
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/320716574

On the robust measurement of inflectional diversity

Conference Paper · January 2015

CITATIONS

0
READS

25

2 authors:

Some of the authors of this publication are also working on these related projects:

Linguistica View project

Swiss Islands in North America: Language Maintenance and Shift amongst Heritage Speakers Past and Present View project

Aris Xanthos

University of Lausanne

19 PUBLICATIONS   167 CITATIONS   

SEE PROFILE

Guillaume Guex

University of Lausanne

15 PUBLICATIONS   22 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Aris Xanthos on 18 February 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/320716574_On_the_robust_measurement_of_inflectional_diversity?enrichId=rgreq-71d588743b8326feb2a283e8f8fd1d3f-XXX&enrichSource=Y292ZXJQYWdlOzMyMDcxNjU3NDtBUzo3Mjc1ODkxMzYxMzAwNTFAMTU1MDQ4MjE3NjM0Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/320716574_On_the_robust_measurement_of_inflectional_diversity?enrichId=rgreq-71d588743b8326feb2a283e8f8fd1d3f-XXX&enrichSource=Y292ZXJQYWdlOzMyMDcxNjU3NDtBUzo3Mjc1ODkxMzYxMzAwNTFAMTU1MDQ4MjE3NjM0Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Linguistica?enrichId=rgreq-71d588743b8326feb2a283e8f8fd1d3f-XXX&enrichSource=Y292ZXJQYWdlOzMyMDcxNjU3NDtBUzo3Mjc1ODkxMzYxMzAwNTFAMTU1MDQ4MjE3NjM0Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Swiss-Islands-in-North-America-Language-Maintenance-and-Shift-amongst-Heritage-Speakers-Past-and-Present?enrichId=rgreq-71d588743b8326feb2a283e8f8fd1d3f-XXX&enrichSource=Y292ZXJQYWdlOzMyMDcxNjU3NDtBUzo3Mjc1ODkxMzYxMzAwNTFAMTU1MDQ4MjE3NjM0Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-71d588743b8326feb2a283e8f8fd1d3f-XXX&enrichSource=Y292ZXJQYWdlOzMyMDcxNjU3NDtBUzo3Mjc1ODkxMzYxMzAwNTFAMTU1MDQ4MjE3NjM0Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Aris_Xanthos?enrichId=rgreq-71d588743b8326feb2a283e8f8fd1d3f-XXX&enrichSource=Y292ZXJQYWdlOzMyMDcxNjU3NDtBUzo3Mjc1ODkxMzYxMzAwNTFAMTU1MDQ4MjE3NjM0Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Aris_Xanthos?enrichId=rgreq-71d588743b8326feb2a283e8f8fd1d3f-XXX&enrichSource=Y292ZXJQYWdlOzMyMDcxNjU3NDtBUzo3Mjc1ODkxMzYxMzAwNTFAMTU1MDQ4MjE3NjM0Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Lausanne?enrichId=rgreq-71d588743b8326feb2a283e8f8fd1d3f-XXX&enrichSource=Y292ZXJQYWdlOzMyMDcxNjU3NDtBUzo3Mjc1ODkxMzYxMzAwNTFAMTU1MDQ4MjE3NjM0Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Aris_Xanthos?enrichId=rgreq-71d588743b8326feb2a283e8f8fd1d3f-XXX&enrichSource=Y292ZXJQYWdlOzMyMDcxNjU3NDtBUzo3Mjc1ODkxMzYxMzAwNTFAMTU1MDQ4MjE3NjM0Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guillaume_Guex?enrichId=rgreq-71d588743b8326feb2a283e8f8fd1d3f-XXX&enrichSource=Y292ZXJQYWdlOzMyMDcxNjU3NDtBUzo3Mjc1ODkxMzYxMzAwNTFAMTU1MDQ4MjE3NjM0Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guillaume_Guex?enrichId=rgreq-71d588743b8326feb2a283e8f8fd1d3f-XXX&enrichSource=Y292ZXJQYWdlOzMyMDcxNjU3NDtBUzo3Mjc1ODkxMzYxMzAwNTFAMTU1MDQ4MjE3NjM0Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Lausanne?enrichId=rgreq-71d588743b8326feb2a283e8f8fd1d3f-XXX&enrichSource=Y292ZXJQYWdlOzMyMDcxNjU3NDtBUzo3Mjc1ODkxMzYxMzAwNTFAMTU1MDQ4MjE3NjM0Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guillaume_Guex?enrichId=rgreq-71d588743b8326feb2a283e8f8fd1d3f-XXX&enrichSource=Y292ZXJQYWdlOzMyMDcxNjU3NDtBUzo3Mjc1ODkxMzYxMzAwNTFAMTU1MDQ4MjE3NjM0Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Aris_Xanthos?enrichId=rgreq-71d588743b8326feb2a283e8f8fd1d3f-XXX&enrichSource=Y292ZXJQYWdlOzMyMDcxNjU3NDtBUzo3Mjc1ODkxMzYxMzAwNTFAMTU1MDQ4MjE3NjM0Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf


