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Abstract: In this paper we investigate the extremal behaviour of aggregated risk for specific parametrised
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1 Introduction

Aggregation of risks is a central topic in risk management of insurance and financial institutions. When offering

insurance coverage for several lines of business, it is important from a top-down prospective to appropriately

quantify the effect of the aggregation of individual risks. In insurance practice, risk models for each separate line

of business are constructed, and then all these models are aggregated forming a single model which quantifies the

total liability arising from the whole book of business.

In a bivariate setup of two risks Z,W it is of interest to quantify the tail asymptotic behaviour of the aggregated

risk S := Z +W . Indeed, even for simple cases for which the distribution of (Z,W ) is known, the tail asymptotic

behaviour of S is in general not readily available.

To illustrate this difficulty suppose that (lnZ, lnW ) is a bivariate Gaussian random vector with N(0, 1) marginals

and correlation coefficient ρ ∈ (−1, 1). In view of Asmussen and Rojas-Nandaypa (2008)

P {Z +W > u} = (1 + o(1))2P {Z > u}, u→∞, (1.1)

which is the first result known for the log-normal risks. Numerous actuarial tasks such as risk management,

pricing, or loss reserving make special use of the assumption that the underlying multidimensional distributions

are log-normal. This central assumption allows for tractable formulas and thorough understanding of underlying

complex relations; the log-normal assumption is due to the role of the Gaussian distribution as a good starting

point for more adequate models.

Aggregation of risks in log-normal and some related models has been a central topic in the recent papers Goovaerts

et al. (2005), Tang (2006), Embrechts and Puccetti (2008), Ko and Tang (2008), Embrechts et al. (2009), Geluk

and Tang (2009), Kortschak and Albrecher (2009), Mitra and Resnick (2009), Degen et al. (2010), Foss and

Richards (2010), Hashorva et al. (2010), Hashorva (2010,2012), Li et al. (2010), Asimit et al. (2011), Asmussen

et al. (2011), Kortchack (2011).

As shown in Mitra and Resnick (2009), when single risks have distribution functions in the max-domain of

attraction (MDA) of the Gumbel distribution, then the tail asymptotics of the aggregated risk is strongly related

to conditional limit results and asymptotic independence.

In fact, in diverse applications a parametrised setup can be adopted where for instance

lnZ = B(u), lnW = B(g(u)), u > 0,

with {B(u), u > 0} a Brownian motion and g : R → (0,∞) a measurable time transform. The aggregated risk

S(u) := exp(B(u)) + exp(B(g(u))) depends thus on the parameter u. The determination of the asymptotics of
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P {S(u) > u} for this model leads to additional technical difficulties related to the fact that the parameter is

controlled by the threshold.

A strong motivation for considering the asymptotics of P {S(u) > u} is provided by Asmussen et al. (2011), where

the role of u is played by the scale 1/(1− θ) of the covariance matrix Σ of the importance sampling distribution,

see Theorem 1 and Theorem 2 therein.

In this paper we first adopt the Mitra-Resnick approach to approximate the probability of the rare event {S(u) >

u} as u tends to infinity, with S(u) = X1(u) + · · ·+Xk(u) the aggregated risk. It turns out that for our model,

which is governed by asymptotic independence and Gumbel MDA assumption, the maximum risk M(u) :=

max1≤i≤kXi(u) has the same tail asymptotic behaviour (u→∞) as the aggregated risk.

We consider then in details log-elliptical risks. In order to highlight the relevance of our theoretical findings we

present an application concerning the logarithmic efficiency of a conditional Monte Carlo algorithm suggested in

Rojas-Nandaypa (2008).

Organisation of the rest of the paper: Section 2 consists of some preliminary results. In Section 3 we extend the

Mitra-Resnick model to include the case of parametrised risks. Sections 4 and 5 are concerned with a log-elliptical

framework where both conditional limit results and the tail asymptotics of aggregated risks are derived. The

application mentioned above is presented in Section 6, while the proofs of all the results are relegated to Section

7. The last Section 8 is a short Appendix.

2 Preliminaries

First we introduce our notation. Vectors in Rk, k ≥ 2 are denoted by bold letters such as x := (x1, . . . , xk)>

and random vectors in Rk by bold capital letters, say X := (X1, . . . , Xk)>, with > the transpose sign. For given

β ∈ [0,∞)k,x,y,∈ Rk we define

x > y, if xi > yi, ∀ i = 1, . . . , k,

x ≥ y, if xi ≥ yi, ∀ i = 1, . . . , k,

x+ y := (x1 + y1, . . . , xk + yk)>,

xyβ := (x1y
β1

1 , , . . . , xky
βk
k )>, cx := (cx1, . . . , cxk)>, c ∈ R,

0 := (0, . . . , 0)> ∈ Rk, 1 := (1, . . . , 1)> ∈ Rk.

If a random vector X possesses the distribution function (df) H, we shall indicate this by X ∼ H. Throughout

this paper U is a k-dimensional random vector uniformly distributed on the unit sphere of Rk being independent

of R > 0 which has df F with F (0) = 0; we write F for the survivor function of F (and similarly for other

distributions).

In this paper we consider an elliptically symmetric (for short elliptical) random vector Y with stochastic repre-

sentation

Y
d
= RAU + µ, µ ∈ Rk, (2.2)

where A ∈ Rk×k is a non-singular deterministic matrix. The random variable R is positive and U is uniformly

distributed on the unit sphere of Rk (with respect to L2 norm). Furthermore R and U are independent. The

basic distributional properties of elliptical random vectors are discussed in Cambanis et al. (1981). Instead of

(2.2) we write alternatively Y ∼ Ek(µ,Σ, F ), with Σ := AA> where F is the distribution function of R. We call

X a log-elliptical random vector in Rk (abbreviate this as X ∼ LEk(µ,Σ, F )) if

X
d
= (exp(Y1), . . . , exp(Yk))> =: exp(Y ). (2.3)
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For our investigations we suppose that F with upper endpoint xF =∞ belongs to the Gumbel MDA with some

scaling function w. By definition, we say that the df H belongs to Gumbel MDA if

lim
u→∞

H(u+ s/w(u))

H(u)
= exp(−s), ∀s ∈ R (2.4)

holds with w some positive scaling function; relation (2.4) is abbreviated hereafter as H ∈ GMDA(w) or X ∈
GMDA(w) if X ∼ H. The asymptotics in (2.4) can be cast into the framework of convergence in distributions.

