2011), for efficient planning of marine activities, there is
an urgent demand for information on PLs and MCAOs on
longer lead times. In contrast to PLs, MCAOs are com-
parably more persistent and large-scale phenomena (PLs
about 1–2 days, 200–1,000 km in diameter; MCAOs about
1–2 weeks, >1,000 km). Due to their larger temporal and
spatial extent, MCAOs were assumed to be predictable for
time horizons beyond a few days as compared to the less
predictable PLs (Kolstad, 2017). However, no study has
actually quantified prediction skill for MCAOs. Evaluating
the prediction skill of the Nordic Sea MCAOs is therefore
the major objective of our study.

To further explore potential sources of predictability of
MCAOs on the sub-seasonal time-scale, we implement a
causal discovery approach. The application of causal dis-
covery algorithms has previously shown high potential

for identifying causal Arctic drivers of the midlatitude
winter circulation (Kretschmer et al., 2016; Siew et al.,
2020), drivers of temperature extremes (Vijverberg et al.,
2020) and for understanding Arctic-stratospheric path-
ways and stratosphere–troposphere coupling (Kretschmer
et al., 2018a; Saggioro and Shepherd, 2019). The MCAO
development stages identified by Papritz and Pfahl (2015)
and Papritz and Spengler (2016) give a first impression of
the chronology of a MCAO evolution. It starts with the
(a) build-up and (b) advection of cold air masses (Papritz
and Pfahl, 2015). In the mature stage, (c) the availabil-
ity of warm air over the ice-free ocean contributes to
MCAO erosion. By contrast, further supply of cold air
can sustain MCAOs. Finally, (d) latent heating associated
with mesocyclones such as PLs contributes to a com-
plete decay of MCAOs. Pathways of the cold air and the
ability of MCAOs to extract energy from the ocean are
region-dependent and characterise lifetime and intensity
of MCAOs in different regions of their occurrence (Papritz
and Spengler, 2016). Using a causal discovery approach,
we aim to test potentially causal relationships between
the Barents Sea MCAOs and their environmental condi-
tions. These factors include atmospheric circulation pat-
terns enabling cold air flow from the Arctic region (Mallet
et al., 2013; Papritz and Grams, 2018; Afargan-Gerstman
et al., 2020), sea surface temperature changes as a proxy
for ocean-to-air heat loss (Lien et al., 2017) available to
erode or fuel MCAOs, as well as sea ice concentration
regulating the region of MCAO occurrence (Kolstad and
Bracegirdle, 2008). Knowing causal precursors can then
help to improve predictions of MCAOs as was shown by
Dobrynin et al. (2018) and Cai et al. (2016) for predictabil-
ity of the North Atlantic Oscillation (NAO) and cold spells,
respectively. For instance, seasonal predictions of the win-
ter NAO can be improved based on the knowledge of the
NAO predictors from the previous season (Dobrynin et al.,
2018), whereas stratospheric variability can be used to pre-
dict low temperature extremes one month ahead (Cai et al.,
2016). Our expectation is that establishing causal links
between MCAOs and other processes acting in the Arc-
tic region can further improve prediction skill for regional
MCAOs.

Thus, our study aims to contribute to knowledge on the
predictability of MCAOs in the North Atlantic region and
causal precursors of the Barents Sea MCAOs. In Section 2,
we describe the MCAO index, prediction skill evaluation
and the causal-detection approach. In Section 3, we anal-
yse the prediction skill from the seasonal ensemble pre-
dictions performed with the Earth System Model from
the Max Planck Institute for Meteorology (MPI-ESM), and
provide details on the large-scale conditions that precede
the anomalous MCAO variability. Finally, Sections 4 and
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5 summarize the study and provide recommendations for
future research.

2 METHODOLOGY

2.1 Data

We analyze MCAOs and conditions favourable for their
development in the atmospheric reanalysis ERA-Interim
(Dee et al., 2011). The resolution of the atmospheric reanal-
ysis is T255L60. ERA-Interim is also used as a source
of initial conditions for seasonal predictions and a veri-
fication dataset for the prediction skill assessment. The
prediction skill for MCAOs is evaluated from a 30-member
ensemble of seasonal retrospective predictions (hereafter
called hindcasts). The hindcast ensembles are carried
out with the seasonal prediction system that is based
on the Earth System Model from the Max Planck Insti-
tute for Meteorology in mixed resolution configuration
(MPI-ESM-MR). The ESM consists of the atmospheric
component ECHAM6 with a resolution of T63L95 and the
oceanic component MPIOM with 0.4◦ horizontal resolu-
tion and 40 vertical levels (Giorgetta et al., 2013). The hind-
cast ensembles are started every year on 1 November over
the period 1980–2016 and provide data over the follow-
ing six months. Ensemble members are generated by per-
turbing initial conditions in the ocean using bred-vectors
(Baehr and Piontek, 2014) and perturbing the diffusion
coefficient in the upper layer of ECHAM6. Full fields
of the ERA-Interim atmospheric state and the ORAS4
ocean state (Balmaseda et al., 2013) are nudged into the
MPI-ESM-MR. The experimental set-up for seasonal pre-
dictions follows that designed by Baehr et al. (2015). The
prediction experiments were previously used in the study
on statistical-dynamical prediction for the NAO (Dobrynin
et al., 2018).

2.2 Marine cold-air outbreak (MCAO)
index

The air temperature over the Arctic sea ice can fall far
below 0 ◦C while, for adjacent areas of open water, sea sur-
face temperatures remain close to freezing. This creates a
strong temperature gradient across the sea-ice edge. Trans-
ports of cold air masses from the sea ice toward the ocean
create a large vertical temperature gradient (temperature
difference between the ocean surface and atmosphere),
which leads to surface sensible and latent heat flux from
the ocean into the atmosphere. The MCAO index that we
use here is from Kolstad (2017). It measures atmospheric
instability conditions which cause convection within the

boundary layer over open ocean. The daily MCAO index is
then expressed in terms of the sea–air potential tempera-
ture difference:

MCAO(x, t) = 𝜃sea surface(x, t) − 𝜃air(x, t), (1)

where 𝜃sea surface is ocean skin potential temperature (SKT)
and 𝜃air is air potential temperature at 850 hPa. Indices
x, t denote the space (latitude and longitude) and time
dimensions (daily resolution), respectively. A positive
MCAO(x, t) index indicates atmospheric instability condi-
tions. We then focus on MCAO events, that is, a positive
MCAO(x, t) index, during boreal autumn to spring months
(November to April) in the Nordic Seas as this is a season
and a region of high MCAO occurrence (Fletcher et al.,
2016).

