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Abstract
Waddlia chondrophila, an obligate intracellular bacterium belonging to the Chlamydiales
order, is considered as an emerging pathogen. Some clinical studies highlighted a possible

role ofW. chondrophila in bronchiolitis, pneumonia and miscarriage. This pathogenic poten-

tial is further supported by the ability ofW. chondrophila to infect and replicate within human

pneumocytes, macrophages and endometrial cells. Considering thatW. chondrophila
might be a causative agent of respiratory tract infection, we developed a mouse model of

respiratory tract infection to get insight into the pathogenesis ofW. chondrophila. Following
intranasal inoculation of 2 x 108W. chondrophila, mice lost up to 40% of their body weight,

and succumbed rapidly from infection with a death rate reaching 50% at day 4 post-inocula-

tion. Bacterial loads, estimated by qPCR, increased from day 0 to day 3 post-infection and

decreased thereafter in surviving mice. Bacterial growth was confirmed by detecting divid-

ing bacteria using electron microscopy, and living bacteria were isolated from lungs 14 days

post-infection. Immunohistochemistry and histopathology of infected lungs revealed the

presence of bacteria associated with pneumonia characterized by an important multifocal

inflammation. The high inflammatory score in the lungs was associated with the presence of

pro-inflammatory cytokines in both serum and lungs at day 3 post-infection. This animal

model supports the role ofW. chondrophila as an agent of respiratory tract infection, and

will help understanding the pathogenesis of this strict intracellular bacterium.

Introduction
Pneumonia is the third deadliest infectious disease worldwide, responsible for more than 3 mil-
lion deaths per year [1]. Whereas hospital acquired (nosocomial) pneumonia primarily results
from Pseudomonas aeruginosa infection, community acquired (CAP) is mainly due to Strepto-
coccus pneumoniae infection. Others bacterial pathogens such as C. pneumoniae [2], Legionella
pneumophila [3], and Haemophilus influenzae [4] also lead to pneumonia. It is therefore essen-
tial to identify the causative agent to select an effective antibiotic therapy [5,6]. Unfortunately,
despite the availability of standardized diagnostic tools, in at least 50% of the cases of pneumo-
nia the aetiological agent remains unidentified [7–9]. In this situation, pneumonia is likely
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initiated either by unknown, not diagnosable, bacteria or by atypical and fastidious bacteria
that cannot be detected using routine diagnostic methods. Among the atypical and fastidious
organisms, some Chlamydia–related bacteria, such as Parachlamydia acanthamoebae and Sim-
kania negevensis, have been previously associated with respiratory tract infections [10–14].
Recently,Waddlia chondrophila (W. chondrophila), another Chlamydia-related bacterium, has
been associated to respiratory tract infections such as pneumonia [15] and bronchiolitis in chil-
dren [16]. These first clinical hints suggest a potential role ofW. chondrophila in respiratory
tract infections, which remains to be investigated.

As all members of the Chlamydiales order,W. chondrophila exhibit an obligate intracellular
biphasic developmental cycle with reticulate bodies (RBs) that are metabolically active within a
replicative niche called inclusion, and elementary bodies (EBs) that are metabolically inactive
[17].W. chondrophila was initially isolated from two bovine aborted foetuses in America
[18,19] and in Germany [20]. Following veterinary investigations,W. chondrophila has been
associated with bovine abortion [21,22], and a likely role ofW. chondrophila in human adverse
pregnancy outcome was documented [23–26]. There is up to now no evidence for a sexual
transmission ofW. chondrophila. However, association betweenW. chondrophila seropositiv-
ity and contact with animals supports a zoonotic mode of transmission [23].

W. chondrophila has been detected in well water [27], and is able to grow within free-living
amoebae. Amoebae are therefore a potential important reservoir forW. chondrophila, and we
should consider the water network as a potential transmission mode [28]. As it was demon-
strated for Legionella pneumophila [29],W. chondrophilamight be carried by amoebae within
aerosolized water droplets, and inhaled upon contact with infected individual, animal or envi-
ronmental reservoir. Moreover,W. chondrophila infect and grow very efficiently within a large
panel of eukaryotic cells ranging from epithelial cells [30] to immune cells [31,32]. Altogether,
these observations suggest a possible role ofW. chondrophila in human and animal respiratory
tract infections. In this study, we developed a mouse model of respiratory tract infection
induced by intranasal inoculation ofW. chondrophila and describe the innate immune
response to infection. Overall, the results support a pathogenic potential ofW. chondrophila in
mice and suggest a role of the bacteria in lung infections. In addition, this model might also be
useful to elaborate therapeutic strategies directed againstW. chondrophila infection and to fur-
ther study the biology of Chlamydia-related bacteria.