Indeed, (2.4) is equivalent to

lim
u→∞

w(u)Zu
d→ E , u→∞, (2.5)

where Zu, u > 0 are defined in the same probability space such that Zu
d
= (X − u)|(X > u), and E denotes

(throughout this paper) an exponential random variable with mean 1.

Next, let (X(u), Y (u)), u > 0 be a bivariate random vector with marginal distributions Hu, Gu, respectively.

Given tu, u > 0 define in the same probability space bivariate random vectors (Zu,Wu), u > 0 such that

(Zu,Wu)
d
=
(

(X(u)− tu), Y (u)
)∣∣∣(X(u) > tu), u > 0. (2.6)

The random variable Zu defined in (2.6) differs from that appearing in (2.5) since X(u) depends also on u.

Additionally, we use tu and not u. In the sequel we shall suppose that tu, u > 0

lim
u→∞

tu =∞. (2.7)

Our proofs are related to convergence stated in (2.5). For Zu defined by (2.6) we shall modify (2.5) as follows:

Assumption 1. [X(u) ∈ GMDA(wu)] We say that X(u), u > 0 satisfies Assumption 1 if there exist positive

measurable scaling functions wu, u > 0 such that for any tu, u > 0

lim
u→∞

tuwu(tu) = ∞ (2.8)

and further

lim
u→∞

wu(tu)Zu
d→ E , u→∞. (2.9)

Note that if X(u) = X and X ∈ GMDA(w), then Assumption 1 holds with wu(x) = w(x) since limx→∞ xw(x) =

0. We proceed with two other assumptions; the scaling function wu appearing below relates to Assumption 1.

Assumption 2. [AX(u),Y (u),wu ] For any sequence tu, u > 0 satisfying (2.7), we have the convergence in probability

wu(tu)Wu
p→ 0, u→∞. (2.10)

Assumption 3. [AX(u),Y (u),wu;L] There exists some L > 0 such that for any tu, u > 0 satisfying (2.7)

lim
u→∞

P {X(u) > L/wu(tu), Y (u) > L/wu(tu)}
P {X(u) > tu}

= 0. (2.11)

We comment briefly on the implication of the above assumptions: if (2.10) holds, then by (2.8)

lim
u→∞

P {X(u) > tu, Y (u) > tu}
P {X(u) > tu}

= lim
u→∞

P {Wu > tu} = lim
u→∞

P {wu(tu)Wu > tuwu(tu)} = 0. (2.12)

Furthermore, (2.9) and (2.10) yield the joint convergence in distribution(
wu(tu)Zu, wu(tu)Wu

)
d→ (E , 0), u→∞,

and hence

wu(tu)
(
X(u)− tu + Y (u)

)∣∣∣(X(u) > tu)
d→ E + 0 = E , u→∞. (2.13)

Indeed, the limit relation in (2.13) is a key result for S(u) − tu = X(u) + Y (u), which will be used in the proof

of Theorem 3.1.
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3 Aggregation of Parametrised Risks

In several applications both risks may depend on some deterministic parameters. One example is

X(u) = exp(γuB(ηuu)), Y (u) = exp(γuB(u)), u > 0, (3.14)

with B a standard Brownian motion and ηu > 1, γu > 0, u > 0. By the properties of the Brownian motion

S(u) := X(u) + Y (u)
d
= exp(γu

√
u[B(1) +

√
ηu − 1B∗]) + exp(γu

√
uB(1)), ∀u > 0,

with B∗, B(1) independent and B∗
d
= B(1). If ηu = η > 1 does not depend on u, then the tail asymptotics

(u→∞) of P {S(u) > u} follows from Theorem 1 in Asmussen et al. (2011). The introduction of the parameter

u (through the deflator 1− θ therein) is a novel idea particularly useful for rare-event simulation.

Motivated by Mitra and Resnick (2009) we discuss in this section a general risk aggregation framework by

considering the aggregation of a 2-dimensional parametrised random vector (X(u), Y (u)); we do not specify

the role of the parameter u as in (3.14). The adaption of Mitra-Resnick conditions allows us to derive the

asymptotics of P {S(u) > u} as u → ∞. Further, under those conditions we show for the maximum risk

M(u) := max(X(u), Y (u)) that it is asymptotically tail equivalent to S(u).

Theorem 3.1. Let (X(u), Y (u)), u > 0 be a bivariate risk vector. Assume that for any tu, u > 0 satisfying (2.7)

we have

lim
u→∞

P {Y (u) > tu}
P {X(u) > tu}

= c ∈ [0,∞). (3.15)

Suppose that X(u) ∈ GMDA(wu) and Assumptions 2, 3 are satisfied. If further Assumption 2 [AY (u),X(u),wu ]

holds when c ∈ (0,∞), then S(u),M(u) ∈ GMDA(wu), and moreover

lim
u→∞

P {S(u) > tu}
P {X(u) > tu}

= lim
u→∞

P {M(u) > tu}
P {X(u) > tu}

= 1 + c. (3.16)

As in Corollary 2.2 of Mitra and Resnick (2009) we can extend (3.16) under relaxed conditions to a k-dimensional

setup focusing on non-negative risks.

