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Introduction

1 From a hydrological perspective, the impacts of climatic and socio-economic changes

on water resources have mainly been addressed through the lens of physical  water

scarcity, which highlights potential shortages but does not account for governance and

adaptation processes. Several assessments were global and provided insights into the

complex functioning of the hydro-social system (see e.g. Sivapalan et al., 2012; Linton

and Budds,  2014;  Munia  et  al.,  2016)  and helped  identify  areas  where  future  water

resources are most vulnerable to climatic and anthropogenic changes (see e.g. Alcamo

et al., 2007; Wada et al., 2011; Wieck and Larson, 2012; Mekonnen and Hoekstra, 2016).

However, these studies relied on global political economy and water use scenarios that

did not always fit local adaptive strategies, instruments and institutional frameworks

(Gourbesville, 2008; Milano et al., 2013). The spatial resolution of such studies and their

simplification of socio-economic processes and demographic patterns were unable to

grasp  the  complex  socio-hydrological  functioning of  water  systems at  regional  and

local scales (Cook and Bakker, 2012). Regional and local scale studies were subsequently

conducted to include the political and technical measures taken to avoid unsustainable

exploitation of water resources (Lahmer et al., 2001; Schneider and Homewood, 2013;

Schneider et al., 2015). These studies identified drivers likely to undergo local and rapid

climatic and anthropogenic changes (see e.g. Fabre et al., 2015; Wang et al., 2016; Malek

and Verburg, 2018) and assessed the capacity of local adaptation measures to reduce

water scarcity (see e.g.  Varela-Ortega et  al., 2011; Fabre et  al.,  2016).  These research

advances  are  considered  useful  to  involve  and inform decision  makers  (Fant  et  al.,

2016).  They  are  also  in  the  thematic  continuity  regarding  the  appreciation  of  the

emerging concept of water security (Cook and Bakker, 2012).

2 This concept emerged in the 1940s but has only come to the forefront of hydrological

and social research, and of policy debates in the last two decades (Cook and Bakker,

2012; Garrick and Hall, 2014). It is a broad, conceptual, multi-dimensional framework

that entails issues of ecosystem and human health, accounts for water quantity and

quality  issues,  and  questions  existing  water  governance  frameworks  and  processes

(Grey and Sadoff, 2007; Savenije and van der Zaag, 2008; Bakker, 2012; Pahl Wostl et al.,

2013, 2016; Bolognesi and Kluser, 2018). It is understood as a key tool to address the

multiple challenges associated with water management in the 21st century (UN Water,

2013). However, it is not a ready-made operational concept that can easily be applied,

and multiple and incommensurate definitions exist that are used by both researchers

and policy makers (Bakker, 2012; UN Water, 2013). Cook and Bakker (2012) called for

narrowing the definition and focusing on issues of relevance in the first instance due to

the  innovative  and interdisciplinary  nature  of  the  concept.  In  that  respect,  in  this

paper,  it  is  assessed only from the hydrological  perspective.  Here,  we define water

security as “the capacity of a population to safeguard access to adequate quantities of

water of acceptable quality for sustaining human and ecosystem health on a watershed

basis,  and  to  ensure  efficient  protection  of  life  and property  against  water  related

hazards – floods, landslides, land subsidence and droughts” (UNESCO-IHP, 2012, p. 1).

This  definition  frames  the  concept  to  the  management  of  two  sets  of  challenges:
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extreme events  such as  floods,  droughts and pollution issues,  and the allocation of

water to competing water users under climate change (Wheater,  2015;  Young et  al.,

2015).  Research  on  water  scarcity  is  viewed  as  a  base  research  for  water  security

assessment that provides data on resource-demand relationships and a primary way of

measuring access to sufficient water (Cook and Bakker, 2012).

3 Currently,  several  indicators  are used to evaluate water scarcity (Falkenmark et  al.,

1989, Shiklomanov, 1991; Sullivan, 2002; Pedro-Monzonís et al., 2015) but indicators that

combine  water  resources,  ecosystems  and  human health,  and  water  governance

arrangements are rare (Cook and Bakker, 2012; Bakker, 2012; Octavianti and Staddon,

2021).  According  to  the  literature,  Lautze  and  Manthrithilake  (2012)  and  Sun et  al.

(2016) recently developed the two first indexes to quantify water security in Asia, and

Gain  et  al. (2016)  suggested  a  first  multi-criteria  analysis  framework  based  on  the

indicators of Goal 6 of Sustainable Development Goals to quantify water security at

global  scale.  These  studies  aggregated  different  indicators  and  revealed  the

heterogeneous distribution of water security related to the sensitivity of countries to

different physical and socio-economic indicators.  The studies provide the first large

scale analyses that go beyond water scarcity assessment, offer an initial assessment of

the  water  security  concept  and  suggest  preliminary  paths  for  quantifying  water

security. The authors still call for further studies as they had to rely on raw global data

with different spatial details and of different quality, water resources availability is still

poorly  addressed  from  a  qualitative  point  of  view,  the  understanding  of  current

institutional  and  policy  regimes  is  too  broad  and  indicators  are  weighted  without

sensitivity  analyses  or  the  involvement  of  stakeholders.  Therefore,  regarding  its

assessment,  interpretation  and  index-based  quantification,  water  security  is  still  a

concept under development.

4 As part  of  the special  issue on “Water researchers in times of  global  change.  What

future  for  territories?”,  this  paper  reflects  on  the  conceptual  and  methodological

evolution of water scarcity assessment based on four research projects undertaken in

western Switzerland. Although Switzerland is often described as Europe’s water tower

(Viviroli and Weingartner, 2004), the factors that affect the risk of present and future

water scarcity in Switzerland are a major concern, as the country already experienced

several water shortage episodes in the last decade. The most recent drought events

(2003,  2011,  2015,  2018,  2019)  were  remarkably  long  and  the  highest  summer

temperatures were recorded since the beginning of meteorological measurements in

1864 (ProClim, 2005; Begert et al., 2005; FOEN, 2016; Begert and Frei, 2018; FOEN, 2021).

