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Abstract. The Mediterranean Sea is one of the most olig-
otrophic marine areas on earth where nitrogen fixation has
formally believed to play an important role in carbon and
nitrogen fluxes. Although this view is under debate, the di-
azotrophs responsible for this activity have still not been in-
vestigated in the open sea. In this study, we characterised
the surface distribution and species richness of unicellular
and filamentous diazotrophs across the Mediterranean Sea
by combining microscopic counts with size fractionated in
situ hybridization (TSA-FISH), and 16S rDNA andnifH
genes phylogenies. These genetic analyses were possible
owing to the development of a new PCR protocol adapted to
scarce microorganisms that can detect as few as 1 cell ml−1

in cultures. Low concentrations of diazotrophic cyanobac-
teria were detected and this community was dominated at
99.9% by picoplankton hybridized to the Nitro821 probe,
specific for unicellular diazotrophic cyanobacteria (UCYN).
Among filamentous cyanobacteria only 0.02 filament ml−1

of Richeliawere detected in the eastern basin, while small
(0.7–1.5 µm) and large (2.5–3.2 µm) Nitro821-targeted cells
were recovered at all stations with a mean concentration of
3.5 cell ml−1. The affiliation of the small Nitro821-targeted
cells to UCYN-A was confirmed by 16S andnifH phyloge-
nies in the western Mediterranean Sea. In the central and
the eastern Mediterranean Sea no 16S rDNA andnifH se-
quence from UCYN was obtained as cells concentration were
close to, or below PCR detection limit.Bradyrhizobiumse-
quences dominatednifH clone libraries from picoplanktonic
size fractions. A few sequences ofγ -proteobacteria were
also detected in the central Mediterranean Sea. While low
phosphate and iron concentrations could explain the absence
of Trichodesmiumsp., the factors that prevent the develop-
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ment of UCYN-B and C remain unknown. We also propose
that the dominating picoplankters probably developed spe-
cific strategies, such as associations with protists or particles,
and/or photosynthetic activity, to acquire carbon for sustain-
ing diazotrophy.

1 Introduction

The Mediterranean Sea has long been recognized for the
strong oligotrophy of its waters, with a clear decrease in nu-
trient concentration and primary productivity from west to
east (Moutin and Raimbault, 2002). Deep Mediterranean wa-
ters are characterized by unusually high N:P ratios compared
to Redfield (B́ethoux and Copin-Montégut, 1986; Krom et
al., 1991). The processes that induce such atypical ra-
tios are under debate, and two hypotheses have been pro-
posed, involving either significant diazotrophic activity, or
low denitrification rates in combination with external inputs
of nutrients (B́ethoux and Copin-Montégut, 1986; Krom et
al., 2010). Direct N2 fixation measurements conducted in
the eastern and western Mediterranean basins have shown
mainly low diazotrophic activity with punctual peaks at dif-
ferent sites or seasons (0.01–129 nmol N L−1 d−1, Rees et al.,
2006; Sandroni et al., 2007; Ibello et al., 2010). This het-
erogeneity in rates of N2-fixation implies the need of high
frequency surveys to fully integrate, over the long term, the
role of diazotrophy in Mediterranean biogeochemical cycles.
However, the importance of diazotrophy has been argued
to be inconsistent with the known phosphate-starved con-
ditions found in the Mediterranean Sea (Krom et al., 2004,
2010), as diazotrophic activity was demonstrated to be con-
trolled by phosphate in areas dominated byTrichodesmium
sp. (Sǎnudo-Wilhelmy et al., 2001; Moutin et al., 2005).
Trichodesmiumsp., a filamentous cyanobacterium, has been

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


828 M. Le Moal et al.: Intriguing Mediterranean diazotrophs

regarded for a long time as the main marine N2 fixer
(Falkowski, 1997). This view has now changed because
N2-fixation measurements within small (<10 µm) and large
(>10 µm) planktonic size fractions suggest that unicellular
diazotrophs fix equally or more nitrogen than filamentous
species (Montoya et al., 2004; Biegala and Raimbault, 2008).
Due to their higher surface/volume ratios, small cells have
been recognised to be better adapted to phosphate-limiting
conditions than larger ones (Smith and Kalff, 1982; Falcón
et al., 2005). This is coherent with past and recent Mediter-
ranean observations (Trégouboff, 1957; Bar Zeev et al.,
2008) which reported only low concentrations of filamen-
tous cyanobacteria, while smaller diazotrophs were hypoth-
esized to be the main planktonic N2-fixers in this environ-
ment (B́ethoux and Copin-Montégut, 1986). Acquiring in-
formation on the size, the diversity and the spatio-temporal
distribution of diazotrophs is thus essential to improve our
understanding of Mediterranean biogeochemical cycles.

To date significant diversity has been recovered among
marine planktonic diazotrophs. While filamentous organ-
isms include essentiallyTrichodesmiumsp. and the diatom
symbiontRichelia intracellularis, unicellular diazotrophs are
highly diverse and embrace Cyanobacteria, Proteobacteria,
and Archaea. So far, three groups of unicellular diazotrophic
cyanobacteria (UCYN) have been reported in the literature,
UCYN-A, B, and C (Zehr et al., 2001; Foster et al., 2007).
While UCYN-B and C are nanoplanktonic cells (2 to 10 µm)
closely affiliated to the cultivated strainsCrocosphaera wat-
soniiandCyanothecesp., respectively (Church et al., 2005a;
Foster et al., 2007), UCYN-A are of picoplanktonic size
(0.7–1.5 µm, Biegala and Raimbault, 2008; Goebel et al.,
2008) and so far uncultivated. In addition to being free-
living, UCYN have also been suggested to produce mucilage,
to attach to inert particles or to live in association with plank-
tonic eukaryotes (Biegala and Raimbault, 2008; Bonnet et
al., 2009). These observations imply that UCYN could also
contribute to nitrogen fixation of the large size fraction, thus
reinforcing their role in global diazotrophic activity.