This is a preprint. A revised version has been published as Xanthos, A. & Guex, G. (2015). On the robust 

measurement of inflectional diversity. In A. Tuzzi, M. Benesova, & J. Macutek (Eds), Recent Contributions to 

Quantitative Linguistics (p. 241-254). Berlin: De Gruyter. 

On the robust measurement of inflectional diversity 

Aris Xanthos and Guillaume Guex1 

University of Lausanne 

Abstract 

 Lexical diversity measures are notoriously sensitive to variations of 

sample size. In order to deal with this issue, most recent approaches 

involve the computation of the resampled variety of lexical units, i.e. 

their average variety in random subsamples of fixed size drawn from the 

corpus. This technique, which has been shown to effectively reduce the 

influence of sample size variations, has been further applied to measures 

of inflectional diversity such as the average number of wordforms per 

lexeme, also known as the mean size of paradigm (MSP) index, thus 

yielding a so-called normalized MSP value.  

In this contribution we argue that, while random sampling can indeed 

be used to increase the robustness of inflectional diversity measures, 

using a fixed subsample size as in the normalized MSP approach is only 

justified under the hypothesis that the corpora that we compare have the 

same degree of lexical diversity–or to be more precise, of lexematic 

diversity. In the more general case where they may have differing 

degrees of lexematic diversity, a more sophisticated strategy can and 

should be adopted. 

Based on this reasoning, a novel approach to the measurement of 

inflectional diversity is proposed, aiming to cope not only with variations  

of sample size, but also with variations of lexematic diversity. The 

robustness of this new method is then empirically assessed and compared 

to that of the standard normalized MSP algorithm, based on text samples 

generated by a probabilistic model whose degree of lexematic diversity is 

artificially controlled without altering its degree of inflectional diversity. 

The results suggest that although there is still room for improvement, the 

proposed methodology considerably attenuates the impact of lexematic 

diversity discrepancies on the measurement of inflectional diversity.  

Keywords: inflectional diversity, mean size of paradigm, MSP, RMSP, 

lexical diversity, robustness, random sampling. 

1.  Introduction 

1.1  Lexical diversity, sample size, and random sampling 

The measurement of lexical diversity is one of the most studied topics in quantitative 

linguistics. The basic ingredient of all diversity measures is variety, namely the number V of 
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distinct lexical units in a text sample. It is well-known that V is critically dependent on the 

number N of tokens in the sample, so that samples of differing sizes cannot be directly 

compared based on this index. Many studies have tried to circumvent this issue using instead 

the type-token ratio TTR := V/N. However, TTR is also dependent on N in a non-linear 

fashion and the same holds about the various transforms of TTR that have been proposed by 

Guiraud (1954), Herdan (1960), and several others (see e.g. Tweedie & Baayen, 1998 and 

references cited therein). 

Many recent approaches to diversity measurement rely on a different way of compensating 

for sample size variations, based on an idea formulated seventy years ago by Johnson (1944): 

computing and reporting the average TTR (or, equivalently, variety) in a number of fixed-size 

subsamples drawn from the sample under consideration. In Johnson's original proposal 

(sometimes called mean segmental TTR), subsamples are defined as contiguous, non-

overlapping sequences of lsub tokens (1 ≤ lsub ≤ N). Consequently, the number nsub of 

subsamples is determined by the integer division ⌊N/lsub⌋. Furthermore, when lsub is not a 

factor of N, adopting this sampling scheme implies discarding a "residue" of at most lsub−1 

tokens. 

