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ABSTRACT

During transplantation, and more broadly during surgery, there’s an urgent need to
reduce ischemia-reperfusion (IR), improve graft outcomes, and ease recovery. During my
thesis, we 1. optimized kidney graft preservation temperature and perfusate composition
(including molecules such as hydrogen sulfide) 2. Identified novel biomarkers of graft viability

3. Examine the effects of carbohydrate loading before surgery to reduce IR injury (IRI).

In the first part, we hypothesized that kidney perfusion at subnormothermic
temperature (22°C) might improve kidney mitochondrial function and viability and limit IRI.
Indeed, kidney perfusion at 22°C improved cortical and medullary perfusion and reduced
histological lesions after transplantation compared to 4°C. In addition, total adenosine
triphosphate (ATP) content was 4 times higher during ex vivo perfusion at 22 °C than at 4 °C.
Recent improvements in the detection and measurement of ATP have rendered it a reliable
and valuable indicator of graft viability, capable of predicting immediate graft function.
Interestingly, the addition of sodium hydrosulfide (NaHS) in the perfusate, previously shown
to protect against renal IRI in several models of IR and during cold preservation before

transplantation in rodents, did not affect porcine kidney graft function.

Lastly, we tested whether carbohydrate-rich drinks (part of a multimodal
perioperative care pathway) could increase resistance to IRI / surgical stress. Despite
widespread clinical use, preclinical and mechanistic studies on carbohydrate loading in
surgical contexts are lacking. Here, we investigated the effects of carbohydrate loading, aiming
to understand how it can influence post-operative recovery in multiple rodent models of IRI.
Here we demonstrated in ad libitum-fed mice that liquid carbohydrate loading for 1 week
reduces solid food intake while nearly doubling total caloric intake. Carbohydrate loading-
induced protein dilution increased expression of hepatic fibroblast growth factor 21 (FGF21),
resulting in protection in two models of surgical stress: renal and hepatic IRI. The protection
was consistent across sex and age and was associated with the induction of the canonical
integrated stress response (ATF3/4, NFkB) and oxidative metabolism (PPARY). Together,
these data support carbohydrate loading drinks before acute surgical stress and reveal an

essential role of protein dilution via FGF21.



RESUME

Lors des transplantations, et plus largement pendant les chirurgies, il est urgent de
réduire l'ischémie-reperfusion (IR), d'améliorer les résultats des greffes et de faciliter la
récupération. Durant ma these, nous avons 1. Optimisé la température de conservation des
greffes rénales et la composition du perfusat (incluant des molécules comme le sulfure
d'hydrogene) 2. Identifié de nouveaux biomarqueurs de viabilité de la greffe 3. Examiné les
effets d'une charge glucidique avant la chirurgie pour réduire les lésions d'ischémie-

reperfusion (IRI).

Dans la premiere partie, nous avons émis I'hypothese qu'une perfusion rénale a une
température subnormothermique (22°C) pourrait améliorer la fonction mitochondriale et la
viabilité du rein et limiter I'[RIL. En effet, la perfusion rénale a 22°C a amélioré la perfusion
corticale et médullaire et réduit les 1ésions histologiques apres transplantation par rapport a
4°C. De plus, le contenu total en adénosine triphosphate (ATP) était 4 fois plus élevé lors de la
perfusion ex vivo a 22°C qu'a 4°C. Les récentes avancées dans la détection et la mesure de
I'ATP en ont fait un indicateur fiable de la viabilité de la greffe, capable de prédire une
fonction immédiate du greffon. De facon intrigante, I'ajout de sodium hydrosulfide (NaHS) au
perfusat, montré auparavant comme protecteur contre I'IRI rénal dans plusieurs modeles d'IR
et pendant la conservation a froid avant transplantation chez les rongeurs, n'a pas affecté la

fonction du greffon chez le cochon.

Enfin, nous avons testé si des boissons riches en glucides (intégrées dans un protocole
périopératoire multimodal) pouvaient augmenter la résistance a I'lRI/au stress chirurgical.
Malgré leur usage clinique courant, peu d'études précliniques se penchent sur ces charges en
glucides. Nous avons analysé leurs effets. Chez des souris nourries a volonté, 'ajout d’'une
boisson riche en glucides pendant 1 semaine réduisait I'apport en nourriture solide tout en
doublant presque la prise calorique totale. Cette surcharge glucidique induisait une dilution
protéique, augmentant l'expression du facteur de croissance hépatique fibroblast growth
factor 21 (FGF21), offrant une protection lors de deux modeles de stress chirurgical : IRI
rénale et hépatique. La protection était cohérente quel que soit le sexe ou 'age, associée a
I'induction d'une réponse au stress (via ATF3/4, NFkB) et au métabolisme oxydatif (PPARY).
Ces données soutiennent l'usage de boissons chargées en glucides avant un stress chirurgical

et mettent en lumiere le réle crucial de la dilution protéique via FGF21.



LIST OF ABBREVIATIONS

ACE Angiotensin-Converting Enzyme

AKI Acute Kidney Injury

AMP Adenosine Monophosphate

ATP Adenosine Triphosphate

ATN Acute Tubular Necrosis

BHMT Betaine Homocysteine Methyltransferase
CBS Cystathionine Beta-Synthase

CGL Cystathionine Gamma-Lyase

CKD Chronic Kidney Disease

COXII Cyclooxygenase II

DCD Donation after Circulatory Death

DBD Donation after Brain Death

DGF Delayed Graft Function

DR Dietary Restriction
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ERAS Enhanced Recovery After Surgery

ESRD End-Stage Renal Disease

Gd Gadolinium

GFR Glomerular Filtration Rate

GSH Glutathione

H2S Hydrogen Sulfide

HOPE Hypothermic Oxygenated Perfusion

IRI Ischemia-Reperfusion Injury

MAT Methionine Adenosyl Transferase

MRI Magnetic Resonance Imaging

MS Methionine Synthase

mPTP Mitochondrial Permeability Transition Pore
NADH Nicotinamide Adenine Dinucleotide (Reduced)
NAD+ Nicotinamide Adenine Dinucleotide (Oxidized)
NaHS Sodium Hydrogen Sulfide

NSAIDs Non-Steroidal Anti-Inflammatory Drugs
OxPhos Oxidative Phosphorylation

pMRSI Phosphorus Magnetic Resonance Spectroscopy Imaging
PME Phosphomonoesters

Pi Inorganic Phosphate

ROS Reactive Oxygen Species

SAM S-Adenosylmethionine

SAH S-Adenosylhomocysteine

SAHH S-Adenosylhomocysteine Hydrolase

Taurine Taurine



INTRODUCTION

Organ shortage and marginal grafts transplant

Transplantation is the preferred treatment for end-stage disease, but it suffers from a
severe shortage of available organs. Approximately 34 000 patients are added to the US
waiting list every year, while only 20 000 kidney transplants are performed over the same
period (survival of >80% at 5 years). The situation is especially concerning regarding end-
stage renal disease (ESRD) since it affects at least two million and 750 000 patients
worldwide in the United States!. For the most part, dialysis and low survival are the only
remaining options for ESRD patients, whose 5-year survival rate is between 40% and 50%

and is approximately 10 times more expensive than a transplant?2.

To face this shortage, the donor pool was expanded beyond standard-criteria donors to
include extended-criteria donors (ECD) and donation after circulatory death (DCD) donors34.
ECD donor is defined as anyone over the age of 60 or over 50, with two of the following: a
history of high blood pressure, a creatinine level greater than or equal to 1.5, or death because
of a stroke>. Although organs from these donors allow a higher survival rate than dialysis,
their use is complicated by an increased rate of delayed graft function (DGF)¢ and acute
rejection’. During the transplantation procedure, the organs are subjected to several stresses,
including surgical acts, such as inflammation, and all the stresses associated with ischemia-
reperfusion injury (IRI). Unfortunately, DCD organs are particularly vulnerable to IRI and are

at risk of transplant failure and subsequent poor long-term survival27.

Ischemia-Reperfusion Injury

Ischemia-reperfusion injury involves the occlusion of blood flow to an organ or tissue
for a certain period of time (ischemia) and subsequent restoration of blood supply
(reperfusion)8. IRI represents a primary clinical concern in controlled elective surgery, which
requires temporary restriction of blood flow (e.g., solid organ transplantation, vascular
surgery) and uncontrolled settings (stroke, heart attack, limb trauma). IRI increases the
probability of delayed graft function, acute graft rejection, and graft loss?10. The current
consensus is that the duration of ischemia greater than 30 minutes in the human kidney?®
primes the tissue for further injury upon reperfusion. Ischemic cells will die if blood flow is

not restored, even though most damage occurs during reperfusion.



Mechanistically, ischemia leads to Adenosine Triphosphate (ATP) depletion, inhibition
of mitochondrial Na*/K* ion channels, resulting in decreased mitochondrial membrane
potential (Aym), increased mitochondrial inner membrane permeability, influx of calcium
ions, and subsequent swelling of mitochondria. Inner membrane permeability leads to
alteration of the “redox state” by oxidation of pyridines and thiols and with the modification
of the reduced/oxidized Nicotinamide Adenine Dinucleotide (NADH/NAD*) and Glutathione
(GSH/GSSG) ratiol1-13, [schemia further affects the mitochondrial antioxidant system by
decreasing the activity of antioxidant enzymes, such as mitochondrial antioxidant manganese
superoxide dismutase (MnSOD)4, and/or depleting substrates, such as GSH, which render
cells more susceptible to oxidative stress at reperfusions-17. Anaerobic metabolism during
ischemia also leads to the accumulation of lactic acid and the citric acid cycle intermediate

succinatels,

Reperfusion is characterized by a further increased formation of reactive oxygen
species (ROS), decreased ATP production, and cell death. The reintroduction of Oz at
reperfusion may lead to significant production of ROS. GSH depletion worsens the oxidation of
thiols and hydroxyl radical (OH*-) formation18 (Figure 1). ROS produced at reperfusion may
also damage proteins, lipids, and DNA. This leads to further mitochondrial disruption, sterile
immune activation19-23, and necrotic interaction of a dysfunctional respiratory chain with
oxygen during reperfusion?3-26, Recent work showed that at reperfusion, the accumulated
succinate during ischemia is rapidly re-oxidized by succinate dehydrogenase, driving
extensive ROS generation by reverse electron transport at mitochondrial complex I18.
Significantly, mitochondrial ROS drives acute damage and initiates the pathology that

develops over the minutes, days, and weeks following reperfusion?s.
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Figure 1. Schematic illustrating the main component of IRI. During ischemia, the lack of oxygen
causes a switch to anaerobic respiration, resulting in the production of lactate and a drop in intracellular pH.
This disrupts ion haemostasis resulting in Na+ and Ca2* overload. The low pH also prevents the opening of the
mPTP. Oxidative phosphorylation is inhibited, and NADH/NAD*+ ratio increases. ATP stores are depleted as ATP
is hydrolysed to AMP by ATP synthase to maintain Aym. During reperfusion, the electron transport chain is re-
activated and restored resulting in the normalization of intracellular pH and Aym and a large influx of CaZ* into
the mitochondrion. Complex I is rapidly reactivated, resulting in a large burst of ROS. Opening of the mPTP is
induced resulting in the collapse of the Ayym, the triggering of cell death. OxPhoS, oxidative phosphorylation;
Aym, mitochondrial membrane potential. Figure and legend adapted from Pell VR et al., Cardiovasc Res 2016.

Dietary Preconditioning to limit Ischemia-Reperfusion Injury

Clive McCay, in 1935, described dietary restriction (DR) as reduced nutrient intake
without malnutrition2’. DR encompasses decreased daily caloric intake, removing or
rebalancing specific macronutrients, such as amino acids, and/or intermittent fasting.
Primarily studied for anti-aging interventions, DR extends both the lifespan and healthspan of
laboratory rats27-29, Since then, longevity extension by DR has been established in various
experimental organisms, from yeast to nonhuman primates28. DR is expected to increase
longevity by slowing aging, making it an essential tool in aging research. However, because
long-term adhesion is required for maximum lifespan extension, antigeronic clinical
applications have been challenging due to long-term voluntary food restriction3931, In
addition to defending against aging-related diseases, DR offers stress resistance and metabolic
fitness32-35, Short-term DR (2 days to 1 week) effectively protects against various acute

stressors. Notably, short-term DR or fasting prior to surgery, with a return to normal food
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intake post-surgery, improves recovery outcomes in mouse models. This encompasses

surgical stress scenarios, from IRI to vascular restenosis (intimal hyperplasia)36-40.

From a nutritional standpoint, many of the pleiotropic benefits of calorie restriction
can be triggered by dietary protein restriction or single amino acids*l. These benefits include
resistance to hepatic IRI#2, improved recovery upon acute limb ischemia*3, increased energy
expenditure*4, and improved glucose and lipid homeostasis, even during short-term
interventions (Figure 3)45-47. This is a significant distinction when considering clinical
translational potential, due to the difficulties inherent in enforcing food restriction, even for
short periods of time. It is also worth noting that even when subjected to the same injury,
different organs may require different levels of protection. In the renal IRI model, for example,
protein and calorie restriction contribute additively to organ protection3®, but protein
restriction alone contributes disproportionately to organ protection against hepatic IRI48.
Much more research is needed in the future to establish the ideal balance of calories from
protein vs. sugar and fat, as well as overall calorie intake, for optimal stress resistance, which

will likely depend on the specific surgery and patient-specific risk factors.
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Figure 3. Schematic of diets in which 18% of calories are contributed by protein (complete),
sucrose (PF), NEAAs (NEAA only), or EEAs (EAA only, top). Mice preconditioned with these diets were
protected against various form of surgical stress (bottom), including ischemia reperfusion injury to the
heart, brain, liver, kidney or limbs.