In the Mediterranean Sea, only two coastal studies have
revealed the presence of unicellular diazotrophs (Man-
Aharonovich et al., 2007; Le Moal and Biegala, 2009).
Organisms affiliated to UCYN-A, Proteobacteria, and Ar-
chaea were recovered in the south-eastern basin and were
expressing theirnifH gene, which encodes the dinitroge-
nase reductase enzyme involved in nitrogen fixation pro-
cess (Man-Aharonovich et al., 2007). In the north-western
Mediterranean Sea, putative pico and nanoplanktonic UCYN
were detected and hypothesized to belong to UCYN-A
and UCYN-B or C, respectively (Le Moal and Biegala,
2009). Their concentrations were low along a seasonal cycle
(4.6 cell ml−1) compared to abundance estimates from other
oceanic basins (reviewed in Le Moal and Biegala, 2009;
Moisander et al., 2010), except for summer abundances that
reached 1900–5300 cell ml−1. While UCYN and filamentous
diazotrophic cyanobacteria have been investigated in coastal

waters, their spatial distributions have never been character-
ized in the open Mediterranean Sea.

Different molecular approaches have been used in the lit-
erature to study (i) the concentrations and (ii) the species
richness of diazotrophs. First, concentrations have been
determined either with the help of the quantitative poly-
merase chain reaction (qPCR) ofnifH copies or by direct
microscopic counts of fluorescently labeled UCYN, using
a specific 16S rDNA probe combined with tyramide signal
amplification-fluorescence in situ hybridization (TSA-FISH,
Church et al., 2005a; Biegala and Raimbault, 2008). It was
possible to design a specific 16S oligonucleotide for UCYN
(Nitro821, Mazard et al., 2004) as the co-evolution of both
nifH and 16S rDNA genes has resulted in similar phyloge-
nies, especially in the phylum Cyanobacteria (Rosado et al.,
1998; Zehr et al., 2003). Compared to qPCR, the whole cell
hybridization technique allows characterizing UCYN size
and provides some information on their ecology such as their
free living or associated life styles (Biegala and Raimbault,
2008). However, visual discrimination among UCYN-B and
-C is not possible and requires complementary species rich-
ness analysis. Therefore, the species richness can be inves-
tigated in a second time using PCR and phylogenetic tech-
niques on 16S rDNA andnifH genes. Such information
is tricky to acquire for diazotrophs less concentrated than
10 cell ml−1(Kirshtein et al., 1993; Mazard et al., 2004) as
their DNA may be diluted too much during the different ex-
traction steps. To increase the amount of target within ex-
tracted DNA, a nested approach using thenifH gene was in-
troduced (Zani et al., 2000). However, several studies still
reported the inability to detect low concentrations of dia-
zotrophs at the DNA level (e.g. Zani et al., 2000; Man-
Aharonovich et al., 2007), thus illustrating the need to de-
velop an adapted PCR protocol for scarce microorganisms in
this field of research.

Planktonic diazotrophic activity has long been attributed
to cyanobacteria, as they can sustain this energetically expen-
sive process via photosynthesis (Stewart, 1971). Conversely,
non-cyanobacterial diazotrophs are considered unable to ac-
quire an autonomous carbon source through photosynthe-
sis, and have thus been neglected in biogeochemical stud-
ies (Madigan, 1995; Tyrell, 1999). However, this metabolic
function has also recently been missing within UCYN-A
(Zehr et al., 2008), although these picocyanobacteria can ac-
tively expressnifH gene and can reach high concentrations
(Church et al., 2005b; Moisander et al., 2010). SimilarnifH
expression patterns were measured among planktonic pro-
teobacteria, for which phototrophy has not been discovered
(Zehr et al., 2007; Riemann et al., 2010). These results un-
derline the importance to characterize the entire diazotrophic
community including Proteobacteria and Archaea to better
understand their role into global nitrogen fixation.

In this study we used a combination of approaches (i)
to assess the distribution of diazotrophic cyanobacteria us-
ing epifluorescence microscopy for filamentous cells and
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size-fractionated TSA-FISH technique for the UCYN; (ii) to
identify the species richness of UCYN as well as those of po-
tential other non-cyanobacterial diazotrophs, by specific 16S
and generalnifH phylogenetic analyses; and (iii) to develop
a protocol for PCR amplifying scarce organisms necessary
for phylogenetic analyses.

2 Material and methods

2.1 Natural environment sampling and cultures

Two types of samples were used in this study, environmen-
tal samples to determine diazotroph distributions and species
richness across the Mediterranean Sea, and a combination of
cultures and environmental samples to develop a protocol for
PCR amplifying scarce diazotrophs.

Mediterranean samples were collected during the oceano-
graphic BOUM transect (Biogeochemistry of Oligotrophic
to Ultra-Oligotrophic Mediterranean) in June–July 2008 on-
board the R/V Atalante. For TSA-FISH assays, ten liters of
water were sampled using Niskin bottles at 5 m depth from
13 stations across the oligotrophic gradient (Fig. 1). At sta-
tions A, B, and C (Fig. 1), two nutrient contrasted depths
were sampled: an oligotrophic one at 12.5 m and a nutrient
rich one at the upper deep chlorophyll maximum (DCM+)

at 80 m, 120 m, and 100 m for each of the three stations, re-
spectively. Cells collected at 12.5 m from stations A, B, and
C were also used as DNA template for PCR reactions neces-
sary for phylogenetic studies.

For methodological development, the strainCrocosphaera
watsoniiWH8501 was used to define the detection limit of
16S rDNA PCR amplification on unicellular diazotrophic
cyanobacteria. TheC. watsoniistrain was graciously pro-
vided by T. Shi and was grown under 12/12 h light/dark con-
ditions on a modified YBCII medium (Chen et al., 1996).
Two milliliters of culture were fixed with 1% paraformalde-
hyde (PFA) and stored at−80◦C until further analyses in-
culding serial dilutions, counts by flow cytometry and PCR
amplification. Environmental samples collected in differ-
ent marine areas, such as samples M (Mediterranean Sea,
43◦ N; 5◦ E) and samples P (Pacific Ocean, 22◦ S, 166◦ E)
were stored for one to five years at−80◦C to test the stabil-
ity of PCR efficiency with time. Two types of DNA samples
were used, either DNA from entire cells collected on filters
following the same protocol as the one for TSA-FISH ex-
periments (see below for TSA-FISH) or extracted DNA (see
below PCR and cloning).