Corollary 3.2. Let (X1(u), . . . , Xk(u)) be a k-dimensional parameterised random vector with non-negative com-

ponents such that X1(u) ∈ GMDA(wu), and set S(u) :=
∑

1≤i≤kXi(u),M(u) := max1≤i≤kXi(u). Assume that

for any tu, u > 0 satisfying (2.7)

lim
u→∞

P {Xi(u) > tu}
P {X1(u) > tu}

= ci ∈ [0,∞), 1 ≤ i ≤ k. (3.17)

If further

max
1≤i 6=j≤k

lim
u→∞

P {wu(tu)Xj(u) > z,Xi(u) > tu}
P {X1(u) > tu}

= 0, ∀z ∈ (0,∞), (3.18)

and for some positive constants Lij , 1 ≤ i 6= j ≤ k,

max
1≤i 6=j≤k

lim
u→∞

P {Xi(u) > Lij/wu(tu), Xj(u) > Lij/wu(tu)}
P {X1(u) > tu}

= 0 (3.19)

holds, then S(u),M(u) ∈ GMDA(wu), and moreover

lim
u→∞

P {S(u) > tu}
P {X1(u) > tu}

= lim
u→∞

P {M(u) > tu}
P {X1(u) > tu}

=

k∑
i=1

ci ∈ [1,∞). (3.20)
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Our next result is of interest for the log-elliptical setup. For notational simplicity we assume that both β,λ

appearing in Theorem 3.3 (and in the sequel) are such that

β1 ≥ β2 ≥ · · · ≥ βk, and λ1 = max
1≤i≤k

λi,

and the integer m is the multiplicity of β1. We impose a further condition on parametrised λ’s, i.e.,

lim
u→∞

λ(u) = λ ∈ [0,∞)k, and λi(u) = λ1(u), u > 0, if λi = λ1. (3.21)

The definitions of S(u) and M(u) remain the same as in Corollary 3.2.

Theorem 3.3. Let X = (X1, . . . , Xk), k ≥ 2 be a k-dimensional random vector with non-negative components

and identical marginal distributions such that X1 ∈ GMDA(w), and set Xi(u) := λi(u)X
βiγ(u)
i , i ≤ k with

λ(u) ∈ [0,∞)k, γ(u) ∈ (0,∞), u > 0 some measurable functions and β ∈ [0,∞)k. Suppose that both (3.21)

and (3.17) hold. Assume that for any tu, u > 0 converging to infinity limu→∞ w̃β1γ(u)(tu) = 0 with w̃1/c(x) =

cxc−1w(xc), c > 0, x > 0. If further λ1(u)X
β1γ(u)
1 , . . . , λ1(u)X

β1γ(u)
k satisfy (3.18) and (3.19), then we have

lim
u→∞

P {S(u) > tu}
P {X1(u) > tu}

= lim
u→∞

P {M(u) > tu}
P {X1(u) > tu}

=
∑

i≤m:λi=λ1

ci. (3.22)

Remark 3.4. (i) If X(u) and Y (u) are independent for all large u, then Assumption 2 [AX(u),Y (u),wu ] boils down

to

wu(tu)Y (u)
p→ 0, u→∞,

which is satisfied if limu→∞ wu(tu) = 0 for any tu, u > 0. If X(u)
d
= Y (u) for all u large, then

lim
u→∞

P {S(u) > tu}
P {X(u) > tu}

= 2

if additionally for some L > 0

lim
u→∞

(P {X(u) > L/wu(tu)})2

P {X(u) > tu}
= 0. (3.23)

If X(u) = X for all large u with X a subexponential random variable, then (3.23) reduces to Mitra-Resnick

criterion, see Corollary 2.1 in Mitra and Resnick (2009), and Lemma 2.2 in Hashorva et al. (2010).

(ii) If X(u) ∼ Hu, u > 0 with Hu ∈ GMDA(wu), then for any χ ∈ (1,∞) the limit relation in (2.8) yields

lim
u→∞

Hu(χtu)

Hu(tu)
≤ = 0, r →∞. (3.24)

(iii) By Assumption 3 and (2.8) for any C1, C2 ∈ R we have,

lim
u→∞

P {X(u) > tu + C1/wu(tu), Y (u) > tu + C2/wu(tu)}
P {X(u) > tu + C1/wu(tu)}

= 0,

which means that X(u) and Y (u) are asymptotically independent.

(iv) Suppose that {X(u), Y (u), u > 0} is such that X(u) ∈ GMDA(wu) and (3.15) hold, and both Assumption 2

[AX(u),Y (u),wu ], Assumption 2 [AY (u),X(u),wu ] are satisfied. If further for any C ∈ (0,∞)

lim
u→∞

P {X(u) > tu + C/wu(tu), Y (u) > tu + C/wu(tu)}
P {X(u) > tu}

= ψC ∈ [0,∞)

such that limC↓0 ψC = 0 and

lim inf
u→∞

wu(tu + C/wu(tu))

wu(tu)
> 0,

then we have

lim inf
u→∞

P {S(u) > tu}
P {X(u) > tu}

≥ 1 + c. (3.25)
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Example 3.5. Let (X,Y ) be a bivariate random vector with identical non-negative components, and define

X(u) := Xβγ(u), Y (u) := Y γ(u), β ∈ [1,∞),

with γ(u) ∈ (0,∞), u > 0 such that limu→∞ γ(u) = γ ∈ (0,∞). Suppose that X ∈ GMDA(wτ,θ), τ, θ ∈ (0,∞)

with wτ,θ(x) = τx−1(lnx)θ, x > 0. If lnX is a standard Gaussian random variable (with mean 0 and variance

1), then X ∈ GMDA(w1,1). It follows easily that X(u) ∈ GMDA(wτ/γ1+θ,θ). Consequently, if (X,Y ) are

asymptotically independent, which is in particular the case when (lnX, lnY ) are jointly Gaussian with correlation

ρ ∈ [−1, 1) and N(0, 1) components, then also (X(u), Y (u)) are asymptotically independent. Hence (3.25) implies

lim inf
u→∞

P {S(u) > tu}
P {X(u) > tu}

≥ 1 + c, (3.26)

with c = 1 if β = 1, and c = 0 otherwise.