The constraint that subsamples should be made of contiguous tokens has usually been 

relaxed in later studies, as illustrated by Dubrocard (1988), where the N tokens composing the 

sample are randomly assigned to the subsamples, regardless of their position in the text. 

Malvern & Richards (1997) have further advocated a sampling procedure where each 

subsample is built by drawing tokens without replacement in the text–similarly to Johnson's 

or Dubrocard's method–but a given token may occur in any number of subsamples (including 

0). The consequence of this change in design is that the number nsub of subsamples becomes 

an actual parameter, whose value may be set to an arbitrary large number, irrespective of 

subsample size lsub. 

Malvern & Richards (1997) proceed with the specification of a sophisticate approach that 

has become the current de facto standard for measuring lexical diversity. This approach, 

called VOCD, relies on the calculation of the average TTR in subsamples of increasing size 

(35,36,…,50 tokens), in order to build a so-called "empirical" TTR curve. A curve-fitting 

procedure is then applied to find the "theoretical" curve which matches the empirical one 

most closely, among a family of curves generated by the variation of a single parameter in a 

mathematical model of the relationship between sample size and TTR. The parameter value 

generating the curve with the best fit is eventually reported as the measured diversity.  

The usefulness of the VOCD algorithm has been seriously challenged in a recent 

contribution by McCarthy & Jarvis (2007). These authors convicingly argue that (i) the curve-

fitting procedure underlying VOCD has no other use than smoothing the fluctuations induced 

by random sampling; and (ii) that a better way of achieving this effect is to calculate 

analytically the expected TTR in all possible subsamples of a given size–a calculation whose 

details (based on the hypergeometric law) have been specified already by Serant (1988), and 

essentially ignored for the next two decades. 

1.2  Inflectional diversity 

The notion of inflectional diversity relies on the distinction between inflected wordforms or 

simply forms (such as walk, walked, and walking) and lexemes or lemmas, i.e. the abstract 

lexical categories to which related wordforms belong (such as the verb conventionally 

referred to using the infinitive TO WALK). In what follows, we will conventionally denote the 

number of distinct wordforms in a sample by F, and we will call this number the sample's 
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wordform variety. Similarly, the number of distinct lexemes will be denoted by L and called 

lexematic variety. Both quantities capture distinct but interrelated aspects of lexical diversity. 

The measurement of inflectional diversity has a much shorter history than that of its 

lexical counterpart. In particular, many studies have simply used the average number of 

wordforms per lexeme, also known as the mean size of paradigm2 (see Xanthos & Gillis, 2010 

and references cited therein), defined as MSP := F/L, i.e. the ratio of wordform variety to 

lexematic variety. However, being a type/type ratio, MSP is easily shown to inherit its 

components' dependence on sample size. As such, it cannot either be used for directly 

comparing samples of differing sizes. 

To the best of our knowledge, there have been only two proposals for the measurement of 

inflectional diversity that explicitly take into account the issue of dependence to sample size. 

The first is based on VOCD (see section 1.1) and due to Malvern, Richards, Chipere & Durán 

(2004). Based on the observation that VOCD consistently returns slightly lesser values when 

applied to lexemes than to wordforms, Malvern and colleagues propose to use the difference 

between these two indices as a measure of inflectional diversity (which they call ID). 

Xanthos & Gillis (2010) have argued that in spite of its promises, this measure suffers from 

several shortcomings, chief among which are that "the unit in which ID is expressed has no 

meaningful interpretation" (p.179) and that:  

in the context of an increase in lexical diversity..., ID is liable to detect spurious increases in 

inflectional diversity–increases that are mere side-effects of the subtractive definition of the 

measure (p.180).  

On these grounds, Xanthos & Gillis have put forward an alternate measure which is easier 

to compute and, arguably, to interpret. Building on the idea of using random sampling to deal 

with the dependence on sample size, they define the normalized MSP as the average MSP 

computed in nsub subsamples of lsub tokens drawn randomly from the original sample.3 They 

provide empirical evidence showing that using random sampling significantly increases the 

measurement's robustness with regard to variations of sample size, while preserving its ability 

to detect variations of inflectional diversity. 