Rivers and some springs dried up during summer (FOEN, 2016; 2017; 2019). For the first

time,  cantonal  authorities  (the  administrative  bodies  responsible  for  water

distribution)  called  for  water  savings  and  farmers  were allocated  irrigation  turns

(FOEN, 2016). These episodes brought important water management issues to light, like

the lack of water allocation priorities, the need to define good irrigation practices, and

the need for drought prevention plans (FOEN, 2012a; Kruse and Seidl, 2013). The series

of droughts also revealed “a moderate state of social capacities regarding drought risk

management” (Kruse and Seidl, 2013, p. 3438). Several studies were launched to grasp

the  impacts  of  climate  change  on  water  resources  and  their  related  impacts  on

hydropower production (Hänggi and Weingartner, 2012; Gaudard et al., 2013; Barry et

al., 2015 among others),  the effects of  alternative water policies on crop yields and

farmers’  income  (e.g.  Finger  and  Lehman,  2012;  Lehman  et  al.,  2013;  Lehman  and

Finger, 2014) and the impacts of land use or waste water treatment plants on water
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quality (e.g. Ort et al., 2009; Robinson et al., 2014). Critical situations were identified in

Alpine catchments where glacier melt could be reduced, thereby affecting the seasonal

availability  of  water  resources  and  altering  water  storage,  in  particular  for  the

production  of  hydroelectricity  (Finger  et  al.,  2012;  Gaudard  et  al.,  2014;  Lane  and

Nienow,  2019),  but  also  in  pre-Alpine  catchments  where  water  needs  for  irrigation

could increase significantly (Vanham et al., 2009; Fuhrer and Jasper, 2012; Fuhrer et al.,

2014). Western and southern Switzerland in particular will likely be prone to longer dry

spells in summer (Schmidli and Frei, 2005; Scherrer et al., 2016) and more intense low

flows due to less snow storage and earlier snow melt (see e.g. Stewart, 2009; Beniston

and  Stoffel,  2014;  Morán-Tejeda  et  al.,  2014; Milano  et  al., 2015a) . Coupled  with

anthropogenic changes such as population growth, increased irrigation and livestock

raising in the lowlands, and the expansion of tourism, rivers in western Switzerland

can no longer be considered as reliable water sources (FOEN, 2012b, 2021) and conflicts

over water are likely to increase (Fuhrer and Jasper, 2012; Fuhrer et al., 2014; Milano et

al., 2015b).

5 In that respect, two research projects1 were created to develop integrated modeling

frameworks and assess  the  risk  of  water  scarcity  in  western Switzerland.  Although

their  results  regarding  the  occurrence  of  current  and  future  water  scarcity  have

already been published (Reynard et al., 2014a; Milano et al., 2015a), this paper builds on

these  projects  and  provides  new  outcomes.  In  particular,  the  conceptual  and

methodological progresses and issues of water scarcity assessments are put forward in

this paper. With the advances achieved in two other projects2 that focused on water

users  and  their  territorial  footprint  in  western  Switzerland  (Calianno  et  al.,  2018;

Milano  and  Reynard,  2021),  possible  dimensions  for  a  holistic  approach  to  water

scarcity are discussed together with the appropriate geographical scale to represent

the relationships between water resources and water uses.

 

Case studies

6 The four research projects on which this paper draws focus on western Switzerland,

more specifically on nine meso-scale catchments (38–637 km2) of the canton of Vaud

(Switzerland), the Crans-Montana-Sierre (CMS) area (130 km2) and the municipality of

Bagnes3 (282 km2) in the canton of Valais.

7 In  the  canton  of  Vaud,  catchments  extend  from  the  Jura  Mountains  (alt.  max.

1’677m.a.s.l.) over the Swiss Plateau (400–600m.a.s.l) to the high Alpine mountains (alt.

max. 3’200m.a.s.l; Fig. 1). Mean annual temperatures range from 10°C to 4°C and mean

annual  precipitation  vary  from  865  to  2’020mm/year,  from  low  to  high  altitudes

(average for the 1984–2005 period; Milano et al., 2015b). The shores of Lake Geneva and

Lake Neuchâtel are marked by strong urban and peri-urban development. Agricultural

activities  characterize  the  plains  and  piedmont,  and  account  for  17%  of  Swiss

agricultural  land  (FSO,  2006),  while  dairy  cow  breeding  dominates  in  mountainous

areas. In this paper, special attention is paid to the Venoge, Talent and Grande Eau

catchments that are representative of hydro-climatic and anthropogenic stakes in the

Lake  Geneva  Region,  Plateau  and  Alpine  areas  of  the  canton  of  Vaud,  respectively

(Table 1).
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Figure 1: Geographical location of the (1) Venoge, (2) Talent and (3) Grande Eau catchments, the (4)
Crans-Montana-Sierre area and (5) the municipality of Bagnes

VD – canton of Vaud, VS – canton of Valais. The dashed lines show the borders of the catchments
studied in the ICCARE-Vaud project (Milano et al., 2015a,b) but not presented in this paper.