Since the MCAO(x, t) index measures vertical air col-
umn stability only over the ocean surface, sea ice grid
cells, where SKT is less than −1.9 ◦C, and land grid cells
for time-series analysis are masked. Note that masking or
not masking an approximate edge of the sea ice can result
in a different value of the long-term trend in the MCAO
index as SKT also has values over the sea ice (not shown).
Therefore, caution should be taken when comparing the
results from different studies. Since the beginning of the
analyzed time series in 1980, ERA-Interim shows a drop
of sea-ice fraction over the Barents Sea and an upward
trend for both SKT and air temperature at 850 hPa, lead-
ing to a slight downward trend in the time series for the
Barents Sea MCAO index. However, a retreating sea-ice
edge may also indicate that MCAOs do not disappear com-
pletely but rather occur to the northeast of the Barents Sea
(not shown). In order to take into account an approximate
sea-ice edge, we performed masking similar to Kolstad
(2017). Alternatively, one could apply masking of actual
sea-ice fraction above the value of 0.55. Both methods of
the sea-ice masking are time varying and thus account for
a temporal shift in the sea-ice edge.

In this study, we aim to investigate the merits of using
a seasonal prediction system to predict MCAOs. Thus, in
addition to synoptic characteristics of MCAOs, we ana-
lyze an aggregated-over-time quantity such as anomalous
frequency of daily MCAO events per 10-day time window:

MCAOfreq = 1
S

S∑
x=1

ND∑
t=1

MCAO(x, t)|>0,

ΔMCAOfreq = MCAOfreq − 1
NY

NY∑
t=1

MCAOfreq,

(2)

where MCAO(x, t)|>0 is the positive daily MCAO index
value, and x, t are space and time dimensions, respec-
tively. ND stands for number of days in a time-window,
NY for years over the period 1980–2017, and S for number
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of grid points in the respective domain. Space averag-
ing is performed for MCAO time-series analysis, other-
wise for MCAO maps we do not apply area averaging.
The MCAOfreq index considers all MCAOs within the
time-window regardless of their strength and represents
persistent or frequent MCAOs within a time window. Pos-
itive (negative) values of the aggregated anomalous index
ΔMCAOfreq indicate a higher (lower) number of MCAO
events as compared to the climatology of the MCAOfreq

index for the respective season.
We calculate daily and aggregated MCAO indices for

both ERA-Interim and hindcast data. For the hindcasts,
the aggregated MCAOfreq index is calculated for each
ensemble member individually and then the ensemble
mean is constructed. For MCAO anomalies, the seasonal
cycle is calculated over the period 1980–2017 from the
ensemble mean and then removed from each ensemble
member. A lead-time-dependent mean-bias correction is
applied. The mean bias is calculated as the difference
between the MCAO seasonal cycle of the ensemble mean
and ERA-Interim, which is then subtracted from each
ensemble member. For simplicity of handling the time axis
for aggregated MCAO indices during skill assessment and
predictor analyses, we use a 360-day calendar.

2.3 Prediction skill metrics

Prediction skill is assessed by systematically comparing
hindcasts and observations for each forecast time, that is,
the lead time, to identify the margin (region and lead time),
at which the hindcasts start to deviate from observations.
Here, we use ERA-Interim instead of observational data.
Skill is measured using probabilistic metrics such as rela-
tive operating characteristics (ROC) and Brier skill score
(Jolliffe and Stephenson, 2012). In addition, the skill is
assessed for the ensemble mean using correlation coeffi-
cients (COR; Jolliffe and Stephenson, 2012).

The ROC score is used to measure the ability of the
hindcast to distinguish an event from a non-event. The
MCAO event for the daily MCAO index is determined as
MCAO(x, t) being positive. For the aggregated index, the
event is determined as a positive ΔMCAOfreq anomaly. An
index value in the respective other category is classified
as a non-event. The events and non-events are identified
in the verification dataset (ERA-Interim). From the hind-
casts, we calculate how many ensemble members have
predicted or failed to predict an observed event. Based on
these results, we can then further estimate the proportion
of all events correctly predicted by the hindcasts, termed as
the hit rate. The proportion of events that were predicted
but not observed represents the false-alarm rate. If the pre-
diction system has no skill in discriminating events and

non-events, the hit and false-alarm rates will be identical
and the hindcasts are concluded to have skill equivalent
to climatology. However, if the prediction system has skill,
the hit rate will be larger than the false-alarm rate. The
ROC curve is plotted as hit rate against false-alarm rate
for different probability categories. The ROC score is cal-
culated as the area under the ROC curve. The hindcast
with the skill equivalent to climatology will correspond to
a curve that follows the diagonal with the ROC area being
0.5. Hence, for the skilful hindcasts, the ROC score will be
higher than 0.5.

The Brier score is a summary verification measure for
reliability and resolution of the hindcasts. It has a range
from 0 to 1. The value of 0 is for the case that all hindcasts
correctly predict the events and non-events with 100%
probability. The opposite is true for a score of 1. Thus, low
scores indicate better predictions than high scores. The
Brier skill score compares the hindcast skill to that from
the climatology. We have also estimated the uncertainty
in the values of the prediction skill metrics using boot-
strapped confidence intervals. For more details on forecast
verification, we refer the reader to Mason and Graham
(1999), Jolliffe and Stephenson (2012) and Mason (2013).
We perform all prediction skill assessments with respect
to ERA-Interim over the period November 1980 – April
2017 for daily and aggregated MCAO indices that are
introduced in the previous subsection. We provide pre-
diction skill plots for the North Atlantic and the Arctic
sectors.

2.4 Potential MCAO predictors

Here we first review Arctic and North Atlantic climate
variability patterns which have been shown in the litera-
ture to be associated with MCAOs. In Section 3.3 we will
evaluate these hypotheses using Causal Effect Network
(CEN). The analysis of MCAO predictors is focused on
the Barents Sea region. This is because previous studies
showed that MCAO characteristics have regional peculiar-
ities associated with specific local processes and orography
(e.g., Papritz and Spengler, 2016). Therefore, causal drivers
for MCAOs in other sea basins would need individual pre-
dictor assessment. Moreover, we focus on the Barents Sea
region due to high marine activity and marine infrastruc-
ture which are exposed to frequent MCAOs.

Large-scale atmospheric circulation. The Barents
Sea MCAOs usually develop within the northerly flow,
which is enabled via anomalous anticyclonic circulation
over Greenland and the anomalous cyclonic circulation
over Scandinavia (Mallet et al., 2013; Papritz and Grams,
2018). The stratospheric polar vortex variability and associ-
ated sudden stratospheric warming (SSW) events (Baldwin
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et al., 2021) are a key driver of cold spells over northern
Europe (e.g., Kolstad et al., 2010; Kretschmer et al., 2018b;
King et al., 2019). While, Papritz and Grams (2018) did
not confirm that the strength of the polar vortex sys-
tematically affected MCAO frequency in the Nordic Seas,
Afargan-Gerstman et al. (2020) show that more than half
of SSW events in the ERA-Interim atmospheric reanaly-
sis are associated with MCAOs in the Barents Sea. In their
study, SSW events with an enhanced MCAO response in
the Barents Sea are also linked with a ridge over Greenland
and a trough over Scandinavia.