Hydrogen Sulfide

Hydrogen sulfide (H2S) is an endogenous gaseous molecule characterized by its
distinct rotten egg odor. HzS is historically classified as an environmental and occupational
hazard due to its inhibition of mitochondrial respiration and lethality when exposed to high
dose*?50, However, in the later part of the 20th and early part of the 21st centuries, functional
and beneficial endogenous production of HzS, principally produced by cystathionine gamma-
lyase (CGL or CTH), and cystathionine beta-synthase (CBS, Figure 4)4351, was discovered
acting as a critical signaling molecule in various physiological functions, from vascular actions
to its role in the brain>2-54, It has been demonstrated that HzS reduces blood pressure>s,
prevents neurodegenerationsé, and even increases the lifespan of worms>7. In addition, it can
induce a hibernation-like state in mammals>8 and has various cardiovascular effects in vitro
and in vivo, such as a reduction in intimal hyperplasia>?, anti-atherosclerotic activity®?, and a

diminution in neutrophil binding to blood vessel walls®1.

It's noteworthy that HzS, either as a gas or through donor molecules, increases lifespan
in model organisms>7, prevents multi-tissue ischemic-reperfusion injury*%62, and improves
cardiovascular health5563, In contrast, endogenous H2S concentrations or production

deficiencies correlate with and/or cause hypertension®>. In contrast, during IRI, the genetic

13



deletion of CGL exacerbates damage and mortality in rodents with post-renal ischemia-
reperfusion injury and eliminates DR protective effects#2. However, both phenotypes can be
rescued by delivering exogenous Hz2S (NaHS), notably in wild-type mice. Exogenous NaHS
mitigated hepatic and renal ischemia-reperfusion injury#264, This suggests that multiple DR
benefits could be attributed to endogenous Hz2S gas produced in response to nutrient/energy
scarcity. The exact role of free H2S as a paracrine or autocrine molecule remains under
discussion®>. However, H2S possesses antioxidant properties and could contribute to
mitochondrial energy by giving electrons to the SQR protein in the mitochondrial electron

transport chain, which could play a role in protecting against organ ischemia®®.

Consequently, the field of H2S in biology, physiology, and medicine has expanded
rapidly®’, with endogenous H:2S or the delivery of exogenous H2S with donor molecules
serving as a therapeutic target, and the third functional gasotransmitter, in addition to carbon

monoxide and nitric oxide®8.

Figure 4. Model of the transmethylation and transsulfuration pathway (TSP). Arrows trace
sulfur from Methionine to Cysteine through various metabolites and downstream cellular processes via
the enzymes Cystathionine Beta-Synthase (CBS) and Cystathionine Gamma-Lyase (CGL). Metabolites in
green (taurine, GSH and H2S) have demonstrated potential to protect against IRl. MAT: methionine
adenosyl transferase, SAM: S-Adenosylmethionine, SAH: S-Adenosylhomocysteine, SAHH: S-
adenosylhomocysteine hydrolase, MS: Methionine synthase, BHMT: Betaine homocysteine
methyltransferase. Picture and Legend from Hine et al, Cell 2015.
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Acute Kidney Injury and Delayed Graft Function

Acute kidney injury (AKI) underlies a heterogeneous group of injuries, including
transplantation, partial nephrectomy, shock, cardiac surgery, and vascular surgery®°. AKI is
defined as a rise in creatinine of 250% from its baseline value, and/or a fall in the glomerular
filtration rate (GFR) by 225%, and/or a decrease in urine output below 0.5ml/kg/h for 6h or
more. The acute element of the definition of AKI requires that creatinine rises within a
specified time frame. RIFLE required the 250% rise was known or presumed to have
developed over <7 days”0. AKI affects more than 15 per 1000 people over the age of 65 in the
United States in 2011, and 20% of hospitalized patients. In addition, the prevalence is

increasing significantly with agel.
Evidence also suggests that even mild
forms of AKI (such as a 50% increase in
serum creatinine) are associated with
an increased risk of hospital

mortality7172,

Additionally, although AKI is
considered reversible, patients who
have recovered from AKI have a 25%
increased risk of developing
progressive chronic kidney disease

(CKD) and even ESRD73.

At the onset of AKI, assuming a
single isolated insult to the kidneys,
such as a defined period of ischemia,
the actual GFR will drop rapidly to a

Figure 5. Pathophysiological Feature of AKI. nadir. Serum creatinine will then rise
From NEJM 2012. over hours to days. When AKI occurs
within the first week of kidney transplantation and necessitates dialysis, it is called DGF. The
occurrence of DGF varies significantly among centers and according to donor types. In the US,
DGF rates average 31% for deceased donors and range from 45-55% for DCDs7475. The onset
of DGF is associated with higher rates of acute cellular rejection and shorter graft survivals,
where graft half-life is 3 to 5 years shorter”>7¢. The use of dialysis ranges anywhere from days
to months and adds a significant cost impact to healthcare centers and patients”’. It also
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complicates post-transplant management of patients who need to maintain
immunosuppressive therapy, specifically calcineurin inhibitors (CNI), which are associated

with acute nephrotoxicity7s.

AKI can affect many distinct cell types along the entire length of the nephron, resulting
in various injuries. Tubulointerstitial fibrosis, particularly in the inner cortical and outer
medullary regions, is the most common disease associated with AKI. Less often, AKI induces
glomerular injury??. Although mildly damaged tubules restore normal structure and function
following AKI, a fraction remains dedifferentiated and continues to generate profibrotic and
pro-inflammatory mediators80-82, The delayed recovery of such tubules is related to
pathological processes initiated during AKI83-85, Cell-cycle mechanisms and mediators, such as
heme oxygenase 1, hypoxia-inducible factors, vascular endothelial growth factor, and
transforming growth factor 131, have been identified as protective factors in acute kidney
injury. Still, some also may contribute to chronic kidney disease. The chronic dysregulation of
such factors and the complex interactions between their expression and counter-regulation
over time may determine the character and extent of fibrotic responses (Figure 2). The roles
of these factors and the roles of vasoactive mediators and mediators of progressive fibrosis,
such as transforming growth factor 3, are only beginning to be delineated in animal models.
Sublethally injured cells failed to recover due to the loss of nephrons and subsequent
tubulointerstitial fibrosis that occurs fast after AKI (e.g., 1-4 weeks after injury), resulting in
the shift from AKI to CKD#80. These mechanisms all can interact, synergistically accelerating
loss of function. Many mechanisms implicated in developing and progressing chronic kidney
disease and cardiovascular disease after conventional therapies may target an episode of
acute kidney injury. Current clinical management is still based on patient risk assessment,
such as age, co-morbidities, and current drug treatment, and minimizing the risk of AKI
by providing supportive care, such as optimization of volume with crystalloid volume, blood

pressure control, and removal of nephrotoxic drugs (NSAIDs, COXII or ACE inhibitors, etc.)8¢.

The stress of major surgery

Surgery is an invasive medical intervention involving an incision, with major surgery
typically describing procedures in which a body cavity is entered. Like many types of acute
injury, surgery perturbs metabolic and immune homeostasis through effects on afferent
(autonomic and sympathetic) nerve input from the area of trauma, leading to local and

systemic catecholamine release, increased levels of pro-inflammatory acute phase reactants,
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metabolic adaptations, including glycogen mobilization, and vascular changes including
vasoconstriction and increased heart rate. Parallel activation of the hypothalamic-anterior
pituitary-adrenomedullary axis promotes the release of cortisol from the adrenal cortex,
resulting in a partially counterbalancing response characterized by protein and fat
mobilization, immunosuppression, and dampening of the action of anabolic hormones such as

insulin and testosterone®8’.

From an evolutionary standpoint, the selective advantage conferred by these
coordinated stress responses is likely related to stopping hemorrhage and redirecting stored
energy to immune function and tissue repair to promote survival following acute injury.
However, in any surgical patient, such vasoconstrictive, pro-thrombotic, and pro-
inflammatory responses can lead to IRI, leading to various complications, from renal

dysfunction to life-threatening heart attack or stroke.

Beyond the local and tissue-specific consequences, IRI causes a systemic inflammatory
response, activating circulating leukocytes and causing a pro-thrombotic state, possibly
contributing to multi-organ dysfunction®88°, Surgery also carries the risk of complications
specific to the procedure. Repairing aortic lesions involving the renal arteries, for example,
increases the risk of renal failure (due to inflow artery cross-clamping), proportional to the
ischemic time®?. Surprisingly, while risk assessment is common practice in determining
whether the benefits of a particular surgery outweigh the risks, interventional prophylactic

approaches to reduce patient-based risk factors prior to surgery are not.

Translational strategies to limit surgical stress

The importance of energy metabolism, by which living cells acquire and use the energy
needed to stay alive during organ transplantation, has been duly acknowledged®1.
Consequently, current methods of organ preservation aim to preserve the energy machinery?2
and reduce the rate of energy depletion?3. Once energy levels have fallen beyond a critical
point, the resulting injury is irreversible®*. Respiratory defects were identified as early events
of injury during preservation®# and after ischemia-reperfusion?s. For example, in livers, ATP
content correlates with transplant outcome?6°7. Today, limiting IRI during renal
transplantation involves essentially cold storage of kidneys in an optimized preservation
solution during the peri-transplant / transport period?8. However, these strategies have been
maximized, and prolonged periods (>24 h) of cold ischemia are still associated with tubular

necrosis (ATN), DGF, and poor graft survival, especially DCD grafts7.99-102. Thus, novel
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strategies are required to protect these fragile organs from IRI and to ensure their

sustainability during transplantation.

Enhanced recovery after surgery

Enhanced recovery after surgery (ERAS) protocols increasingly use multimodal
perioperative care pathways designed to achieve early recovery after surgical procedures.
The critical components of ERAS protocols include preoperative counseling, optimization of
nutrition, standardized analgesic and anesthetic regimens, and early mobilization103.
Interestingly, pre-operative 12.6% oral carbohydrate loading is one cornerstone of ERAS
(Figure 5). Carbohydrate loading practices vary among institutions, encompassing simple
carbohydrates (e.g., Gatorade) and complex carbohydrates (e.g., maltodextrin), with multiple
commercial preparations available1%4, Carbohydrate loading practices vary among
institutions, encompassing simple carbohydrates (e.g., Gatorade) and complex carbohydrates
(e.g., maltodextrin), with multiple commercial preparations available1%4. In the context of
surgery, carbohydrate loading may reduce insulin resistance and improve recovery10s,
although the exact mechanisms are unknown. Several studies report shorter lengths of stay
and a reduction in patient discomfort. However, within ERAS, carbohydrate loading benefits
are confounded by numerous interventions (e.g., analgesia, early removal of catheters,

thromboprophylaxis, etc.106), making it challenging to evaluate its efficacy.

Preoperative
Phase

=

Postoperative

Phase | SulI ERAS Key
Components'-3

Figure 6. Key aspects of ERAS protocols. Adapted and modified from Melnyk Megan et al. Can
Urol Assoc ]. 2011 Oct;5(5):342-8. doi: 10.5489/cuaj.11002.
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AIM OF THE STUDY

Each chapter is presented below and currently in the form of an original article or draft

planned for publication.

Better preservation procedures for marginal kidney grafts could increase the number
of viable kidneys and increase patient survival. Warm (22°C and 37°C) ex-vivo perfusion has
been proposed to reduce preservation injury, but the underlying mechanism is unknown. We
evaluated kidney quality, including adenosine triphosphate (ATP) production, during sub-
normothermic (22 °C) versus hypothermic (4°C) ex-vivo kidney machine perfusion in a
porcine autotransplantation model using magnetic resonance spectroscopic imaging (pMRSI)
coupled with a fitting method using the Convolutional Neural Network. We have made
promising progress toward demonstrating the potential of 22°C perfusion to improve kidney

graft longevity and outcomes, necessitating further clinical trials (Chapter 1).

In rodents, Hz2S has been found to reduce IRI and improve renal graft function. This
research sought to determine if these benefits extend to swine, which provides a more
applicable clinical model for humans. Adult porcine kidneys were subjected to 60 minutes of
mild ischemia (WI) and treated with 100 uM NaHS during hypothermic ex vivo perfusion,
during WI, or both. Here, using MRI and pMRSI, we examined the effect of NaHS on a relevant
porcine ex vivo HMP model and autotransplantation. To increase the translational value of
our study, NaHS was given in relevant clinical situations, including ex vivo perfusion only or

concomitant to heparin administration before WI (Chapter 2).

Dietary restriction promotes resistance to acute surgical stress in multiple organisms.
Counterintuitively, current medical protocols recommend short-term carbohydrate loading
before surgery, involving carbohydrate-rich drinks as part of a multimodal perioperative care
pathway designed to enhance surgical recovery. Despite widespread clinical use, preclinical
and mechanistic studies on carbohydrate loading in surgical contexts are lacking. In this
study, our aims were to 1) Explore how ad-libitum access to carbohydrate loading drinks
impacts food intake, 2) Evaluate the effects of short-term carbohydrate loading on IRI, a
model of acute surgical stress, and 3) Identify the mechanisms that underlie the benefits of
carbohydrate loading. We hypothesized that mice with access to carbohydrate loading drinks
would consume less food, resulting in protein dilution. We further hypothesized that
carbohydrate loading-induced short-term protein dilution would protect against acute

surgical stress through conserved mechanisms of protein restriction (Chapter 3).
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These data build up on the importance of optimal organ preservation in
transplantation surgery and could have a meaningful impact on 1) kidney availability and 2)
provides rationale for short-term preconditioning with carbohydrates or pharmacological DR
mimetic, such as FGF21 agonists to protect against IRI and the stress associated with surgery

and reduce the occurrence of potential postoperative complications.
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RESULTS

Chapter 1: Subnormothermic Ex Vivo Porcine Kidney Perfusion
Improves Energy Metabolism: Analysis Using 31P Magnetic Resonance
Spectroscopic Imaging.