It should be noted that as far as we know, the problem of analytically calculating the 

expected MSP in all possible subsamples of a given size has not yet been solved. Our own 

preliminary investigations have given us no reason to believe that it has a solution as simple 

and elegant as what Serant (1988) has offered for lexical variety. 

1.3  Normalized MSP and lexematic diversity 

While normalized MSP, as defined above, appears to be robust with regard to sample size 

variations, the same does not hold for variations of lexical diversity. Xanthos & Gillis (2010) 

briefly touch upon the issue of the relation between normalized MSP and lexematic diversity: 

given that sample size remains constant, any increase in the diversity of lemmas is matched by 

a corresponding decrease in the average frequency of lemmas. As more distinct lemmas occur, 

each of them has less frequent occurrences, which means less space for deploying the variety 

of its inflected wordforms. Rarer inflections are thus less likely to appear in the sample, and on 

average a lemma will tend to have a smaller number of distinct wordforms. Overall, a decrease 

in inflectional diversity should occur as a result of the increase in lexical diversity. (p.179).  

                                                 

 
2 A lexeme’s paradigm is the set of wordforms belonging to this lexeme. 
3 The same sampling scheme as Malvern & Richards (1997) is used (cf. section 1.1). 
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In the present contribution, we wish to take this line of reasoning one step further and 

argue that a sound measure of inflectional diversity should not only be robust with regard to 

variations of sample size but also with regard to variations of lexematic diversity. Indeed, if 

normalized MSP reports spurious decreases in inflectional diversity when lexematic diversity 

increases, it does not fare any better than ID and its own spurious increases (cf. section 1.2).  

The first contribution of this study is to introduce an algorithm for computing MSP in such 

fashion that variations in both sample size and degree of lexical diversity are being taken into 

account and compensated for; we optimistically propose to call the resulting measure of 

inflectional diversity robust MSP, or RMSP. Secondly, we offer an empirical assessment of 

the extent to which this new index is less dependent on variations of lexematic diversity than 

standard normalized MSP (which will henceforth be abbreviated as NMSP); to that effect, we 

describe a presumably novel method for generating artificial text samples using a probabilistic 

model whose degree of lexematic diversity can be controlled without modifying its degree of 

inflectional diversity. 

The remainder of this contribution is organized as follows. The next section begins with 

the justification and specification of the algorithm used for computing the new RMSP index. 

Then we describe the method that we have designed for controlling the degree of lexematic 

diversity of artificially generated text samples. We proceed with the description of our 

experimental setup, including the source data used for our experiments and the way in which 

they are preprocessed. In section 3, we show the results obtained by NMSP and RMSP, 

focusing in particular on their relative dependence on lexematic variety. These results are then 

discussed in section 4 and our main findings briefly summarized in section 5. 

2.  Method 

2.1  The RMSP algorithm 

The normalized MSP (NMSP) algorithm attempts to compensate for the dependence of MSP 

on sample size. It takes as input a set of text samples and computes for each sample the 

average MSP on nsub subsamples of size lsub. The main constraint is that lsub must be set to a 

fixed value lesser than or equal to the size l of the smallest sample in the dataset (Xanthos & 

Gillis, 2010). Normalized versions of lexematic (or wordform) variety (or TTR) can be 

calculated in the same way, which will be exploited shortly for computing the robust MSP 

(RMSP) index. 

The RMSP algorithm can be thought of as a variant of NMSP where a second layer of 

normalization is added, in order to compensate not only for the dependence of MSP on 

sample size, but also on lexematic diversity. Indeed, as noted in section 1.3 above, setting the 

size of subsamples to a fixed value leads to an underestimation of MSP in samples that have a 

greater degree of lexematic diversity: in these samples, each lexeme type will have less 

occurrences on average, which in turn means that it will tend to have less distinct inflected 

forms–a faithful scale model of the dependency of variety on sample size. 