Ocean heat flux. Generation of MCAO events is
linked to a warmer ocean surface relative to the air aloft
and associated with heat and moisture flux into the atmo-
sphere. Ocean sub-surface temperature changes in the
Nordic Seas can be formed locally through changes in
air–sea heat flux or advection from the North Atlantic.
Whereas Atlantic water inflow into the Barents Sea acts
at interannual and longer time-scales (Årthun et al., 2017;
Koul et al., 2019), local/regional temperature changes
occur on sub-seasonal and seasonal time-scales (Furevik,
2000; Lien et al., 2017). In particular, Lien et al. (2017)
advocates that an increase in the ocean heat content can
have an effect on reduced refreezing on a time-scale of one
month in the Barents Sea. They also suggest a link between
the ocean heat transport anomaly and the positive NAO
index which in turn may favour an increase in the number
of low-pressure systems in the Nordic Seas. Kolstad et al.
(2009) argues that SSTs are important in setting up the sea-
sonal cycle of MCAOs and Claud et al. (2007) defines SST
as an important condition for the PL development due to
thermodynamic fluxes that fuel PLs.

Sea ice. By definition, MCAOs represent transports of
cold air from the sea-ice or snow-covered areas toward the
ice-free ocean. Thus, sea ice in the Barents Sea might be a
necessary condition for generation of a cold-air pool in the
first place. The variability of the sea-ice boundary is sug-
gested to largely determine the area over which MCAOs
occur (Papritz and Spengler, 2016; Spengler et al., 2017;
Landgren et al., 2019). Michel et al. (2018) point out that
there is no immediate relation between mesoscale cyclo-
genesis and the Barents Sea sea ice extent, however they
indicate a shift in the cyclogenesis as the sea-ice retreats
northward.

Based on these prevailing hypotheses of environmen-
tal conditions for MCAOs, we will analyze five potentially
causal precursors on the sub-seasonal time-scale: changes
in atmospheric circulation indices representing the Scan-
dinavian pattern and Greenland blocking, stratospheric
polar vortex index (PoV) variability, SST changes as for the
upper-ocean state variability and changes in the Arctic sea
ice cover (SIC).

2.5 Causal effect network (CEN)

Previous studies addressing the relationship between
MCAOs and atmospheric circulation indices employed
composite and cross-correlation analyses (e.g., Kolstad
and Bracegirdle, 2008; Kolstad et al., 2009; Papritz and
Grams, 2018). As these metrics do not provide informa-
tion about causality, we here follow a study by Kretschmer
et al. (2016) in which a causal discovery algorithm is
applied to identify the causal links between different mid-
latitude winter circulation indices. Thus, we apply the
so-called Causal Effect Network (CEN) approach based
on the PCMCI algorithm to analyse causal pathways of
MCAO predictors. The underlying algorithm was designed
and implemented by Runge et al. (2017; 2019) and is
freely available through https://github.com/jakobrunge/
tigramite (accessed 13 April 2021). The CEN algorithm
encompasses the following steps (Kretschmer et al., 2016
give a detailed description):

Step 1. Potential predictors of the target variable are iden-
tified using pairwise cross-correlation at differ-
ent lags. Thus, the time-lagged cross-correlation
is calculated between the MCAO index and
its potential predictors as well as between all
pairs of the different considered predictors. Also
auto-correlation for each variable is evaluated. We
use a maximum time lag of 𝜏max = 9 which cor-
responds to 90 days. All statistically significant
cross-correlations (for a significance threshold of
0.1) are considered as potentially causal predic-
tors. After this step, a set of MCAO predictors
is obtained not only for MCAOs but for all the
considered variables in the network.

Step 2. The potential predictors from Step 1 are tested for
conditional independence with the target variable
by iteratively conditioning on the combinations of
the other input variables in the network. The con-
ditional independence test performed by analyz-
ing partial correlations in the iterative algorithm
is a version of the Markov discovery algorithm.
Those relationships, which remain to be signif-
icantly correlated with the target variable even
when conditioning on other processes, are inter-
preted as causal drivers of the target variable.
Similar to Step 1, each MCAO predictor is tested
in the role of a predictand with other variables act-
ing as its predictors. Step 2 identifies redundant or
indirect MCAO drivers providing a refined set of
MCAO predictors.

Step 3. Finally, the strength and significance of causal
relationships for the set of MCAO predictors from

https://github.com/jakobrunge/tigramite
https://github.com/jakobrunge/tigramite
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T A B L E 1 Table of potential MCAO predictors (Input for CEN)

Abbreviation Predictor Variable (units) Region (level) Reference

Scand-Z500 Scandinavian pattern Z500 (m) 60–70◦N, 30–50◦E (500 hPa) Afargan et al. (2020)

Gr-Z500 Greenland pattern Z500 (m) 60–70◦N, 30–50◦W (500 hPa) Afargan et al. (2020)

local-SST Inflow of ocean temperature SST (K) 70–78◦N, 20–54◦E Lien et al. (2017)

Arc-SIC Arctic sea ice SIC (%) 40–90◦N —

PoV-T100 Stratospheric polar vortex T100 (K) 65–90◦N (100 hPa) Domeisen et al. (2020)

Note: All the time-series are constructed from the ERA-Interim reanalysis.
Abbreviations: SIC=sea ice concentration; SST=sea surface temperature; T100=air temperature at 100 hPa; Z500=geopotential height at 500 hPa.

F I G U R E 1 (a, b) Frequency of occurrence of MCAO events (in %). The MCAO event is defined as the daily MCAO index exceeding 0 K
for longer than 2 days. (c, d) The 90th percentile of MCAO events (in K). Both metrics are plotted from (a, c) the ERA-Interim and (b, d)
hindcast data covering November to March 1980–2017. The black outline shows the Barents Sea region, for which we later analyse the
MCAO predictors

Step 2 is evaluated in terms of standardized multi-
ple linear regression coefficients. Here, we define
a two-tailed significance level 𝛼 = 0.1. This means
that potential predictors beyond the maximum
time lag and with confidence level below 90% are
neglected.