Material and Methods

Bacterial strain and inoculum preparation
W. chondrophila ATCC VR-1470 were grown at 32°C within Acanthamoeba castellani as pre-
viously described [10]. After 5 days, the co-culture was harvested by centrifugation at 8500g
during 10 minutes. Pellet was diluted in 2 mL of PBS and filtered through a 5 μm filter to fur-
ther disrupt and eliminate amoebal cells and fragments. Bacteria were concentrated by centri-
fugation at 8500g during 10 min, and pellet was resuspended in 1 mL of PBS. Finally, bacterial
load was indirectly quantified using a specific quantitative real-time PCR [16] targeting the 16S
rRNA encoding genes, which are present in two copies in the genome ofW. chondrophila [33].
Mock control was amoebae not infected withW. chondrophila but was subjected to the same
procedure as the infected sample.

Mouse model of infection
Eight to 12-week-old female C57BL/6 mice were obtained from Charles River Laboratories
(L’arbesle, France) and acclimatized for at least 1 week before experimentation. All animal pro-
cedures were approved by the Office Vétérinaire du Canton de Vaud, Lausanne, Switzerland
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(authorization n° 876.8, 877.8, and 1860.1), and performed according to our institutional
guidelines for animal experiments. In agreement with our state ethic veterinary committee, no
analgesic was provided to animals, considering that these agents interfere with innate immune
responses. For each mouse we attributed a severity score graded from 1 (ruffled fur) to 5
(death), with grade 4 attributed to moribund animals (i.e. animals with deficient mobility
compromising access to food and water). Intermediates grades 2 and 3 are associated to ruffled
fur and respectively one or two others characteristics among conjunctivitis, diarrhea or motility
troubles. Animals were monitored at least once daily, and whenever a mouse reached a severity
score of 1, all animals were then monitored every 8 hours until the end of the experiments.
Moreover, mice were euthanized when they met a severity score of 4. There was no unexpected
death during the entire set of experiments.

Practically, mice were anesthetized by inhalation of 3% isoflurane (Attane, Bayer Health
Care, Monheim, Germany). Mice were held in vertical position, and a drop of 20 μL containing
W. chondrophila, or the mock control, was deposited in mice snares. One minute after inocula-
tion, mice regained consciousness. Body weight and general state of health was monitored once
a day. Mice were sacrificed by CO2 inhalation at different times post-inoculation. Whole blood
was taken to measure cytokine concentrations. Lungs were harvested and divided in three
parts. Lungs were cut longitudinally in equal parts. The outer part was dedicated to histology/
immunohistochemistry analyses. The inner part was then cut transversally in two equal parts,
the upper for bacterial DNA quantification, and the lower for cytokine measurement.

Bacterial DNA quantification in the lung samples
To have a similar amount of lung sample tested by PCR for the presence ofW. chondrophila,
DNA extraction was always done on the same part of each lung, the other parts being used for
histology, immunohistochemistry and cytokines measurement. Briefly, waddlial DNA was
extracted using the Wizard Genomic DNA purification kit (Promega, Madison, WI, USA)
according to the manufacturer’s instructions, and quantified by quantitative real-time PCR
assay as described previously [16]. Briefly, the reaction was performed using iTaq supermix
with ROX (Bio-Rad, Reinach, Switzerland), 200 nM of forward primer (WadF4, 50- GGCCC
TTGGGTCGTAAAGTTCT-30), 200 nM of reverse primer (WadR4, 50CGGAGTTAGCC
GGTGCTTCT-30), and 100 nM of probe (WadS2, 50-FAM-CATGGGAACAAGAGAAGGA
TG- BHQ-30). Amplification and detection of PCR products were performed with the ABI
Prism 7000 Sequence Detection System (Applied Biosystems, Rotkreuz, Switzerland) using the
following cycling conditions: 2 min at 50°C, 3 min at 95°C followed by 45 cycles of 15 s at 95°C
and 1 min at 60°C.