This work was published in 2022 in the journal Transplant Direct.

e Agius, T, Songeon, ], Klauser, A., Allagnat, F., Longchamp, G., Ruttimann, R., Lyon, A.,
Ivaniesevic, ]., Meier, R., Déglise, S., et al. (2022). Subnormothermic Ex Vivo Porcine
Kidney Perfusion Improves Energy Metabolism: Analysis Using 31P Magnetic

Resonance Spectroscopic Imaging. Transplant Direct 8, e1354.

e DOI:10.1097/TXD.0000000000001354

Summary:

The preservation temperature for kidney grafts after circulatory death remains a point
of contention. This study investigated the potential benefits of subnormothermic (22 °C) ex
vivo kidney machine perfusion, specifically its ability to enhance kidney metabolism and
reduce the effects of ischemia-reperfusion injuries. Using the kidneys of swine subjected to 60
minutes of warm ischemia, the study subjected these organs to a 4-hour perfusion at either 22
°C or the colder 4 °C. The adenosine triphosphate (ATP) content was increased by four at 22
°Crelative to 4 °C perfusion, which was a significant finding. In addition, ATP levels initially
increased during the first few hours of perfusion at 22 °C but subsequently decreased.
Moreover, the presence of phosphomonoesters, which contain adenosine mono-phosphate,
increased significantly at 22 °C but gradually decreased. Significantly, the kidneys perfused at
22 °C displayed superior cortical and medullary perfusion and significantly fewer histological
lesions following transplantation. The promising findings demonstrate the potential of 22°C

perfusion to improve kidney graft longevity and outcomes, necessitating further clinical trials.
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Chapter 2: Sodium Hydrosulfide Treatment During Porcine Kidney Ex
Vivo Perfusion and Transplantation

This work was accepted and will be published in 2023 in the journal Transplant Direct.

e Agius, T, Songeon, ], Lyon, A, Justine, L., Ruttimann, R., Allagnat, F., Déglise, S.,
Corpataux, ].-M., Golshayan, D., Buhler, L., et al. (2023). Sodium Hydrosulfide
Treatment During Porcine Kidney Ex Vivo Perfusion and Transplantation.

Transplantation Direct XXX, e.

e DOI:10.1097/TXD.0000000000001508

Summary:

In rodents, hydrogen sulfide (H2S) has been found to reduce ischemia-reperfusion
injuries and improve renal graft function. This research sought to determine if these benefits
extend to swine, which provides a more applicable clinical model for humans. Adult porcine
kidneys were subjected to 60 minutes of mild ischemia (WI) and treated with 100 pM sodium
hydrosulfide (NaHS) during hypothermic ex vivo perfusion, during WI, or both. MRI
spectroscopy for renal perfusion and ATP levels and histopathological evaluations of
specimens did not reveal any significant improvements. Perfusion with NaHS resulted in renal
perfusion, ATP levels, and histological outcomes comparable to those in the control group.
While Hz2S appears promising in rodent models, treating pigs with NaHS did not substantially
reduce ischemia-reperfusion damage or increase kidney metabolism. Further research on

humans, potentially using alternative H2S donors, is recommended.

41


https://doi.org/10.1097/txd.0000000000001508

42



43



44



45



46



47



48



49



Chapter 3: Short-Term Hypercaloric Carbohydrate Loading Increases
Surgical Stress Resilience by Inducing FGF21.

This work was submitted on 08/2023 in the journal Cell Metabolism.

Summary:

Dietary restriction promotes resistance to acute surgical stress in multiple organisms.
Counterintuitively, current medical protocols recommend short-term carbohydrate loading
before surgery, involving carbohydrate-rich drinks as part of a multimodal perioperative care
pathway designed to enhance surgical recovery. Despite widespread clinical use, preclinical
and mechanistic studies on carbohydrate loading in surgical contexts are lacking. Here we
demonstrated in ad libitum-fed mice that liquid carbohydrate loading for 1 week reduces
solid food intake while nearly doubling total caloric intake. Similarly, simple carbohydrate
intake was inversely correlated with dietary protein intake in humans. Carbohydrate loading-
induced protein dilution increased expression of hepatic fibroblast growth factor 21 (FGF21)
independent of caloric intake, resulting in protection in two models of surgical stress: renal
and hepatic ischemia-reperfusion injury. The protection was consistent across male, female,
and aged mice. In vivo, amino acid add-back or genetic FGF21 deletion blocked carbohydrate
loading-mediated protection from ischemia-reperfusion injury. Finally, carbohydrate loading
induction of FGF21 was associated with the induction of the canonical integrated stress
response (ATF3/4, NFkB) and oxidative metabolism (PPARY). Together, these data support
carbohydrate loading drinks prior to acute surgical stress, revealing an essential role of

protein dilution via FGF21.
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Dietary restriction promotes resistance to surgical stress in multiple organ-
isms. Counterintuitively, current medical protocols recommend short-term
carbohydrate-rich drinks (carbohydrate loading) prior to surgery, part of a
multimodal perioperative care pathway designed to enhance surgical recov-
ery. Despite widespread clinical use, preclinical and mechanistic studies on
carbohydrate loading in surgical contexts are lacking. Here we demonstrate in
ad libitum-fed mice that liquid carbohydrate loading for one week drives
reductions in solid food intake, while nearly doubling total caloric intake.
Similarly, in humans, simple carbohydrate intake is inversely correlated with
dietary protein intake. Carbohydrate loading-induced protein dilution
increases expression of hepatic fibroblast growth factor 21 (FGF21) indepen-
dent of caloric intake, resulting in protection in two models of surgical stress:
renal and hepatic ischemia-reperfusion injury. The protection is consistent
across male, female, and aged mice. In vivo, amino acid add-back or genetic
FGF21 deletion blocks carbohydrate loading-mediated protection from
ischemia-reperfusion injury. Finally, carbohydrate loading induction of FGF21
is associated with the induction of the canonical integrated stress response
(ATF3/4, NF-kB), and oxidative metabolism (PPARy). Together, these data
support carbohydrate loading drinks prior to surgery and reveal an essential
role of protein dilution via FGF21.

Worldwide, 310 million surgeries are performed annually, with
approximately 40 to 50 million taking place in the USA and 20 million
in Europe. These surgeries carry a postoperative mortality rate of 1-4%,
a morbidity rate of up to 15%, and a readmission rate within 30 days
ranging from 5-15%". With an estimated global annual mortality of 8
million, the mortality associated with major surgery is comparable to
that of cardiovascular disease (17.9 million), stroke (5 million), and

cancer (10 million)". Ischemia-reperfusion injury (IRI) is an important
component of surgical stress, involving the occlusion of blood flow to
an organ or tissue for a certain period of time (ischemia) and sub-
sequent restoration of blood supply (reperfusion)’. IRI represents a
major clinical concern in controlled elective surgery, which requires
temporary restriction of blood flow (e.g. solid organ transplantation,
vascular surgery) and uncontrolled settings (stroke, heart attack, limb
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e-mail: alban.longchamp@chuv.ch

Nature Communications | (2024)15:1073

52



Article

https://doi.org/10.1038/s41467-024-44866-3

trauma). During the ischemic period, cells are deprived of oxygen and
nutrients, resulting in ATP depletion, loss of membrane potential, and
the accumulation of toxic byproducts. Subsequent reperfusion intro-
duces additional damage via extensive ROS generation by the reverse
electron transport at the mitochondria®. Together, there is a significant
need for interventions that can reduce IRl and enhance resilience to
surgical stress.

Currently, perioperative surgical care in humans includes
enhanced-recovery protocols (ERAS®), which encourage the con-
sumption of carbohydrate-loaded fluids before surgery*. Carbohy-
drate loading practices vary among institutions, encompassing both
simple carbohydrates (e.g. Gatorade) and complex carbohydrates
(e.g., maltodextrin), with multiple commercial preparations available®.
In the context of surgery, carbohydrate loading may reduce insulin
resistance and improve recovery®, although the exact mechanisms are
unknown, and is confounded by numerous interventions (e.g.
analgesia, early removal of catheters, thromboprophylaxis, etc’.).
Moreover, ERAS® pre-surgery drinks often contain high amounts of
protein (up to 80 g/L). Interestingly, the benefit of high-protein diet
before surgery has not been demonstrated. Inversely, high animal
protein intake was positively associated with cardiovascular mortality®.

Counterintuitively, decades of research have demonstrated that
short-term preconditioning with dietary restriction (DR) from two
days to one week increases resilience against stress, including IRI to the
kidney, liver, brain, heart, and vein grafts’ ™. DR can include either
restriction of total energy intake (calorie restriction) or dilution of
specific macronutrients in the diet, such as total protein, or specific
amino acids like methionine, cysteine, or tryptophan'®", While DR
has been extensively used in preclinical models, achieving voluntary
food restriction in humans remains challenging, even for a short per-
iod of time'®. Thus, one of the goals in this research area is to identify
simple interventions that are feasible in humans and can replicate the
benefits of DR without the burden of restricting food intake. Conse-
quently, many studies have focused on alternative nutritional strate-
gies or on the molecular effectors that mediate the benefits of dietary
restriction®.

From a nutritional standpoint, many of the pleiotropic benefits of
calorie restriction can be triggered by the restriction of dietary protein
or single amino acids®. These benefits include resistance to hepatic
IRI*, improved recovery upon limb ischemia®, increased energy
expenditure”, and improved glucose and lipid homeostasis, even
during short-term interventions” %, Protein restriction also extends
lifespan, while high-fat and high-protein diets may accelerate aging
and reduce lifespan®. The interaction between protein and carbohy-
drate intake is also important, as the isocaloric replacement of dietary
protein with carbohydrates drives greater benefit than isocaloric
replacement with fat®®?. Interestingly, the type of carbohydrate used
to replace protein seems to have relatively little effect on the overall
protein restriction response®®.

On a molecular level, protein and calorie restriction modulate
pathways, including insulin/insulin-like growth factor-1 (IGF-1)*>*, the
redox-sensing transcription factor Nuclear Factor Erythroid 2-Related
Factor (NRF2)*" and hydrogen sulfide (H,S) signaling'. One feature
unique to protein restriction is increased fibroblast growth factor 21
(FGF21) production, which responds to starvation and protein/amino
acid restriction, but not calorie restriction’”**. This is a conserved
response, with circulating FGF21 increased 10-fold in rodents and
approximately 2-fold in humans fed a low-protein (LP) diet for one
month®%, FGF21 signaling is associated with increased insulin sensitiv-
ity, improved glucose homeostasis, a reduction in circulating lipids,
and an increased lifespan in mice®*. FGF21 induces thermogenesis by
increasing the expression of UCP1 in adipose tissue®®, which drives the
browning of adipose tissue and increased energy expenditure®. Dur-
ing protein restriction, FGF21 signaling is essential to regulate adaptive
homeostatic changes in metabolism and feeding behavior*.

In this study, our aims were to 1) explore how ad-libitum access to
carbohydrate-loading drinks impacts food intake, 2) evaluate the
effects of one-week carbohydrate loading on IRI, a model of surgical
stress, and 3) identify the mechanisms that underlie the benefits of
carbohydrate loading. We hypothesized that mice with access to
carbohydrate-loading drinks would consume less food, resulting in
protein dilution. We further hypothesized that carbohydrate loading-
induced short-term protein dilution would protect against surgical
stress through conserved mechanisms of protein restriction.

We find that one week of carbohydrate loading reduces food
intake and induces voluntary protein dilution in mice. Consistent with
the benefits of low-protein diets**?°, carbohydrate loading protects
from surgical stress in two models: hepatic and renal IRL. In this con-
text, FGF21 is required for protection from surgical stress, and FGF21
administration is sufficient to protect without any dietary intervention.
Mechanistically, carbohydrate loading induction of FGF21 is associated
with the induction of the canonical integrated stress response (ATF3/4,
NF-kB), and oxidative metabolism (PPARy).

Results

Short-term carbohydrate loading promotes resilience to
surgical stress

Carbohydrate-loading drinks were modeled using a 50% (w/w)
sucrose-water solution, hereafter referred to as “high carbohydrate -
HC”. The choice of sucrose as the source of carbohydrate was based on
the following rationale: 1) Dietary protein restriction benefits have
been achieved by substituting protein with sucrose’*. 2) Metabolic
outcomes of low (10%)-protein, high (70%)-carbohydrate diets are
worse when carbohydrates comprise a mixture of monosaccharides
fructose and glucose®. 3) Sucrose is commonly employed in ERAS
protocols’.

We began by examining the effects of HC prior to surgery by using
a model of surgical stress that consisted of right nephrectomy and
unilateral left kidney IRI (Supplementary Data Fig. 1a). Prior to IRI, 10-
weeks-old C57BL/6 ) male mice were given ad libitum access to water
(Ctrl) or HC for one week. All mice were fed the same standardized ad
libitum diet. All mice were given regular water postoperatively (Sup-
plementary Data Fig. 1a). Mice on HC showed improved renal function
after IRI, with reduced postoperative serum urea (Fig. 1a and Supple-
mentary Data Fig. 1b, 935 + 322 versus 1426 + 309 AUC), day 3 serum
creatinine levels (Fig. 1b, 0.4+0.3 versus 1.11+0.6 ng/mL) and
improved glomerular filtration rate (GFR) as estimated by clearance of
FITC-sinistrin (Supplementary Data Fig. 1c). HC also alleviated IRI as
measured by histological assessment of tissue necrosis (Fig. 1Ic,
3.9+0.94 versus 6.16 +1.8% necrotic area), lipid peroxidation (Sup-
plementary Data Fig. 1d; 4HNE staining), and Krt20 gene expression
(Fig. 1d), a marker of proximal tubule damage*’.

Sex-specific differences have been observed in preclinical models
of renal ischemic injury. In particular, females recover more readily
from IRI than males®. Thus to substantiate our findings, we subjected
C57BL/6) female mice to the same HC preconditioning for one week,
followed by renal IRI (Supplementary Data Fig. 1a). In accordance with
what was observed in males, HC preconditioning reduced IRl in female
mice (Fig. le and Supplementary Data Fig. le, serum urea 318 +47
versus 536 +79 AUC). Similarly, serum creatinine levels (Fig. 1f,
0.28+0.05 versus 0.49 +0.08 ng/mL), tissue necrosis (Fig. 1g,
0.92 £ 0.30 versus 2.63 = 0.70% necrotic area), and Krt20 expression
(Fig. 1h) were reduced in HC female mice compared to Ctrl.