Note that the term ‘causal’ should be taken with cau-
tion, as the identified links can only be interpreted as
causal under certain assumptions and only within the set
of considered variables (Runge, 2018). Nevertheless, for a
reasonable choice of input data, the CEN approach has
been shown to successfully remove spurious correlations
thereby allowing a more causal interpretation of precur-
sors. Here, the CEN analysis is based on the ERA-Interim
data and employs time series of the MCAO index and its
potential predictors. The input time series cover the period
from January 1980 to December 2017. The target variable is
ΔMCAOfreq for the Barents Sea (20–54◦E; 70–78◦N) region.
Other input variables for the CEN analysis are represented
by climatological anomalies, from which an area-weighted
spatial average is calculated over the defined region (sum-
marized in Table 1; the exact choice of the region will
be explained in the results section). The long-term linear
trend is removed as well.

3 RESULTS

3.1 MCAOs from ERA-Interim
and seasonal predictions

First, to evaluate the model’s skill in representing MCAOs,
we compare different MCAO characteristics from the sea-
sonal prediction system with those of ERA-Interim. We
begin with the frequency of occurrence and the ampli-
tude of extreme daily MCAO values from ERA-Interim
and an ensemble member of initialized hindcasts (with-
out bias-correction; Figure 1a,b). The hindcast shows a
higher number of MCAO events than ERA-Interim for
the period between November and March 1980–2017. The
higher frequency of MCAO occurrence reflects the bias
of the seasonal prediction system in the Arctic region.
For instance, SST bias in winter consists of a warm bias
in the western Barents Sea and cold bias in the east-
ern Barents Sea. Apart from February, hindcasts show a
large-scale cold bias for air temperature at 850 hPa. Thus,
a warmer ocean surface and colder air aloft might enhance
the vertical temperature gradient, especially in the western
Barents Sea. Further information on biases in the pre-
diction system are shown in Appendix S1, Figure S1. In
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F I G U R E 2 Time series of (a) anomalies (November to April) and (b) climatology (for the whole year) of the MCAO index, ΔMCAOfreq,
aggregated in 30-day time windows. ERA-Interim is shown in red and the hindcasts in blue (ensemble mean in solid and ensemble members
in circles). Linear trends from ERA-Interim and the ensemble mean estimated over the 1980–2017 are also shown. The land–ice mask is
applied to the daily MCAO index, from which ΔMCAOfreq is calculated

terms of the 90th percentile of the daily MCAO index as
shown in Figure 1c,d, in regions of high MCAO occur-
rence the amplitudes of extreme MCAO values from both
ERA-Interim and the hindcast are comparable, indicating
that MCAOs from the seasonal prediction system are not
necessarily more intense than those from ERA-Interim.

To gain insight into MCAO predictability on
sub-seasonal and seasonal time-scales, we analyze the
ΔMCAOfreq index aggregated in 10- and 30-day time
windows (Section 2.2 gives details). ΔMCAOfreq exhibits
low-frequency variability which is more noticeable in the
30-day aggregated index, which we choose to show in
Figure 2 for the Barents Sea time series. The climatology of
the ΔMCAOfreq index suggests that the seasonal prediction
system overestimates the number of MCAO event-days
per winter month. Also the time series of the index shows
that individual ensemble members go far out of the range
of the ERA-Interim variability; these results are consistent
with Figure 1, which indicates that the seasonal predic-
tion system tends to overestimate the frequency or the
length of MCAO events as compared to ERA-Interim. The
trend for ΔMCAOfreq increases, especially after the 2000s.
Overall, the variability of the index is the highest during
the boreal autumn and winter.

3.2 Potential MCAO predictors

As noted by previous studies (Section 2.4), there is
certain large-scale atmospheric flow and ocean state
configurations in which MCAOs typically form over the
Nordic Seas: the Scandinavian trough, Greenland ridge

and Atlantic ridge patterns at synoptic time-scales (Kolstad
et al., 2009; Mallet et al., 2013; Papritz and Grams, 2018),
positive ocean temperature anomaly and ice-free ocean
(Kolstad et al., 2009). The time lag between the inflow
of ocean temperature anomaly through the Barents Sea
opening and the associated changes in sea-ice cover down-
stream was reported to be one month (Lien et al., 2017, and
references therein). Additionally, the stratosphere was pro-
posed to drive the Barents Sea MCAOs within one month
after SSW events (Afargan-Gerstman et al., 2020). In this
section, we first evaluate the relationship between these
large-scale conditions and the Barents Sea MCAOs. Fur-
ther, we test if the variability of any of these large-scale
conditions precedes the MCAO variability such that the
former can be considered as a precondition of the MCAO
variability. For this purpose, we utilize the Barents Sea
ΔMCAOfreq on 10-day resolution from the ERA-Interim
reanalysis. We cross-correlate ΔMCAOfreq with the vari-
ables representing potential MCAO predictors at time lag 0
and −1 (10 days) for different months during high MCAO
activity (November to April 1980–2017; Figures 3 and 4).

Consistent with Mallet et al. (2013) and Afargan-
Gerstman et al. (2020), in cross-correlation patterns at time
lag 0, we find dipolar anomalies of geopotential height at
500 hPa (Z500) pattern with a ridge over Greenland and
a trough over Scandinavia and the Barents Sea. This rela-
tion holds from late autumn to early spring (Figure 3).
The dipole pattern is also present in air temperature
at 850 hPa with a warm anomaly over Greenland and
a cold anomaly over the Barents Sea (not shown). For
lagged cross-correlations at time lag −1 (i.e., 10 days),
the cross-correlation between the Barents Sea MCAOs
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F I G U R E 3 Cross-correlation between the time-series of ΔMCAOfreq for the Barents Sea and maps of anomalies for SST, Z500, T100
and SIC (in columns) for the beginning and the end of the MCAO peak season: NDJ (upper panels) and FMA (lower panels). The stippling
indicates significant values at the 95% confidence level according to the two-tailed bootstrap test

F I G U R E 4 As Figure 3, but for SST, Z500, T100 and SIC leading ΔMCAOfreq changes by 10 days (lag −1)

and the dipole Z500 pattern is weaker and is more
pronounced in autumn than in spring (Figure 4). The lag 0
cross-correlation with SST shows a positive relationship

to the Barents Sea MCAOs at the sea-ice edge throughout
the MCAO season (Figure 3). For time lag −1 (Figure 4),
MCAOs are associated with warm SST in the whole
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Barents Sea basin and, with longer time lag −2 (20 days)
and −3 (30 days), the positive SST cross-correlation pat-
tern extends into the Norwegian Sea (not shown). The
lag 0 cross-correlation with the Arctic SIC also shows a
positive relationship to the Barents Sea MCAOs mostly
in spring (Figure 3). The relationship between the Bar-
ents Sea MCAOs and the Arctic SIC persists for lags −1
(Figure 4), −2 and −3 (not shown). Interestingly, the low
SIC anomaly and warm SST anomaly in the Barents Sea
are more correlated with the Barents Sea MCAOs at lag
−1 than at lag 0. We use air temperature at 100 hPa (T100)
as a representative of the polar vortex variability follow-
ing Dobrynin et al. (2018) and Domeisen et al. (2020).
In terms of T100, the cross-correlation at time lags 0, −1
and −2 is rather low and does not allow for the iden-
tification of a consistent pattern throughout the season.
At lag −3 (30 days), the Barents Sea MCAOs positively
cross-correlate with T100 over Greenland and Canada (not
shown); this relationship is observed in late winter and
early spring.