The basic idea underlying the RMSP algorithm is to counterbalance this underestimation issue 

by adjusting the subsample size lsub separately for each sample, in such fashion that samples 

with a smaller degree of lexematic diversity (relatively to other samples in the dataset) are 

assigned a smaller subsample size. In particular, the algorithm attempts to find, for each 

sample, the subsample size that ensures that lexemes have the same number of tokens on 

average in all subsamples of all samples; in other words, it seeks to minimize the variance of 

average lexeme frequency or, equivalently, of its reciprocal, lexematic TTR. 
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To that effect, a maximal subsample size lmax is first chosen, with the constraint that it must be 

lesser than or equal to the size l of the smallest sample in the set. Then the normalized 

lexematic TTR (henceforth NLTTR) of each sample is computed with a fixed subsample size 

of lmax tokens. The maximal NLTTR value obtained this way determines the target value 

(NLTTRtarget) that the algorithm consequently tries to reach for each (other) sample in the 

dataset. In particular, for each sample, the algorithm searches for the subsample size 

2 ≤ lsub ≤ lmax that is optimal in the sense that the resulting NLTTR value is as close as 

possible to NLTTRtarget; finally, the NMSP of this sample is computed with the optimal 

subsample size lsub that has just been found, and the result is reported as the value of the 

RMSP index for this sample. The algorithm can be described more formally as on Figure 1 

below. 

RMSP algorithm 

Input:  

– set S of text samples with size at least l 

– maximum subsample size lmax ≤ l 

Output: RMSP(s, S, lmax) value for each sample s∈S 

– NLTTRtarget ← maxs∈S(NLTTR(s, lmax)) 

– for each s∈S do: 

– llow ← 2, lhigh ← lmax 

– lsub ← lhigh 

– while NLTTR(s, lsub) ≠ NLTTRtarget and llow ≠ lhigh do: 

– lsub ← integer((lmax + lmin) / 2) 

– if  NLTTR(s, lsub) < NLTTRtarget, set lhigh to lsub 

– else if  NLTTR(s, lsub) > NLTTRtarget, set llow to lsub 

– RMSP(s, S, lmax) ← NMSP(s, lsub) 

 

Figure 1. Algorithm for robust MSP (RMSP) computation. 

The following difference between NSMP and RMSP should be stressed. The NMSP value 

computed for a given sample depends only on the chosen subsample size lsub, so that it can be 

directly compared with any other NMSP value obtained with the same subsample size. By 

contrast, the RMSP value of a sample depends not only on the maximum subsample size lmax 

but also on the set of samples with which this sample is compared–or to be precise, on the 

maximal NLTTR value obtained with a sample of this set for subsample size lmax 

(NLTTRtarget). Consequently, in order to compare this RMSP value with that of a new sample, 

the following conditions must be met: (i) the new sample must be of size at least lmax and (ii) 

its NLTTR for subsample size lmax must be at most NLTTRtarget; if so, the new sample can be 

processed separately in the same way as each sample of the original dataset. Otherwise, the 

algorithm must be run again on the entire dataset consisting of the new sample and the old 

one(s) with which it should be compared. 

2.2  Sample generation  

In order to evaluate the gain in robustness brought about by the RMSP algorithm, we have 

designed a method for generating artificial text samples whose degree of lexematic diversity 

can be controlled without altering their degree of inflectional diversity. This method relies on 

an L × F contingency table, where each row corresponds to a lexeme type, each column 
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corresponds to a wordform type, and each cell gives the count of a pair (lexeme, wordform).4 

Normalizing over the table's grand total yields a joint probability model that can be used to 

generate a text sample of size l by drawing l pairs (lexeme, wordform) with replacement. In 

what follows, it will be useful to refer to L, F, and F/L as the model's theoretical lexematic 

variety, wordform variety, and MSP respectively. 

The models' theoretical lexematic variety can be reduced by aggregating two lexeme types 

(rows) in the contingency table. Let f and g be the wordform frequency distribution of any two 

lexemes, ordered by decreasing frequency. By placing the additional constraint that f and g be 

proportional, we ensure that the aggregated lexeme, defined as the vector sum of f and g, is 

also proportional to f and g. 