Some benefits of DR appear lost when started late-in-life**, but
most surgical patients are older. Thus, we asked whether HC was
similarly effective in aged male mice (22-months-old). As in young
mice, HC preconditioning improved renal function upon IRl in old
mice (Fig. 1i and Supplementary Data Fig. 1f, serum urea 593.3 + 40.73
versus 733.8 + 28.69 AUC), reduced renal necrosis (Figs. 1j, 4.6 + 0.94
versus 7.69 + 0.48%) and Krt20 expression (Fig. 1k). Moreover, one
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activity level was unchanged, as measured by average walk time over
72 hours (Supplementary Data Fig. 2b). When examining the con-
tribution of each macronutrient to whole body energy intake, HC
resulted in a significant increase in energy from carbohydrates
(Figs. 2d, 1.08 + 0.08 versus 0.31+0.02kcal/g body weight), and a
decrease in energy from protein (Fig. 2d, 0.04+0.005 versus
0.09 + 0.007 kcal/g body weight) and fat (Fig. 2d, 0.02 + 0.003 versus
0.05 + 0.004 kcal/g body weight). In both sexes and aged male mice,
HC induced a reduction in food intake, associated with a 2-fold
increase in sucrose-water intake (Supplementary Data Figs. 2c and 2f).
Similarly, body weight was unaffected (Supplementary Data Fig. 2d, g),
and HC increased total energy intake relative to body weight (Sup-
plementary Data Fig. 2e, f).

Given the robustness of these data, we asked whether similar
effects could be observed in humans. Total carbohydrate and protein
intake was analyzed from the National Health and Nutrition Examination
Survey (NHANES) from 2005 to 2012 including two 24-h dietary recalls
per person on a representative sample of the United States population
every 2 years (four distinct cycles of data collection). Using this large
dataset (n=23,245), we indeed found an inverse association between
sucrose and protein intake (Fig. 2e), but not between fiber and protein
intake (Fig. 2f), consistent with our observations in rodents (Fig. 2a-d).

Given the voluntary protein restriction observed during carbohy-
drate loading, and because restricting dietary protein has pronounced
effects on glucose tolerance®, lipid metabolism* and resistance to IR
in vivo, we hypothesized that HC might not have additional benefits in
mice fed a low protein (LP) diet. To test this hypothesis, we fed an
additional cohort of mice an LP diet (Supplementary Data Figs. 3a, 6.4
versus 19.8% of energy from protein in the standard diet), in the pre-
sence or absence of HC. Similar to mice on a standard diet, mice on an
LP diet with access to HC decreased their food intake and increased
their water and total energy intake (Supplementary Data Fig. 3B). Mice
on an LP diet for one week lost weight (Supplementary Data Fig. 3c), but
the LP diet did not affect total energy intake compared to a standard
diet (Supplementary Data Fig. 3d). In line with our hypothesis that the
benefits of carbohydrate loading are mediated by protein dilution,
mice fed with an LP diet with access to HC had no additional protection
from IRI, as assessed by tissue necrosis, serum urea, creatinine levels,
and Krt20 expression (Fig. 2g-j).

Next, we asked whether the reintroduction of protein would
reverse the benefits of HC. To achieve this, we administered cysteine, a
sulfur-containing amino acid previously shown to be relevant in the
beneficial effects of DR™, via oral gavage to mice treated with HC. We
estimated the amount of cysteine to be 5.58 mg/day per mouse, which
corresponded to the cysteine intake deficit in HC versus Ctrl mice.
Interestingly, food, water, total energy intake, and body weight were
unaffected by cysteine add-back (Supplementary Data Fig. 3e, g,
HC +C). On the other hand, consistent with our hypothesis, the addi-
tion of cysteine to the diet (HC + Cysteine) abrogated HC benefits on
surgical stress. This was evident by increased serum creatinine at day 1
and serum urea levels after IRI (Fig. 2k, | and Supplementary Data
Fig. 3h) in the HC + Cysteine group. In addition, tissue necrosis and
Krt20 expression in the HC + Cysteine mice were comparable to those
observed in the Ctrl (Fig. 2m, n). Finally, we utilized the geometric
framework® to evaluate the effects of ad libitum-fed diets varying in
macronutrients on kidney function (serum urea). Resistance to surgi-
cal stress was most robustly associated with protein intake (Fig. 20). In
contrast, fat and carbohydrate intake had negligible influence. Inter-
estingly, while HC induced a further reduction in protein energy intake
in the LP diet group (LP + HC 1.7%, LP + Ctrl 6.4%), no additional ben-
efits on IRI protection were observed, possibly associated with a spe-
cific threshold, rather than a “linear effect” as previously observed™*.,
Overall, we found that one week of HC increased total caloric intake
while reducing protein intake, which is required for resistance to sur-
gical stress.

Carbohydrate loading induces FGF21 signaling

Nutrient sensing pathways proposed to link dietary restriction with
stress resistance include H,S production downstream of the integrated
stress response (Activating Transcription Factor 4; ATF4) and oxida-
tive stress responses (NRF2). We previously demonstrated that H,S
was necessary and sufficient for increased stress resistance under
certain DR paradigms®™™. Surprisingly, HC in both standard and LP
diets did not induce the H,S-producing enzyme cystathionine-y-lyase
(CGL; Cth gene) in either the liver or kidney (Supplementary Data
Fig. 4a). Similarly, H,S production capacity in the liver, kidney, and
serum was unaffected by HC (Supplementary Data Fig. 4b, d). To
experimentally validate a lack of involvement of H,S production in HC
protection, mice were administered propargylglycine and amino-
oxyacetic acid (PAG +AOAA) to inhibit CGL-dependent H,S produc-
tion (Supplementary Data Fig. 4e). We fed standard or LP diets to wild-
type mice with access to Ctrl or HC drinks, and treated them with
either vehicle or PAG + AOAA. Resistance to IRI, assessed by serum
urea and creatinine levels, was significantly improved by HC, LP, and
LP + HC in both vehicle- and PAG-treated mice (Supplementary Data
Fig. 4f, g) compared to Ctrl mice, confirming that H,S production was
not required for the protection induced by HC.

Fibroblast growth factor 21 (FGF21) is another key nutrient-
sensing molecule®. In both rodents and humans, one month of protein
restriction increases FGF21 and drives key physiologic adaptations,
including thermogenesis and altered feeding behavior’>*”*, Here, one
week of HC induced a 13-fold increase in serum FGF21 levels (Fig. 3a),
which was already observed after 2 days on HC (Supplementary Data
Fig. 52). HC induced a similar increase in serum FGF21 levels in females
(Supplementary Data Fig. 5b) and in old mice (Supplementary Data
Fig. 5¢). The LP diet increased serum FGF21 levels to a greater extent,
but the combination of HC water and the LP diet did not result in an
additional increase (Fig. 3a). FGF21 is a metabolic hormone pre-
dominantly produced in the liver””. Here Fgf21 mRNA expression was
restricted to the liver, with low expression in the kidney, skeletal
muscle, and adipose tissue (Supplementary Data Fig. 5d). Consistently,
FGF21 induction was observed in the liver (Fig. 3b), but not in the
kidney (Fig. 3¢) of HC mice. In accordance with the activation of FGF21,
HC increased whole-body metabolic rate, as shown by VO, consump-
tion (Supplementary Data Fig. 5e) and VCO, production (Supplemen-
tary Data Fig. 5f), as well as energy expenditure (Supplementary Data
Fig. 5g). Similarly, the effects of HC were driven by protein dilution, as
no additive effect was observed in mice fed an LP diet (Supplementary
Data Fig. 5e, g). Underlying these changes in metabolism, the HC diet-
induced subcutaneous adipocyte browning with smaller multilocular
adipocytes on H&E staining (Supplementary Data Fig. 5h) and a 2-fold
increase of the thermogenesis-associated gene Ucpl in brown and
white adipose tissue (Supplementary Data Fig. 5i, j). Serum FGF21 levels
correlated negatively with dietary protein intake (Fig. 3d, r2=0.43,
p=0.0001) and with kidney function at day 2 post-renal IRl as mea-
sured by serum urea AUC (Fig. 3e, r2=0.30, p=0.0167). Cysteine
supplementation (HC + Cysteine) also reduced FGF21 (Fig. 3f), which is
consistent with our hypothesis that protein dilution is required for the
HC-mediated benefits.

To further explore the importance of HC-mediated induction of
FGF21 signaling, we sought to compare the Fgf21 transcriptional
signature to one week of HC. To do so, we examined the hepatic
differentially expressed genes (DEGs) from a publicly available
dataset of Fgf21-overexpressing mice (GSE39313)*. We identified
31 significant DEGs with an FDR p < 0.1 and log2FC >1, overlapping
with the HC transcriptional signature (Fig. 3g). Of these 31 DEG, the
top 10 highest from the Fgf21-overexpression dataset were similarly
upregulated in the livers of HC mice (Fig. 3h). Together, these data
support the hypothesis that HC effects on stress resistance are
mediated by FGF21 signaling induced downstream of dietary pro-
tein dilution.
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(~3.5% vs 6% protein intake), so it is possible that females require
greater protein restriction to induce FGF21. The observational human
data from the USDA NHANES suggested an inverse association
between sucrose and protein intake, indicating the potential for con-
served appetitive mechanisms. However, the metabolic response and
the extent to which carbohydrate loading may result in favorable
outcomes in humans are still unknown. As with any epidemiologic
study, the association of macronutrient intake can be confounded by
any other variable (lifestyle, other dietary factors, comorbidities,
medications, etc.). Although protein energy intake was treated as a
single variable, it truly is a combination of amino acid ratios that
cannot be fixed, even in mice which limit drawing conclusions about
the effects of dietary protein in humans.

Here, carbohydrate loading consisted of an ad libitum solution of
50% sucrose in water for one week. This slightly differs from ERAS®
protocols, classically recommending 100 g of carbohydrate the eve-
ning before surgery, and 50 g of carbohydrate until 2 hours before
surgery’’. Alternatively, healthy individuals have undergone 3-7 days of
high carbohydrate loading diet (approximately 70% of calories from
carbohydrate), at the expense of protein®. The latter is similar to most
murine dietary protein restriction regimen, that replaced dietary
protein with carbohydrates utilized complex carbohydrates derived
from starch>*'. While we did not study the interactions between car-
bohydrate sources here, one of the few studies testing the effects of
carbohydrate composition during protein dilution showed that a
sucrose-rich diet improved metabolic parameters compared to a 50:50
mixture of glucose and fructose®. Of interest, carbohydrate loading
resulted in an overconsumption of excess energy from sucrose and a
voluntary reduction in protein intake. Rodents have a dominant pro-
tein appetite, which drives food intake to reach a protein target™ via an
FGF21-dependent mechanism®*°. Thus, protein-restricted diet typi-
cally results in the overconsumption of total energy. This response is
called protein leverage™. A limited body of evidence also supports the
protein leverage hypothesis in humans, at least down to 10% of protein
energy”. While we do replicate the protein leverage hypothesis in mice
fed low protein with normal water, we interestingly observe that mice
given sucrose-water do not increase food intake on a low protein diet.
This suggests the intriguing possibility that liquid carbohydrate intake
may override protein leverage. Future studies may test the resulting
hypothesis that FGF21 action on drinking behavior may override its
action on feeding behavior, or that an FGF21-independent mechanism
affects feeding behavior upon liquid carbohydrate intake.

Consistent with the latter hypothesis, carbohydrate loading-
mediated changes in food and water intake were unaffected by the
absence of FGF21. On the other hand, exogenous FGF21 adminis-
tration, without any dietary intervention, was sufficient to increase
both water and food intake. While protein restriction is required for
the benefits of carbohydrate loading, this suggests that protein
restriction might be dispensable for FGF21 benefits when given
exogenously. These differences in the metabolic response to diet-
ary protein restriction and protein dilution during carbohydrate
loading will need to be further investigated. Additionally, liquid
carbohydrate loading may be a previously unrecognized method to
limit protein intake.

The response to dietary protein is also not linear. Previous work
demonstrated that protein restriction has a threshold around 8-10% of
dietary protein calories to produce the strongest improvements in
body composition, insulin sensitivity* and induction of FGF21*. In our
study, when comparing carbohydrate loading (3.4% dietary protein
calories) versus a low protein diet (6.4% dietary protein calories), the
protection from surgical stress was equivalent. This is consistent with
the idea of a threshold and non-linear effects*** A study comparing a
range of sucrose concentrations during carbohydrate loading would
be of interest to better investigate the potential for dose response to
carbohydrate loading.

The duration of carbohydrate loading required for the onset of
stress resistance benefits is unknown. Here, we show that only one
week of carbohydrate loading is sufficient for the observed benefits in
mice with maximal FGF21 induction already achieved after two days,
indicating that this relatively short duration of carbohydrate loading
might be sufficient to yield the observed benefits. Whether or not
longer periods of carbohydrate loading will further increase protec-
tion remains to be experimentally determined.

Our previous results demonstrated that CGL is required for the
benefits of DR, including protection from ischemia® and IRI'. Sur-
prisingly, H,S/CGL was not influenced by carbohydrate loading or
protein restriction, nor required for surgical stress resistance. Protein
restriction was associated with a decrease in CGL expression and
cysteine level*, while caloric and methionine restriction were pre-
viously demonstrated to increase both CGL and H,S production. CGL
expression was also increased in response to a high-protein diet”, but
was not affected in long-lived mice overexpressing Fgf21°**. Thus, our
data demonstrate that, while CGL may be critical for the beneficial
effects of calorie or methionine/cysteine restriction, it may be dis-
pensable for the effects of carbohydrate loading/protein restriction in
the liver and kidney.