2.2 TSA-FISH and microscopy

Before TSA-FISH experiments, plankton from sea water
samples were collected from three size fractions (0.2–3 µm,
3–10 µm, and>10 µm). Depending on the degree of olig-
otrophy, 1.3–8.2 liters were filtered by gravity through 10 µm
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Fig. 1. Position of sampled stations during the BOUM transect
across the Mediterranean Sea. Numbers (1–27) represent stations
where surface TSA-FISH analyses were done and letters (A, B,
and C) represent stations where TSA-FISH analyses were done at
12.5 m and DCM+ as well as 16S andnifH phylogenies at 12.5 m.

ISOPORETM (Millipore, France) 47 mm filters, and 0.8–
3.4 liters of the remaining filtrate were collected by grav-
ity on 3 µm ISOPORETM (Millipore, France) 47 mm fil-
ters. Then, 200 mL of the<3 µm filtrate were collected
under 200 mmHg vacuum on 0.2 µm ISOPORETM (Milli-
pore, France) 47 mm filters. Cells were subsequently fixed
with buffered 1% PFA for 15 min at room temperature
(RT), dehydrated with 100% ethanol for 10 min at RT, and
stored at−80◦C until analyses, according to Biegala and
Raimbault (2008). Prior to hybridizations, filters contain-
ing fixed cells were covered with agarose to avoid cell loss
during hybridization steps, according to Biegala and Raim-
bault (2008), with slight modification in Le Moal and Bie-
gala (2009), where 0.4% agarose was used instead of 0.1%
for the >10 µm size fraction. Hybridizations were done
according to the protocol of Biegala et al. (2002), mod-
ified in Biegala and Raimbault (2008). Briefly, unicel-
lular diazotrophic cyanobacteria were hybridized with the
Horse Radish Peroxidase-labeled 16S rDNA Nitro821 probe
(Thermo, Germany, 5′-CAA GCC ACA CCT AGT TTC-3′)
which is specific for the UCYN lineage (Mazard et al., 2004),
and subsequently stained in green with FITC (Fluorescein
IsoThioCyanate, TSA-Kit Perkin Elmer, France). DNA from
all prokaryotic and eukaryotic cells were counterstained with
the specific blue DAPI dye (Sigma-Aldrich, France).

Photomicrographs and cells counts were done according
to Biegala and Raimbault (2008). Briefly, entire surfaces of
each filter portion (approx. 40 microscopic fields, 0.5 cm2)

were counted. These surface corresponded in mean to 250,
100 and 16 mL of water for the>10, the 3–10 and the 0.2–
3 µm size fractions, respectively. This filtration protocol al-
lows to detect either UCYN concentration as low as 0.08
to 0.004 cell ml−1 depending on size fractions, or filamen-
tous cyanobacteria concentration>0.004 cell ml−1. The ho-
mogeneity of Nitro821-hybridized cells on filters was con-
firmed by the low standard deviation obtained on triplicate
counts done for station A, B, and C in the picoplanktonic
size fraction (4.6± 0.6, 2.3± 0.4 and 2.3± 0.6 cell ml−1
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respectively). This homogeneity allowed us to define that
the count of an entire filter portion was representative of
the whole population for each sample station, and, only one
replicate of entire filter portion was counted for each sam-
ple. Sizes of Nitro821-targeted cells were determined with
the help of 1 µm calibration beads (Apogee Flow Systems,
UK) according to Le Moal and Biegala (2009).

2.3 Flow cytometry

Before PCR assays, PFA fixedC. watsonii (0.5–
800 cell ml−1) were counted and isolated with the help
of a MoFlo cell sorter (Beckman Coulter, Florida, USA)
using a 488 nm laser for phycoerythrin and chlorophyll
excitations and 580± 15 nm band pass and a 640 nm long
pass filters for orange and red emission wavelengths of these
pigments. Prior to flow cytometry analysis, cells were cen-
trifuged to remove culture medium and subsequently diluted
in MilliQ sterile water to provide a range of concentrations
for the test of PCR detection limit. After flow cytometry,
cells were collected directly in PCR tubes, in 27 µl, and
stored at−80◦C until the addition of PCR mixture. The
detection limit of 1 cell ml−1 of C. watsonii corresponds
to 12 cells per PCR reaction, according to UCYN counts
realised on 0.2 µm pore-size filter portions from natural
samples after TSA-FISH experiments.

2.4 PCR and cloning

DNA template used for PCR was not acquired through ex-
traction but directly from entire fixed cells collected for TSA-
FISH assays on 0.2–3 µm size fraction filters. The reason for
this modification was the sparse concentration of environ-
mental UCYN (2.3–4.6 cell ml−1), which was two to three
times lower than the detection limit of 7 cell ml−1 defined
for techniques using DNA extraction (Mazard et al., 2004).
Filter portions were incubated five times on polysulfone filter
support (Millipore, France) in 200 µl of MilliQ sterile water
for 5 min at room temperature. Between incubations water
was discarded using a vacuum pump (200 mm Hg). The aim
of these washing steps was to clean the fixed cells from a
white film made of PFA, ethanol and sea salt. For long term
stored samples (P5 and M4) dedicated to test the stability
of PCR efficiency with time, extracted DNA was also used
as PCR template, by filtering 4 L of waters on 0.2 µm pore
size Supor filter (Pall, France) under 200-mmHg vacuum and
subsequently following the DNA extraction protocol defined
in Zehr and Turner (2001).