In summary, cross-correlation maps provide a first
impression on relevant time-scales and regions. Except
for T100, which does not show a consistent relationship
to MCAOs, local SSTs and Arctic SIC have an effect on
MCAOs in the Barents Sea. The SST–MCAO relation-
ship holds throughout the MCAO peak season, also on
longer time-scales. The dipole Z500 pattern (Greenland
ridge and Scandinavian trough) relates to MCAOs on
short time-scales. In addition, predictors for the Barents
Sea MCAOs are not in a stationary relationship, mean-
ing that there are seasonal variations in their influence on
MCAOs. This finding is in agreement with previous stud-
ies which suggest that, for example, the frequency and
intensity of blocking over the Northern Hemisphere is the
highest during winter and somewhat lower in autumn
and spring (Cheung et al., 2013). A relationship between
sea ice and the winter atmospheric circulation seems to
be more pronounced in certain multi-year time periods
(Kolstad and Screen, 2019). We further investigate condi-
tional dependence of these links using the CEN algorithm
(Section 2.5).

3.3 Causal pathways of the MCAO
predictors

Based on the results presented in Figures 3 and 4 and
the review of relevant processes in Section 2.4, we analyse
causal relationship in the time series of the Barents
Sea MCAOs, ΔMCAOfreq, and the following processes
(Table 1): Scandinavian (Scand-Z500) and Greenland
(Gr-Z500) circulation patterns at 500 hPa, the Barents
Sea SST variability (local-SST), Arctic sea-ice variability

(Arc-SIC), stratospheric polar vortex variability repre-
sented by air temperature anomaly at 100 hPa (PoV-T100).
We perform the CEN analysis to identify which of the
above processes is causally related to the MCAO changes
in the Barents Sea. To address this, we chose a signifi-
cance level 𝛼 = 0.1, and allow maximum lead/lag of 𝜏max =
9 time-steps (90 days). Results from the CEN analysis
are visualized in a network (Figure 5), consisting of the
Barents Sea MCAOs, ΔMCAOfreq, and their potential pre-
dictors stated in Table 1. The links between the variables
indicate that a significant conditionally dependent rela-
tionship was detected, which is interpreted as the presence
of a causal link. The time lag, at which the link is detected,
is displayed in the network. The CEN analysis is conducted
for the 10-day aggregated data for NDJ, DJF, JFM and FMA
(Figure 5). This implies that the time series contain data
for three months (e.g., for NDJ, time-steps include 1–10
November to 21–30 January), whereas the lagged variables
contain data from the preceding period also represented
by three months (e.g, lag −1 (10 days) accounts for time
steps 21–30 October to 11–20 January, and lag −9 for 1–10
August to 21–30 October).

The CEN shows three robust links pointing towards
the MCAO index: (a) local-SST over the whole season
for the time lag of 10 days for NDJ to JFM and 20 days
for FMA, (b) Scand-Z500 for months NDJ to JFM, and
(c) Arc-SIC with time lag of 60 days for NDJ and DJF.
The detected positive direct link from local-SST sug-
gests that positive SST anomalies in the Barents Sea
precede an anomalous MCAO frequency. Recall that a
positive MCAO index, ΔMCAOfreq, stands for a higher
than usual number of MCAO event-days per 10-day win-
dow. The link from Scand-Z500 shows that a negative
Z500 anomaly leads to an increase in the anomalous
MCAO frequency at a lag of 10 days. The CEN further
shows that Arc-SIC leads to changes in MCAOs at a lag
of 60 days in autumn. Changes in Scand-Z500 appear
to precede changes in Gr-Z500 (10–30 days), PoV-T100
(10 days) and Arc-SIC (20 days). PoV-T100 does not
show any direct link to the Barents Sea MCAOs at the
considered lags.

In summary, the results in Figures 3–5 suggest that the
local Barents Sea SST anomalies and the atmospheric cir-
culation index representing variability over Scandinavia
can serve as the Barents Sea MCAO predictors almost
throughout the whole MCAO season for a lag of 10 days.
Thus, the previously reported large-scale atmospheric flow
and ocean state configurations in which MCAOs typically
form start setting up slightly before the anomalous MCAO
activity. In the following, we evaluate the prediction skill
for MCAOs and test if the prior knowledge on MCAO
predictors can improve prediction skill on the sub-seasonal
time-scale.
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F I G U R E 5 CEN of the Barents Sea MCAO drivers from ERA-Interim with a maximum time lag −9 (90 days) and a significance level
of 0.1. Nodes represent variables considered (Table 1), while arrows indicate causal links between variables. The colour of nodes and links
represent the standardized regression coefficient and indicate the strength of the relationship. The numbers next to arrows indicate time lag
𝜏. Numbers separated by the comma indicate several lags at which the relationship is detected. CEN is constructed based on the time series of
predictors for the Barents Sea MCAOs for the 10-day resolution for NDJ, DJF, JFM and FMA. For example, when the MCAO index is
considered for JFM, predictors at maximum lag 𝜏max = 9 represent OND. Only the significant links are shown

3.4 Prediction skill for seasonal MCAO
predictions

The prediction skill for the aggregated index ΔMCAOfreq is
calculated in terms of the ROC skill score and the corre-
lation coefficient (COR) between the ensemble mean and
ERA-Interim (Figure 6), and in terms of Brier skill score
(Appendix S1, Figure S2). The different skill metrics con-
sistently indicate a good agreement with ERA-Interim in
the first 20 days after initialization over the Barents Sea,
Labrador Sea and around Kamchatka Peninsula. High skill
values are found north of the Barents Sea and the Kara
Sea even beyond lead month one; in these months how-
ever the Kara Sea is substantially covered with sea ice.
Interestingly, a re-emergence of skill appears over the Bar-
ents Sea in March in both ROC and COR metrics (shown
for correlation skill in Appendix S1, Figure S4). The hind-
casts outperform the persistence estimated from an AR(1)
model by higher hit rates (Appendix S1, Figure S3). The
spread diagnostic shows that the ensemble hindcasts for
MCAOs at the beginning have little spread as indicated by
the U-shaped Talagrand diagram, whereas the ensemble
spread grows and saturates after one month (Appendix S1,
Figure S3).