Histopathology and Immunohistochemistry
Each lung was sagitally cut into two equal parts. The outer part of each lung was fixed for 48
hours at room temperature in neutralized 4% formaldehyde and then conserved at 4°C in PBS
until paraffin embedding. Paraffin embedded lung sections were haematoxylin/eosin stained to
monitor the degree of inflammation. Adjacent sections were also investigated for the presence
of (i)W. chondrophila, using a polyclonal rabbit anti-Waddlia antibody, as described previ-
ously [22] and (ii) macrophages, using a monoclonal rat anti mouse F4/80 antibody (Catlag
Medsystems, Buckingham, UK), according to manufacturer's instructions.

Slides were analysed under light microscopy by a pathologist. Briefly, inflammation was
scored as a percentage of inflamed area compared to the total area of the lung samples. The
presence ofW. chondrophila was scored on a scale ranging from 0 to 4. 0 corresponds to
absence ofW. chondrophila, 1 to sporadic presence of cells containingW. chondrophila, 2 to a
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few scattered cells containingW. chondrophila, 3 to mean number of cells containingW. chon-
drophila without aggregate, and 4 to high number of cells containingW. chondrophila with
presence of aggregates within these cells. Finally, the macrophage infiltration was scored on a
scale ranging from 0 to 3. 0 corresponds to the presence of a few macrophages as in normal
lungs, 1 to a weak infiltration of macrophages, 2 to a moderate infiltration of macrophages, and
3 to a heavy infiltration of macrophages.

Cytokines measurement
Whole blood samples were centrifuged to obtain plasma, and the inner and upper part of each
lung was disrupted with a TissueLyser II (Qiagen, Hilden, Germany). The cytokine concentra-
tions in plasma and lung homogenates were quantified by enzyme-linked immunosorbent
assay (ELISA), as described by the manufacturer (R&D Systems, Minneapolis, MN, USA).

Electron microscopy
Pieces of 2 millimetres diameter of lungs were harvested by using a biopsy punch device (Stiefel
laboratories, Research Triangle Park, NC, USA) and fixed for 48 hours in 4% paraformalde-
hyde, 0.2% glutaraldehyde. Samples were washed in phosphate buffer and thin sections depos-
ited on grids were analysed with a transmission electron microscope Philips EM 201 C
(Philips, Eindhoven, The Netherlands).

Co-culture assay
Lung samples were collected and mechanically disrupted with 2 ml Dulbecco's Modified Eagle
Medium supplemented with sodium pyruvate and glutamine (GE Healthcare, Glattbrugg,
Zurich, Switzerland) and 10% fetal bovine serum (Connectorate, Dietikon, Switzerland) in gen-
tleMACS™ tubes using a gentleMACS™ Dissociator (Miltenyi Biotec, Bergisch Gladbach, Ger-
many). Serial dilutions of the cell suspensions were transferred on a 24-well plate containing
Vero cells. Plates were centrifuged at 1790g for 10 min and incubated at 37°C with 5% CO2 for
3 h to allow internalization ofW. chondrophila. After 3 hours, cells were washed and incubated
for 7 days in supplemented DMEM containing 50 μg/ml of gentamycin (Bioconcept, Allschwil,
Switzerland) and 30 μg/ml of ampicillin (Sigma-Aldrich, Buchs, Switzerland) were added to
inhibit growth of contaminants microorganisms. Viability ofW. chondrophila was assessed by
using a specific qPCR on Vero cells 3 h and 7 days post-inoculation.

Statistical analysis
Statistical analyses were processed using GraphPad Prism 6.05 software for Windows (Grah-
Pad Software Inc., La Jolla California, USA). Survival curves were created using the Kaplan-
Meier method. Analysis of variance followed by unpaired two-tailed Student's t-test was used
to analyse cytokines concentrations, and statistical significance was depicted as � p value
<0.01, ��p value<0.001, and ���p value<0.0001.

Results
In a preliminary experiment, using a wide log range of bacterial inoculum (from 1 x 106 to
1 x 109), we roughly estimated the lethal dose 50 (LD50) close to 1 x 108 bacteria.

Then, to analyse more precisely the pathogenicity ofW. chondrophila in vivo, groups of
six mice were inoculated intranasally with increasing quantities ofW. chondrophila (5 x 107,
1 x 108 and 2 x 108 bacteria) and survival monitored daily up to day 24 (Fig 1A). All deaths
occurred between day 1 and day 7: one in the groups injected with 5 x 107 and 1 x 108 bacteria,
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and 3 in the group injected with 2 x 108 bacteria. Death rate did not increase upon inoculation
of 4 x 108 bacteria, and no mortality was observed in the mock treated group, suggesting that
the lethal dose 50 (LD50) was close to 2 x 10

8 W. chondrophila in that model. Going well along
with mortality, mice showed a rapid degradation of their global health status as reflected by a
36% lost of their initial weight at day 7 post-infection (Fig 1B). In contrast, animals to survive
had a transient weight loss reaching 20% at day 5, and regained their initial weight at day 10
post-infection.