8 The Crans-Montana-Sierre (CMS) area is  located on the northern rim of  the Rhone

River valley (Fig. 1). It ranges from 519m.a.s.l in the Rhone River valley to 3’100m.a.s.l

in  the  Bernese  Alps  mountains,  and  is  partly  covered  by  the  Plaine  Morte  glacier

(7.32km2 in  2016;  www.glamos.ch).  Temperature  and  precipitation  follow  a  steep

vertical gradient (Table 1).  The area benefits from a high level of sunshine and dry

conditions in summer due to the climate barrier formed by the Swiss Alps. Vineyards

thus  predominate  up  to  an  altitude  of  about  800m.  Above  800m,  the  CMS  area  is

characterized by forests, grasslands and cattle raising. Higher altitudes (>1’400m.a.s.l)

host one of the largest tourist resorts in Switzerland: Crans-Montana offers 40’000 beds

and is  very  attractive  for  skiing  in  winter  and golf  and hiking  in  summer.  Bagnes

municipality (282km2) is located on the southern rim of the Rhone River valley (Fig. 1)

between 790 and 4’314m.a.s.l.  From low to high altitudes, mean annual temperature

ranges  from  8  to  - 5°C  and  mean  annual  precipitation  from  1’013  to  more  than

2’000mm, (MeteoSwiss, 2021). Bagnes municipality contains 68.8% of unproductive land

(glaciers,  lakes,  areas  with  no  vegetation  or  unproductive  vegetation)  and  0.2%  of

nature protected area, mainly at high altitudes, 18.6% of agricultural land and 11% of

forests  at  mid-altitude,  and 1.5% of  urban area in the valley bottoms including the

tourist resort of Verbier.

 
Table 1: Characteristics of the Venoge, Talent and Grande Eau catchments (canton of Vaud), the
Crans-Montana-Sierre area and the municipality of Bagnes (canton of Valais)

 Canton of Vaud Canton of Valais
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 Venoge Talent Grande Eau
Crans-Montana-

Sierre
Bagnes

Geographical context  

Area (km2) 231 62 134 130 282

Range of altitude (m.a.s.l) 382 – 1677 440 – 929 410 – 3’200 519 – 3’100 790 – 4’314

Hydro-climatic context (average over the 1984-2005 period in the Canton of Vaud; 1981-2010 in

the CMS area; MeteoSwiss, 2016)

Mean annual temperature

(°C)
9.1 9.5 5.0 10.1 to -2.7 8 to -5

    
(from  valleys  to  mountain

crests)

Mean annual precipitation

(mm)
1’075 1’175 1’587

672 to >2’500 1013 to >2’000

(from  valleys  to  mountain

crests)

Mean runoff (m3/s) 4.1 1.1 4.8 5.3 2.03

Specific runoff (L/s/km2) 17.7 17.7 35.8 40.8 6.9

Land use (2013)  

Urban (%) 19 11 7 8 1.5

Forest (%) 2 21 16 28 11

Cropland  and  grassland

(%)
77 68 75 27 18.6

Vineyard (%) 2 0 0 8 0

Other (ice and rock,%) 0 0 1 29 68.8

 

Material and methods

9 The ICCARE-Vaud and MontanAqua projects have been the subject of several scientific

papers and reports in which the methods are described in great detail (Milano et al.,

2015a,  b;  Reynard  et  al., 2014a;  Weingartner  et  al.,  2014;  Schneider  and  Rist,  2014;

Schneider et al., 2015). Only a summary of the methods is thus presented here. The PhD

thesis (Calianno, 2018) and the LABEAU project were conducted in a second phase to

extend knowledge on water uses.
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An integrated and systemic modeling approach 

10 In all four projects, hydrosystems were considered as a series of interrelated entities

with natural, social and economic features (Chorley and Kennedy, 1971). In particular,

an integrated and systemic modeling approach was developed to address interactions

between  climate,  freshwater  availability,  freshwater  withdrawals  and  water

management  options  in  the  ICCARE-Vaud and  MontanAqua projects  (Fig.  2).  Daily

freshwater availability and water needs were estimated over a past reference period

(1984-2005 for the canton of Vaud and 2006-2011 for the CMS area) and by mid-century

(2050-2071  for  the  canton  of  Vaud  and  2037-2041  for  the  CMS  area).  Results  were

aggregated at a monthly time step for synthesis purposes. Past daily meteorological

data were collected from the automatic  meteorological  network of  Switzerland and

interpolated using the detrended inverse distance weighting method. For prospective

modeling, delta change signals extracted from ten regional climate models forced with

the IPCC A1B greenhouse gas emission scenario (Bosshard et al. , 2011; CH2011, 2011)

were applied on daily temperature and precipitation series. For synthesis purposes and

key messaging, the median hydro-climatic evolution is presented in this paper. Future

water needs were estimated based on a business-as-usual scenario but also, in the CMS

region,  based on alternative  land use  scenarios  co-constructed during focus  groups

with local water stakeholders (Schneider and Rist, 2014; Schneider et al., 2015). Finally,

water scarcity was quantified based on a water scarcity index, i.e. a ratio of monthly

water needs to monthly available freshwater resources (Shiklomanov, 1991). This index

expresses  the  intensity  of  pressure  applied  by  water  needs  on  available  water

resources:  the  higher  the  index,  the  greater  the  scarcity.  In  all  four  studies,  water

resources were evaluated based only on surface waters. 

 
Figure 2: Methodological approach 

In black: methodology core, in grey: additional data for future state assessment. P: Precipitation, T:
Temperature

11 In support of these integrated modeling research projects, statistical analyses of water

volumes  measured  daily  at  the  outlet  of  the  reservoirs  of  the  drinking  water

distribution network in  the  municipalities  of  Montana and Bagnes  were  performed

between January 2015 and December 2017. In Montana, these analyses were combined

with statistical analyses of daily irrigation time series collected using metering devices
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specifically installed for the project, as well as qualitative interviews with the drinking

water department managers five winegrowers and one farmer. The purpose of these

additional  studies  was  to  improve  knowledge  and  methods  related  to  water  use

quantification (Fig. 2).

 

Freshwater evaluation

12 In catchments in the canton of Vaud, available freshwater resources were considered as

the  daily  contribution  of  rapid,  delayed  and  slow  runoffs  modeled  by  the  semi-

distributed  and  process-oriented  PREVAH  model  (Viviroli  et  al.,  2009).  Further

information on the model  structure,  and on the datasets  and calibration-validation

procedure  used  can  be  found  in  Viviroli  et  al.  (2009)  and  Milano  et  al.  (2015b),

respectively.