4 Extremes and Conditional Limit Results for Log-Elliptical Risks

Let X ∼ LEk(µ,Σ, F ) be a log-elliptical random vector in Rk, k ≥ 2, with stochastic representation (2.2). We

assume in the sequel that Σ is non-singular, and it is a correlation matrix with the entries of the main diagonal

equal to 1. For any i, j two different indices we have the stochastic representation

(Xi, Xj)
d
=

(
λi exp

(
ρijS1 +

√
1− ρ2ijS2

)
, λj exp(S1)

)
, λl := exp(µl), 1 ≤ l ≤ k, (4.27)

where S
d
= R2U , with R2

d
=
√
X2

1 +X2
2 being independent of U which is uniformly distributed on the unit circle

of R2, and ρij ∈ (−1, 1) the ijth entry of Σ. Hence

Xi

λi

d
=

X1

λ1
, i ≤ k (4.28)

and further

Xi +Xj
d
= λi exp

(
ρijS1 +

√
1− ρ2ijS2

)
+ λj exp(S1).

Next, we discuss the MDA of a log-elliptical random vector, provided that the defining elliptical random vector

has components with df in the Gumbel MDA. Further we show two conditional limit results which are of some

interest for the aggregation question treated in the next section.

For a given square matrix Σ we write below ΣIJ for the submatrice of Σ obtained by selecting the rows and the

columns of Σ with indices in I and J , respectively. Define similarly ΣJI ,ΣII , set xI := (xi, i ∈ I)>,xJ := (xi, i ∈
J)> for any x ∈ Rk and write X ∼ LNk(Σ) if X = exp(X) with X a k-dimensional Gaussian random vector

with mean zero and covariance matrix Σ.

Theorem 4.1. Let X(u) = exp(Y (u)) ∼ LEk(0,Σu, F ), u > 0 be a k-dimensional log-elliptical random vector

defined by (2.2) with R ∼ F being positive, and let Σ,Σu, u > 0 be positive definite correlation matrices with

elements σij(u), i, j ≤ k. Suppose that either R ∈ GMDA(w) or Y1(1) ∈ GMDA(w), and limu→∞ Σu = Σ. Let

l ≤ k be a given integer, and let tu, u > 0 be such that limu→∞ tu =∞. Define

ZI,u :=

((
Xi(u)

t
σil(u)
u

)q(tu)
, i ∈ I

)>∣∣∣(X l(u) > tu),

with q(x) :=
√
w(lnx)/ lnx, x ∈ (0,∞), I := {1, . . . , k} \ {l}.

(a) If the scaling function w satisfies limu→∞ w(u) =∞, then for any t > 0 X1(t) ∈ GMDA(w∗), with w∗(x) =
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w(lnx)/x, x > 0. Furthermore X(u), u > 0 has asymptotic independent components.

(b) For any x ∈ (0,∞)k

lim
u→∞

P {ZI,u ≤ xI} = P {ZI ≤ xI} (4.29)

holds with ZI ∼ LNk−1(ΣII − ΣIJΣJI), J := {l}.

Example 4.2. Consider (X1(u), X2(u))> ∼ LE2(0,Σu, F ), u > 0 a bivariate elliptical random vector. Assume

that lnX1(u)
d
= lnX1(1) ∈ GMDA(w) where w is given by

w(x) = L(x)xθ−1, x > 0, (4.30)

with θ > 0 and L(·) a positive slowly varying function. See Resnick (1987), Bingham et al. (1987) or Embrechts

et al. (1997) for details on regular variation. Applying Theorem 4.1 we obtain X1(1) ∈ GMDA(w∗), where

w∗(x) =
L(lnx)(lnx)θ−1

x
, x > 0.

For L(·) constant and θ = 2 the scaling function w∗ is proportional to that corresponding to (X1(u), X2(u)) being

a bivariate log-normal random vector. If limu→∞ Σu = Σ with Σ non-singular matrix, then (3.26) holds with

c = 1.

5 Risk Aggregation of Log-Elliptical Risks

The Mitra-Resnick methodology together with the conditional limit results of the previous section enables us to

derive the asymptotics of the aggregated risk and the maximum risk in a quite general log-elliptical framework. In

view of Example 3.5 the Gumbel MDA assumption for the components of the pertaining risks implies a asymptotic

lower bound for the survival function of the sum of log-elliptical risks. Making use of the conditional limiting

result obtained above combined with the results of Section 3 we show next the tail equivalence of the sum and

the maximum. Our notation below agree with that in Theorem 3.3 and Theorem 4.1.

Theorem 5.1. Let R,Σ,X(u),Σu be as in Theorem 4.1, and define X(u) := λ(u)X(u)βγ(u), u > 0 with

β,λ,λ(u), γ(u) ∈ (0,∞)k, u > 0 satisfying the assumptions of Theorem 3.3. If R ∈ GMDA(w), and further

lim
u→∞

w(u) =∞, and lim
u→∞

lnw(u)

u
= β1γξ, ξ ∈

[
0, 1− max

1≤i 6=j≤k

(
1 + σij

2

)1/2)
(5.31)

hold, then for any tu, u > 0 with limu→∞ tu =∞ we have (set χu := ln tu−lnλ1(u)
β1γ(u)

, u > 0)

P {S(u) > tu} = (1 + o(1))m∗P {X1(u) > χu} (5.32)

= (1 + o(1))P {M(u) > tu}, (5.33)

with m∗ being the number of elements of the index set {i ≤ m : λi := λ1} where m is the multiplicity of β1.

Remark 5.2. (i) For log-normal distributions with underlying covariance matrix not depending on u (5.32) is

shown in Theorem 1 of Asmussen et al. (2011), and (5.33) in Proposition 1 therein.

(ii) The assumption limu→∞Σu = Σ in Theorem 5.1 can be relaxed to lim supu→∞max1≤i 6=j≤k σij(u) < b < 1.