Diazotroph species richness was investigated by target-
ing both 16S rDNA andnifH genes. The 16S UCYN spe-
cific primer Nitro821 (Eurogentec, France, Table 1) was
used in combination with Cya359 (Eurogentec, France, Ta-
ble 1), according to the original protocol from Mazard et
al. (2004), with a slight modification: 0.1 U of Taq poly-
merase (Promega, France) was used in PCR mixtures instead

of 0.650 U. FornifH amplification, nested PCR was used
with N3/N4 primers (Table 1) followed by N1/N2 primers
(Eurofins MWG, Germany, Table 1), according to Zehr and
Turner (2001). All PCR reactions were carried out in 50 µl
volumes. The first PCR used fixed cells on filters as DNA
template and the second PCR used 1 µl of DNA product from
the first PCR. A filter with no cell was used as negative con-
trol for each environmental sample, to check the absence of
contamination among samples, while all labware used to ma-
nipulate filters and PCR tubes were previously treated with
a combination of bleach, UV radiation, and DNAse away
(Molecular BioProducts, Mexico).

PCR products (10 µl or 25 µl of 50 µl) were resolved by
gel electrophoresis (Mupidex, France) on a 1.5% gel agarose
(Sigma, France) on 135 V. DNA was stained by ethidium
bromide (Euromedex, France, one drop per agarose gel)
and amplicons of approximately 460 and 360 bp for 16S
rDNA and nifH genes respectively, were visualized by a
UV-transilluminator (Geldoc UVITEC, France). Ampli-
cons were excised and purified using Wizard® SV Gel and
PCR Clean-up system (Promega, France). They were then
cloned into a pGEM-T vector (Promega, France), and trans-
formed within strain DH5α (Invitrogen, France) accord-
ing to the manufacturer’s instructions. Plasmid DNA from
ten to twelve positive colonies was purified (Wizard Plus
SV Minipreps DNA Purification system, Promega, France)
and sequenced using ABI3730XL capillary systems (ABI,
Macrogen, Korea). Sequences were deposited in EMBL un-
der accession numbers HQ630785–HQ630811, HQ630813–
HQ630820.

2.5 Phylogenetic analyses

Phylogenetic analyses were performed using the ARB pro-
gram package (Ludwig et al., 2004). 16S rDNA andnifH
databases were download from SILVA (http://www.arb-silva.
de/, last access: June 2010) and Marine Microbiology Lab-
oratory from the University of California (J. P. Zehr labora-
tory, http://pmc.ucsc.edu/∼wwwzehr/research/database/, last
access: June 2010) websites, respectively. 16S andnifH
phylogenetic trees were constructed by the neighbour-joining
method with Jukes-Cantor correction. 16S rDNA sequences
longer than 1200 base pair (bp) or all nucleotide positions
(approx. 360 bp) between N1 and N2 primers (including
those obtained in this study) were used. Analyses were
bootstrapped 1000 times to evaluate the robustness of tree
branches. 16S rDNA partial sequences from this study (ap-
prox. 460 bp) were added to the tree by using the maximum-
parsimony option from ARB.
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Table 1. 16S rDNA andnifH primers used in this study.

Primer Target Sequence (5’ to 3’) Reference

Nitro821 16S rDNA of UCYN CAA GCC ACA CCT AGT TTC Mazard et al. (2004)
Cya359 16S rDNA of cyanobacteria GGG GAA TYT TCC GCA ATG GG Nübel et al. (1997)
N1 nifH of prokaryotes TGY GAY CCN AAR GCN GA Zehr and McReynolds (1989)
N2 nifH of prokaryotes ADN GCC ATC ATY TCN CC Zehr and McReynolds (1989)
N3 nifH of prokaryotes ATR TTR TTN GCN GCR TA Zani et al. (2000)
N4 nifH of prokaryotes TTY TAY GGN AAR GGN GG Zani et al. (2000)

M: A/C; N: A/T/G/C; R: A/G; Y: C/T; D: A/T/G.

3 Results

3.1 Tests of PCR amplification for the detection of
scarce microorganisms

The detection limit of PCR amplification was successfully
decreased from 7 to 1 cell ml−1 by using entire fixed UCYN
cell (Crocosphaera watsonii) instead of extracted DNA.
1 cell ml−1 corresponds to 12Crocosphaeracells per PCR
reaction (Fig. 2a), and to the lowest number of 12 UCYN per
filter portion detected by TSA-FISH technique in this study.

DNA amplification from entire fixed cells was achieved
with success on samples stored at−80◦C for up to three
years and originated from different marine waters (Fig. 2b1
and b2). However, beyond two or three years of storage, en-
vironmental DNA could not be amplified and filters must un-
dergo additional washing steps before their introduction into
PCR tubes to clean the fixed cells from a white film made of
PFA, ethanol and sea salt (Fig. 2b2).

3.2 Diazotrophic cyanobacteria distribution

Low concentrations of putative diazotrophic cyanobacteria
were detected in Mediterranean surface waters using the
TSA-FISH technique (Fig. 3). The community was domi-
nated at 99.9% by picoplanktonic cells hybridized with the
UCYN specific probe Nitro821 (Fig. 3a, b, d, e; Fig. 4a–
d). Two Nitro821-hybridized cell types were detected, small
ones from 0.8–1.5 µm (Fig. 4a) and large ones from 2.5–
3.2 µm (Fig. 4b, c). Small cells dominated at 92% the
Nitro821-targeted cells community (Fig. 3). Among these
small cells, 75% were free living-organisms recovered in
the 0.2–3 µm size fraction (Fig. 3a, d), while 25% were
associated with nonthecate dinoflagellates in the 3–10 and
>10 µm size fractions (Fig. 3a, d; Fig. 4d). Dinoflagel-
lates were identified with their typical condensed chromo-
somes when stained with DAPI (data not shown) and associ-
ated Nitro821-hybridized cells were essentially concentrated
around the dinoflagellate nucleus where their concentration
ranged from 1 to 30 cells (Fig. 4d). Large picocyanobacteria
represented only 8% of the Nitro821-targeted cells (Fig. 3b,
e), and were recovered merely as free living cells either in

