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Over the years, scientific and legal scholars have called for the implementation of algorithms (e.g., sta-
tistical methods) in forensic science to provide an empirical foundation to experts’ subjective conclu-
sions. Despite the proliferation of numerous approaches, the practitioner community has been reluctant
to apply them operationally. Reactions have ranged from passive skepticism to outright opposition, often
in favor of traditional experience and expertise as a sufficient basis for conclusions. In this paper, we
explore why practitioners are generally in opposition to algorithmic interventions and how their con-
cerns might be overcome. We accomplish this by considering issues concerning humandalgorithm in-
teractions in both real world domains and laboratory studies as well as issues concerning the litigation of
algorithms in the American legal system. Taking into account those issues, we propose a strategy for
approaching the implementation of algorithms, and the different ways algorithms can be implemented,
in a responsible and practical manner.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Over the years, the forensic science community has faced
increasing criticism from scientific and legal scholars, challenging
the validity and reliability of many forensic examination methods
that rely on subjective interpretations by forensic practitioners
[1e9]. Of particular concern is the lack of an empirically demon-
strable basis to substantiate conclusions from pattern and
impression evidence, which has led to calls for reform through the
development and integration of tools to evaluate and report the
strength of forensic evidence using validated statistical methods
[3,7e9]. Some, such as the President’s Council of Advisors on Sci-
ence and Technology (PCAST), have gone so far as to suggest
forensic analyses should be fully objective such that “they can be
performed by either an automated system or human examiners
exercising little or no judgment” [8]. As illustrated by the PCAST,
algorithms and automation are often proposed as a natural solution
to the limitations of human judgment. Although concerns over
subjective interpretation and lack of statistical evidence span
across most pattern and impression evidence domains, the practice
of friction ridge examination is often a focal point of debate due to
rd).
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its long-standing history and ubiquitous practice. In the friction
ridge discipline in particular, there have been a number of notable
efforts by researchers for which algorithms have been introduced
to provide quantitative or statistical approaches to the analysis and
evaluation of evidence [10e37]. Despite the proliferation of pro-
posed methods, however, the practitioner community has been
reluctant to apply them operationally. Reactions toward the inter-
vention of statistical methods, even statistical concepts, have
ranged from passive observation and skepticism to outright op-
position [38e41]. Reasons cited for these reactions are expansive-
doften resulting in an excuse for the whole-sale rejection of
available methods in favor of traditional experience and expertise
[41]. Fueled by perceptions that algorithms can only be imple-
mented as an “all or nothing” approach (either the human or the
algorithm), this has led to controversy and opposing viewpoints
between many in the scientific and practitioner communities
which have ultimately created a stalemate. On the one hand, op-
ponents of algorithmic interventions might point to anecdotal in-
stances in which the algorithms have failed as proof that
technologies are inferior and highlight concerns of new challenges
that have yet to be understood and fully explored when algorithms
are implemented without proper scrutiny, training, oversight, and
quality controls [42]. On the other hand, proponents of algorithmic
interventions might too easily brush off negative reactions toward
algorithms and characterize them as irrational or hyperbolic
cle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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seeking to maintain traditional practices and preserve autonomous
decision making.