Example 5.3. Let X(u) = exp(Y (u)) ∼ LE(0,Σu, F ), u > 0 be log-elliptical random vectors where Σu, u > 0

is a correlation matrix. Assume that Y1(1) ∈ GMDA(w), with w as in Example 4.2. Suppose that θ ≥ 1, and

additionally limu→∞ L(u) =∞ if θ = 1. We may thus write

lim
u→∞

lnw(u)

u
= lim
u→∞

lnL(u) + (θ − 1) lnu

u
= 0,
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which implies that (5.31) holds with ξ = 0. Consequently, with constants β, λ(u), γ(u), u > 0 as in Theorem 5.1

equation (5.32) can be re-written as

P {S(u) > tu} = (1 + o(1))m∗P
{
X1(u) >

ln tu − lnλ1(u)

β1γ(u)

}
.

Note that the special case that θ = 2 and L(·) is constant includes the case that Y (u) is a standard Gaussian

random vector (with zero-mean and covariance matrix equal to the correlation matrix).

Example 5.4. Consider the bivariate log-normal random vector defined in (3.14). We can write

(X(u), Y (u))
d
=
(

exp(γ(u)
√
ηuZ1(u)), exp(γ(u)Z2(u))

)
,

where

Z1(u) :=
B(ηuu)
√
ηuu

d
= B(1), Z2(u) :=

B(u)√
u

d
= B(1), γ(u) := γu

√
u→ γ ∈ (0,∞).

Since
√

1− 1/ηu ∈ (0, 1) equals the correlation coefficient of Z1(u) and Z2(u) we need to put some restrictions

on ηu. Suppose that limu→∞ ηu = η > 1, u > 0. Clearly, Z1(u), Z2(u) ∈ GMDA(w) with w(x) = x, x > 0.

The condition (3.15) for the pair exp(Z1(u)), exp(Z2(u)) holds with c = 1, whereas Assumptions 2 and 3 can be

checked to hold along the lines of Example 3.5 in Mitra and Resnick (2009). Applying now Theorem 5.1 with

β1 =
√
η, β2 = 1, ξ = 0 and λ1(u) = λ2(u) = 1, u > 0 we obtain for any tu such that limu→∞ tu =∞

P {S(u) > tu} = (1 + o(1))P
{
B(1) >

ln tu√
ηγ(u)

}
, u→∞.

6 Application

In this section we establish the logarithmic efficiency of a conditional Monte Carlo algorithm for the simulation

of rare events related to aggregated risk. Let X(u) ∼ LEk(µ(u),Σu, F ), u > 0 be a given k-dimensional log-

elliptical random vector with µ(u) ∈ Rk, u > 0. Further let Σ,Σu, u > 0 be positive definite matrices such that

limu→∞ Σu = Σ, and define S(u) := X1(u) + · · · + Xk(u), u > 0. Monte Carlo simulation of the rare event

probability P {S(u) > u} in the log-elliptical setup is suggested in Rojas-Nandayapa (2008). The main idea of

the aforementioned contribution rests on the fact that X(u)
d
= exp(RAuU + µ(u)) with R > 0 almost surely, U

being uniformly distributed on the unit sphere of Rk and Au a square matrix satisfying Au(Au)> = Σu, u > 0.

Since R and U are independent we obtain conditioning on U

P {S(u) > u} = P {h(R,Au,U) > u} = E{P {h(R,Au,U) > u)|U}}, u > 0,

where h is such that h(R,Au,U) := S(u) (we use the same notation as in the aforementioned paper). Denote in

the following by u a simulated value (outcome) of U . Since Σu is positive definite, for any fixed u, the equation

h(R,Au,u) = u solved for r > 0 has at most two solutions denoted by ψL(u,u), ψU (u,u).

For a given outcome u the function h can be P1) strictly decreasing, P2) both decreasing or increasing, or

P3) strictly increasing. The properties P1 − P3 are examined in Rojas-Nandayapa (2008), p.62. We de-

fine ψL(u,u), ψU (u,u) as therein; for instance if P2 holds, then there exist at least two different solutions

ψL(u,u), ψU (u,u) such that

lim
u→∞

ψL(u,u) = −∞, and lim
u→∞

ψU (u,u) =∞.

The estimator of the rare event P {S(u) > u} defined in the aforementioned paper is

ẑ1(u) = P {R < ψL(u,U)}1{ψL(u,U)>0} + P {R > ψU (u,U)}, u > 0, (6.34)
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where the indicator function is needed to make sure that R > 0.

The algorithm proposed in Rojas-Nandayapa (2008) consists of the following steps:

1. Simulate the random vector U ;

2. Calculate ψL(u,U), ψU (u,U);

3. Return ẑ1(u) as in (6.34).

Theorem 6.1. Let β,Σ,X(u), S(u),Σu,λ(u), γ(u), u > 0 be as in Theorem 4.1 where limu→∞ Σu = Σ. If Σ is

non-singular, then ẑ1(u) is an unbiased estimator of P {S(u) > u}. If further R ∈ GMDA(w) where w is given

by (4.30) with θ ≥ 1, and (5.31) holds, then ẑ1(u) is a logarithmically efficient estimator.

Theorem 6.1 shows that the algorithm of Rojas-Nandayapa is logarithmically efficient, provided that w has an

asymptotic behaviour as a power function. A special case is when w(x) = x, which includes the log-normal

random vectors, and thus we retrieve the result of Corollary 4.3 in Rojas-Nandayapa (2008).

7 Proofs

Proof of Theorem 3.1 We adopt the proof of Theorem 2.2 in Mitra and Resnick (2009) attempting a shorter

alternative way which allows us to omit the analogous results of Proposition 2.1 and Lemma 2.1 therein. Set for

u > 0, L

t∗u := tu − L/wu(tu), w∗u := wu(t∗u), zu := t∗uw
∗
u.

By Assumption 1 (recall (2.8))

lim
u→∞

t∗u = lim
u→∞

tu[1− L/(tuwu(tu))] =∞, lim
u→∞

zu = lim
u→∞

t∗uw
∗
u = lim

u→∞
tuwu(tu) =∞.