Bacterial loads in the lungs were assessed immediately and the following days after inocula-
tion with 2 x 108 W. chondrophila using a specific quantitative real-time PCR [16]. One hour
after inoculation, 2.3 x 106 (± 4 x 105) bacteria were detected in lung samples (Fig 2A), indicat-
ing that approximately 1% of the inoculum reached the inner and lower part of the lungs 1
hour after inoculation. Bacterial loads dramatically dropped down during the next 24 hours,
reaching 8.5 x 103 (± 2 x 103) bacteria per lung samples at day 1 post-inoculation. From day 1
to day 3, bacterial loads increased up to 6 x 106 (± 7 x 105) bacteria per lung samples. Bacterial
loads then decreased down to 1.4 x 106 (± 6 x 105) at days 7, and 2.6 x 105 (± 2 x 105) at day 9,

Fig 1. Waddlia chondrophila inducemice mortality and body weight loss. A)C57BL/6 mice (n = 6
animals per group) were inoculated intranasally with 5 x 107, 1 x 108 and 2 x 108 W. chondrophila. A mock
control group was processed in parallel (n = 5 mice). The Kaplan-Meier survival curve is shown.B) Body
weight of mice that survived or died afterW. chondrophila infection, and mock control treated mice. Results
are expressed as the mean percentage (± SEM) of animal weight prior to inoculation.

doi:10.1371/journal.pone.0150909.g001
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at which time points bacteria were not detected in 1/6 and 2/6 animals, respectively (Fig 2A).
Bacterial burden at day 3 likely reflected sustained bacterial replication since dividing bacteria
were regularly detected by electron microscopy analysis of lung sections collected 3 days post-
infection (Fig 2B). Noteworthy, using a co-culture assay, livingW. chondrophila were recov-
ered from lungs up to 14 days post-infection. After lungs disruption,W. chondrophila were
able to infect and grow within Vero cells proving they were alive. Moreover, low but reproduc-
ible amounts of bacterial DNA were amplified from the spleen and kidneys of mice infected
withW. chondrophila, but not in lungs, spleen and kidneys of mock control animals (data not
shown). Altogether, these data suggested thatW. chondrophila was able to replicate efficiently
within mouse lungs.

We then investigated the pathogenesis ofW. chondrophila-induced lung infection by histol-
ogy and immunohistochemistry methods (Fig 3 and Table 1). One hour post-infection with 2

Fig 2. Waddlia chondrophila replicate within mouse lungs. A) Bacterial loads in lung homogenates of
mice inoculated intranasally with 2 x 108 W. chondrophila. The horizontal line represents the median value.
B)Representative electron microscopy picture of a mouse lung 3 days post-inoculation with 2 x 108W.
chondrophila (n = 3). The white arrowhead is showing an inclusion full ofW. chondrophila. A: air in lung
alveolus, EB: elementary body, RB: Reticulate body, mi: mitochondria. Note thatW. chondrophila EB exhibits
here a typical crescent shape that has been reported to be induced by fixative used for electron microscopy
[41]. Scale bar = 1 μm. Magnification 13000x.

doi:10.1371/journal.pone.0150909.g002
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x 108 bacteria, only few infected cells were detected by immunohistochemistry using a poly-
clonal anti-Waddlia antibody. The proportion of infected cells increased from day 1 to day 3 at
which a strong positive signal was recorded. At day 10 post-infection, only some positive areas
were detected, suggesting that bacteria were either cleared from the lungs or disseminated. The
transient increase of bacterial loads was associated with moderate macrophage recruitment at
bacteria foci at day 3 and persistence of these macrophages up to day 10 post-infection. Signs
of inflammation were detected early after inoculation, peaked at day 7 and then decreased with
34%, 44%, 57.5% and 33% of the lung area inflamed at day 1, 3, 7 and 10 post-infection, respec-
tively (Fig 3 and Table 1). The severe inflammation was characterized by an important