13 Freshwater supply in CMS relies on the headwaters of the area, composed of springs

and the Plaine Morte Glacier. Freshwater resources coming from the headwaters were

modeled by the MontanAqua team using the Glacier Evolution Runoff Model (GERM)

(Huss et al., 2008) and the hydrological model Penn State Integrated Hydrologic Model

(PIHM, Kumar, 2009).  Further information on the structure and performance of the

model can be found in Huss et al. (2008), Kumar (2009) and Kauzlaric (2015).

 

Evaluation of water use

14 In the canton of Vaud, water needs were considered as the sum of freshwater volumes

required by irrigated agriculture, livestock farming and the domestic sector4 and were

projected based on a busines-as-usual scenario.

15 Irrigation water needs were evaluated according to the crop coefficient approach (Allen

et  al.,  1998).  This  method defines the volume of  freshwater necessary to meet crop

evapotranspiration in addition to rainfall, based on climatic data, cropping patterns

and crop growth coefficients. These data were provided by the Federal Statistical Office

(2013)  and  the  MandaTerre  (2013)  association  at  the  municipal  level.  For  future

projections, irrigated crops and surface areas were assumed to remain unchanged, but

the impacts of climate change on crop water needs were explored. Further information

on the model dataset and process can be found in Milano et al. (2015b).

16 Livestock water needs, i.e. the quantity of water required to water farm animals, were

computed  for  each  municipality  by  multiplying  the  specific  water  needs  of  each

livestock species by the number of animals of the species concerned. Specific livestock

water needs were defined using different literature sources (Sautier, 2004; Ward and

McKague, 2007; Collier and Lillywhite, 2011) and the Federal Statistical Office provided

the annual number of animals in each municipality (FSO, 2013). Past livestock trends

were continued for future projections.

17 Urban  water  needs,  i.e.  water  needs  for  households,  businesses  connected  to  the

communal network and maintenance of the municipalities,  were estimated for each

municipality  by  multiplying  the  national  unit  per  capita  water  allocation  by  the

population of the municipality (SGWA, 2013; Canton of Vaud, 2013). Annual variations

in unit water allocation and population were taken into account. For future estimates,

it was assumed that water-saving efforts and progress in hydraulic efficiency would

compensate for increasing water needs related to population growth. The 2012-unit
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water allocation was used in future simulations. The canton of Vaud provided annual

population projections (Statistique Vaud, 2011).

18 In the CMS area, water needs for the irrigation of agricultural plots and golf courses,

the urban sector as well as for artificial snowmaking were evaluated from 2006 to 2011.

They  were  estimated  based  on  an  intense  documentary  survey  conducted  in

collaboration  with  the  municipal  administrations,  technical  managers,  and  the

population,  combined  with  the  monitoring  of  several  irrigation  canals  (Bonriposi,

2013). Water used for hydropower production was not included5. For future estimates,

four  different  regional  development  scenarios  were  built  with  the  support  of  a

stakeholder  group  composed  of  politicians  and  local  representatives  of  public

administrations, associations and private companies (Schneider and Rist, 2014):

business-as-usual scenario: the regional development of the CMS area relies on economic

growth based  on mass  tourism and on  the  expansion of  built-up  areas.  The  population

continues to increase while agriculture continues to decline. Water issues are assumed to be

solved through technical measures.

Stabilizing scenario: regional planning is improved by intercommunal collaboration. Four-

season  tourism  is  expanded,  construction  is  restricted  and  agriculture  remains  a  core

economic activity. Water management aims to optimize water consumption by regulating

water users and improving irrigation techniques.

Moderate  scenario:  “soft”  tourism  and  water  saving  efforts  are  promoted.  Artificial

snowmaking is abandoned and drip irrigation is adopted for vineyards.

Shared  strategy:  this  scenario  was  suggested  by  the  stakeholders.  It  considers  that  the

economic  growth of  the  area  is  balanced  by  social  needs  (equity  between citizens)  and

ecological considerations. Constructions of second homes is restricted. Four-season tourism

is developed with an emphasis on agriculture and vineyards.

19 Each scenario was translated into changes in land-use and population growth with the

support of the stakeholder group (Bonriposi, 2013). Based on these assumptions, future

irrigation and urban water needs were evaluated using the same methods as those used

in  the  canton of  Vaud.  For  artificial  snowmaking,  the  potential  snow covered area

supported by artificial snowmaking was first defined according to altitude and future

air temperature, then multiplied by the unit water allocation for snowmaking (L/m2).

 

Results

Future changes in water scarcity in western Switzerland

20 Currently,  the highly irrigated Venoge and Talent catchments experience moderate

water scarcity from May to September and severe water scarcity in July and August as

total water needs exceed 80% of freshwater available in rivers (Fig. 3a). The Grande Eau

pre-Alpine  catchment  does  not  suffer  from  water  scarcity  (Fig.  3a).  The  CMS  area

currently does not suffer from water scarcity in the summer season but is subject to

moderate  to  high  water  scarcity  over  the  rest  of  the  year.  Water  scarcity  is  even

defined as severe in the winter months (January–February–March) and in September

(Fig. 3a).

21 By  mid-century,  under  the  business-as-usual  scenario,  the  Venoge  and  the  Talent

catchments may experience moderate to high water scarcity in May and September

and severe water scarcity from June to August (Fig. 3b). In particular, the needs for

• 

• 

• 

• 
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water  could  exceed the  freshwater  available  during these  months.  The Grande Eau

catchment should continue to be spared water scarcity all year round (Fig. 3b). The

CMS area could experience high to severe water scarcity from November to March and

in August and September (Fig. 3c). However, alternative scenarios could prevent the

region from experiencing severe water scarcity in winter as these scenarios could limit

total water needs to 50-70% of the available freshwater resources. However, only the

moderate scenario would prevent the region experiencing severe water scarcity in late

summer, although water scarcity would still remain high. Finally, irrespective of the

scenario,  the  region should not  suffer  from any water  scarcity  during the  summer

season.