Assumption 1 and Assumption 3 [AX(u),Y (u),wu;L] imply

lim
u→∞

P {S(u) > tu, X(u) > t∗u, Y (u) > t∗u}
P {X(u) > tu}

≤ lim
u→∞

P {X(u) > t∗u}
P {X(u) > tu}

P {X(u) > t∗u, Y (u) > t∗u}
P {X(u) > t∗u}

≤ exp(L) lim sup
u→∞

P {X(u) > zu/w
∗
u, Y (u) > zu/w

∗
u}

P {X(u) > t∗u}
= 0.

Assumption 3 yields further

P {S(u) > tu, X(u) ≤ t∗u, Y (u) ≤ t∗u}
P {X(u) > tu}

≤ P {X(u) > L/w∗u, Y (u) > L/w∗u}
P {X(u) > tu}

→ 0, u→∞.

The joint convergence in (2.13) means simply that (recall limu→∞ t∗u =∞)

w∗u

(
S(u)− t∗u

)∣∣∣(X(u) > t∗u)
d→ E , u→∞, (7.35)

with E a unit exponential random variable, hence together with the Assumption 1

lim
u→∞

P {S(u) > tu, X(u) > t∗u}
P {X(u) > tu}

= lim
u→∞

P {X(u) > t∗u}
P {X(u) > tu}

lim
u→∞

P {w∗u[X(u)− t∗u + Y (u)] > L|X(u) > t∗u}

→ exp(L) exp(−L) = 1, u→∞.

Next, if c = 0, then we have

lim
u→∞

P {S(u) > tu, Y (u) > t∗u}
P {X(u) > tu}

≤ lim
u→∞

P {Y (u) > t∗u}
P {X(u) > tu}
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= lim
u→∞

P {Y (u) > t∗u}
P {X(u) > t∗u}

lim
u→∞

P {X(u) > t∗u}
P {X(u) > tu}

= 0,

whereas if c ∈ (0,∞) by (3.15) and Assumption 1 we conclude that Y (u) ∈ GDMA(wu). By Assumption 2

[AY (u),X(u),wu ], as for (7.35) we get (note we condition on Y (u) > t∗u below)

w∗u

(
S(u)− t∗u

)∣∣∣(Y (u) > t∗u)
d→ E , u→∞.

Consequently

lim
u→∞

P {S(u) > tu, Y (u) > t∗u}
P {X(u) > tu}

= lim
u→∞

P {Y (u) > t∗u}
P {Y (u) > tu}

lim
u→∞

P {w∗u[S(u)− t∗u] > L|Y (u) > t∗u}

× lim
u→∞

P {Y (u) > tu}
P {X(u) > tu}

= exp(L) exp(−L)c = c.

Hence

lim
u→∞

P {S(u) > tu}
P {X(u) > tu}

= 1 + c.

By (2.12) and the fact that for any u > 0

P {X(u) > tu}+ P {Y (u) > tu} ≥ P {max(X(u), Y (u)) > tu}

≥ P {X(u) > tu}+ P {Y (u) > tu} − P {X(u) > tu, Y (u) > tu}

we obtain

lim
u→∞

P {M(u) > tu}
P {X(u) > tu}

= 1 + c,

and thus the claim follows. 2

Proof of Corollary 3.2 With the same arguments as in the proof of Corollary 2.2 of Mitra and Resnick (2009)

utilising further Remark 3.4 (iv), we can show for any tu, u > 0 such that limu→∞ tu =∞

lim
u→∞

P {S(u) > tu}
P {X1(u) > tu}

=
∑
i≤k

ci.

Since further ∑
1≤i≤k

P {Xi(u) > tu} ≥ P { max
1≤i≤k

Xi(u) > u}

≥
∑

1≤i≤k

P {Xi(u) > tu} −
∑

1≤i 6=j≤k

P {Xi(u) > tu, Xj(u) > tu}

and by (3.18) (recall (2.8)) for any 1 ≤ i 6= j ≤ k we have

lim
u→∞

P {Xi(u) > tu, Xj(u) > tu}
P {Xj(u) > tu}

= 0.

Next, applying (3.17) we arrive at:

lim
u→∞

P {Xi(u) > tu, Xj(u) > tu}
P {X1(u) > tu}

= 0.

Consequently

lim
u→∞

P {M(u) > tu}
P {X1(u) > tu}

=
∑
i≤k

ci
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establishing thus the proof. 2

Proof of Theorem 3.3 The proof when λ(u) = λ ∈ (0,∞)k, γ(u) = γ ∈ (0,∞) do not depend on u is given in

Theorem 4.2 of Mitra and Resnick (2009). By the Gumbel MDA assumption

X
β1γ(u)
1 ∈ GMDA(w̃β1γ(u)), X1(u) = λ1(u)X

β1γ(u)
1 ∈ GMDA(wλ1(u),β1γ(u)),

with

wa,b(x) = w̃b(x/a)/a, where w̃1/c(x) = cxc−1w(xc), c, x > 0.

Further, for any tu, u > 0 (set tu,i := (tu/λi(u))1/(βiγ(u)), i ≤ k)

lim
u→∞

tu,1
tu,i

= 0 < 1, if β1 > βj , and lim
u→∞

tu,1
tu,i

=
λi
λ1
, if βi = βj , i 6= j ≤ k.

Hence for any i such that βi < β1 or λi < λ1

lim
u→∞

P {λi(u)X
βiγ(u)
i > tu}

P {λ1(u)X
βjγ(u)
1 > tu}

= lim
u→∞

P {Xi > tu,i}
P {X1 > tu,i}

lim
u→∞

P {X1 > tu,i}
P {X1 > tu,1}

=: cic
∗
i = 0

since if ci ∈ (0,∞), then (3.24) implies c∗i = 0. Now, the proof follows along the same lines of the proof of

Theorem 4.2 of Mitra and Resnick (2009). 2

Proof of Theorem 4.1 (a) First note that the assumption Σu, u > 0 is a correlation matrix and (4.28) imply

Xi(u)
d
= Xj(u)

d
= X1(1), Yi(u)

d
= Yj(u)

d
= Y1(1) =: Y, 1 ≤ i, j ≤ k, u > 0.