 39 

Fig. 2

a

b
P5          M4       P3        P2       M2       P1      

b1

b2

b3

0          0.5          1          2          4           8     40        80       400       800 (cell ml-1)

Fig. 2. Different PCR amplification tests for the detection of scarce
microorganisms.(a)Definition of PCR detection limit of UCYN us-
ing a range of concentrations ofC. watsoniiwith Nitro821/Cya359
16S primers.(b) Test of stability of PCR efficiency with time on
different types of DNA template collected in the Pacific Ocean (P)
or in the Mediterranean Sea (M) and stored at−80◦C for 1 to 5 yr.
Amplifications were done with the general 16S primers 27F/1518R
using as DNA template(b1) PFA fixed cells collected on filter,(b2)
PFA fixed cells collected on filter and washed with MilliQ sterile
water before amplification, and(b3) extracted DNA.

the 0.2–3 µm size fraction (Fig. 4b) or in the one of 3–10 µm
(Fig. 4c). Nitro821-targeted cells were 5.5 times less abun-
dant at DCM+ depth than at 12.5 m (Fig. 3b, c). Their cu-
mulated concentrations ranged from 1–6 cell ml−1 with an
average of 3.5 cell ml−1.

Among filamentous cyanobacteria, only 0.02 filament
ml−1 of Richelia intracellulariswere detected in the eastern
basin at 3 stations (Fig. 3c, f, Fig. 4e), whileTrichodesmium
spp. was absent or under detection (<0.004 filament ml−1)

all through the transect.

3.3 Diazotrophs species richness

UCYN specific 16S rDNA amplification was obtained only
from station A and all the sequences were affiliated to
UCYN-A (Fig. 5, Table 2). The presence of UCYN-A was
confirmed in station A bynifH phylogenetic analyses, where
they accounted for 43% of the sequences (group 1′, Figs. 6,
7). In addition to UCYN-A, four diazotroph groups of pro-
teobacteria were recovered bynifH phylogenetic analyses.
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Fig. 3. Epifluorescent microscopic counts of Nitro821-targeted
UCYN and filamentous diazotrophic cyanobacteria across the
Mediterranean Sea within the 0.2–3 µm (black bars) and the 3–
10 µm combined with>10 µm (white bars) size fractions. Counts
were done at 5 m depth(a, b, c) and at two nutrient contrasted
depths(d, e, f) including 12.5 m (left of dotted line) and upper deep
chlorophyll maximum (DCM+, right of dotted line). Counts were
done on small Nitro821-targeted cells(a, d), on large Nitro821-
targeted cells(b, e), and onRichelia intracellularis(c, f).

Bradyrhizobiumsequences dominatednifH clone libraries
from station A, B, and C, where they represented 57%, 56%,
and 75% of the sequences, respectively (Figs. 6, 7, Table 2).
Among them, the new marine group 2′ of Bradyrhizobium
was recovered at the three stations, while the group 3′ was
detected only at station A. Others rhizobia sequences from
group 4′ were detected at station C, whenγ -proteobacteria
from group 5′ was detected at station B, accounting for 25%
and 44% of thenifH clones libraries, respectively (Figs. 6, 7,
Table 2).

4 Discussion

4.1 Distribution of diazotrophic cyanobacteria along a
Mediterranean transect

Diazotrophic cyanobacteria have long been considered as
the main contributors of N2-fixation in the marine plank-
ton, since they can provide through photosynthesis an au-
tonomous source of organic carbon necessary for this en-
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Fig. 4. Epifluorescent photomicrographs from Nitro821-targeted
UCYN and filamentous diazotrophic cyanobacteria detected in the
Mediterranean Sea. Nitro821-targeted UCYN were labelled with
FITC (green fluorescence,a1, b1, c1, d) using TSA-FISH tech-
nique. (a2), (b2), (c2) and(d) showed corresponding microphoto-
graph of DAPI-stained DNA (blue fluorescence) from all prokary-
otic and eukaryotic cells. Arrow heads point to the DNA from the
Nitro821-targeted ones. The heterocycstousRichelia intracellularis
was detected owning to it natural orange fluorescence(e). Scale bar
= 5 µm.

ergetically expensive process (Stewart, 1971). This first
Mediterranean basin-wide study revealed a very low concen-
tration of diazotrophic cyanobacteria, which were dominated
at 99.9% by picoplankton. While Nitro821-targeted UCYN
were detected at all stations with a mean concentration of
3.5 cell ml−1, filaments ofTrichodesmiumsp. were under de-
tection limit (<0.004 filament ml−1) all through the transect
and only 0.02 filament ml−1 of Richelia intracellulariswere
recovered in the eastern basin. The scarce distribution of
these filamentous cyanobacteria was confirmed by plankton
net haul data from the same transect (Crombet et al., 2011)
as well as by past and recent studies (Trégouboff, 1957;
Bar-Zeev et al., 2008). AlthoughTrichodesmiumis known
to form massive blooms (103 filament ml−1) detectable from
space in other seas and oceans (Capone et al., 1998; Dupouy
et al., 2000), such phenomena have never been observed in
the Mediterranean Sea (C. Dupouy, personal communication,
2007). Similarly as for filamentous cyanobacteria, the con-
centration of UCYN was low in this study and in the same
range as the ones previously quantified all through the year
in coastal north Mediterranean waters (4.6 cell ml−1 in mean,
Le Moal and Biegala, 2009). However, sporadic blooms of
UCYN have been reported to reach 102 to 103 cell ml−1 in
the same coastal Mediterranean environment, or in Pacific
and Atlantic Oceans (reviewed in Table 1 in Le Moal and
Biegala, 2009; Moisander et al., 2010).