 
Figure 3: Current and future water scarcity in catchments of the canton of Vaud and in the Crans-
Montana-Sierre area based on the water scarcity index

Source: Shiklomanov, 1991

 

Causes of the risk of water scarcity in western Switzerland

Changes in freshwater availability

22 Currently, the risk of water scarcity in western Switzerland coincides with low flow.

The river Venoge, which is representative of rivers flowing from the Jura Mountains to

Lake Geneva, and the Talent, which is representative of rivers on the Swiss Plateau, are

characterized by low flows during the summer season due to the end of snowmelt and

less precipitation, respectively (Table 2; Fig. 4a). The pre-Alpine catchment Grande Eau

and the headwaters of the CMS area are characterized with low flows in winter due to

snow and ice accumulation (Table 2; Fig. 4d). 

 
Table 2: Seasonal freshwater availability in four hydrosystems in western Switzerland 

Catchment Area (km2) Hydrological regime

Seasonal runoff (m3/s)

JFM AMJ JAS OND

Venoge (VD) 231 Nivo-pluvial 15.2 11 4.7 12.4
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Talent (VD) 62 Pluvial 4.0 2.5 1.7 3.9

Grande Eau (VD) 134 Nival 8.6 20.8 13.1 9.8

Headwaters of CMS area (VS) 130 Nivo-glacial 0.74 10.6 7.8 2.1

Seasonal runoff is averaged over the 1984-2005 period for the Venoge, Talent and Grande Eau
catchments (canton of Vaud – VD) and over the 2006-2011 period for the CMS area (canton of Valais
– VS).

23 By mid-century, temperatures are expected to rise by 2–3 °C in western Switzerland

throughout the year and by a further 1 °C in summer. Precipitation is projected to

increase by 10–30% from October to May in the Lake Geneva Region and to decrease by

20–30% in summer over the Plateau and the Alps.  In addition,  up to 2’000 m a.s.l.,

rainfall should increase at the expense of snowfall as a result of rising temperatures

(data not shown).  Changes in the liquid-solid precipitation ratio should lead to less

snow accumulation in winter and to a 56% reduction in ice volume in the Plaine Morte

glacier (Huss et al., 2013).

24 Under climate change, low flows are expected to become more severe in the Venoge

and Talent rivers with a 15% decrease in runoff due to less snowmelt in spring and

changes in precipitation distribution (Fig. 4a and 4b). In Alpine catchments, river flows

should increase from October to February (+20% in the Grande Eau; Fig. 4) and decrease

from March to September (-30%) due to changes in snow accumulation. Yet the higher

ice  melt  related  to  the  glacier  retreat  could  offset  changes  in  the  liquid-solid

precipitation ratio (Huss et al., 2013), maintaining river flows near their current level all

year round (± 10% in the CMS area; Fig. 4d)6.

 
Figure 4: Changing trends in water resources in western Switzerland

Prospective integrated modelling of water scarcity risk in western Switzerlan...

Géocarrefour, 96/1 | 2022

11



25 Current availability of freshwater resources and water needs and future changes under

climate  change  by  mid-century  in  the  (a)  Venoge,  (b)  Talent  and  (c)  Grande  Eau

catchments, and (d) in the CMS area. Results are based on ten regional climate models but for

the purpose of readability and key messaging, median water resources availability and needs are

presented here.

 
Future changes in water needs in western Switzerland

26 Currently,  total  water  needs  are  highest  in  the  Venoge  and  Talent  catchments

(21.7Hm3/year and 12.3Hm3/year, respectively) due to high irrigation water needs that

amount to nearly three-quarters of the total water needs (Fig. 4a and b). In the Grande

Eau catchment, total water needs are low (3.6Hm3/year). Finally, in the CMS area, total

water needs amount to 10.9Hm3/year. Its domestic sector uses the most water (59%)

followed by the irrigation of agricultural plots and golf courses (37.7%) and artificial

snowmaking (3.3%; Fig. 4d). In all four study areas, water needs are constant between

October  and  March,  and  start  increasing  in  April  when  irrigation  practices  begin

(Fig. 4). Production of snow in the CMS area is seasonal and occurs between November

and February.

27 By mid-century and under a business-as-usual scenario, total water needs are expected

to increase by 10-20% in the Venoge and Talent catchments (Fig. 4a and b). Annual

urban  water  needs  are  expected  to  increase  by  40%  and  livestock  water  needs  to

quadruple - although water needs would remain low in this sector compared to other

sectors (0.1Hm3/year) - and irrigation water needs are expected to remain high. In the

Grande Eau catchment, total water needs are expected to increase by 35% mainly due to

a 35-40% increase in urban and agricultural water needs (Fig.  4c).  In the CMS area,

under the business-as-usual scenario, total water needs are expected to increase by 24%

due  to  an  increase  in  water  needs  by  the  domestic  sector  (+35%),  for  golf  course

irrigation (+8%) and for artificial snow making (+77%; Fig. 4d). However, the reduction

in  the  agricultural  surface  area  could  lead  to  a  15-20%  decrease  in  the  need  for

irrigation water.

28 Under a stabilizing scenario, however, total water needs could increase by 19% in the

CMS area due to a 10-25% increase in urban and irrigation water needs and a 19%

decrease in artificial snowmaking, owing to a decrease in the area and length of the

periods of artificial snowmaking (Fig. 4d). On the other hand, if water saving efforts

were  made  by  domestic  users,  irrigation  practices  were  improved,  and  artificial

snowmaking were abandoned, as assumed in the moderate scenario, total water needs

could decrease by 13%. Finally, total water needs could remain at their current level if

the  development  of  the  CMS area  is  balanced.  Changes  assumed under  the  shared

scenario would increase urban water needs (+8%) and irrigation of golf courses (+6%)

but reduce artificial snowmaking (-19%).