What has become clear over the last decade is that calls for al-
gorithms in forensic science are unlikely to subside and challenges
to implementation are unlikely to be solved by improvements to
technology or the mere proliferation of the tools alone. The prob-
lem is much more complicated and requires careful consideration
of different issues. First, we need to take a step back and better
understandwhy practitioners are hesitant to rely on algorithms and
how their concerns might be overcome to increase receptivity. This
will require us to look outside forensic science in other domains
where algorithms have been introduced and consider the issues
through the lenses of psychology and behavioral sciences as it re-
lates to humandalgorithm interactions. Then, we need to consider
the environment in which forensic science operates and to which
the algorithms will ultimately be applieddthe criminal justice
systemdand the impact algorithms can have on sensitive decisions
impacting life and liberty of citizens. Finally, with these contexts in
mind, we need to consider how tomitigate the concerns of forensic
practitioners and criminal justice stakeholders and navigate a way
forward for the implementation of algorithms into forensic science
in a responsible and practicalmanner. Inmost circumstances, hastily
jumping from no algorithmic influence, which represents the cur-
rent state of forensic science today, to complete automation, as
envisioned by PCAST, without a clear roadmap and consideration of
the complex and dynamic issues at play is both irresponsible and
impractical. To this end, in this paper we will (i) outline the foun-
dations that need to be in place from a quality assurance perspec-
tive before algorithms should be implemented, such as education,
training, protocols, validation, verification, competency, and on-
going monitoring schemes, and (ii) propose a taxonomy of six
different levels of algorithm implementation ranging from Level
0 (no algorithm influence) to Level 5 (complete algorithm influ-
ence) describing various ways in which algorithms can be imple-
mented. In levels 0 through 2, the human serves as the
predominant basis for the evaluation and conclusion with
increasing influence of algorithms as a supplemental factor for
quality control (used after the expert opinion has been formed). In
Levels 3 through 5, algorithms serve as the predominant basis for
the evaluation and conclusion with decreasing influence from the
human. We note that this taxonomy is distinct from levels of
technology readiness often used to describe the maturity of tech-
nology for operational deployment (e.g., see Ref. [43]); the levels
outlined in our proposed taxonomy applies to algorithms that have
been validated and are ready for operational deployment. This
taxonomy, therefore, not only provides a common foundation to
communicate what it means for an algorithm to be implemented
and the degree to which algorithms influence the overall outcome
of the evaluation at each level, but it also provides a framework for
forensic science disciplines to implement algorithms in a deliberate
and progressive way that is considerate of the implications algo-
rithms will have on traditional examination practices as well as the
criminal justice system and its stakeholders.

In the discussion that follows, we take an agnostic viewpoint of
any specific method and instead frame the issue on the topic of
integrating algorithms (in general) into domains that are largely
driven by human judgment. For these purposes, the term “algo-
rithm” is used to broadly describe any evidence-based prediction
method, such as statistical models, decision rules, and other me-
chanical processes used for forecasting, predictions, statistical
evaluations and decision making. We approach this discussion in
five parts. In Part I, we start by taking a retrospective look at the
challenges faced with the initial introduction of algorithms into the
scheme of clinical decision making, with particular emphasis on
medical practitionersda domain we consider a reasonable proxy
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for exploring issues related to humandalgorithm interaction in
forensic science. In Part II, we discuss issues concerning human-
dalgorithm interactions more generally and summarize key
research findings from psychology and behavioral sciences
regarding the tendency for people to rely on algorithms and factors
that are believed to increase or decrease those tendencies. In Part
III, we consider the generalizability of the research findings in the
context of two real-world domains that have traditionally relied on
human judgment based on intuition and experience and where
humandalgorithm interactions have naturally begun to take
shape: medicine and autonomous vehicles. In Part IV, we discuss
specific challenges related to the introduction of algorithms into
the American legal system. Finally in Part V, we build on the dis-
cussion from prior sections and propose a path forward for the
integration of algorithms into forensic practice that is believed to
increase the likelihood for adoption across all stakeholders and lead
to an overall stronger foundation and improvement to the quality
and consistency of forensic science. We note that in the various
parts throughout this review, we provide several (sometimes
lengthy) quotations from key papers. This is done to ensure we do
not distort the authors’ original positions or views related to spe-
cific issues discussed and to enable readers to discern the similar-
ities and applicability to the current state of forensic science.