Instead, FGF21 appears to be the molecular mediator of the ben-
efits of carbohydrate loading. Additionally, we propose that HC-
mediated protection from IRI functions as a para- and endocrine
mechanism involving hepatic secretion of FGF21, consistent with a
previous report’?. This could serve as a basis for FGF21-based ther-
apeutics during surgical stress or trauma, where there is currently no
widely accepted risk mitigation strategy. FGF21 is a critical mediator of
protein restriction®’. In line with previous studies, we show that
FGF21 signaling increases energy expenditure and
thermogenesis®?%’. During protein restriction, FGF21 signaling is
essential to regulate adaptive, homeostatic changes in metabolism and
feeding behavior’>”’. Consistent with others*, we found that carbo-
hydrate loading induction of FGF21 caused increased adipose UCP-1
and increased energy expenditure. The importance of FGF21 signaling
during carbohydrate loading also emphasizes that protein restriction
is a key driver of the observed benefits. By which mechanism could
endogenous FGF21 mediate the benefits of carbohydrate loading/
protein restriction in mitigating IRI? While this remains unclear, our
investigations into the regulatory networks and transcription factors
involved in FGF21 benefits during carbohydrate loading suggest the
importance of the stress response proteins ATF3/4 and the antioxidant
regulator NRF2. Of note, in mice lacking ATF3, IRl was increased after
orthotopic liver transplantation, which was associated with inhibition
of HO-1 signaling and increased TLR4 as well as NFkB signaling®. ATF4
can induce hepatic FGF21 in both ATF4-overexpressing mice and a
model of endoplasmic reticulum stress through elF2alpha and the
unfolded protein response”. However, the role of ATF4 in dietary
restriction is complicated, as it is not required for FGF21 induction
upon methionine restriction®®. Similarly, NRF2 was not required for
calorie restriction-dependent protection from hepatic IRI". However,
activation of NRF2 reduced tubular damage upon renal IRI and was
associated with FGF2l-mediated protection against diabetic
nephropathy®**%,

Current clinical recommendations for the clinical presurgical care
are to 1) avoid fasting, 2) initiate nutritional support or supplementa-
tion without delay, and 3) reduce factors that exacerbate stress-related
catabolism or impair gastrointestinal function**. Thus, our findings
carry significant implications for the development of nutritional stra-
tegies during surgery. While our data suggest an inverse correlation
between protein and sucrose intake in humans, the impact of short-
term carbohydrate loading on calorie and protein intake in patients
undergoing surgery remains to be established. Additionally, the
impact of such interventions in humans with altered glucose meta-
bolism (insulin resistance, metabolic syndrome, etc. will need to be
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carefully evaluated prior to initiating a clinical trial. On the other hand,
FGF21 could be an alternative strategy for those who are not able to
tolerate carbohydrate loading®. Counterintuitively, FGF21 levels are
increased in patients with obesity and chronic kidney disease
(CKD)**“%, This may be explained by FGF21 resistance, which is also
associated with worse metabolic profiles, higher inflammatory mar-
kers, more comorbidities, and higher mortality in CKD patients®.
Thus, these patients may require either larger doses of exogenous
FGF21 or an alternative intervention that promotes FGF21 sensitivity,
such as carbohydrate loading/protein dilution, to achieve protection
against IRI. Interestingly, in our study in FGF21-sensitive mice, short-
term FGF21 delivery was sufficient to recapitulate the benefits of HC
drinks without the need for prolonged administration, thus high-
lighting the translational potential.

In conclusion, in ad libitum-fed mice, carbohydrate loading pro-
motes dietary protein restriction, the adaptive stress response, and
resilience to surgical stress. ERAS® approaches currently promote
short-term carbohydrate loading drinks to improve postoperative
recovery without clear mechanistic explanations. Here, we identified
FGF21 as a key molecular mediator of carbohydrate loading. These
findings have broad implications for our basic understanding of the
impact of carbohydrate and protein-carbohydrate interactions on
metabolic health. Finally, our results provide a rationale for short-term
carbohydrate loading or FGF21-based therapeutics during surgery, for
which there is now no widely accepted risk mitigation strategy.

Methods

Mice

All experiments were performed with the approval of the cantonal
Veterinary Office (Service de la Consommation et des Affaires Vétér-
inaires SCAV-EXPANIM, authorization number 3346, 3554b and 3768).
All animal experimentation conformed to the Guide for the Care and
Use of Laboratory Animals. All efforts were made to minimize animal
suffering, including the use of anesthesia and analgesia during surgical
procedures as well as humane endpoints to prevent undue distress.
Animals were monitored daily. Mice with weigh loss > 10%, lethargy,
muscle twitching, bleeding, infected or dehiscent wound were eutha-
nized by exsanguination under general anesthesia in accordanct with
the “Commission pour léthique dans les expérimentations animals”.
10 to 12-weeks-old male and female, and 22-month-old male C57BL/6)
mice (Janvier Labs, France) were used for all experiments. All mice
were kept on ad-libitum (AL) access to food and tap water, and kept
under standard housing conditions, with 12 hr light/12 hr dark cycles,
30-70% humidity and a temperature of 20-23°C unless specified
otherwise. Fgf21 knockout (Fgf21%°) was generated by crossing Fgf21>®
mice (B6.129S6(SJL)-Fgf21™2%™/), Jackson Labs #022361) with loxP
sites flanking exons 1-3 of the Fgf21 gene with CMV-cre expressing mice
(B6.C-Tg(CMV-cre)1Cgn/), Jackson Labs #006054). The resulting off-
spring had a deletion in exons 1-3 of Fgf21 in all tissues. The line was
subsequently maintained by breeding animals heterozygous for the
Fgf21 deletion allele. Mouse ear biopsies were taken and digested in
DirectPCR lysis reagent with proteinase K. Wild type (WT), hetero-
zygous and knockout (KO) mice were identified by PCR using the
forward primer 51- ACC CCC TGA GCA TGG TAG A-3' to detect the WT
allele, and forward primer 5- CAG ACC AAG GAG CAC AGA CC-3' to
detect the KO allele, and the common reverse primer 5- GCA GAG GCA
AGT GAT TTT GA-3, using GoTagR G2 Green Master Mix (M7822,
Promega).

Experimental diets

All experimental diets were based on diet 2125 from Granovit AG
(Kaiseraugst, Switzerland), with 19.8% of calories from protein
(hydrolyzed casein and individual crystalline amino acids), 10.4% from
and 69.9% from carbohydrate. The low protein (LP) diet was custom
prepared by Granovit AG based on diet 2125 with 6.4% protein/ 10.4%

fat/ 83.2% of carbohydrate (Granovit AG) and was provided ad-libitum.
The nutritional value of the control diet was 3.6 Kcal/gr, and 3.35 Kcal/
gr for the LP diet. The high sucrose (HC) drink was prepared by adding
50% sucrose (w/w) in the drinking water, giving 2 Kcal of carbohydrate/
g of HC drink. HC drink was changed every two days. Food pellets and
bottles were weighed daily in every cage of mice. The delta weight of
food and drink was calculated, divided by the number of mice, and
normalized by the weight of each individual mouse in the cage. Total
calorie intake was measured by calculating the sum of each macro-
nutrient and their calories per gram (carbohydrates, proteins 4 kcal/
gram, and fat 9 kcal/gram).

Cysteine addback

C57BL/6) 10 to 12 weeks-old male mice were gavaged with soft plastic
oral 20 G gavage needles (Instech Laboratories). The cysteine solution
concentration was calculated from the difference of daily food intake,
in weight of food, between mice given ad libitum access to water (Ctrl)
and HC. According to the diet composition, cysteine constitutes 0.30%
of the food weight (diet 2125 from Granovit AG), resulting in a daily
intake of cysteine of 0.00558g/day. A stock solution containing a
concentration of 27.9mg/mL of L-Cysteine in drinkable water
(#168149, Sigma) was prepared and stored at 4°C. The prepared
solution was administered via oral gavage (10uL/g of body weight)
once daily (5.58mg/day of L-Cysteine). Daily oral gavage of an
equivalent volume of drinkable water (10uL/g body weight) was given
as vehicle control.

Nephrectomy and renal ischemia-reperfusion injury

Mice were anesthetized with 3% isoflurane in 2L O, and kept at 37 °C
with an electrical heating pad. Following a 2-cm abdominal incision,
the vascular pedicles of the right and left kidneys were identified under
amicroscope. First, the right renal artery, vein, and ureter were ligated
and cauterized. Immediately after, the right kidney was dissected and
flash-frozen in liquid nitrogen. Second, the left pedicle was clamped
for either 23 minutes for young male and old male mice or 34 min for
young female mice with S&T vascular micro-clamps (FST 18055-03,
Fine Science Tools). Of note, the survival experiment was performed as
a bilateral clamping of both pedicles for 35 minutes. A darkening of the
kidney was observed to ensure that the pedicle had been successfully
clamped.

Hepatic ischemia-reperfusion injury

Liver IRI was performed as described previously™. Briefly, mice were
anesthetized with 3% isoflurane in 2L O, and kept at 37 °C with an
electrical heating pad. Following a 2-cm abdominal incision, the vas-
cular pedicles of the median lobe and left lateral lobe were identified
under a microscope. An atraumatic S&T vascular micro-clamp (FST
18055-03, Fine Science Tools) was placed across the portal vein,
hepatic artery, and bile duct just above the branching to the right
lateral lobe for 35 minutes. Blanching of the lobes was observed to
ensure that the artery had been successfully clamped. After 35 minutes
of ischemia, the clamp was removed.

Postoperative management

The abdominal incision was sutured with 6-O Prolene, and surgical
staples were used to close the skin (427631, Aichele Medico AG). All
mice received subcutaneous buprenorphine (0.05 mg/kg Temgesic,
Reckitt Benckiser AG, Switzerland) 15 minutes before surgery and —6-
8 hours following surgery. During the night, mice received para-
cetamol (2 mg/ml Dafalgan, UPSA) and buprenorphine (0.009 mg/ml
Temgesic, Reckitt Benckiser AG, Switzerland) in the drinking water for
48 hours postoperatively. During the day, mice received subcutaneous
buprenorphine injection in the morning and evening for 48 hours
postoperatively. Blood samples from the tail vein were taken pre-
operatively, and at 3 h and 24 h postoperatively using a capillary tube.
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Serum was separated by centrifugation (2000g for 20 minutes at 4 °C)
and flash-frozen in liquid nitrogen before being stored at -80 °C. On
the second- or third-day following surgery for renal IRI and 24 h fol-
lowing surgery for hepatic IRI, mice were euthanized under anesthesia
via cervical dislocation, followed by exsanguination, and perfused with
PBS. Of note, the surviving mice involved in the survival experiment
were euthanized after 8 days. The remaining kidney was collected and
cut in half transversally. One half was flash-frozen in liquid nitrogen,
and the other was fixed in 10% neutral buffered formalin and paraffin-
embedded for histology.

FGF21 treatment

Mouse recombinant FGF21 (Cat# 450-56, Peprotech) was dissolved
and diluted in sterile distilled water to a final dosage of 1 mg/kg/day.
The filled 1007D Alzet osmotic minipump was presoaked for 24 hours
in NaCl at 37°C in a dry incubator. Mice were anesthetized with 3%
isoflurane in 2L 02 and kept at 37 °C with an electrical heating pad. A
1-cm incision was made in the skin of the upper back/neck to implant
the sterile, preloaded minipump. 5-0 Prolene surgical thread was used
to stitch the wound. Mice received paracetamol (2 mg/ml Dafalgan,
UPSA) in the drinking water for 48 hours postoperatively.

In-vivo inhibition of endogenous H,S production

Inhibition of endogenous H,S production was achieved by injecting
the mice with 100 pL of a stock solution of 1 mg/mL propargylglycine
(PAG) and 1 mg/mL amino-oxyacetic acid (AOAA) in physiologic saline,
or saline vehicle, as previously described". Mice were injected intra-
peritoneally (i.p.) once a day for three days prior to the kidney IRI
surgery.

Metabolic cages

Throughout the calorimetry studies, a standard 12-hour light/dark
cycle was maintained. Prior to data collection, all animals were
weighed and acclimated to either normal chow or a low protein diet
(LP) for the first three days, with or without a 50% sucrose drink. After
24 hours of acclimatization, mice were placed in metabolic cages, and
measurements began for two consecutive days. At the conclusion of
the measurements, the mice were weighed again. Energy expenditure
was determined using a computer-controlled indirect calorimetry
system (PromethionH, Sable Systems, Las Vegas, NV) as published®’.
Animals had unlimited access to food and water throughout the study.
XYZ beam arrays (BXYZ-R, Sable Systems, Las Vegas, NV) were used to
record ambulatory activity and position, and respiratory gases were
measured using an integrated fuel cell oxygen analyzer, a spectro-
photometric CO, analyzer, and a capacitive water vapor partial pres-
sure analyzer (GA3, Sable Systems, Las Vegas, NV). Oxygen
consumption and CO, production were monitored for 1-minute at
5-minute intervals. The respiratory quotient (RQ) was determined by
dividing CO, production by O, consumption. The Weir equation was
used to  calculate energy  expenditure: Kcal/hr =
60%(0.003941*VO, + 0.001106*VCO,)°. MetaScreen v. 2.5 was used to
coordinate data acquisition and instrument control, and raw data was
processed using ExpeData v.1.8.5 (Sable Systems, Las Vegas, NV) viaan
analysis macro that detailed all aspects of data transformation (avail-
able on request from the corresponding author).

Glomerular filtration rate measurement

FITC-sinistrin clearance was utilized to determine the glomerular fil-
tration rate. Mice were anesthetized with isoflurane and subsequently
had their right flanks shaved. After 2 minutes of basal recording, a mini-
camera was connected to the flank, and a 0.35 g/kg solution of FITC-
sinistin (Fresenius-Kebi) was injected intravenously into the tail vein.
The mice were anesthetized again with isoflurane, and the camera was
removed after 90 minutes of recording. MP&D lab software (Man-
nheim Pharma & Diagnostics) was used to analyze the FITC-sinistrin

data, and GFR was estimated as published®. The GFR was then nor-
malized to control and represented in mL/min/kg of body weight.

Body composition (EchoMRI)

Body composition (EchoMRI-I00H, Echo Medical System, Houston,
TX) was obtained on awake mice contained in a thin-walled plastic
cylinder with a cylindrical plastic insert to restrict their movement.
Mice were exposed to a low-intensity electromagnetic field for a brief
period, and their fat and lean mass were determined.