To better understand the performance of the seasonal
prediction system, we provide correlation skill for SST, air
temperature at 850 and 100 hPa, SLP and the meridional
wind component (Figure 7). The correlation skill patterns
suggest that the seasonal prediction system is skilful in
predicting SST anomalies over the Barents Sea and the
adjacent regions on seasonal time-scales. SLP and T100
in the polar region show rather low skill. However, T100
shows a re-emergence of skill in month five (March; not
shown), which is potentially related to late-winter sudden
stratospheric warmings or early final stratospheric warm-
ings (Butler et al., 2019), and which coincides with the
re-emergence of skill for the MCAO index. The air temper-
ature at 850 hPa remains skilful over parts of the Nordic
Sea and the Labrador Sea up to lead month four. The
meridional wind component is skilfully predicted only in
the first lead month. Sea ice is one of the essential condi-
tions for the MCAO development. We could not evaluate
the skill of SIC as the model output is not available. How-
ever, Bunzel et al. (2016) suggest prediction skill for the
Arctic sea-ice area for the November-initialized hindcasts
up to three months in the MPI-ESM in a low-resolution
configuration. The prediction skill of the MPI-ESM in
a mixed resolution configuration shown in Figure 7
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F I G U R E 6 Prediction skill for the 10-day ΔMCAOfreq index in terms of the ROC skill score (upper panels) and correlation between the
ERA-Interim and hindcast ensemble mean (lower panels) for lead times LT1 (1–10 November), LT2 (11–20 November) and LT3 (21–30
November). The event definition for the aggregated index used for the ROC is a positive value of ΔMCAOfreq. The hatching indicates
significant values at the 95% confidence level following the bootstrap test

compares to the predictions skill of the state-of-the-art
ESMs (Butler et al., 2016; Sanna et al., 2016; Vitart and
Balmaseda, 2018). The seasonal prediction system in the
mixed-resolution configuration also compares in the level
of skill with its siblings in low- and high-resolution config-
urations (Domeisen et al., 2015; Fröhlich et al., 2021).

In summary, the prediction skill from the seasonal pre-
diction system for MCAOs in the regions where they fre-
quently occur is limited to the first 10–20 lead days. Even
though slow-varying components of the climate system
(represented by SST and sea ice) are skilfully predicted on
seasonal time-scales, MCAOs are only skilfully predicted
on sub-seasonal time-scales, which is likely due to the
faster changing atmospheric circulation. In the following,
we assess if the prior knowledge about MCAO predictors
has an impact on the prediction skill of the seasonal MCAO
hindcasts. As MCAO predictors we use the causal drivers
confirmed by the CEN analysis.

3.5 Improving MCAO predictions

Dobrynin et al. (2018) used NAO predictors in order to
improve winter NAO predictions one season in advance.

This was achieved by sub-selecting ensemble members
of the NAO seasonal predictions that captured the phase
of the NAO as indicated by the autumn ocean temper-
ature, stratospheric circulation and Siberian snow cover
as predictors. Similarly, Cai et al. (2016) used the strato-
spheric state as a predictor for low temperature extremes
resulting in improved prediction skill a month ahead. In
this section, we analyse the prediction skill for the sub-
sampled ΔMCAOfreq seasonal predictions following the
idea by Dobrynin et al. (2018). We use the knowledge
about the empirical relationship between the Barents Sea
MCAOs and their precursors as shown by the CEN. First,
we combine the knowledge of multiple predictors in one
time series termed the first-guess MCAO prediction. For
example, as suggested by the CEN (Figure 5), the warmer
SST anomaly (positive link) and the anomalous cyclonic
circulation over Scandinavia (negative link) are usually
followed by the increased anomalous MCAO frequency at
the time lag of 10 days. We combine these multiple predic-
tors into the first guess using the multiple linear regression
expressed as

Yt =
∑

i
𝛽iXi + 𝜀Y , (3)
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F I G U R E 7 Prediction skill in terms of correlation with respect to ERA-Interim for SST, air temperature at 850 and 100 hPa, SLP, and
the meridional wind component at 10 m (in columns) for lead months LM1 (November) to LM2-4 (December-January-February). The
stippling indicates significant skill at the 95% confidence level estimated with the bootstrap test

where Y t is the time-series of the first guess for
ΔMCAOfreq, Xi is the ith predictor, and 𝛽i is the ith stan-
dardized regression coefficient. As we are using standard-
ized time series, coefficients in the regression models can
be interpreted as the expected change in the MCAO index
(in units of standard deviation; STD) after a change of
1 STD of the predictor. For instance, 𝛽 = 0.2 suggests that
a change in a causal driver of 1 STD at a considered time
lag leads to a change in ΔMCAOfreq of 0.2 STD. Finally, 𝜀Y
represents the error term.

To construct the first guess for the Barents Sea MCAOs
based on the MCAO drivers from the preceding 10 days,
we repeat step 3 from the CEN analysis (Section 2.5)
with the maximum lag −1. The regression coefficients
and the underlying first-guess predictions for NDJ, DJF,
JFM and FMA are provided in Table 2 and Figure 8,
respectively. Here, changes in local SST, Scandinavian pat-
tern and Arctic SIC are the predictors with the strongest
contribution. Over the course of the MCAO season from
NDJ to FMA, the contribution from the Scandinavian pat-
tern vanishes with regression coefficients changing from
−0.38 for NDJ to −0.21 for JFM. The most robust rela-
tionship is with the local SSTs, which is about 0.4 for
almost all of the months. Greenland blocking and Arc-
tic SIC contribute to ΔMCAOfreq changes for some of
the months.

The resulting first-guess predictions correlate with the
original ΔMCAOfreq from ERA-Interim by about 0.5 for all
considered months (Figure 8). The period of evaluating
regression coefficients presented in Table 2 is split into

T A B L E 2 Standardized regression coefficients for MCAO
predictors at time lag −1 from the multiple linear regression
model for ΔMCAOfreq (Figure 8)