Fig 3. Waddlia chondrophila induce severe pneumonia.Mice were inoculated intranasally with 2 x 108 W.
chondrophila. Adjacent lung sections were stained with haematoxylin and eosin, anti-F4/80 antibody, and
specific polyclonal anti-W. chondrophila antibody at different times post-inoculation. Scale bar = 100 μm.A)
One hour post-inoculation, no signs of inflammation and no macrophage recruitment were observed. Only
rare bacteria were detected within lung cells. Magnification 100x.B) Three days post-inoculation, we
observed a subacute inflammation associated with a moderate recruitment of macrophages, and a massive
infiltration ofW. chondrophila. Magnification 100x.C) Ten days post-inoculation, we observed a moderate
inflammation since the lympo-plasmacytic infiltration has slightly decrease, whereas there was still
recruitment of macrophages in the rare areas whereW. chondrophila was still persistent. Magnification 100x.

doi:10.1371/journal.pone.0150909.g003

Table 1. Detection of bacteria, inflamed area andmacrophage infiltration in the lungs of mice infected
withWaddlia chondrophila.

Day (n) 0 (8) 1 (8) 3 (6) 7 (6) 10 (6)

Presence of Waddlia chondrophila* 0.75 2.7 3.8 1.7 0.7

Inflamed area (%)** 18 34 44 57.5 33

Macrophage infiltration*** 0 0 1.6 1.8 1

* The detection of W. chondrophila within cells was scored on a scale from 0 (no Waddlia) to 4 (strong

presence of Waddlia).
** Inflamed area is expressed as the percentage of total lung area.

*** Macrophage infiltration was scored on a scale from 0 (no infiltration) to 3 (strong infiltration).

At day 3, neither macrophage infiltration and nor W. chondrophila were detected in mock controls (n = 6),

whereas focal inflammation was observed in one third of the animals.

doi:10.1371/journal.pone.0150909.t001
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neutrophilic and lympho-plasmacytic infiltration of alveolar spaces and interstitial spaces (Fig
4A) with a predominantly peri-bronchial and peri-bronchiolar pattern that is characteristic of
a subacute pneumonia. Of note, focal inflammation characterized by the presence of lympho-
plasmacytic cells was observed in 30% of the lung surface area of mock treated animals at day 3
(Fig 4B).

To gain insights into the inflammatory response induced by intranasal inoculation ofW.
chondrophila, we quantified pro-inflammatory cytokines in lung homogenates. When com-
pared to mock controls, the concentrations of IL-6 were strongly increased at days 1, 2 and 3
following infection (Fig 5A), and that of TNF at days 1 and 2 (Fig 5B). Moreover, blood levels
of IL-6 at days 1, 2 and 3 and IL-12p40 at days 2, 3 and 7 were significantly up regulated follow-
ing infection withW. chondrophila (Fig 5C and 5D).

Altogether, these data confirmed the role ofW. chondrophila as a respiratory pathogen
responsible for severe lung inflammation, pneumonia and associated mortality in mice, further
strengthening the potential pathogenic role ofW. chondrophila in humans.

Fig 4. Dense infiltration of specific immune cells in the lungs of infectedmice.Mice were inoculated
intranasally with 2 x 108W. chondrophila or a mock control. Adjacent lung sections were stained with
haematoxylin and eosin 3 days post-inoculation. Scale bar = 50 μm. A) Typical dense lympho-plasmacytic
(white arrows) and neutrophilic (black arrows) infiltration of the lung alveolar and interstitial spaces of mice
infected withW. chondrophila. Infiltration is peri-bronchiolar (black star) colonization of the bronchiole by
neutrophils and lymphocytes that is typical of a subacute pneumonia. Magnification 400x.B) Typical focal
inflammation in lungs of mock control mice, with presence of a few neutrophils (black arrow) and more
lymphocytes (white arrow) in peri-bronchial and peri-bronchiolar area. Magnification 400x.

doi:10.1371/journal.pone.0150909.g004
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Discussion
Clinical and experimental data suggest a possible role ofW. chondrophila in respiratory tract
infections [15,16,30]. It is thus essential to improve our understanding of the pathogenesis of
infections induced byW. chondrophila. In that perspective, we established a murine model of
respiratory tract infection induced by intranasal inoculation ofW. chondrophila.

Bacteria were inoculated intranasally because this route might represents a natural way of
infection, and because this simple procedure is less invasive for the animals than other
approaches [34]. Half of the mice succumbed 3 days post-inoculation with 2 x 108 bacteria,
and animals going to die lost close to 40% of their initial weight. The inoculum ofW. chondro-
phila used in this study was approximately ten times higher than inocula usually used in mod-
els of pneumonia induced by C. pneumoniae [35,36]. This inoculum corresponds to the lethal
dose 50 (LD50) useful to describe the role ofW. chondrophila in respiratory tract infections but
clearly higher than the inocula that we expect to observe in naturally-occurring community-
acquired pneumonia. Moreover, Parachlamydia acanthamoebae, another Chlamydia-related
bacterium induced a clinical picture similar to that observed usingW. chondrophila with nearly
the same inoculum [12].