 

Assessing water demand

29 The monitoring of water uses in the municipalities of Montana and Bagnes over several

years highlighted water consumption patterns and seasonal differences. The biggest

seasonal changes in water use are found in the tourist resorts of Montana and Verbier,

as well as in hotels and secondary homes. The most significant peaks occur during the

end-of-year  holidays,  the  February winter  holidays  and between mid-July  and mid-
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August. Very intense peaks in water distribution to main homes are related to abrupt

activation  of  spas  and/or  watering  the  garden.  In  Montana,  watering  gardens  can

account for as much as 40% of domestic water use between June and August. Calianno et

al. (2018)  thus  suggest  defining  water  use  regimes that  mirror  hydrological  regimes.  

Based on this  concept,  the  seasonal  water  use  regime of  the  two mountain  tourist

resorts  studied  here  includes  two  high  seasons  (winter  and  summer)  and  two  low

seasons (spring and fall).

30 We also compared the irrigation water needs simulated by the CROPWAT agronomic

model with data resulting from monitoring conducted in the municipality of Montana

(Calianno, 2018). The model tends to overestimate actual water use because it simulates

the optimal amount of water needed by the crop, which does not correspond to the

quantities  actually  delivered to  the plants  by the irrigators.  Simulated water  needs

were 10 to 19 times higher than measured irrigation amounts (Calianno, 2018). These

results underline the importance of analyzing irrigation practices to be sure the model

parameters match the real practices.

 

Discussion

Dimensions to be taken into account when assessing water scarcity

31 This  paper  is  based  on  the  assessment  of  water  scarcity  in  several  catchments  in

western  Switzerland  characterized  by  different  hydrological  regimes  and  seasonal

water users and trends. Like previous regional studies, it underlines the fact that such

assessments are useful to identify the areas and seasons most prone to water scarcity

and to  address  the capacity  of  adaptation strategies  to  reduce the risk.  In  western

Switzerland, the period most vulnerable to water scarcity is during low flows: either in

summer in the Lake Geneva and Plateau regions (and in Alpine regions by mid-century)

due to high irrigation and urban water needs, or in winter in Alpine areas due to urban

water needs during the tourist high season and artificial snowmaking.

32 Based on these analyses, four main conclusions can be drawn regarding water scarcity

assessment. The first is the need to consider both hydro-climatic and anthropogenic

factors when exploring possible future changes in water systems. In catchments in the

canton  of  Vaud,  population  growth,  irrigation  practices and  changes  in  livestock

rearing practices should increase both water needs and pressure on water resources,

while  climate  change  should  lead  to  longer  and  more  intense  low  flow  periods,

reducing available water resources when water needs are highest. Water scarcity could

continue over a longer period of time by mid-century. In the CMS area,  freshwater

resources should remain near their current level at mid-century, mainly thanks to the

contribution of glacier melt to summer runoff. Water scarcity would then be caused by

changing  water  needs  and  the  degree  of  the  severity  would  depend  on  water

management options. Climatic and anthropogenic changes have cumulative effects that

must be taken into account when exploring possible water management plans.

33 A second conclusion is the need for an appropriate time scale to guarantee the risks of

water scarcity are properly understood and to build realistic socio-economic scenarios.

Most  regional  studies  explore  water  scarcity  on  an  annual  basis  (e.g.  Menzel  and

Matovell,  2010;  Buytaert  and De Bièvre,  2012;  Klug et  al.,  2012;  Milano et  al.,  2013),

thereby masking intra-annual temporal variations. For example, the CMS area does not
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experience any water scarcity on an annual basis but our monthly analysis showed that

conflicts concerning water could arise during the winter season and are expected to

arise in late summer by mid-century. Seasonal or monthly analysis of water scarcity

hence help identify the length of water scarcity episodes, i.e. periods when conflicts are

most likely to occur. This issue was also covered by Mekkonnen and Hoekstra (2016) at

the global scale. These authors reported that 3.97 billion people currently experience

severe water scarcity for at  least  one month per year,  whereas when they used an

annual approach, they only identified 2.7 billion people. They argue that studies carried

out on an annual basis thus underestimate water scarcity and the number of people

affected. Building scenarios with stakeholders also underlines the importance of the

choice of time scale. Water shortage in the CMS area is most likely to happen by the end

of the century due to the complete melting of the Plaine Morte glacier by 2080 (data not

shown, Huss et al., 2013; Kauzlaric, 2015). However, it was difficult for the stakeholders

to  build  realistic  regional  development  scenarios  after  2050  due  to  the  speed  of

territorial  changes  and  the  uncertainties  of  economic  development  (Reynard  et  al.,

2014b). Water scarcity assessment should thus focus on potential short or medium term

changes.

34 A third conclusion concerns the spatial scale. Specific studies of water demands in the

municipalities  of  Montana  and  Bagnes  revealed  different  water  use  dynamics  and

typologies  between sectors  and  types  of  housings.  It  thus  seems  necessary  to  stop

assessing  water  demand  at  the  regional  (Saulnier  et  al.,  2011;  Coll  et  al., 2015),

catchment (Milano et al.,  2013; Fabre et al., 2015),  municipal (Bonriposi,  2013; Leroy,

2015; Calianno, 2018) or matrix scale (Vanham et al., 2011), and to move towards the

assessment of water use basins.  This concept,  which was suggested by Calianno et  al.