1.1. Part I: the introduction of algorithms in clinical decision making

Leading up to the 1950’s, there were growing debates in the
scientific and medical communities on the superiority of pre-
dictions made on the basis of clinical judgment (e.g. subjective,
experience-based) vs. statistical methods (e.g. algorithmic, actu-
arial). Theoretical arguments divided the two communities (often
down parting lines of clinicians vs. statisticians) and proponents for
each paradigm asserted the answers were ‘obvious’ [44]. In 1954,
Paul Meehl, an clinical psychologist, explored this issue and pub-
lished a landmark book entitled Clinical versus Statistical Prediction:
A Theoretical Analysis and Review of the Evidence in which he con-
siders the theoretical arguments from both sides and reviews re-
sults of twenty different forecasting studies across diverse domains,
including academic performance and parole violations. This was
the first known empirical study comparing the relative perfor-
mance of clinical judgment versus statistical methods (e.g. linear
models) for prediction tasks. Meehl finds that predictions based on
statistical methods consistently outperformed those based on the
judgment from skilled human counterparts [44]. Shortly after
publication, Meehl’s findings were met with skepticism by other
clinical experts. In his book Thinking Fast and Slow, Kahneman re-
counts “[f]rom the very outset, clinical psychologists responded to
Meehl’s ideas with hostility and disbelief.” [45]. In the years that
followed, Meehl’s work stimulated a proliferation of research on
the topic of clinical versus statistical methods for prediction tasks.
Study after study, researchers repeatedly reported the superiority
of algorithms versus humans [46,47]. Grove et al. (2000) provides a
meta-analysis on 136 studies over the last four decades and finds
overwhelming evidence demonstrating statistical methods per-
forming on par with or better than human judgment across a va-
riety of domains, including medical diagnoses, mental health,
psychology, academic success, parole violations, business opera-
tions, personnel decisions, and more [47]. The authors summarize
their findings as “[o]n average, mechanical-prediction techniques
were about 10% more accurate than clinical predictions” and “[s]
uperiority for mechanical-prediction techniques was consistent,
regardless of the judgment task, type of judges, judges’ amounts of
experience, or the types of data being combined.” [47]. Thirty years
after his original publication, Meehl published a commentary
regarding his original 1954 publication in which he recounts the
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reactions of his fellow clinicians suggesting he was “fomenting a
needless controversy” and offers his views following three decades
of reflection [48]. In his commentary, Meehl notes [48]:

There is no controversy in social science that shows such a large
body of qualitatively diverse studies coming out so uniformly in
the same direction as this one. When you are pushing 90 in-
vestigations, predicting everything from the outcome of football
games to the diagnosis of liver disease and when you can hardly
come upwith half dozen studies showing even aweak tendency
in favor of the clinician, it is time to draw a practical conclusion,
whatever theoretical differences may still be disputed. Why,
then, is such a strongly and clearly supported empirical gener-
alization not applied in practice, particularly because there are
no plausible theoretical reasons to have expected otherwise in
the first place?

With mounting evidence demonstrating the superiority of al-
gorithms over subjective judgment, it would seem logical for
people to welcome algorithms for these tasks with open-arms.
However, they often don’t. Some of the anecdotal reasons cited
for the reluctance to rely on algorithms include the presumed
inability of algorithms to incorporate qualitative data [46], the
notion that algorithms cannot properly consider individual cir-
cumstances [46], the notion that algorithms are dehumanizing
[46,49], the inability of algorithms to learn [49], concerns about the
ethicality of relying on algorithms to make important decisions
[49], the desire for perfection [49,50], and the presumed ability of
humans to improve through experience [50]. In their article, Grove
& Meehl [46] challenge common objections from clinicians
regarding the use of algorithms in practice and suggest “some of the
sociopsychological factors that may help to explain this remarkable
resistance to argument and evidence” [46] include: “[f]ear of
technological unemployment,” “self-concept” (perceptions of self-
worth), “attachment to theory” (an idea that theory-mediated
predictions do not contribute beyond what an atheoretical algo-
rithm could produces cognitive dissonance), “misperception of the
actuarial method as dehumanizing to clients or patients”, “general
dislike of computers’ successfully competing with human minds,”
and “poor education” [46]. On the topic of “poor education”, Grove
& Meehl [46] elaborate:

Poor education is probably the biggest single factor responsible
for resistance to actuarial prediction; it does not involve impu-
tation of any special emotional bias or feeling of personal threat.
In the majority of training programs in clinical psychology, and
it is surely as bad or worse in psychiatry and social work, no
great value is placed upon the cultivation of skeptical, scientific
habits of thought; the role modelsdeven in the academy, more
so in the clinical settingsdare often people who do not put a
high value upon scientific thinking, are not themselves engaged
in scientific research, and take it for granted that clinical expe-
rience is sufficient to prove whatever they want to believe.