Histological analysis

3-micron sections from paraffin-embedded half kidneys were stained
with PAS (Periodic Acid Schiff) and paraffin-embedded livers with H&E.
The kidneys were scored histologically using a modified Goujon
scoring method”*7%. This score was created to limit the observer’s
subjectivity and to evaluate the entire section containing hetero-
geneous damage. The kidneys were imaged at a magnification of 20x
using a Zeiss Axioscan Z.1 slide scanner (Carl Zeiss). The entire scanned
section was analyzed using Zen Blue 3.4 software (Carl Zeiss) and
scored on five parameters: 1) glomeruli integrity, 2) tubule dilatation,
3) brush border integrity, 4) debris in the tubules, and 5) medulla
integrity in the cortico-medullar area. Within each category, each item
was graded on a scale of O to 3, with O representing “no damage” and 3
representing “extremely damaged.” Briefly, to assess glomerulus
integrity, more than ten glomeruli were randomly selected from the
section and assigned a score of O to 3 on a scale of O to 3. The same
procedure was followed in the remaining categories. After that, the
score for each category was converted to a percentage of damage. A
final score between O and 5 was assigned based on this percentage of
damage: O represents a percentage of damage between 0% and 15%; 1
represents a percentage of damage between 15% and 30%; 2 represents
a percentage of damage between 30% and 45 percent; 3 represents a
percentage of damage between 45 percent and 60%; 4 represents a
percentage of damage greater than 60%; and 5 represents a percen-
tage of damage greater than 75%. On a scale of O to 25, the final score
was the sum of the scores for each category.

Necrosis quantification
PAS-stained Entire scanned sections of kidneys were exported (50%)
using Zen Blue 3.4 software (Carl Zeiss). Necrotic areas were identified
using the following criteria: tubules with large debris, large dilation,
and tubular cell loss; tubules with cast formation; and tubule loss. The
pelvis region has been excluded from quantification.

The necrotic area of digitally highlighted images was measured by
calculating the highlighted area fraction using Image) (v1.54r) and
defined as the necrotic area divided by the total kidney area.

Immunohistochemistry staining

4HNE (MAB3249, R&D Systems) immunohistochemistry was per-
formed on paraffin sections”. After rehydration and antigen retrieval
(TRIS-EDTA buffer, pH 9, 1minute in an electric pressure cooker
autocuiser Instant Pot duo 60 under high pressure), immunostaining
was performed using the EnVision®+ Dual Link System-HRP (DAB +)
according to the manufacturer’s instructions. Slides were further
counterstained with hematoxylin. The positive immunostaining area
was quantified using the Fiji (Image) 1.54r) software and normalized to
the total area of the tissue by two independent observers blinded to
the conditions.

Reverse transcription-quantitative polymerase chain reaction
(RT-qPCR)

Mouse RNA was isolated using the TriPureTM method (Roche, Swit-
zerland) from 30-50 mg of kidney, liver, and muscle powder, followed
by complementary DNA (cDNA) synthesis using the Prime Script RT
reagent kit (Takara). cDNA samples were loaded into a 384-well plate
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format (Applied Biosystems, ThermoFischer Scientific AG, Switzer-
land) using SYBR Green reagent-based PCR chemistry (10-] reaction
volume containing specific forward and reverse primers). The quanti-
tative PCR program was run on a ViiA 7 Real-Time PCR System,
according to the manufacturer’s recommendations (Applied Biosys-
tems, ThermoFischer Scientific AG, Switzerland). RPL27 was chosen as
the housekeeping gene’™. Ct values for candidate and housekeeping
genes were determined, and standard curves for each gene were cal-
culated using serial dilutions. The relative standard curve method was
used to determine the relative level of expression of genes. For gene
encoding, the primers listed in supplementary Table S1 were used, and
analysis was performed using the QuantStudioTM 1.3 software (Ther-
moFischer Scientific AG, Switzerland).

Blood analysis

Serum was isolated from blood taken from the tail vein pre-operatively
and on days 1, 2, and 3 postoperatively by centrifugation (2000g for
20 minutes at 4 °C). Triglyceride concentration was determined using
a Sigma kit (Cat# TRO100). Urea was measured as published” and
using the Jung colorimetric method using a reactive solution con-
taining 100 mg/l o-Phthalaldehyde (32800, Serva), 300 mg/l N-(I-
naphthyl) ethylenediamine dihydrochloride (222488, Sigma), 2.5 mol/l
sulfuric acid, 2.5 g/l boric acid, and 0,003 % Brij 35. After 30 minutes in
the dark and at room temperature, the response was measured at
505 nm with a Synergy Mx micro-plate reader (BioTek Instruments
(Switzerland) GmbH). The serum creatinine level was determined
using the mouse Creatinine Assay Kit (80350, Crystal Chem INC).
Mouse FGF-21 (MF2100, R&D Systems) levels were determined using
commercial ELISA kits using the manufacturer’s recommended pro-
tocol. The concentrations of AST (TR70121) and ALT (TR71121) were
determined according to the manufacturer’s instructions (Thermo-
Scientific, Middletown, VA).

Lead acetate assay

H,S production was quantified in the kidney and liver, as previously
published”", Briefly, tissue powder was homogenized in passive
lysis buffer (PLB E1941, Promega) and the protein concentration was
determined using the ThermoFisher Pierce™ BCA Protein Assay Kit
(Cat# 23227). In a 96-well plate covered with Whatmann paper
soaked in 20mM lead acetate, samples were diluted (80 pg of
protein in 80 L of PBS) and combined with 20 L of reaction mix
containing PBS, 1 mM Pyridoxal 5-phosphate (PLP) (82870, Sigma),
and 10 mM Cysteine (c7352, Sigma). The plate was then incubated in
adry incubator at 37 °C for 2-4 hours until lead sulfide darkening of
the paper occurred.

Response surfaces analysis

All data were analyzed in R v.4.2.2. Data involving response surfaces
were analyzed using Generalized Additive Model (GAM) and pre-
viously described®. Briefly, GAMs with thin-plate splines were used to
model the responses to the macronutrient composition of the diet.
GAMs were fitted using the mgev tool of the R programming language
(v1.9.0). The effects of macronutrients were divided into main effects
and interactions. The response included post-renal IRl serum urea
levels.

NHANES analysis

Data from the US Department of Agriculture National Health and
Nutrition Examination Survey were analyzed as previously described”.
Briefly, NHANES XPT data files were downloaded from the CDC
NHANES website for surveys carried out from 2005-2012. The data
were imported into R using the sasxport.get function from the Hmisc
package. Individuals who were not pregnant, over the age of 18 years,
and had two complete 24-hour dietary recalls were included. As no
gender-differences were observed, genders were pooled for the final

analysis presented in the manuscript. For nutrient analyses, values
from each individual's two 24-hour recalls were averaged.

RNA-sequencing processing and computation

Data preprocessing, statistical computation, and visualization were
performed using the Omics Playground version v2.8.107°, Data
preprocessing included filtering genes based on variance, expres-
sion across the samples, and missing values. Only protein-coding
genes on non-sexual chromosomes were included in the analysis.
Batch effects were identified by an F-test for the first three principal
components. Batch correction was performed for explicit batch
variables or unwanted covariates. Parameters with a correlation
r>0.3 with any of the variables of interest (i.e., the model para-
meters) were omitted from the regression. Correction was per-
formed by regressing the covariates using the ‘removeBatchEffect’
function in the limma R/Bioconductor package. For gene-level
testing and identification of differentially expressed genes (DEG),
statistical significance was assessed using two independent statis-
tical methods: voom and limma-no-trend. Only genes that were
significant using both methods were included. Gene expression was
normalized using logCPM normalization in the edgeR R/Bio-
conductor package. For slope analysis, normalized genes were
correlated with the mean protein intake of each group (Ctrl, HC in
both regular and low protein diets) to identify protein dilution-
driven genes. 409 genes with a correlation r2 > 0.6 and a slope > 9
were selected. Bonferroni corrections were applied to multiple
Pearson correlations.

WGCNA analysis

Raw counts were normalized by performing a variance-stabilizing
transformation using the DESeq2 package in R (v1.40.2,). Genes with
counts <15 in more than 75% of samples were filtered out. The
variance-stabilizing transformed gene expressions were subjected
to WGCNA based on the WGCNA package in R (v1.72-1)”7. WGCNA
parameters were set as: no missing data expression; soft thresh-
old =7 (estimate value); adjacency ="signed hybrid”; TOMType ="
signed”; merge cut height = 0.4. Function annotations of the genes
were obtained using the org.Mm.eg.db package in R (v3.15). The
correlation of eigengenes with external traits (FGF21 levels) was
performed using ‘bicor’ biweight midcorrelation to obtain the most
significant and robust associations. Intramodular analysis identified
genes with high gene-module membership and gene-trait sig-
nificance. The ClusterProfiler package in R (v4.8.2) and STRING v1L.5
(Search Tool for the Retrieval of Interacting Genes) was used for
functional enrichment. Protein-Protein Interactions network was
performed with the module/cluster analysis using the Markov
Cluster Algorithm (MCL) in Cytoscape’.16,377 detected genes were
used as the enrichment background. Terms with a False Discovery
Rate (FDR) < 0.05 were included.

Transcription factor analysis

Transcription factor binding motifs, which are enriched in the genomic
regions of a query gene set, were determined using the iRegulon plu-
gin (version 1.3) in Cytoscape. The cis-regulatory control elements of
genes from each module associated with serum FGF21 were used in the
iRegulon analysis. We set: identity between orthologous genes > 0.01,
FDR on motif similarity < 0.001, and TF motifs with a normalized
enrichment score (NES) > 3.5, ranking option for Motif collection :10 K
(9713 PWMs), and a putative regulatory region of 20kb centered
around TSS (7 species). For gene expression analysis the logCPM
normalized genes with non-missing values and a gene-module sig-
nificance > 0.6 or <-0.6 with serum FGF21 levels, as well as the top
positive and negative slopes from the gene expression-protein intake
association, were selected. Gene expression of selected genes under-
went a z-transformation, and the top genes from each module were
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used for the heatmaps using pheatmap in R (v1.0.12). RNA
sequencing publicly available data of liver of the Fgf2l transgenic
mice (GSE39313)* and protein restriction diet (SRA accession
PRJNA851959)* were analyzed following the same pipeline.

Quantification, statistical analysis and artwork

All experiments adhered to the ARRIVE guidelines and followed
strict randomization. All experiments and data analysis were
conducted in a blind manner using coded tags rather than the
actual group name. A power analysis was performed prior to the
study to estimate sample-size. We hypothesized that HC would
reduce IR injury by 50%. Using an SD at + 30% for the surgery and
considering a power at 0.8, we calculated that n = 6 animals/group
was necessary to validate a significant effect of the carbo-loading.
Animals with pre-existing conditions (malocclusion, injury,
abnormal weight) were not operated or excluded from the
experiments upon discovery during dissection (kidney disease,
tumor etc.). All experiments were analyzed using Prism 9.5.1
(GraphPad Software, USA). Data were presented as mean + SD and
statistical significance was evaluated using Student’s t test, one- or
two-way ANOVA and multiple comparisons were analyzed using
Tukey’s and Sidak’s post-hoc test. Correlation analyses were
determined using Linear Regression Test. A P value inferior or
equal to 0.05 was defined as statistically significant. Correlation
analysis were determined using Linear Regression Test. A P value
inferior or equal to 0.05 was defined as statistically significant.
Artworks in figures SIA and S9 were created with BioRender.com
(Academic License Terms, www.biorender.com).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All custom scripts are available on Figshare or at https://github.com/
Longchamp-Lab/agius-et-al-nature-comm-2023. All other relevant data
are available from the corresponding author on request. All data from
Department of Agriculture National Health and Nutrition Examination
Survey are available at https://www.cdc.gov/nchs/nhanes/.

The publicly available sequencing data generated in this study
have been deposited in the National Center for Biotechnology Infor-
mation Gene Expression Omnibus (GEO) and are accessible through
the GEO Series accession number GSE39313 and through SRA acces-
sion PRJNA851959.
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d. Representative cross sections cf 4HNE-stained kidneys (left; DAB; scale bar 100pm} and
percentage area of reactive oxygen species 4HNE staining (right) in kidney at day 2 post-
renal IRI.

e. Serum urea levels at the indicated time post-renal IRI after one week of preconditioning
with control {Ctrl) or 50% sucrose drink (HC).

f. Serum urea levels at the indicated time post-renal IRI after one week of preconditioning
with control {Ctrl) or 50% sucrose drink (HC).

*p values for a. were calculated with unpaired two-tailed T-test, **p < 0.01. In b-d,

experiments were carried out in 10-weeks old male mice; in g, in 10-weeks old female mice ;

in f, in 22-months old male mice. Sample sizes: (a—d), n = 8 for all conditions. Data in all

panels are shown as mean £ SD. See also Fig. 1
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g. Body weight at the indicated time of mice given ad libitum access to water (Ctrl) or
50% sucrese drink (HC).

h. Total calorie intake {(normalized by bady weight) at the indicated time of mice and per
macronutrient (right; protein, carbchydralte, fat).

*p values for c, e, T, h were calculated with two-way repeated measures (RM) ANOVA

with Geisser-Greenhcuse correction, *p < 0.001 *™p < 0.0001. In a-b, experiments

were carried out in 10-weeks old male mice; in ¢-e, in 10-weeks old female mice ; in -h,

in 22-months old male mice. Sample sizes: (a), n = 6 -7 for 10-week-old female mice; (b},

n = 6-7 for 22-month-ald male mice; (c—e), n = 6-7 for 10-week-old; (f~h}, n = 8 for 22-

month-old male mice in all conditions. Data in all panels are shown as mean + SD. See

also Fig. 2 and 2 and Supplementary Data Fig.3.
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mice. Sample sizes: (b—d), n =6 in all conditions; (e—h}, n = & in all cenditions. Data in all

panels are shown as mean + SD. See also Fig.2 and Supplementary Data Fig.2.
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replicates; (d), n=3 for all conditions with 2 technical replicates; (c}, n=4 for all conditions
with 2 technical replicates; (f—g), n=8 for all cenditions. Data in all panels are shown as

mean + SD. See also Fig. 3 and3 and Supplementary Data Fig.5.
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e. VOz consumption over time (left), VO= (AUC; right) and (f) VCO2 consumption over
time (left), VCO: (AUC; right) after 6-7 days of preconditicning with control or low
protein diet (LP) with control (Ctrl) or 50% sucrose drink (HC). Each light/dark bar
represents a 12-hour duration.

g. Energy expenditure after one week of preconditioning with the indicated diet.

h. Representative sections of H&E-stained inguinal white adipose tissue (IWAT, scale
bar 100pm) after one week of preconditioning with the indicated diet.