(2018),  aims  to  map  the  spatial  footprint  of  water  users  and  describe  the  spatial

distribution of water demands within a municipality or region. Adding the concept of

water  use  regime would  make  it  possible  to  characterize  the  temporal  intra-annual

distribution of water demands. The combination of water resources and water demand

and their spatial and temporal distribution targets high-resolution computing of water

scarcity and the identification of water scarcity hot spots,  i.e. places and periods with

high  water  stress.  We  believe  that  such  an  approach  will  support  dynamic  water

demand management, and hence facilitate planning of storage infrastructure.

35 A fourth conclusion is the added value of working with local stakeholders and water

managers. The assessment and modeling of future water needs and potential stress will

be dynamic as long as anthropogenic changes and adaptation measures are taken into

account. To give an example, in the canton of Vaud, water needs were only explored

using a business-as-usual scenario even though water use practices are highly likely to

change (e.g. through the expansion of drip irrigation). In addition, water managers in

the canton of Vaud expressed interest in expanding their water supply, e.g. by pumping

water from Lake Geneva in the case of a water shortage (General Directorate for the

Environment  of  the  canton  of  Vaud,  personal  communication,  May  13th,  2015).

Changing one or more of these variables would have a direct impact on future water

scarcity.  Based  on  the  experience  of  the  MontanAqua  project,  building  alternative

water  use  scenarios  with  local  stakeholders  makes  it  possible  to  explore  water

management strategies that are likely as well as their capacity to reduce conflicts over

water. Several authors have highlighted the benefits in involving stakeholders (Carr et

al., 2012; Fabre et al., 2016; Gain and Giupponi, 2015; Stanghellini and Collentine, 2008;

among  others).  It  is an  opportunity  for  researchers  to  learn  more  about  water
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management and policy as well as any environmental problems the study area is facing

and to understand the drivers of some water needs (e.g. irrigation practices; Calianno,

2018). It is also an opportunity for stakeholders to listen to different opinions and share

ideas or information in a structured and organized framework (Schneider et al., 2015).

We  agree  with  Wheater  (2015,  p. 27),  who  states  “stakeholder  engagement  is  a

necessity,  not  an  option”.  We  also  believe  that  stakeholder  engagement  better

guarantees the implementation of scientific results.

 

Reducing uncertainties and moving from water scarcity to water

security

36 Water scarcity assessments rely on hydro-climatic and socio-economic data and tools

that have their own assumptions and uncertainties and consequently affect the results.

The aim of this paper is not to weigh their influence on the results but to highlight the

methodological progress that is still required. We would like to underline two types of

uncertainty: hydro-climatic uncertainty linked to the lack of knowledge about future

change, and methodological uncertainty linked to the difficulty of assessing the needs

of different water users.

37 The best handled uncertainties are certainly those related to hydro-climatic scenarios.

On one hand,  several  climate models  are often used to present  a  range of  possible

trends and signals. In this study, 10 RCMs were considered but we decided to present a

median  result  for  synthesis  purposes.  On the  other  hand,  we  selected  hydrological

models with high efficiency values to describe seasonal dynamics and the volumes of

runoff  (Kauzlaric,  2015;  Milano  et  al.,  2015b).  Uncertainties  mainly  arise  from  only

focusing  on  the  quantity  of  water,  likely  missing  water  quality-related  concerns.

Indeed, freshwater resources may be of poor quality, and consequently be unavailable

for water users, which can also lead to water scarcity. In agreement with van Vliet et al.

(2017), Vanham et al. (2018) and Octavianti and Staddon (2021) , we argue that water

scarcity assessments should now focus on the availability of freshwater resources of

acceptable quantity and quality for users in each sector. To our knowledge, two main

approaches are currently under development. One relies on the blue, green and grey

water  footprint  concept  (Liu  et  al., 2016).  It  aims  to  account  for  actual  water

consumption,  control  water  pollution  and  maintain  environmental  flows  for  good

ecological  habitat  conditions. However,  the  final  index  is  composed  of  three

components rather than a single value, which requires mastery of the water footprint

concept to apply the method and interpret the results (Zeng et al., 2013; Liu et al., 2016).

The  other  method  adds  to  the  water  scarcity  index  (Shiklomanov,  1991)  the  extra

amount of water necessary to dilute a pollutant and to reach its legal threshold (e.g.

water temperature, salinity; van Vliet et al., 2017; Jones and van Vliet et al., 2018). This is

a  step  forward in  water  scarcity  assessment  but  still  requires  considering  multiple

parameters  simultaneously.  The  availability  of  data  is  a  further  challenge  to

incorporating water quality in water scarcity assessments. Data on water quality vary

among regions, even within the same country, and often has a broader time-step than

runoff series (Liu et al., 2017). 

38 Further uncertainties concern the estimation of water needs, which are often higher

than actual water demand, because they are based on generic assumptions and often

lacks a comprehensive knowledge of their spatial and temporal dynamics (Wada et al.,
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2011; Grouillet et al., 2015). This is mainly due to scarce data series on water demands

recorded  with  high  temporal  resolution  due  to  a  lack  of  local  monitoring  strategy

(Calianno, 2018; Calianno et al., 2018). Most assessments regularly use estimations or

proxy  data,  which  has  two  downsides:  (1)  monthly  variations  related  to  seasonal

changes  (e.g.  due  to  tourism)  are  hidden,  and  (2)  the  growth  stage  and  local

discrepancies  are  not  emphasized.  The  use  of  agronomic  models  also  tends  to

overestimate water needs (Calianno, 2018).  It  is  thus urgent to progress from these

conventional econometric methods to dynamic models that couple quantitative and

qualitative data (House-Peters and Chang, 2011; Qi and Chang, 2011; Rinaudo, 2015).

This entails analyzing individual and social behaviors to identify water use practices or

regimes (Calianno et al., 2018) and to identify feedback between key variables in the

system (Candelieri and Archetti, 2014; Grouillet et al., 2015; Makki et al., 2015). In this

way, the identification and spatial and temporal assessment of the economic, social and

environmental  factors  that  influence  water  uses  is  improved  and  can  support  the

development  of  prospective  water  demand models  (Schleich and Hillenbrand,  2009;

House-Peters and Chang, 2011; Gössling et al., 2012; Romano et al., 2014).