By Theorem 4.1 in Hashorva and Pakes (2010) R ∈ GMDA(w) if and only if Y ∈ GMDA(w). Hence we may

suppose that Y ∈ GMDA(w). Our assumption limu→∞ uw∗(u) = ∞, where w∗(x) := w(lnx)/x, x > 0 implies

for any s ∈ R, u > 0

P {X1(u) > x+ s/w∗(x)}
P {X1(u) > x}

=
P {Y > lnx+ ln(1 + s/w(lnx))}

P {Y > lnx}
→ exp(−s), x→∞

implying X1(1) ∈ GMDA(w∗). In order to show the asymptotic independence of the components of X(u), it

suffices to prove that

lim
u→∞

P {Xi(u) > exp(u), Xj(u) > exp(u)}
P {Xi(u) > exp(u)}

= 0, 1 ≤ i 6= j ≤ k.

Since Y ∈ GMDA(w) we have for any χ > 1

lim
u→∞

P {Y > χu}
P {Y > u}

= 0. (7.36)

By (4.27) and applying Lemma 6.1 in Berman (1992) for any u > 0

P {Xi(u) > exp(u), Xj(u) > exp(u)}
P {Xi(u) > exp(u)}

≤
P {(1 + σij(u))Y1(u) +

√
1− (σij(u))2Y2(u) > 2u}

P {Y > u}
→ 0, u→∞. (7.37)

Consequently

lim
u→∞

P {Xi(u) > exp(u), Xj(u) > exp(u)}
P {Xi(u) > exp(u)}

= 0,

and hence the first statement follows.

(b) Define for u > 0 and some l ≤ k
Y I,u := Y I,u|(Yl(u) > u).
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If Σu, u > 0 does not depend on u in view of Balakrishnan and Hashorva (2013) (see also Hashorva and Jaworski

(2012)) for any x ∈ Rk

lim
u→∞

P
{√

w(u)/u[Y I,u − u(Σu)IJ ] ≤ xI
}

= P {ZI ≤ xI},

with ZI ∈ Rk−1 a Gaussian random vector with mean zero and covariance matrix ΣII − ΣIJΣJI , J := {l}.
If Σu depends on u, the proof of the above convergence can be established along the lines of the proof of the

aforementioned theorems, and thus the result follows. 2

Proof of Theorem 5.1 Since limu→∞ w(u) =∞ applying Theorem 4.1 we have X1(1) ∈ GMDA(w∗), w∗(x) =

w(lnx)/x. Set next Y := Y1(1) and define

τu :=
1

β1γ(u)
, su := τu ln tu, u > 0.

If follows that X1(u) ∈ GMDA(wu), u > 0 with wu defined by

wu(x) = τux
τu−1w∗(x

τu), x ∈ (0,∞).

In view of (4.27) we can establish the proof by applying Theorem 3.3 restricting further to the 2-dimensional

setup, i.e., k = 2 and β1 = β2. By the assumption on the scaling function

w(x) ≤ exp(β1γ(ξ + ε)x) (7.38)

for some ε > 0 such that ξ + ε < 1. Hence

lim
u→∞

wu(tu) = lim
u→∞

τut
τu−1
u

w(τu ln tu)

tτu
≤ lim
u→∞

τu
exp
(
β1γ(ξ + ε)τu ln tu

)
tu

= 0.

Next, we show further that both Assumption 2 and 3 are satisfied. By (4.29) for any z ∈ (0,∞)

lim
u→∞

P
{X1(u)

t
σ12(u)
u

> z1/q(tu)
∣∣∣X2(u) > tu

}
= P

{√
1− σ2

12Z > ln z
}
, (7.39)

with q(x) =
√
w(lnx)/ lnx, x > 0 and Z a standard Gaussian random variable. The assumption limu→∞ Σu = Σ,

with Σ being non-singular and the fact that limu→∞ uw(u) =∞ imply

lim
u→∞

σ12(u) = σ12 ∈ (−1, 1), lim
u→∞

wu(su)su =∞.

For any a, u > 0 we obtain (set t̃u := tτuu , u > 0)

P
{
wu(tu)X1(u) > a

∣∣∣X2(u) > tu

}
= P

{
wu(tu)(X1(u))1/τu > a

∣∣∣X2(u) > tτuu

}
= P

{(X1(u)

t̃
σ12(u)
u

)1/τu

> (t̃u)[1−σ12(u)]/τu
a

τuw(su)

∣∣∣X2(u) > t̃u

}
= P

{(X1(u)

t̃
σ12(u)
u

)q(t̃u)
> t̃q(t̃u)[1−σ12(u)]

u

(
a

τuw(su)

)q(su)τu ∣∣∣X2(u) > t̃u

}
= P

{(X1(u)

t̃
σ12(u)
u

)q(t̃u)
> χa,u

∣∣∣X2(u) > t̃u

}
,

with

ln(χa,u) := q(t̃u) su

[
1− σ12(u) + τu

ln a− ln τu
su

− τu
lnw(su)

su

]
=

√
suw(su)

[
1− σ12 + o(1)− ξ

]
.



13

Since √
(1 + σ12)/2 ≥ σ12, ∀σ12 ∈ (−1, 1)

by (5.31) we have 1− σ12 − ξ > 0. Cnsequently,

lim
u→∞

ln(χa,u) = ∞

and thus Assumption 2 follows by (7.39). Condition (5.31) implies that there exists some b ∈ (1,∞) such that as

u→∞

− lnwu(tu)

ln tu
= 1− ln τu

ln tu
− τu

lnw(su)

su
(1 + o(1))b

√
(1 + σ12)/2.