In order to substantially decrease the lexematic variety L of the model, we perform nagg > 1 

aggregations at a time. Now, given that L will be reduced by nagg after nagg aggregations, in 

order for the theoretical MSP to remain constant, the theoretical wordform variety F should be 

decreased by nagg·MSP = nagg (MSP – 1) + nagg. The first wordform type of all aggregated 

lexeme types will contribute to the reduction of F by nagg, so the number of wordform types 

minus 1 in the aggregated lexeme types should be nagg (MSP – 1). This can be achieved as 

follows: first, randomly pick lexeme types among those that have more than one wordform 

type5, until the wordform "surplus" (i.e. the number of wordform types in the selected 

lexemes minus the number of selected lexemes) reaches nagg (MSP – 1); then, complete the 

nagg aggregations by randomly selecting lexeme types among those that have only one 

wordform type.  

We call the process of doing nagg lexeme aggregations as described above an aggregation 

round. After an aggregation round, the modified contingency table can be normalized to build 

a new joint probability model, which in turn can be used to generate new samples. The 

process can be repeated as long as there remain enough lexeme types with proportional 

wordform distribution to aggregate. 

2.3  Experimental design 

As described in the previous section, our empirical assessment of NMSP and RMSP is based 

on a probabilistic mechanism for sample generation. The parameters of this mechanism could 

in principle be themselves generated according to some theoretical model. However, we have 

rather chosen to estimate them on the basis of natural language data, in order to preserve some 

degree of resemblance between our experimental design and the "naturalistic" conditions in 

which the measurement of inflectional diversity is likely to take place.  

The data in question are taken from the Project Gutenberg eBook of Eduard Bernstein's 

Sozialismus einst und jetzt (2008). A German text was chosen on the grounds that its degree 

of inflectional diversity would in principle be relatively high (at least when compared to 

English, whose inflection is quite limited) so that there would actually be something to 

measure for our indices. For the same reason, we decided to focus exclusively on the 

subsystem of verb inflection in this corpus. 

Bernstein's text was automatically tokenized, lemmatized, and annotated with part-of-

speech (POS) tags using TreeTagger (Schmid, 2004). Orange Textable (Xanthos, 2014) was 

then used to parse the output of TreeTagger and discard all tokens but verbs. The result is a 

                                                 

 
4 In practice, these counts are typically derived from an existing text, as described in the next section. 
5 subject to the proportionality constraint discussed above. 
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list of N = 8106 verb tokens corresponding to F = 2012 wordform types and L = 1078 lexeme 

types, hence a (raw) MSP of 1.87 forms per lexeme.6  

Five rounds of 50 lexeme aggregations were made, preserving the theoretical MSP. At 

each step (starting with no aggregation), 100 text samples of size 500, 1000, 1500, 2000, and 

2500 were produced, for a total of 3000 text samples. NMSP was computed with nsub = 1000 

subsamples of size lsub = 100, 200, 300, and 400. RMSP was computed with nsub = 1000 

subsamples and maximum size lmax = 100, 200, 300, and 400.   

3.  Results 

As shown on Figure 2, while lexeme aggregation reduces the model's theoretical lexematic 

and wordform variety by more than 20% (from 1078 to 828 lexeme types and from 2012 to 

1540 wordform types), it causes only a slight decrease in theoretical MSP (from 1.866 to 

1.860, i.e. less than 0.5%). 

 

Figure 2. Left: Theoretical values of lexeme (dashed) and wordforms (solid) types vs 

aggregation rounds. Right: Theoretical MSP vs aggregation rounds. 

Figure 3 confirms the impact of sample size on the lexematic and inflectional diversity of 

generated samples, as measured by their raw (i.e. not normalized) lexematic TTR and MSP. 

More importantly, the figure shows that lexeme aggregation influences both the lexematic 

TTR and the MSP of generated samples. In particular, the latter increases as the former 

decreases, in particular for larger sample sizes: the MSP increase ranges between 3% for 

samples of 500 tokens and 7.6% for samples of 2500 tokens. One should not be surprised that 

the raw MSP increases with aggregation rounds although the theoretical MSP remains 

approximately constant; indeed, the predicted effect of lexeme aggregation on the average 

MSP of samples of fixed size is exactly the same as the predicted effect of lexeme 

aggregation on NMSP for a given subsample size. 