Relative Ucp1 mRNA levels in the brown adipose tissue (BAT) and (j} in the iWAT
after one week of preconditioning with the indicated diet.

*p values of a-¢ were calculated with one-way ANQVA, d with two-way RM ANOVA with

Geisser-Greenhouse correction and e-j with two-way ANOVA followed by a Tukey’s post

hoc analysis, **p < 0.01 ***p < 0.001 ***p < 0.0001. In a and d-i, experiments were

carried out in 10-weeks old male mice; in b, in 10-weeks old female mice ; in ¢, in 22-

months old male mice. Sample sizes: (a-b), n=8, (c}; n=32 for the kidney, n= 24 for the

liver, n=22 for the gastrocnemius, n=48 for the iIWAT; (d), n=4 for all conditions; (e—j}, n=6
for all conditions. Data in all panels are shown as mean + SD. See also Fig.3 and

Supplementary Data Fig.4
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*p values for d. were calculated with two-way RM ANOVA with Geisser-Greenhouse
correction and f. with two-way ANOVA followed by a Sidak’s post hoc analysis, *p < 0.05
**p < 0.01 **p < 0.001. In all panels, experiments were carried out in 10-weeks old male
mice. Sample sizes: (a-d), n = 8-22, n=18 for FGF21"T Ctrl, n= 12 for FGF21%T HC, n=
22 FGF21%? Cirl, n= 8 for FGF21%® HC; (e—g), n= 6-8, n= 8 Ctrl and n= 6 FGF21 treated

group. Data in all panels are shown as mean + SD. See also Fig.4 and 5.
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e. Upset plot of significant genes positively (left) and negatively (right) correlated with
protein dilution intake, identified from the slocpe > 9 and r2 > 0.7. The plot displays the
distribution of the significant GOBP term in the different intersecting sets.

See also Fig.6 and Supplementary Data Fig.7
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product

Target Specie Forward Sequence 5'-3" Reverse Sequence 5'-3' size
Krt20 mu’;‘é‘jlus ACAGTTCGAGAGACAGAGTCAA CTGAGGTGGGACTGCAACTC 138
Rpl27a murgéﬁlus TGATGTTGTTCGATCAGGCT ATTTGGCCTTCACGATGACA 80
Cth mur;«g:lus TCCCTTCATCATGCTGAGACC GTCATGATTGCCGGAAGCTC 104
Fgf21 mur:cl;ﬁlu s CACCGCAGTCCAGAAAGTCT AGAGCTCCATCTGGCTGTTG 110
Cyp2b9 mu’;‘gjlus CTGCCCTTCTCCACAGGAAA CTTTGGAGCAACAGGGCTTG 120
Fmo3 mu’;‘é‘jlus GCCATGTAGCTCAGAAGGTCA AGATGGCGGTGGGTAAGTTG 144
Mt1 murgg:lus CTCCGTAGCTCCAGCTTCAC AGGAGCAGCAGCTCTTCTTG 137
Nt5e murggjlus GCAGCATTCCTGAAGATGCG CTCCCGAGTTCCTGGGTAGA 88
Cyp2b10 mur:cl;ﬁlus GTACACAGACCGTCAGTTCTT AGAGAAGAGCTCAAACATCTGG 97
Cyp17a1 mu’;‘é‘jlus GGAGAGTTTGCCATCCCGAA TCTAAGAAGCGCTCAGGCAT 113
lgfbp1 mu’;‘é‘jlus TTTATCACAGCAAACAGTGTGAGA  CATGGGTAGACACACCAGCAG 70
Vidir murggjlus GGCTGGATTCCAAGTTGCAC TCCAGTAGACGCGATCCTCA 132
Lpl e GCGTAGTTCCAGCAGCAAAG AGAAATCTCTTCCCGCGTCTG 142
Tmem176a mu’;‘gjlus TGCCTCCAGGGACAGACGAT AGTTTGGCCAGAGCAGACTC 125
Hamp2 mu’;‘é‘jlus AGGGCAGACATTGCGATCC ACAGCACTGACAGCAGAATC 84
Ucp1 s CGGGCATTCAGAGGCAAATC CCGAGAGAGGCAGGTGTTTC 103
Hmgb murggjlus ACCTATATCCCTCCCAAAGGG GAGGAAGAAGGCCGAAGGAG 84
SIc22a26 mus CTTATACCCACAAGGTGGCTGA ACAACCTCCATGGTTAGGACAT 143

musculus

Supplementary Data Table 1. Primers for qPCR.
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CONCLUSIONS

This work investigated translational nutritional and pharmacological strategies to limit

IRI during transplantation and surgical stress.

We used in vivo models such as IRI in mice, ex vivo organ perfusion, and clinical data
set. We demonstrated that 1) SNMP improves energy metabolism by increasing ATP
production and minimizes IRI; 2) ATP predicts immediate graft function-2 and can be used as
a biomarker of viability during ex-vivo perfusion. pMRSI allows great sensitivity, spatial
resolution, and short computing time; 3) SNMP does not necessitate a Hb-based oxygen
carrier, reducing the cost and logistics by allowing passive oxygenation and simpler machine
perfusion; 4) H2S administration before and during HMP do not improve IRI in a translational
porcine model of DCD; 5) Carbohydrate loading protects from acute surgical stress in mice
models of IRI, through protein dilution; 6) FGF21 is a key mediator for surgical stress

resistance given by carbohydrate loading.

In Chapter 1, we tested a new clinical approach, using non-invasive pMRS], to
evaluate energy metabolism in DCD grafts during oxygenated and non-oxygenated
hypothermic ex-vivo perfusion (HMP) and SNMP using a porcine model of auto-
transplantation. We have used pMRSI to measure ATP production and graft perfusion quality.
In this study, we found that kidney graft perfusion at 22 °C with an oxygenated MP-Belzer
solution, without oxygen carrier, increased ATP production and minimized IRI during
transplantation compared with perfusion at 4 °C. Similarly to normothermic perfusion (37°C),
the benefits of SNMP were linked to an increase in fatty acid metabolism and oxidative
phosphorylation3. Consistent with others, SNMP is also shown to raise reduced glutathione
levels and glutathione reductase activity, improving antioxidant mechanisms*. We found that
kidneys perfused at 22°C have an improved mitochondrial ATP production, consistent with
our hypothesis that at 22°C, kidneys are metabolically active>6. We also observed an increase
in PME and ATP levels during the first 10 h of perfusion. However, after 10 h of perfusion at
22 °C, the ATP level gradually declined to reach 0 mmol/L at 42 h of perfusion. ATP levels
decreased during cold storage in the kidney® and liver” and correlated with the degree of
injury. In humans, ATP predicted immediate graft function!?, and ATP is often used as a
viability marker during ischemia®®. Consequently, long-term perfusion at 22 °C using MP-
Belzer solution might not be viable. Interestingly, in cold-stored organs, it has also been
shown that gradual rewarming from hypothermia to normothermia before transplantation

improves kidney function1011 highlighting the importance of restoring metabolism before
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implantation. In addition, the simplicity of SNMP, without the need for a heating unit or
oxygen carrier, could be easily used in a clinical setting and lower the costs. Thus, SNMP at
22°C could translate into greater utilization of kidney allograft, which should be tested in

clinical trials.

Chapter 2 investigates the use of HzS to limit IRI in a translational porcine ex vivo HMP
model and autotransplantation. The effect of H2S was evaluated in both kidneys that were
retrieved immediately and after 60 min of WI to mimic circulatory arrest during DCD
procurement. To increase the translational value of our study, NaHS was given in relevant
clinical situations, including ex vivo perfusion only or concomitant to heparin administration
before WI. We found that 100 uM NaHS administration HMP in kidney porcine graft did not
improve energy metabolism, kidney perfusion, or histologic damages upon transplantation.
These results could be due to different reasons. 1) The metabolic depressant property of Hz2S
appears to depend on the animal size. Our group and others previously demonstrated that
NaHS protects against IRI in several models of warm tissue ischemia and during cold
preservation before transplantation in rodents812-14, However, we could not replicate these
findings here in an adult pig model (approximately animal weight 35 kg) during cold storage,
followed by in vivo reperfusion or transplantation. In fact, in larger species (swine, sheep),
numerous authors, including us, failed to confirm any H2S-related reduction in metabolic
activity, regardless of the administration protocol?>. 2) NaHS rapidly releases HzS, the effect
occurring within seconds®8. Indeed, NaHS dissociates to Na* and HS-and then binds partially to
H* to form undissociated H2S. Although HzS levels were not measured in this study, NaHS
rapid and uncontrolled delivery of H2S could contribute to the absence of an effect.
Morpholin-4-ium-4-methoxyphenyl phosphinodithioate (GYY4137) or the prodrug AP39
might be more attractive alternatives, as it releases HzS slowly and steadily at physiological
pH and temperature¢-18, Importantly, in DCD porcine kidneys, SNMP (21°C) with autologous
blood and AP39 improved urine output and reduced apoptosis compared with SCS or SNMP
alone for 4 h1°. 3) HMP at 4°C is responsible for decreasing cellular metabolism to
approximately 5% of its physiological level?0. Additionally, the preservation solution reduces
cellular metabolism and provides cytoprotection. As the cellular respiration rate is
proportional to the surrounding temperature?l, the suppressing effects of HzS on
mitochondrial respiration and OxPhos might be confounded with the effect of the cold
temperature22. In conclusion, perfusion of porcine kidneys with NaHS did not improve

preservation nor reduced ischemia-reperfusion injury. Perfusion of organs with alternative
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H2S donors, or at different temperatures, should be tested to determine if H2S can improve

post-transplant graft function and patient survival.

In Chapter 3, we examined the effects of ad-libitum access to carbohydrate loading
drinks on food intake and IRI and the mechanisms underlying the benefits. We demonstrate
that 1 week of carbohydrate loading before surgery induces protein dilution in mice, which
confers consistent protection from acute surgical stress via FGF21. We not only found that
short-term carbohydrate loading is sufficient to induce protein dilution but also demonstrated
that these benefits can be achieved under hypercaloric conditions. We are among the first to
establish a dietary intervention that protects from surgical stress without inducing body
weight reduction. One potential benefit of carbohydrate loading is that it does not involve
forced food restriction but promotes an alternative energy source and spontaneous
macronutrient dilution. Recent studies indicated that if taken in liquid form, carbohydrate
promotes total daily calorie intake by approximately 20% in humans, which can be used to
counteract malnutrition in elderly patients23. The type of carbohydrate is an additional
significant determinant. Here, carbohydrate loading consisted of an ad libitum solution of
50% sucrose in water. Most murine dietary studies that replaced protein with carbohydrates
utilized complex carbohydrates derived from starch2425, While we did not study the
interactions between carbohydrate sources here, one of the few studies testing the effects of
carbohydrate composition during protein dilution showed that a sucrose-rich diet improved
metabolic parameters compared to a 50:50 mixture of glucose and fructoseZ2¢. Interestingly,
studies assessing the effects of starch in the diet demonstrated that a corn-based diet lower
insulin and glucose concentrations, caloric intake, and weight gain compared with a rice-

based diet?”.

Additionally, our data supports that FGF21 is the major molecular mediator of these
benefits. We propose that HC-mediated protection from IRI functions as a para- and endocrine
mechanism involving hepatic secretion of FGF21, consistent with a previous report28. In line
with previous studies, we showed that FGF21 signaling increases energy expenditure and
thermogenesis2?-31 and regulates adaptive, homeostatic changes in metabolism and feeding
behavior2832, While mechanisms by which FGF21 mediates the benefits of carbohydrate
loading/protein restriction in mitigating IRI remain unclear, our investigations into
regulatory networks and transcription factors suggest the importance of the stress response
proteins ATF3/4 and the antioxidant regulator NRF2. Additionally, regulatory network
analysis revealed that genes involved in cell catabolic, autophagic, and renal development
processes were downregulated. In contrast, protein synthesis and maturation and cell
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responsiveness to external stimuli increased after 1 week of carbohydrate loading. Like most
physiological responses, the injury response is a dynamic process that follows a specific,
balancing pro- and anti-signaling process. For instance, although interleukin 6 functions as a
pro-inflammatory cytokine in the early postoperative period, it can also exert anti-
inflammatory effects by attenuating TNF-a and IL-1 activity while promoting the release of IL-
1Ra and soluble TNF receptors33.34, Moreover, carbohydrate loading appears to inhibit
catabolism processes. From an evolutionary standpoint, promoting catabolism in response to
stress was developed as a survival mechanism, allowing injured animals to sustain themselves
until their injuries were healed3>. Therefore, inhibiting canonical cell stress response and
promoting alternative signaling cascade may play a significant role in carbohydrate loading
protection against IR], even though additional research is necessary to elucidate these
mechanisms. In conclusion, in ad libitum-fed mice, carbohydrate loading promotes dietary
protein restriction, the adaptive stress response, and resilience to surgical stress. ERAS
approaches currently promote short-term carbohydrate loading drinks to improve
postoperative recovery without clear mechanistic explanations. Here, we identified FGF21 as
a key molecular mediator of carbohydrate loading. These findings have broad implications for
our fundamental understanding of the impact of carbohydrate and protein-carbohydrate
interactions on metabolic health. Finally, our results provide a rationale for short-term
carbohydrate loading or FGF21-based therapeutics during acute stress, including major

surgery, for which there is now no widely accepted risk mitigation strategy.
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FUTURE DIRECTIONS