Predictors NDJ DJF JFM FMA

Scand-Z500 −0.38 −0.31 −0.21 —

Gr-Z500 0.13 0.12 — 0.15

local-SST 0.38 0.42 0.45 0.43

Arc-SIC — — 0.16 0.30

ΔMCAOfreq — — — 0.11

training and testing periods as shown by red and orange
colours in Figure 8. The training and testing periods are
selected arbitrarily as 80 and 20% of the time series, respec-
tively. The correlation between the first-guess predictions
and ERA-Interim decreases in the testing period with cor-
relation coefficients amounting to 0.27–0.45 as compared
to the full period with correlation coefficients of 0.45–0.5.
Nevertheless, the quality of the first guess is still remark-
able considering the high-frequency variability nature
of MCAOs. Thus, the first-guess predictions resemble
the low-frequency variability of the original ΔMCAOfreq

rather well.
The obtained first-guess prediction based on multi-

ple linear regression models can be used as a stand-alone
statistical MCAO prediction. Following the method by
Dobrynin et al. (2018), which retains or rejects individ-
ual ensemble members based on the causal links, we
use the first guess to select ensemble members that are
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F I G U R E 8 Standardized first-guess predictions for ΔMCAOfreq at lag −1 for (a) NDJ and (b) DJF based on Scand-Z500, Gr-Z500 and
local-SST, for (c) JFM based on Scand-Z500, local-SST and Arc-SIC and for (d) FMA based on Gr-Z500, local-SST, Arc-SIC and ΔMCAOfreq.
Table 2 shows predictor contributions in terms of STD. In black is the original ΔMCAOfreq from ERA-Interim. In red (orange) is the first guess
from the training (testing) period used to evaluate regression coefficients. The number with asterisks suggests a significant correlation (corr)
between the first guess and ERA-Interim estimated with the two-tailed statistical significance at the 90% confidence level based on the t-test
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nearest to it. Thus, we pick a subset of 15 out of 30 members
that are closest to the first guess. The retained ensemble
members capture the MCAO evolution as suggested by
the MCAO causal predictors. Moreover, the subsampled
ensemble has a further advantage over statistical predic-
tion in that one can analyse further variables such as
winds, sea level pressure, etc., whereas a statistical pre-
diction only provides information about MCAOs. As our
seasonal predictions begin on 1 November, we choose the
date from the first guess (Figure 8) which corresponds to
the time lag −1 (10 days before initialization). Assuming
that a physical mechanism that links the initial state and
the predicted variable can be expressed by the first guess,
we evaluate skill of the retained ensemble members at
different lead times. The results suggest that predictions
improve at lead time 2 (11–20 November) as compared to
those presented in Figure 6, however only marginally (not
shown). This is likely due to low memory in the MCAO
index, that is, fast de-correlation time; the ensemble mem-
bers disperse within few weeks as was shown earlier by
the Talagrand diagram (Appendix S1, Figure S3). Thus,
even in the subsampled ensemble, spread characteristics
become to resemble those of the full ensemble within 1–2
lead times (20 days).

Analysing individual Barents Sea MCAO predic-
tors shows that local-SST correlates with MCAOs up
to 2 months (Figure 9), which is likely due to high
auto-correlation (persistence) of SST. The MCAO CEN
provides links excluding autocorrelation in MCAO pre-
dictors. The auto-dependencies are provided separately in
the nodes of the CEN. Prediction studies show that persis-
tence is a valuable source of prediction skill. For instance,
persistence of soil moisture provides skill for precipita-
tion (Yang and Wang, 2019), and persistence of ocean heat
content provides skill for the North Atlantic SST (Polkova
et al., 2014). Thus, in the final test, we evaluate the pre-
dictor with high auto-correlation, namely local SST, in
the role of the first-guess prediction on time lags beyond
10 days (Figure 9). For this, we select ensemble mem-
bers at each lead time within 2 months according to the
local SSTs from 21–30 October. The results show that this
exercise improves MCAO skill up to lead time 4 (1–10
December). The subsampled prediction at lead time 4 and
the first-guess prediction at lag −4 (local SST from 21–30
October) correlate with the original MCAO index from
ERA-Interim at 0.57 and 0.58, respectively; whereas the
full ensemble has no significant skill at this lead time (cor-
relation skill is 0.27). The subsampled ensemble according
to local SSTs far outperforms the ensembles of randomly
subsampled ensemble members (Appendix S1, Figure S5).
Thus, ensemble members that follow an expected evo-
lution according to the local SST predictor are able to
improve MCAO prediction skill up to 40 days (Figure 10)

as compared to the skill of 20 days from the seasonal
prediction system (Figure 6).

Our results show that the CEN approach proves to be
a useful tool in confirming robust drivers or early-warning
changes for MCAOs in terms of the large-scale atmo-
spheric flow and ocean state configurations. The identi-
fied precursors can be used for statistical MCAO predic-
tions independently from the seasonal prediction system.
Ensemble subsampling technique works if either predic-
tand itself holds sufficient memory from one lead time to
another or if long-term variability of a predictor can be
associated with predictand as in the example here, where
local SST provides memory for the Barents Sea MCAOs up
to lead time 4 (40 days).

4 SUMMARY AND DISCUSSION

Our analysis confirms the relationship between the Bar-
ents Sea MCAOs and an anomalous cyclonic circulation
pattern over Scandinavia, and an anomalous anticyclonic
pattern over Greenland. These findings are in agreement
with previous studies (Mallet et al., 2013; Papritz and
Grams, 2018; Landgren et al., 2019; Afargan-Gerstman
et al., 2020). In terms of conditions preceding changes
of the Barents Sea MCAOs, we find a causal link from
local SSTs and from the Scandinavian pattern at a lead
time of 10 days. The inflow of SST anomaly into the Bar-
ents Sea might lead anomalous MCAO frequency on a
time-scale of up to 2 months. This is comparable to the
time-scales reported by Lien et al. (2017) on the response of
sea ice cover to inflow of temperature anomaly. Our analy-
sis shows that changes in the Arctic sea-ice concentration
also lead the changes in the anomalous frequency of the
Barents Sea MCAOs. However, as pointed out by Kolstad
and Screen (2019), empirical relationships between the
atmospheric circulation and sea-ice variability used for sta-
tistical prediction approaches are non-stationary and thus
subject to change over time; in particular they questioned
the relationship between the fall Barents–Kara sea ice and
the winter NAO. We also find that the non-stationary rela-
tionships between MCAOs and their predictors present
a challenge for deriving the first-guess prediction for
MCAOs. Moreover, data quality is critical in establish-
ing empirical relationships. For this reason, Kretschmer
et al. (2016), whose approach we followed here to iden-
tify MCAO precursors, used various observational data for
sea ice and snow cover, whereas all other variables were
analysed using the ERA-Interim data. In our analysis, we
used ERA-Interim for MCAOs and all predictors for con-
sistency. However, it should be noted that ERA-Interim
does not analyse sea-ice observations directly; instead, it
incorporates external analyses of SIC (until 2009 – the US
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F I G U R E 9 (a) Cross-correlation between the Barents Sea ΔMCAOfreq and the local SST at different 10-day lead times, when SST
changes lead the MCAO changes. Both variables are from ERA-Interim and are represented in a 10-day resolution, that is, lag −4 corresponds
to SST leading changes in MCAOs by 40 days. The stippling suggests significant values estimated with the two-tailed statistical significance at
the 90% confidence level based on the t-test. (b) Standardised time series for the sub-selection of ensemble members nearest to the first guess
based on local SST changes and the corresponding correlation skill (COR) for lead time 4 (1–10 December). ΔMCAOfreq calculated using
ERA-Interim is shown in black, first guess based on local SST in red, the full ensemble from the seasonal prediction system in grey (circles for
ensemble members and solid curve for the ensemble mean). The subsampled hindcast is in blue

National Centers for Environmental Prediction (NCEP)
operational analyses, and from 2009 onwards – the Oper-
ational Sea Surface Temperature and Sea Ice Analysis
(OSTIA) product). Thus, we are treating Arctic SIC as a
MCAO predictor with caution and suggest further investi-
gation in future studies.

