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Introduction: Computer-aided and quantitative analysis of structural MRI data show increasing promise for aiding clinicians in diagnosing a wide range 
of diseases. For instance, gray matter (GM) regional atrophy is an often used structural hallmark to diagnose Alzheimer’s Disease (AD). It requires the 
detection of very subtle brain changes (e.g., annual GM loss rate of up to 5% [1]). Obtaining 3D structural scans with high SNR/spatial resolution 
requires long acquisition times, which make them susceptible to bulk head motion. Resulting artifacts may substantially degrade diagnostic confidence 
and automated MR-based quantification of brain tissue. Surprisingly, while motion is frequently encountered in routine MR scans, very few studies have 
shown how it affects automated image analysis [2,3]. Moreover, there is a lack of quality standards estimating confidence levels on resulting 
morphometry outcomes. Here, we explore the potential ability of an automated image quality assessment technique [4] to predict inaccurate 
morphometric measures and propose a model that allows customizing minimum quality criteria according to the required performance of a target 
application in brain morphometry.  

Material & Methods: Raw data (i.e., k-space samples of all channels) from 5 
healthy subjects ([25-68yo]) were analyzed. All images had been acquired on a  
3T MAGNETOM Trio, A Tim system (Siemens Healthcare, Erlangen, Germany) 
equipped with 12- and 32-channel receive head matrix coils using a MPRAGE 
sequence with linear Cartesian sampling (TR-TI=2300-900ms, 1x1x1.2mm3 
resolution, 240x256x160 matrix size). Raw datasets were selected for their high-
quality (i.e., assessed visually and quantitatively with an automated quality 
control algorithm [4]) and are referred to as motion-free. Synthetic rotational and 
translational motion was applied to each raw data sample using an in-house 
algorithm (Lanczos-based regridding method used for rotations) which was 
implemented as part of the scanner image reconstruction chain. 60 motion 
patterns (i.e., 10 degrees of translations and rotations ranging from 2 to 24mm 
and -10° to 10° respectively in each direction x,y,z) were applied at 9 different k-
space locations using 30 seconds step functions, hence mimicing abrupt head 
movements. In total, 2700 motion-corrupted images were generated and 
underwent the following processing steps: 1) computing a quality index (QI) [4] 
which reflects the proportion of artifactual voxels in the background 2) pre-
processing: B1 inhomogeneity, 3D gradient distortion and bias field corrections 3) 
tissue classification using a variational expectaction-maximization scheme [5] 
and atlas-based central nuclei segmentation (see example in Fig1). Focusing 
further analysis on GM classification, we assumed that the algorithm performs 
best on motion-free images and therefore considered the resulting GM a 
posteriori probability map (PPM) as our reference. Finally, motion-induced GM 
error was quantified by computing the fuzzy DICE coefficient (fDICEGM [6]) 
between motion corrupted GM PPM and the reference.  

Results: Our results suggest that the presence of motion artifacts may have a substantial impact on GM classification. As expected, motion produces 
more disturbances (i.e., larger GM error) if occuring during k-space low-frequencies sampling (cf. Fig2, 1.95% resulting error in GM volume estimation for 
1mm or 1° motion halfway through the acquisition). The trend towards increased errors with motion severity is consistently captured by the quality index 
which is thus capable to predict errors (see Fig3). Based on 2700 data points obtained from 5 subjects, we demonstrate that QI and GM error are related 
by a four parameter power function when plotted on double-log coordinates. This function provides good description of the data except for four extreme 

outliers (pink dots) which turned out to be due to incomplete bias field correction. 

Discussion: This work demonstrates that an automated quality assessment is not only able 
to detect the presence of artifacts but also may predict the accuracy of subsequent 
algorithms for brain morphometry. Regression results in Fig2 suggest that a 2mm motion 
during traversal of k-space center would induce artifacts mimicking the annual dynamics of 
GM loss in AD (~5%). Such small movements are reliably caught by the automated quality 
index whose variation can be characterized by a simple power function of the error. This 
model allows determining whether an image is of sufficient quality to warrant further 
quantitative analysis and in other words, allows customizing quality cutoff levels with respect 
to the required performance of computer-aided brain morphometry. This will be increasingly 
needed for daily practice in the near future as the new diagnostic guidelines for AD 
recommend structural MRI to detect atrophic patterns [7]. Finally, this work underscores the 
importance of rigorous quality assessment prior to any computer-aided brain analysis in 
order to attribute tissue changes to a potential pathology rather than to image degradation.  
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Fig1. Effects of abrupt head translations during k-space center sampling 
on brain tissue classification ( CSF gray matter white matter) and 

thalamus segmentation ( left- right) 
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Fig2. Effects of motion severity and occurrence on GM error 
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Fig3. Automated quality index is able to predict GM error 
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