Hence as in (7.37) for all u large we have

P {X1(u) > 1
wu(tu)

, X2(u) > 1
wu(tu)

}
P {X1(u) > tu}

≤
P {
√

2(1 + σ12(u))Y > −2τu lnwu(tu)}
P {Y > τu ln tu}

=
P {Y > (1 + o(1))bsu}

P {Y > su}
→ 0, u→∞

and thus Assumption 3 holds with L = 1, hence the proof is complete. 2

Proof of Theorem 6.1 By the assumptions on Σu, u > 0 it follows as in Theorem 4.2 of Rojas-Nandayapa

(2008) (therein Σu does not depend on u) that ẑ1(u) is an unbiased estimator of P {S(u) > u}. We show next

that ẑ1(u) is a logarithmically efficient estimator, which is implied (see e.g., Rojas-Nandayapa (2008)) if for any

ε > 0

lim sup
u→∞

E{ẑ21(u)}
(P {S(u) > u})2−ε

<∞. (7.40)

As in the proof of Theorem 4.2 of Rojas-Nandayapa (2008) we obtain for all large u

E{ẑ21(u)} ≤ P
{
R >

lnu− µ1(u) +
√

(lnu− µ(u))2 − 4σ(u)

2σ(u)

}
,

where

µ1(u) = lnλ1(u), µ(u) = max
1≤j≤k

lnλi(u), σ(u) = β1γ(u), u > 0.

By the assumptions and Corollary 12.3.1 in Berman (1992)

P {X1(u) > u} =
1

2
P {|X1(u)| > u}

= (1 + o(1))
2(k−1)/2−1Γ((k − 1)/2)

Γ(1/2)
(uw(u))−(k−1)/2P {R > u}, u→∞.

Since further the scaling function w given by (4.30) satisfies condition (5.31) with ξ = 0 (see Example 4.2), then

(5.32) holds. Next, applying Lemma 8.1 we establish (7.40), and thus the claimed result follows. 2

8 Appendix

Lemma 8.1. Let F be a univariate df such that F ∈ GMDA(w). For any a, δ ∈ (0,∞) if w is given by (4.30)

with θ ∈ (0,∞), then

lim
u→∞

F
1+δ

(u− a)

F (u)
= 0. (8.41)
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Proof of Lemma 8.1 By the assumption on F we have for some z0 > 0 and all u large

F (u) = c(x) exp
(
−
∫ u

z0

w̃(s) ds
)
,

where c(x) is a positive measurable function satisfying limu→∞ c(u) = c ∈ (0,∞) and w̃ is a positive measur-

able function such that limu→∞ w(u)/w̃(u) = 1. See Resnick (1987) or Embrechts et al. (1997) for alternative

representations of F . We may thus write for ε, a two positive constants (set for notational simplicity z0 = 0)

F
1+δ

(u− a)

F (u)
=

(c(u))1+δ

c(u)
exp
(
−(1 + δ)

∫ u−a

0

w̃(s) ds+

∫ u

0

w̃(s) ds
)

= (1 + o(1)) exp
(
−δ
∫ u−a

0

w̃(s) ds+

∫ u

u−a
w̃(s) ds

)
, u→∞.

If θ ∈ (0, 1), since w̃(x) ∼ w(x) = L(x)xθ−1, then limu→∞ w(u) = limu→∞ w̃(u) = 0. Further, F ∈ GMDA(w)

implies

lim
u→∞

F (u− a)

F (u)
= lim

u→∞

F (u− [aw(u)]/w(u))

F (u)
= exp( lim

u→∞
aw(u)) = 1,

hence (8.41) follows. If θ ≥ 1, then for any τ ∈ (0, 1) and u large∫ u−a

0

w̃(s) ds = u

∫ 1−a/u

0

w̃(us) ds > u

∫ τ

0

w̃(us) ds = (1 + o(1))
τθ

θ
uw̃(u),

which follows by Theorem B.1.12 in De Haan and Ferreira (2006). With a similar argument we find that

lim
u→∞

∫ u−a
0

w̃(s) ds∫ u
u−a w̃(s) ds

=∞,

and thus again (8.41) follows. 2

Acknowledgments. I am in debt to the referee for numerous suggestions and corrections which improved the

manuscript. Partial support by the Swiss National Science Foundation Grant 200021-134785 is kindly acknowl-

edged.

References

[1] Asimit, A.V., Furman, E., Tang, Q., Vernic, R. (2011) Asymptotics for risk capital allocations based on

conditional tail expectation. Insurance: Mathematics and Economics, 49, 310–324.

[2] Asmussen, S., Blanchet, J., Juneja, S., Rojas-Nandayapa, L. (2011) Efficient simulation of tail probabilities

of sums of correlated lognormals. Ann. Oper. Res. 189, 5-23.

[3] Asmussen, S., and Rojas-Nandaypa, L. (2008) Sums of dependent log-normal random variables with Gaussian

copula. Stat. Prob. Lett. 78, 2709–2714.

[4] Balakrishnan, N., and Hashorva, E. (2013) On scale mixtures of Kotz-Dirichlet distributions. J. Multivariate

Analysis, 113, 48-58.

[5] Berman, M.S. (1983) Sojourns and extremes of Fourier sums and series with random coefficients. Stoch. Proc.

Appl. 15, 213–238.

[6] Berman, M.S. (1992) Sojourns and Extremes of Stochastic Processes, Wadsworth & Brooks/ Cole, Boston.

[7] Bingham, N.N., Goldie, C.M., and Teugels, J. (1987) Regular Variation. Cambridge University Press.



15

[8] Cambanis, S., Huang, S., and Simons, G. (1981) On the theory of elliptically contoured distributions. J.

Multivariate Analysis, 11,3, 368–385.

[9] De Haan, L., and Ferreira, A. (2006) Extreme Value Theory. An Introduction. Springer.

[10] Degen, M., Lambrigger, D.D., Segers, J. (2010) Risk concentration and diversification: Second-order prop-

erties. Insurance: Mathematics and Economics, 40, 525–532.
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