39 In  addition  to  the  aforementioned  methodological  progresses,  the  hydrological

perspective  of  water  scarcity  ignores  the  social  values  and  institutional  context  of

water management (Buchs and Milano, 2014; Wheater, 2015; Gain et al., 2016). Research

on water security needs to be more holistic, in particular by integrating the ecological

dimension of water, and putting more emphasis on governance issues. This calls for

interdisciplinary research to address both hydrological and social water management

challenges  (Wheater,  2015;  Gain et  al.,  2016;  Octavianti  and Staddon,  2021).  Indeed,

water security must be considered as a holistic framework that accounts for five main

dimensions  (Grey  and  Sadoff,  2007;  Savenije  and  van  der  Zaag,  2008;  Lautze  and

Manthrithilake,  2012;  Bakker,  2012;  Pahl-Wostl  et  al.,  2013,  2016):  (i)  environmental

health  –  the  spatial  and  temporal  availability  of  water  resources  in  terms  of  both

quantity (including hydraulic disturbances) and quality, as well as measures taken to

restore rivers and protect aquatic ecosystems, (ii) the human dimension – the spatial

and temporal variability of water users and environmental standards, their needs and

their effects on the quantitative and qualitative availability of water resources, (iii) the

physical  and natural  infrastructure –  the ability  of  water  users  to  have sustainable

access  to  water,  sanitation  and  hygiene  networks  and  services,  (iv)  the  economic

environment – the productive use of water to sustain economic growth in the food

production,  industry,  and  energy  sectors  of  the  economy,  (v)  the  social  and

institutional environment – the institutional framework and policy-making process and

the capacity of societies to build resilient communities that can adapt to change and to

reduce the risk of natural disasters. 

 

Conclusion

40 This paper builds on several research projects conducted to assess water scarcity and

water needs in western Switzerland. It emphasizes, on the one hand, the fact that the

most vulnerable period to water scarcity in western Switzerland is during low flows, i.e.

in summer in the Lake Geneva and Plateau regions and in winter in Alpine areas. On the

other hand, it defines the requirements for and challenges to future research on water

scarcity, and from a broader perspective, the integration of water scarcity in the water
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security concept. Integrated hydrological studies on water scarcity currently correctly

integrate hydro-climatic and socio-economic changes and test the capacity of plausible

adaptation strategies to reduce conflicts over water with the support of stakeholder

involvement. However, two main challenges remain: (1) hydrological approaches must

better integrate the geographical dimension of territories, in particular to better grasp

the different  spatial  and temporal  dynamics  and typologies  of  water  users,  and (2)

interdisciplinary  research  is  required  to  assess  water  resources  in  terms  of  both

quantity  and  quality,  and  to  include  social  and  governance  processes  in  modeling

exercises, in order to provide a comprehensive and easy-to-use water security index.
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are not considered in this study. These two water users were hence not taken into account in this

study.

5. As this use is strictly regulated by long-term concessions (and therefore does not influence the

water needs of specific groups of stakeholders), it was not included in our calculations of the

current and future water needs. 

6. After 2060, the glacier will be too small to continue having a positive impact on river flows.

ABSTRACTS

Water  security  is  an  emerging  concept,  whose  assessment  and  quantification  are  under

development, and of which water scarcity can be considered as a basic research need. This paper

draws on four research projects conducted by the authors in western Switzerland and has five

key messages: (i) scenarios that account for both hydro-climatic and socio-economic changes are

necessary  to  grasp  their  respective  impacts  on  water  scarcity;  (ii)  the spatial  and  temporal

resolution of integrated models need to be adapted to the issue tackled; (iii) the involvement of

stakeholders in co-producing future water demand scenarios and testing the capacity of plausible

adaptation strategies to reduce water tensions is needed to increase the plausibility of modelled

situations;  (iv)  hydrological  approaches  must  evolve  towards  a  geographical  integration  of

territories,  in  particular  to  better  grasp  the  different  water  users,  and  (v)  interdisciplinary

research is necessary to assess both the quantity and quality of water resources, and to include

both social and governance processes in modelling. Rooted in a comprehensive perspective, the

authors argue that such methodological developments would help move towards a dynamic and

prospective view of water security.

La sécurité hydrique est un concept émergent, dont l’évaluation et la quantification sont en cours

de  développement.  La  quantification  du  stress  hydrique  peut  être  considérée  comme  une

recherche de base pour la sécurité hydrique. Cet article s’appuie sur quatre projets de recherche

menés par les auteurs en Suisse occidentale permettant de délivrer cinq messages clés : (i) des

scénarios tenant compte à la fois des changements hydro-climatiques et socio-économiques sont

nécessaires pour saisir leurs impacts respectifs sur la pénurie d’eau ; (ii) la résolution spatiale et

temporelle des modèles intégrés doit être adaptée à la question traitée ; (iii) l’implication des

parties  prenantes  pour  coproduire  des  scénarios  de  demande  en  eau  future  et  tester  des

stratégies  d’adaptation  permettant  de  réduire  les  tensions  hydriques  est  nécessaire  afin

d’augmenter  la  plausibilité  des  situations  modélisées ;  (iv)  les  approches  hydrologiques

empiriques doivent évoluer vers une intégration géographique des territoires, notamment pour

mieux appréhender les différents usagers de l’eau, et (v) des recherches interdisciplinaires sont

nécessaires  pour  évaluer  les  ressources  en eau en termes de  quantité  et  de  qualité,  et  pour

inclure les processus sociaux et de gouvernance dans les exercices de modélisation. Dans une

perspective globale, nous pensons que de tels développements méthodologiques permettraient

d’évoluer vers une vision dynamique et prospective de la sécurité hydrique.
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