Meehl & Grove [46] ultimately conclude their discussion with
the following appeal to policymakers:

[P]olicy makers should not accept a practitioner’s unsupported
allegation that something works when the only warrant for this
claim is purported clinical experience. Clinical experience is an
invaluable source of ideas. It is also the only way that a practi-
tioner can acquire certain behavioral skills … [but] … [i]t is not
an adequatemethod for settling disputes between practitioners,
because they each appeal to their own clinical experience. . . . All
policy makers should know that a practitioner who claims not to
3

need any statistical or experimental studies but relies solely on
clinical experience as adequate justification, by that very claim is
shown to be a nonscientifically minded person whose profes-
sional judgments are not to be trusted. . . . To use the less effi-
cient of two prediction procedures in dealing with such matters
is not only unscientific and irrational, it is unethical. To say that
the clinical-statistical issue is of little importance is
preposterous.

What is interesting is the reactions of clinicians even after the
evidence had mounted and was generally incontrovertible. This
phenomenon is demonstrated by the Evidence Based Medicine
(EBM) movement initially introduced in the 1990s.

On November 4, 1992, the Evidence-Based Working Group,
chaired by Gordon Guyatt, published a consensus article describing
the newly coined term evidence-based medicine as “a new paradigm
for medical practice” [51]. The working group explained that “[e]
vidence-based medicine de-emphasizes intuition, unsystematic
clinical experience, and pathophysiological rationale as sufficient
grounds for clinical decision making” [51]. The core concept of EBM
was to transition clinical decisions from relying solely on a sub-
jective, experience-based foundation to amore objective, evidence-
based foundation by emphasizing the integration of research evi-
dence and recognition of uncertainty into the scheme of clinical
decision making [51]. Over the next two decades, the medical
community slowly began to embrace the EBM paradigm as the
standard of clinical practice. Today, nearly every medical school
teaches EBM principles and numerous textbooks and journals have
become devoted specifically to the topic creating in a new gener-
ation of physicians for which EBM is the default method for clinical
practice. Looking back, it is considered by many “difficult to exag-
gerate the impact of EBM on the medical world” [52].

Although EBM ultimately became the standard for clinical
practice, it was not without resistance and criticismdoddly remi-
niscent to the reactions from clinicians in years prior. Originally
termed “scientific medicine”, Dr. Guyatt recounts the unsympa-
thetic responses by many of his colleaguesd“Those already hostile
were incensed and disturbed at the implication that they had
previously been ‘unscientific’.” [53]. Although the EBM moniker
was more palatable, clinicians were openly disparaging and crit-
icaldparticularly on the role of experienced-based opinions in the
realm of the new paradigm [54,55]. The source of this criticismwas
often thought to be brought on by those within the profession
looking to preserve autonomous, professional jurisdiction of deci-
sion making [54]; however, it highlighted the importance of a
synergy between evidence-based principles and individual judg-
ment. This was considered particularly important in situations
where the context of an individual case is under-represented in the
statistical data [56] and therefore insufficient to provide a mean-
ingful contribution to the decision. Although EBM supporters
recognize the value and necessity for individual judgment, it
remained a point of debate as to how experience should be inte-
grated with EBM evidence [56].

The EBM movement provides an important, and more recent,
case-study illustrating the challenges with introducing algorithms
into a domain that has traditionally been driven by human judg-
ment. By the time EBM was initially introduced in the mid-1990s,
the debate concerning the general superiority of algorithms was
well established and the evidence was heavily favoring algorithms
and statistical methods as superior to intuition and experience
across a number of different domains. However, clinical practi-
tioners continued to be reluctant to embrace it. Even more, the
reasons cited for the resistance were not novel or specific to a
unique aspect of EBM. On the one hand, these reactions can seem
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irrational, unscientific, and unethical from the perspective of pro-
ponents to the new paradigm (e.g., consider the responses by Grove
& Meehl [46] in the discussion above). On the other hand, these
reactions suggest the issue is more complex. As irrational as it
might seem (to choose an inferior method between two options),
there is clearly more to consider in order to understandwhy people
tend to be averse to algorithms and how it can be overcome. In the
section that follows, we take a step back and explore the dynamics
of humandalgorithm interactions more generally from perspec-
tives of psychology and behavioral sciences to consider the ten-
dency for people to rely on algorithms and factors that are believed
to increase or decrease those tendencies.