Interestingly, one hour after inoculation withW. chondrophila, we could detect about 2 x
106 bacteria per lung samples corresponding to only 1% of the inoculum deposited into mice
snares. The remaining bacteria could be still in the upper respiratory tract, exhaled, or be devi-
ated into the digestive tract. One of the limitations of the intranasal inoculation technique is
the variability of lung deposition of the microorganism among different mice [34]. Yet, whereas
bacterial loads detected in the lungs early after inoculation were indeed heterogeneous ranging
from 5.7 x 104 to 2 x 106 bacteria per lung, 24 hours later around 1 x 104 bacteria per lung were
measured in nearly all infected mice, demonstrating the robustness of our model. The early
decrease of bacterial loads observed during the first day could be due to bacterial exhalation
and dissemination into the bloodstream. Contrary to what was reported in mouse models of
infection with other Chlamydiales [12,35,36], bacterial loads burst between day 1 to day 3 post-

Fig 5. Waddlia chondrophila induce the secretion of pro-inflammatory cytokines in the blood and in
the lungs of infectedmice. IL-6, TNF and IL-12p40 in lung homogenates (A and B) and blood (C and D) of
mice inoculated with 2 x 108 W. chondrophila (black boxes) and mock controls (white boxes) were quantified
by ELISA. Data are means ± SEM. n = 6–8 mice per group.

doi:10.1371/journal.pone.0150909.g005
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infection, reaching 6 x 106 bacteria per lung samples. This increase probably resulted from a
huge replication ofW. chondrophila, as suggested by electron microscopy analyses showing
dividing reticulate bodies in lung sections. The detection of bacterial DNA in spleen and kidney
could represent some bacterial DNA disseminating from the initial site of infection through
bloodstream, or could indicate that theW. chondrophila bacteria disseminated from the pri-
mary site of inoculation. This dissemination, associated with a huge local replication, might be
responsible of the rapid fatal outcome of infection. Noteworthy, considering the possible role
ofW. chondrophila in bovine abortion and in adverse pregnancy outcomes in humans,
advanced investigations might be useful to investigate for a potential tropism ofW. chondro-
phila for genital tract organs.

Reminiscent of observations obtained following intranasal infection with Parachlamydia
acanthamoebae [12],W. chondrophila bacterial loads decreased over time in surviving animals,
reaching about 2.65 x 105 bacteria per lung at day 9. Most likely, bacteria were eliminated by
resident and infiltrating innate immune cells, as progressive clearance was associated with
acute and subacute lung inflammation characterized by dense neutrophils and lympho-plas-
mocytes infiltration of the alveolar spaces at day 3 and day 7, respectively. Macrophages infil-
tration peaked at days 3–7 and decreased at day 10, which contrast with what was observed for
C. pneumoniae infection [37]. Moreover, we did not observe signs of organizing pneumonia or
interstitial fibrosis, in spite of the presence of a few remaining bacteria in the lungs. Further
investigations should investigate for a potential long term persistence of bacteria, especially
when considering the ability ofW. chondrophila to differentiate into aberrant bodies, a non
replicative form associated to persistent chlamydial infections [38,39]. Similarly to C. pneumo-
niae-induced pneumonia [40],W. chondrophila-induced pneumonia was associated with the
production of pro-inflammatory cytokines such as IL-6 and TNF in the lungs, and IL-6 and
IL12p40 in the blood. The observed acute/subacute inflammation was transient since 10 days
after the onset of infection the pattern of inflammation was similar to that observed in the
mock control group.

In conclusion, along previous observations suggesting a role ofW. chondrophila as an
emerging pathogen of respiratory tract infections [15,16], we successfully developed a reliable
mouse model of pneumonia induced by intranasal inoculation ofW. chondrophila. To com-
plete the Koch’s postulate by establishing a link between a pathogen and a disease,Waddlia
should be isolated from a patient suffering from pneumonia and grown in pure culture. The
mouse model reported will help to increase our knowledge about Chlamydia-related pathogen-
esis, and will be a useful tool for future investigations including in vivo assessment of drug sus-
ceptibility and identification of virulence factors ofW. chondrophila, as well as characterization
of bacterial tropism and persistence.
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