We used a causal effect network (CEN) to analyse
causal links between MCAOs and their environment. It is
important to note that the interpretation of causal links in
the CEN depends on the assumptions of causal sufficiency
and causal stationarity of links (Runge 2018 has a detailed
discussion). The sufficiency assumption means that all
relevant drivers are included in the analysis. Although
we have analysed important contributors suggested by the
literature, we cannot exclude the possibility that other
processes or time-scales not considered here might also

play a role. For example, the strong southwesterly winds
accompanied by synoptic storms during the positive NAO
phase can reach the Norwegian and Barents Seas and thus
are possible conditions for MCAOs Claud et al. (2007),
which we did not investigate here. Causal stationarity rep-
resents another challenge: though it was shown in previ-
ous studies that Greenland blocking and Scandinavian pat-
tern are linked to MCAOs (Papritz and Grams, 2018; Land-
gren et al., 2019; Afargan-Gerstman et al., 2020), simple
averages over stationary boxes to capture blocking activ-
ity has its limitations. Here, a robust connection between
the Barents Sea MCAOs and air temperature at 100 hPa
representing stratospheric forcing was not found. It is pos-
sible that this indicator might not be a good choice to
represent the stratopsheric signal, or that the stratosphere
drives MCAOs via other processes, namely through the
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F I G U R E 10 ROC skill
score difference between the
subsampled and full
ensemble for (a) lead time 3
(21–30 November) and (b)
lead time 4 (1–10 December).
The subsampled ensemble
follows the first-guess
prediction based on
local-SST. The hatching
indicates significant values at
the 95% confidence level
following the bootstrap test

geopotential height pattern, which would support findings
by Afargan-Gerstman et al. (2020).

The seasonal prediction system exhibits a bias which
might cause a higher MCAO activity in seasonal hind-
casts as compared to ERA-Interim. We used a simple
mean bias-correction procedure to de-bias MCAO hind-
casts, yet a bias treatment might further complicate the
predictor analysis in the prediction system. We find that
the cross-correlations between the anomalous MCAO fre-
quency and potential MCAO drivers in the ERA-Interim
and the hindcasts agree only in November and Decem-
ber (not shown). We did not investigate if an advanced
bias-correction procedure could improve this result. Apart
from that, the peak season for MCAOs and the MCAO
formation regions in both ERA-Interim and seasonal pre-
dictions are in agreement and in line with the results from
previous studies (e.g., Kolstad et al., 2009; Fletcher et al.,
2016).

The seasonal prediction system shows high skill for
MCAOs in the first 20 days, which supports expectations
by Kolstad (2017) in MCAOs being more predictable than
PLs. The Barents Sea MCAO precursors found by CEN,
especially SST and SIC, show skill at longer time-scales
than MCAOs. We find that the Barents Sea SST repre-
senting upper-ocean heat anomalies with time-scales of
variability longer than MCAOs has a potential to serve as
predictor for the anomalous MCAO frequency. We can use
knowledge about the empirical relationship between local
SST changes and the Barents Sea MCAOs to anticipate the
future evolution of the MCAO index. Following ensem-
ble members which capture the anticipated evolution of
MCAOs based on the local SST predictor, the prediction
skill for MCAOs can be extended up to 40 days. For the
ensemble subsampling approach, we separated the time
series into training and testing periods once, but the most
strict way would be to test predictors on the data periods

preceding the initialization dates of the seasonal hindcasts
for each year.

Our study supports some of the known facts of
MCAO large-scale conditions and reveals new aspects
such as predictability time-scales from a state-of-the-art
seasonal prediction system. We also reveal further impor-
tant research objectives for future studies. One of them is
the evaluation of predictability and predictors throughout
the whole year, for example, to understand skills from ini-
tialisation in other months than November. A similar anal-
ysis of skill assessment for February initialisation showed
that MCAOs are less predictable when starting from this
date as compared to November initialisation, thus indi-
cating that predictability of MCAOs is sensitive to the
initialisation date. A further aspect is related to sufficient
resolution for relevant applications. Resolution can also
play a role for a more realistic representation of the mech-
anisms in the region. For instance, using high-resolution
simulations Saggiorato et al. (2020) showed that convec-
tive momentum transport has an effect on the evolu-
tion of winds and clouds in a MCAO. Moreover, Papritz
and Pfahl (2015) indicated that insufficient model reso-
lution might result in the overestimation of lifetime of
MCAOs. We used the MPI-ESM in the mixed resolution
(T63L95/TP04L40) configuration, which at the time of
analysis showed the best skill for the North Atlantic sector
as compared to the high-resolution (T127L95/TP04L40)
configuration. However, prediction systems are in con-
stant development, and for future studies one might need
to consider the system with higher resolution and reason-
able skill in the Euro-Atlantic and Arctic sector not only
for MCAOs but also for other large-scale conditions that
are relevant for MCAO development. Translating the pre-
diction of MCAOs into statistics on extreme weather such
as polar lows is also of practical importance for climate
practitioners.
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5 CONCLUSIONS

To summarize, the main conclusions of our study are

1. The seasonal prediction system shows skill for MCAOs
over the North Atlantic region for about 10–20 days.

2. Using a causal effect network (CEN) approach, we
identify local SST changes and the Scandinavian pat-
tern as robust precursors of the anomalous MCAO
frequency in the Barents Sea at a time lag of 10 days.
Positive SST anomalies in the Barents Sea and the Nor-
wegian Sea are further found to precede enhanced
MCAO activity in the Barents Sea at longer time-scales
up to two months.

3. The MCAO prediction skill of the seasonal predic-
tion system can be extended to up to 40 days by
sub-selecting ensemble members suggested by the
local SST anomalies.

Marine services in the Barents Sea can benefit from
using the sub-seasonal MCAO predictions up to 20 days
(and up to 40 days when additionally considering the
local SST anomalies). Overall, our study contributes to a
growing body of literature demonstrating that combining
empirical and dynamical predictions can result in more
skilful forecasts. This provides new possibilities for deci-
sion makers in weather-sensitive sectors. Furthermore,
this work shows that understanding the causal drivers of
weather and climate events is a crucial step for this task.
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