The normalization performed by the NMSP and RMSP algorithms effectively lessens the 

dependence of diversity measurement on sample size, as indicated by the overlap of curves on 

Figure 4 (obtained with lsub, lmax = 100). The figure also shows that the reported RMSP is 

                                                 

 
6 Note that homophonous wordforms belonging to different lexemes are treated as distinct wordform types 

(e.g. gehabt, which can be the past participle of HABEN ‘to have’ or GEHABEN ‘to behave’). 
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systematically lower than the corresponding NMSP. Finally, it can be seen that both measures 

are affected by lexeme aggregation, although not to the same extent. 

 

Figure 3. Left: Raw lexematic TTR vs aggregation rounds. Right: Raw MSP vs aggregation 

rounds. On both figures, light to dark represents samples from size 500 to 2500.  

 

Figure 4. NMSP (dashed) and RMSP (solid) vs aggregation rounds (lsub, lmax = 100). Light to 

dark represents samples from size 500 to 2500. 

Figure 5 shows the behavior of NMSP and RMSP for lsub, lmax = 100, 200, 300, and 400 

tokens (aggregating the results observed for all sample sizes). While both measures are 

increasing with lexeme aggregations for all values of lsub and lmax, the increase is consistently 

lesser for RMSP than for NMSP. The visual impression is confirmed by the results of a 

Spearman's correlation test assessing the degree of dependence of NMSP and RMSP on the 

number of aggregation rounds. With the exception of RMSP with lmax = 100, both diversity 

measures always have a significant correlation with the number of aggregation rounds (cf. 

Table 1). However, the correlation itself is consistently lesser for RMSP. 

4.  Discussion and conclusion 

In this contribution, we have argued that while the resampling scheme underlying the 

normalized MSP (NMSP) measure of inflectional diversity proposed by Xanthos & Gillis 

(2010) effectively reduces the dependence of the measure on sample size, a more 
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sophisticated approach is needed when dealing with data samples whose degree of lexematic 

diversity is heterogeneous. We have introduced a novel algorithm called robust MSP (RMSP), 

which relies on the idea that what should be normalized is not merely the number of tokens 

per subsample, but the number of tokens per lexeme in subsamples. To that effect, rather than 

setting a fixed subsample size for all samples in the considered dataset, the RMSP approach 

sets the size of subsamples separately for each sample, in such fashion that the variance of 

average lexeme frequency over all subsamples is minimized. 

 

 

Figure 5. NMSP (dashed) and RMSP (solid) vs aggregation rounds for different subsample 

size. Results for different sample lengths have been aggregated. 

Subsample size NMSP RMSP 

100 0.190 (p≈0) 0.090 (p≈9e-7) 

200 0.318 (p≈0) 0.179 (p≈0) 

300 0.414 (p≈0) 0.241 (p≈0) 

400 0.484 (p≈0) 0.285 (p≈0) 

Table 1. Spearman's correlation between aggregation rounds and NMSP/RMSP. 

In order to evaluate the gain in robustness brought about by the RMSP algorithm, we have 

developed a method for generating artificial text samples (based on lexeme and wordform 
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frequencies observed in a real text) whose degree of lexematic diversity can be controlled 

without altering their degree of inflectional diversity. These data have enabled us to show that 

raw MSP is not only dependent on sample size, but also on variations of lexematic diversity. 

Applying the NMSP algorithm to the generated samples confirms that while it is much less 

dependent on sample size than raw MSP, it is also affected by variations of lexematic 

diversity. Finally, although RMSP is also dependent on lexematic diversity, it proves more 

robust than NMSP with regard to lexematic diversity fluctuations. 

When the samples under consideration are homogeneous from the point of view of their 

degree of lexematic diversity, RMSP essentially reduces to NMSP (with a slight 

computational overhead). Otherwise, the RMSP algorithm attempts to compensate for 

lexematic diversity fluctuations by discarding (through resampling) even more tokens than the 

standard NMSP algorithm. All other things being equal, discarding more tokens means 

discarding more types, which explains why the reported values of RMSP are typically lower 

than those of NMSP. Thus, while RMSP is in principle more widely applicable than NMSP 

(since it can handle data that display variations of lexematic diversity), it also gets closer to 

the extreme and absurd case where diversity is evaluated on the basis of a single token. A 

priority for future research will be to determine the conditions under which the RMSP 

approach might lead to an information loss so severe that it ultimately fails to provide a 

meaningful evaluation of inflectional diversity. 
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