Biomarkers of organ viability prior to transplantation

Since the increased usage of DCD organs, machine perfusions strategies have emerged
to prove organ quality and viability assessment. Several tools are used to predict graft
viability before transplantation. These include stratification of donors according to clinical
parameters, risk scores, or histological donor biopsy scores, but we lack quantitative and
objective markers3®. In the last decade, much effort, including ours, has been made to find
non-invasive biomarkers capable of predicting short- and long-term outcomes3”. To that
extent, the increasing use of machine perfusion has provided a new platform for assessing
graft viability. Various markers present in the perfusate, such as glutathione-S-transferase
(GST), N-acetyl--D-glucosaminidase (NAG), and heart-type fatty acid binding protein (H-
FABP), were described as predictors of delayed graft function but not of primary nonfunction
and graft survival3’. Importantly, evidence from our lab and others shows that NMP is a
promising approach for recovering cadaveric organs, especially livers that would otherwise
be rejected from the donor pool38. The ability to repair these livers would significantly expand
the donor pool of organs available for transplantation, alleviating the majority of the shortage
within a few years. However, there is a significant knowledge gap in the pathophysiology of
untransplantable livers. Recent data showed that aerobic metabolism and ATP content were
direct predictors of hepatocyte viability, which can aid the quantitative assessment of donor
organs3?. We aim to develop and test algorithms for assessing organ viability for
transplantation quantitatively and objectively. We hypothesize that the identification prior to
transplant or during normothermic ex-vivo perfusion (NMP) of the (non)functional liver will
create a unique “multi-omics liver viability signature” which can be used to 1) Assess the
condition of the donor organs prior to transplantation surgery, and 2) design new and
effective therapeutic molecules to repair marginal organs with high clinical translational
value. The heterogeneity of cells released in the perfusion media could be biomarkers of graft
viability and indicators of specific injury mechanisms during organ handling and
transplantation. Using a metabolomic dataset from 40 human livers undergoing NMP before
transplantation, we have identified trans-urocanate as a strong predictor of early allograft

dysfunction (EAD, Figure 6).
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Figure 7. [dentification of a metabolic signature of EAD. (A-B) Volcano plot of log2 fold
changes in hepatic metabolites versus non-EAD of EAD prior (A) and after transplantation (B). (C),
trans-urocanate receiver operating characteristic curve (ROC). (D), trans-urocanate level in EAD versus
non-EAD liver.

In this project, we propose to combine 1) metabolomics analysis including glycolytic,
TCA, and PPP intermediate using UHPLC-MS/MS analysis, 2) bulk RNA-sequencing and 3)
DNA methylation profiling in available liver biopsies taken during clinical liver transplant,
prior and after NMP, to map the signaling networks and pathways that govern metabolism
and determine its predictive value for EAD. Also, we will perform single-cell RNA sequencing
of cells released from human liver graft during NMP prior to transplantation to identify
biomarkers. We expect to unravel the composition of different cell types and functions of the

cell released during NMP to predict EAD and one-year liver function.

Improving organ preservation

Beyond short term perfusion and organ assessment, extending and enhancing organ
preservation could potentially improve organ sharing, reduce the need for emergent
surgeries, and improve allocation. Recently, organ preservation at sub-zero temperatures in
the absence of ice, termed supercooling, resulted in a tripling of the preservation duration of
mammalian livers (3 days in rodents and 27 h in humans)#4%-42, Despite the long-standing
challenges cryopreservation scientists face in managing phase changes in water, the
preservation media's ability to remain in a liquid state has proven to be an effective
solution*344, However, it is essential to note that the ice-free supercooled state is inherently
thermodynamically unstable and susceptible to spontaneous ice formation, which poses a
greater risk of harm than equilibrium freezing. Indeed, ice formation is proven to cause
extensive structural damage that prevents revascularization and diminishes the attachment

and integrity of constituent cells*>. The limitation of supercooling is intrinsically linked to the
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extent of metabolic stasis that can be achieved, as the risk of ice formation rises with
decreasing storage temperature. Taken together, alternative strategies will be required to
reach lower storage temperatures and longer preservation durations. The largely empirical
approach to organ cryopreservation that has dominated for several decades were
cryoprotective agent (CPA) cocktails, storage conditions, and pre- and post-thaw perfusion
protocols. Freeze tolerance is an effective strategy utilized by multiple organisms in nature*®.
Inspired by the wood frogs (Rana sylvatica) that can survive in a frozen state at -6 °C to

-16 °C for weeks*748, freeze tolerance capitalizes on both ice nucleating agents (INA) and
endogenous CPAs to orchestrate freezing and prevent injurious intracellular ice formation.
Adopting some of these learnings, recent protocols for freezing whole organs (from rat to pig,
livers, kidneys, heart or limbs)#> that enter high subzero temperatures ranging from -10 °C to
-15 °C for durations of up to 5 days in the presence of ice, termed as Partial Freezing (PF)
emerged4’. Here, we will aim to compare the storage efficiency of kidneys of PF to SCS for
durations up to 30 days. Inspired by the wood frogs and other research done on liver#?, we
propose to fine-tune a cocktail of CPAs to optimize the storage solution for kidney
preservation. Our preliminary data already suggests that 10 days of PF improves post-
reperfusion/transplantation perfusion quality, as well as tissue function and metabolism
compared to SCS, as evidenced by arterial flow and resistance, as well as oxygen consumption

and lactate concentrations closer to those of a fresh kidney than SCS (Figure 7).
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Figure 8. Partial Freezing tends to improve kidney quality. (A) Arterial flow during NMP of
kidney stored 2 days SCS, 10 days SCS, 10 days PF and fresh organ. (B) Arterial resistance during NMP
of kidney stored in the indicated conditions. (C) Oxygen consumption resistance during NMP of kidney
stored in the indicated conditions. (D) Lactate production during NMP of kidney stored in the indicated
conditions. n = 1-3 per group, Data in all panels are shown as mean * SD.

Target IGF-1to reduce IRI

Experimental and epidemiological studies indicate that insulin-like growth factor
(IGF1) and its binding proteins play a crucial role in the biology of aging>C. Data from various
studies have shown increased maximal lifespan and stress resistance in several genetic
models of IGF1 deficiency or deletion>%-52, Importantly, DR, by decreasing protein intake,
significantly reduces serum IGF1 concentration while increasing serum corticosteroid
levels>0. Our lab and others have found that IGF1 supplementation abrogates DR’s protective
effect and worsens IRI independently of the metabolic benefits (Figure 8)>3. Interestingly,
inhibition of postreperfusion insulin signaling either pharmacologically, using the PI3K
inhibitor or genetically, with liver-specific Tsc1 KO mice (leading to chronic mTORC1
activation) partially abrogated PR-mediated protection of liver IRI5%. This contrasts with
previous studies showing beneficial effects against myocardial IRI and infarcts when IGF1 was
administered post-operatively55 or in transgenic mouse hearts overexpressing IGF155. IGF1 is
a potent mitogenic growth factor that promotes cell proliferation and differentiation and
inhibits apoptosis®t. The inhibition of the IGF1 pathway causes several cellular and metabolic
adaptations, including downregulation of growth pathways, upregulation of autophagic and

apoptotic pathways, increased resistance to stress, and increased genome stability>?. Here, we
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propose to explore IGF1 as a target to reduce IRI. We aim to study the effects of IGF1 blockade
prior to surgery and IGF1 supplementation post-operatively in mice models of IRI. We will

define IGF1’s therapeutic relevance in preventing and treating surgical stress.

Figure 9. IGF1 supplementation prior to surgery worsens IRI. (A) Body weight at the indicated
time of mice given ad libitum access to low protein (LP) with sucrose 50% solution drink (HC) treated
intraperitoneally with a NaCl (Veh) or rhIGF1 (IGF1, 4mg/kg/day). (B) Food and water (C) intake
(normalized by body weight) of mice in the indicated group. (D) Serum mIGF1 levels and serum insulin
(E) of mice preconditioned for 1 week with Veh or IGF1. (F) Glycemia of mice 2h prior to surgery. (G)
Serum triglyceride levels of mice in the indicated group. (H) Serum urea levels and AUC (I) at the
indicated time post-renal IRI. (J) Clinical fitness score at the indicated time post-renal IRI. (K) Relative
Krt20 and Sprr2f mRNA levels at day 2 post-renal IRI of mice treated for 1 week with the indicated
treatment, *p values for D,E,F,G,I,K were calculated with unpaired two-tailed T-tests, *p < 0.05 ***p <
0.001 ****p < 0.0001. n = 6 per group, Data in all panels are shown as mean * SD.

Understand IRI in the context of aging.

Age is a significant predictor of kidney transplant outcome. Elderly recipients had
significantly lower graft and patient survival rates, as well as a significantly higher risk of graft
loss and patient death>?. Furthermore, AKI has been shown to increase the risk of ESRD in

elderly patients585%, Immunosenescence, or the age-related decline in immune functions, has

93



been linked to an increase in the prevalence and severity of infectious diseases and post-
operative complications in the elderly®0. Immunosenescence is defined by reduced cell-
mediated immune function and humoral immune responses. Age-related changes in the
innate immune system coexist with age-dependent defects in T- and B-cell function®?.
Neutrophils, which are major effector cells of the innate immune system, are known to play a
role in the pathogenesis of renal IRI162, Recent research found that IL6 expression was
higher in aged mice's post-ischemic kidneys than in young mice, while TNF alpha and VEGF
expression were lower®3. Importantly, our data and several epidemiological studies have
shown that old mice have a higher sensitivity to IRI (Figure 8) and a higher prevalence of AKI
in elderly dialysis patients, increasing their risk of progression to CKD¢465. In aged kidneys,
changes in hemodynamics, tissue metabolism, and structural changes all contribute to the
development of this sensitivity. Indeed, recent research has revealed that aged kidneys exhibit
altered transcriptomic, hemodynamic, and physiologic behavior both at rest and in response
to renal injuries®®. Furthermore, numerous studies show that late-onset DR has a limited
potential efficacy. Late-onset DR only partially restored age-related declines in superoxide
dismutase, catalase, glutathione peroxidase, glutathione, and elevated levels of lipid

peroxidation in brain and peripheral organs, as well as increased HSP70 expression®’.

In future research, we intend to validate carbohydrate loading benefits and identify the
mechanisms underlying IRI sensitivity in aged mice, utilizing multimodal omics techniques
such as spatial transcriptome analysis. This knowledge will help determine the influence of
surgical stress on older organisms compared to juvenile organisms and provide the first hints

for developing therapeutic approaches for the elderly population.
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Figure 10. Increased sensitivity to IRI in aged compared to young mice. (A) Clinical fitness
score post IRI of 8-week-old young and 22-month-old mice after post-renal IRI consisting in 12
minutes clamping of kidney pedicle. (B) Survival proportion of young and old mice post-renal IRI. (C)
Serum urea and (D) creatinine levels in young and old mice post-renal IRI. (E) Relative Krt20 and
Sprr2f, 2 biomarkers of kidney tubular injuries, in young and old mice post-renal IRI. (F)
Representative cross sections of PAS-stained kidneys with necrotic area digitally highlighted in red
(left; x10 magnification; scale bar 100um) and necrotic tissue area quantification (right) at day 2 post-
renal IRL. (G) Representative cross sections of PAS-stained kidneys (left; x10 magnification; scale bar
100pm) and histological score (right) at day 2 post-renal IRIL. n = 4 per group, *p values for AF,G were
calculated with two-way ANOVA followed by a Tukey’s post hoc analysis, *p < 0.05. Data in all panels
are shown as mean * SD.
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ABSTRACT

Hydrogen sulfide (H:S) produced endogenously by the CTH gene-encoded cystathionine gamma-lyase
protects from renal ischemia-reperfusion injury in preclinical models. Here, we hypothesized that CTH
gene polymorphisms (SNP) and recipient H2S serum levels influence kidney graft outcomes after
transplantation. We included all consecutive recipients of a first kidney transplant in the Swiss Transplant
Cohort Study and with available genotyping. In addition, 192 deceased-donor kidney transplants
recipients were randomly selected to measure baseline serum H:S levels. The primary composite
endpoint was transplantation failure (graft loss, eGFR<30 ml/min/m? or proteinuria>1 g/day) during follow-
up. 604/1243 (48%) patients harbored the CTH *592C>T mutation. During median follow-up (66.5
months, IQR:47.6-106.2), transplantation failure occurred in 499 {40%) patients. Transplantation failure-
free survival at 10 years was improved in SNP carriers (56% vs.52% for the controls, p=0.023), with a
robust association after correction for potential confounders (HR=0.83, 95%CI:0.69-0.99, p=0.038).
Interestingly, in patients with delayed graft function, high serum H:S levels correlated with improved
transplant survival (HR=4.92, 95%CI:1.07-22.5, p=0.04). Thus, kidney transplant outcome was
associated with the CTH genotype and, to some extent, H2S serum levels. Further research is needed to

define the underlying protective mechanisms.
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445

446

447

448

449

450

451

i e P-value
ADPKD 16 (16.7%) 17 (17.7%) 0932
Diabetic nephropathy 11 (11.5%) 12 (12.5%)
Glomerulonephritis 24 (25.0%) 20 (20.8%)
Other 45 (46.9%) 47 (49.0%)
HLA mismatch
Median [Q1, Q3] 4.00 [4.00,5.00] 4.00[3.00,5.00] 0.43
Anti-thymocyte globulin induction therapy
Yes 47 (49.0%) 35 (36.5%) 0.108
No 49 (51.0%) 61 (63.5%)
rs6677781
Absent 28 (29.2%) 21 (21.9%) 0.839
SNP 26 (27.1%) 23 (24.0%)

Table S$1. Baseline characteristics of the recipients based on measured H.S serum levels (“serum

cohort”). Patients were stratified based on low or high H2S levels. Fisher test or t-test were used when appropriate.

ADPKD: autosomal dominant polycystic kidney disease, BMI: body mass index, DBD: donation after brain death,

DCD: donation after cardiocirculatory death, HD: hemodialysis, H2S: hydrogen sulfide, HLA: human leukocyte

antigen, PD: peritoneal dialysis.
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