Among Nitro821-targeted picocyanobacteria, two cell
types were detected in this study, small and large ones (0.8–
1.5 µm; 2.5–3.2 µm). While the small cell type has been re-
cently discovered in the Pacific Ocean (Biegala and Raim-
bault, 2008) and confirmed to belong to UCYN-A (Goeble
et al., 2008), UCYN-B and C are known to be either pi-
coplanctonic or nanoplantonic cells (2–10 µm, Zehr et al.,
2001; Ohki et al., 2008). This latter morphological infor-
mation suggests that the larger Nitro821-targeted cells may
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Table 2. Phylogenetic affiliation of the 16S rDNA andnifH sequences.

Gene Phylogenetic No. of A representative Closest relative Identity
groups clones clone (accession number)∗ (%)

16S rDNA Group 1 9 BOUMA1 Cyanobacterium UCYN-A (CP001842) 98
Cyanothece sp. WH 8902 (EU249123) 96

nifH Group 1′ 3 BOUM A4 Uncultured marine bacterium clone HT70A1T7 (DQ118201) 100
Endosymbiont of Rhopalodia gibba (AY728387) 85

Group 2′ 15 BOUM C1 Uncultured soil bacterium clone DN18 (DQ987562) 95
Bradyrhizobium sp. strain ORS391 (FJ347449) 94

Group 3′ 3 BOUM A1 Uncultured bacterium clone GYMC-52B (AJ716286) 96
Bradyrhizobium sp. TSA27s (AB542352) 95

Group 4′ 3 BOUM C2 Uncultured bacterium clone NTC9 (GU196843) 99
Rhizobium sp. W3 (GQ241353) 95

Group 5′ 4 BOUM B2 Uncultured microorganism clone H05DNA E10 (EF568515) 98
Denitrovibrio acetiphilus DSM 12809 (CP001968) 77

∗ Non-italic represents non-cultivated species; italic represent cultivated species.

be affiliated to UCYN-B or C. However, flow cytometric
Mediterranean studies have never reported nanoplanktonic
cyanobacteria and the only UCYN detected by phyloge-
netic analysis belonged to group A (Man Aharanovich et al.,
2007).

4.2 UCYN species richness recovery

The affiliation of small Nitro821-targeted cells to UCYN-A
was confirmed in the western Mediterranean Sea (station A)
with both 16S andnifH phylogenies (Figs. 5 and 6). It is the
first time that UCYN-A are detected at the DNA level in the
Mediterranean Sea, thanks to the use of a new PCR protocol
dedicated to scarce microorganisms. Entire paraformalde-
hyde fixed cells collected on a filter serves as PCR DNA tem-
plate instead of extracted DNA. This allows lessening the de-
tection limit defined by Mazard et al. (2004) from 7 cell ml−1

to 1 cell ml−1 in cultures. In a previous Mediterranean study,
UCYN-A were recovered off Israeli coast, but only at the
transcript level (Man-Aharonovich et al., 2007), likely be-
cause these picocyanobacteria were in too low concentration
to be recovered after DNA extraction steps. Similar lacks
of amplification using extracted DNA have been reported for
UCYN-A and other diazotrophs in both marine and fresh-
water environments (Zani et al., 2000; Hewson et al., 2007).
The use of entire cell as DNA PCR template has been pre-
viously proposed to reduce the volumes of filtered marine
samples down to 25 µl including 104 bacteria per PCR re-
action (Kirchman et al., 2001). These approaches also avoid
DNA extractions which are time consuming and generate oc-
casional PCR inhibitors. Although preservatives such as for-
malin and PFA have been tested on PCR DNA template in
past studies, this step was not recommended because it in-
hibits amplification and generates PCR artefacts (Degiorgi
et al., 1994; Kirchman et al., 2001). In this study we were

successful with PCR amplification using preservative proce-
dure before PCR assays, similar as the one for TSA-FISH
assay, as long as samples were collected within the last four
years. Beyond this age inhibitions are shown to increase with
time (Fig. 2b). The chemical mixture composed of PFA,
ethanol and sea salt is suspected to inhibit subsequent PCR
reactions by modifying the salt concentration, and thus the
stringence conditions, during the hybridization step between
primers and cellular DNA template. Consequently for long
term stored samples extracted DNA has to be used as PCR
template (Fig. 2b3) and direct use of fixed cells as PCR DNA
template proved to be a quick and simple protocol to assess
the diversity of scarce populations.

Although the PCR protocol dedicated to scarce microor-
ganisms was applied on samples from station B and C, no
UCYN were recovered either bynifH or 16S UCYN spe-
cific phylogenies. We suspect the cell concentrations to be
close to, or below the PCR detection limit. Small and large
Nitro821-targeted cells from station B and C were 2 to 20
times less concentrated than small cells identified as UCYN-
A at station A. Thus, except UCYN-A at station A, dia-
zotrophic cyanobacteria were under detection limit at station
A, B, and C, suggesting that the weak N2 fixation rates mea-
sured in the surface layer of the water column (Bonnet et al.,
2011; Ridame et al., 2011) can be attributed to other organ-
isms than cyanobacteria.

4.3 Non-cyanobacterial diazotrophs richness recovery

In order to search for these organisms,nifH phylogenetic
analyses were done. The dominantnifH sequences from
the picoplanktonic size fraction of all three clone libraries
wereBradyrhizobium, affiliated toα-proteobacteria that has
so far never been detected in the marine environment (group
2′, Figs. 6, 7). In addition toBradyrhizobium, two other
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Fig. 5. Phylogenetic tree of 16S rDNA sequences from Cyanobacteria. Sequences obtained in this study are referred to (i) by the oceano-
graphic transect BOUM, (ii) the station at which they were sampled (A, B, or C), and (iii) their clone number. Bootstrap values>50% are
indicated at the nodes. Scale bar = 0.1 substitution per nucleotides.

groups of rhizobia were identified at stations A and C (group
3′ and 4′, Fig. 6), whileγ -proteobacteria sequences (group
5′, Fig. 6) were recovered from station B. UCYN-A,γ -
proteobacteria and distantly relatedα-proteobacteria have
all been shown to express theirnifH gene in the Mediter-
ranean Sea and Pacific or Atlantic Oceans (Falcón et al.,
2004; Man Aharanovich et al., 2007; Zehr et al., 2007). Con-
sequently, N2-fixation from the picoplanktonic size fraction
(0.05–0.1 nmol N L−1 d−1; Bonnet et al., 2011) could be at-
tributed to a mix of rhizobia in station C, when UCYN-A
andγ -proteobacteria were likely additional contributors to
this activity in station A and B, respectively.

Conversely to free living diazotrophic cyanobacteria,
availability of organic carbon may limit non-cyanobacterial
planktonic diazotrophs to acquire sufficient energy for nitro-
gen fixation (Paerl et al., 1987). This explains why in ter-
restrial and freshwater environments many symbioses have
been developed between diazotrophic bacteria and higher
plants (Masson-Boivin et al., 2009). These diazotrophic
symbionts all cluster within the polyphyletic group of rhi-
zobia, which includesα and β-proteobacteria. Thanks to
these associations, rhizobia are considered as the most ef-
ficient heterotrophic N2-fixers as they receive carbon fixed
by their photosynthetic host (Evans and Barber, 1977; Van
Rhijn and Vanderleyden, 1995). In the marine environment
it is well known that diazotrophic bacteria have developed
symbiotic relationships with seagrass (Capone, 1983). Dia-
zotrophic bacteria associated withPosidonia oceanica, a sea-
grass spread all around the Mediterranean Sea, have been
estimated to contribute to two-thirds of total nitrogen fixa-
tion (Béthoux and Copin-Montégut, 1986). Consequently,
it is tempting to speculate that the three groups of rhizo-

bia that have been discovered in this study are free living
stages of seagrass symbionts. An additional interesting dis-
covery from this study concerns the widely distributed group
2’ of Bradyrhizobium, whose closest relatives is the fresh-
water strain ORS391 (Fig. 6, Table 2). ORS391 belongs to
the sameBradyrhizobiumspecies than ORS278 and ORS285
strains that, together withAzorhizobium caulinodans, are the
only rhizobia known to be able to fix nitrogen extra-plantae
(Dreyfus et al., 1988; N. Nouwen, personnal communication,
2010). This metabolic activity is probably related to their
photosynthetic capacity, a common feature amongBradyrhi-
zobiumcluster (Giraud and Fleischman, 2004). Despite be-
ing diazotrophic, phototrophic free-living bacteria have never
been discovered to date in the marine environment (Madigan,
1995; Riemman et al., 2010). We hypothesize though that
similar to their closest relatives, the MediterraneanBradyrhi-
zobium detected in this study are able to acquire an in-
dependent source of energy through photosynthesis. Such
metabolic capacity may help them to sustain planktonic ni-
trogen fixation.

4.4 Factors controlling the distribution of diazotrophic
cyanobacteria

The reasoning developed above proposes hypotheses for
the presence of diverse rhizobia community all through the
Mediterranean Sea. However it is puzzling that so little
diversity (species richness and abundance) of diazotrophic
cyanobacteria was recovered, when their presence could be
expected in such subtropical oligotrophic Mediterranean wa-
ters. Among environmental parameters mentioned to limit
diazotrophic cyanobacterial development, temperature, iron
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Fig. 6. Phylogenetic tree ofnifH sequences. Sequences obtained in this study are referred to (i) by the oceanographic transect BOUM, (ii)
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and phosphate are the most regularly cited (Mague, 1974;
Pearl et al., 1994; Breibarth et al., 2007). High tempera-
ture induces stratification of the water column which seg-
regates deep mesotrophic water masses from upper olig-
otrophic ones. In these warm nutrient deprived waters, dia-
zotrophic cyanobacteria are considered to be at an ecological
advantage compared to other phytoplankton species, as they
can acquire nitrogen directly from dissolved atmospheric N2
(Tyrell, 1999). Upper mediterranean nitrate-deprived waters
were confirmed to be more favorable than deeper and nitrate-
enriched ones for the development of diazotrophic cyanobac-
teria, as small Nitro821-targeted UCYN-A were 15 times
more abundant at 12.5 m than at DCM+ at station A (Fig. 3d;

Pujo-Pay et al., 2010). Nevertheless, even in these upper wa-
ters the diversity of diazotrophic cyanobacteria was low, in-
dicating they were limited by some elements.

Across the Mediterranean Sea, filamentous cyanobacteria
were likely inhibited in surface waters by iron and inorganic
phosphate, whose concentrations were two orders of mag-
nitude lower than those reported to limit their growth (Mul-
holland et al., 2002; Berman-Frank et al., 2007; Pujo-Pay
et al., 2010; Ternon et al., 2010). Moreover, the phosphate
turnover time, which is considered as the first indicator of
phosphate availability in oligotrophic marine waters, is 5
times lower in surface Mediterranean waters than the one
defined to preventTrichodesmiumspp. growth (Moutin et
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Table 3. Putative phosphorus scavenging genes present in the UCYN-A genome∗.

Category IMG gene Gene Putative % cove- % simila- Reference
object identifier name fonction rage∗∗ rity∗∗

Response regulator 646530709 phoB Response regulator 98 66 Synechococcussp. WH8102

High affinity 646530204 phoS phosphate binding 98 64 Cyanothecesp. ATCC 51142
phosphate transport 646530201 pstA phosphate permease 100 67 Crocosphaera watsoniiWH8501

646530202 pstC phosphate permease 100 70 Crocosphaera watsoniiWH8501
646530148 pstC phosphate permease 97 68 Synechococcussp. WH8102
646530199 pstB ATPase component 99 64 Synechocystissp. PCC6803
646530200 pstB ATPase component 100 66 Synechocystissp. PCC6803

Hydrolysis of 646530491 phoA Alkaline phosphatase 94 57 Prochlorococcus marinusCCMP1986
phosphate esters 646529940 – Mettalophosphoesterase 96 51 Trichodesmium erythaeumIMS101

646529952 – Mettalophosphoesterase 97 54 Cyanothecesp. PCC 7424
646530014 5ND 5’-nucleotidase 97 61 Synechococcussp. WH8102

Polyphosphate 646530144 ppk Polyphosphate kinase 96 53 Synechococcussp. WH8102
metabolism 646530179 ppa Inorganic pyrophosphatase 97 65 Nostoc punctiformePCC73102

Phosphonate 646530663 phnD ATPase and permease component 100 62 Synechococcussp. WH8102
transport

∗ Publicly available on the Integrated Microbial Genome (IMG,http://img.jgi.doe.gov/cgi-bin/pub/main.cgi).
∗∗ Only genes that demonstrated>50% identity over 80% of each protein sequence are presented.
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Fig. 7. Percentage of sequences from UCYN specific 16S rDNA
andnifH clone libraries from station A, B, and C. Colors indicate
phylogenetic groups from Figs. 5 and 6 in which sequences were
recovered: UCYN-A group 1′ (white); Bradyrhizobiumgroup 2′

(black); Bradyrhizobiumgroup 3′ (grey); rhizobia group 4′ (hori-
zontal lines);γ -proteobacteria group 5′ (vertical lines).

al., 2005, 2008; Mauriac et al., 2011). Conversely, UCYN
have been shown to grow in deprived iron waters and to
reach 102 to 103 cell ml−1 in marine areas using similar or
lower inorganic phosphate concentrations (Berman-Frank et
al., 2007; see review in Le Moal and Biegala, 2009). The
requirements of these different cell types towards phosphate
are not reflected by their genomic potential (Dyhrman and
Haley, 2006; Orchard et al., 2009). BothTrichodesmiumand
UCYN-B possess a broad spectrum of genes encoding (i) a
high affinity transport system to acquire inorganic phosphate

and (ii) for the scavenging of phosphomonoesters, the dom-
inant form of organic phosphate in the marine environment
(75%, Kolowith et al., 2001). In addition, we provide in this
study (Table 3) an analysis of the UCYN-A genome with re-
spect to P which, despite its reduced size, has a similar P
genetic toolbox to that of other picoplanktonic cyanobacte-
ria (Scanlan et al., 2009; Tripp et al., 2010). Interestingly,
Trichodesmiumseems to be the only marine cyanobacterium
that has the potential to scavenge phosphonates, the second
major component of organic phosphate (25%, Kolowith et
al., 2001; Dyhrman et al., 2006). Despite this unique genetic
equipmentTrichodesmiumcannot grow efficiently in phos-
phate deprived waters. Phosphate uptake has been demon-
strated to be cell size dependent (Smith and Kalff, 1982;
Falćon et al., 2005), hence the low surface/volume ratio of
filamentous cyanobacteria seems an obvious disadvantage
compare to UCYN to efficiently grow in oligotrophic envi-
ronment.

While iron and phosphate seem to control the development
of Trichodesmiumand Richelia, temperature has recently
been suspected to limit UCYN (Moisander et al., 2010). At
stations where species richness was characterised, tempera-
ture was 25◦C (Moutin et al., 2011), being slightly under
or above the optimal temperature range for UCYN-A (23–
24◦C) and UCYN-B and C (26–29◦C, reviewed by Le Moal
and Biegala, 2009; Moisander et al., 2010). Thus other fac-
tors than temperature must co-limit or prevent their devel-
opment. Still, UCYN-A limiting factors seem slightly re-
laxed in the less oligotrophic western basin and at coastal sta-
tion off Israel, where they were recovered (Man-Aharanovich
et al., 2007). We suspect carbon to be the controlling fac-
tor for UCYN-A development. UCYN-A has been recently
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demonstrated to lack photosystem II, the complex which al-
lows CO2 reduction (Zehr et al., 2008), making it probably
dependent on an unknown organic source of carbon, a unique
feature among planktonic diazotrophic cyanobacteria. The
origin of this carbon puzzles the scientific community, and
UCYN-A has been suggested to obtain it from dead particles
or other organisms (Tripp et al., 2010). Very interestingly,
picoplanktonic Nitro821-targeted cells have been regularly
observed, including at station A in this study, in association
with dead particles and numerous nonthecate dinoflagellates
(Fig. 4d; Biegala and Raimbault, 2008; Bonnet et al., 2009;
Le Moal and Biegala, 2009).

5 Conclusions

In this first Mediterranean basin wide study, small picoplank-
tonic cells hybridized with a UCYN specific probe were re-
covered across the entire Mediterranean Sea, and were con-
firmed to belong to UCYN-A in the western part of this
area. Bradyrhizobiumwas the most widely distributed dia-
zotroph from the offshore Mediterranean waters, when other
diazotrophs were recovered only in one location, such as
gamma-proteobacteria in the central Mediterranean Sea, and
Richelia intracellularisin addition to rhizobia in the east-
ern Mediterranean Sea. The photosynthetic diazotrophsTri-
chodesmiumsp., UCYN-B and C were absent or under detec-
tion limit, although these free living organisms show a signif-
icant degree of nutritional independence towards carbon and
nitrogen. While low phosphate and iron concentrations could
explain the absence ofTrichodesmiumsp., limiting factors
for the development of UCYN-B and C remain unknown.
We hypothesize that the presence of diverse planktonic dia-
zotrophs such as UCYN-A,Richelia intracellularis, rhizobia
and gamma-proteobacteria, may be explained by the use of
alternative strategies to acquire essential nutrients: (i) similar
to their terrestrial counterparts, rhizobia may form punctual
symbioses with marine higher plants such as seagrass; (ii)
Bradyrhizobium, the most widely distributed diazotroph in
this Mediterranean study, could also acquire carbon through
photosynthesis; (iii) UCYN-A probably developed associa-
tions and/or symbiosis with inert particles or eukaryotes to
acquire organic carbon necessary for their development. To
answer these hypotheses, further work will be necessary to
characterize the different strategies developed by picoplank-
tonic diazotrophs to acquire carbon in oligotrophic environ-
ments.
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