1.2. Part II: Humandalgorithm interaction in laboratory studies

As concepts and applications in artificial intelligence and ma-
chine learning bolstered the prominence of algorithms in the
1990s, it became clear that in order for the superior capabilities of
algorithms to be realized, people had to be willing to rely on them.
This phenomenon inwhich people tend to remain resistant to using
algorithms and, when given the choice, often opt to rely on pre-
dictions made by a human compared to a superior algo-
rithmdultimately dubbed algorithm aversiondbecame an
important focal point of research in psychology and human
behavior. Rather than continually demonstrating the superiority of
algorithms, the emphasis shifted to understand why people tend to
be averse to algorithms and factors that may increase or decrease
that tendency. In 2014, Dietvorst et al. note that prior literature on
this topic has been limited to anecdotal experiences given the
dearth of empirical evidence [57]. In an influential study involving
incentivized forecasting tasks, Dietvorst et al. find that algorithm
aversion, in part, hinges on people’s experience with the algorithm
[57]dspecifically:

[S]eeing algorithms err makes people less confident in them and
less likely to choose them over an inferior human forecaster.
This effect was evident in two distinct domains of judgment,
including one in which the human forecasters produced nearly
twice as much error as the algorithm. It arose regardless of
whether the participant was choosing between the algorithm
and her own forecasts or between the algorithm and the fore-
casts of a different participant. And it even arose among the
(vast majority of) participants who saw the algorithm outper-
form the human forecaster.

Dietvorst et al. note that the resistance to algorithms is, at least
partially, due to a greater intolerance for error from algorithms than
from humans and that “people are more likely to abandon an al-
gorithm than a human judge for making the same mistake.” [57].
Although these studies do not provide clear insights into how al-
gorithm aversion can be overcome, the findings suggest proposed
solutions will need to consider how to counter the apparent
tolerance imbalance.

Following the work by Dietvorst [57], Logg et al. suggests the
concept of algorithm aversion is not as straightforward as prior
literature suggests and highlights boundary conditions for empir-
ical evidence supporting algorithm aversion [58]. They argue that
people are not necessarily universally averse to algorithms
(particularly, prior to receiving any performance accuracy feed-
back); rather, they suggest that there is more to unpack on this
topic and reliance on algorithms is likely to depend on several
factors, such aswho is relying onwhich advice and forwhat purpose
[58]. For basic prediction tasks by lay people, such as non-
incentivized numerical predictions based on visual stimuli (e.g.,
predicting the weight of an individual from a photograph) and
4

forecasts about the popularity of songs and romantic attraction,
Logg et al. show that “lay people adhere more to advice when they
think it comes from an algorithm than from a person”dan effect
coined as algorithm appreciation [58]. They note, however, that al-
gorithm appreciation decreased when people chose between an
algorithm’s estimate and their own (versus a different human
judge) and when the people had expertise in the domain [58].
These findings suggest observations related to algorithm aversion
may have also been bolstered by people’s excessive appreciation of
their own opinionsda phenomenon well established in the litera-
ture and referred to as “overconfidence bias”dwhich has demon-
strated that individuals treat their judgment as superior to that of
others [58]. Further, and perhaps more concerning, they find that
individuals bearing domain expertise were least likely to recognize
the value of algorithmic advice [58]. Specifically, Logg et al. state:
“Paradoxically, experienced professionals, who make forecasts on a
regular basis, relied less on algorithmic advice than lay people did,
which hurt their accuracy. . . . These results might help explain why
pilots, doctors, and other experts are resistant to algorithmic
advice. Although providing advice from algorithms may increase
adherence to advice for non-experts, it seems that algorithmic
advice falls on deaf expert ears, with a cost to their accuracy.” [58].

The findings by Dietvorst et al. [57] and Logg et al. [58] are sig-
nificant in that they demonstrate that challenges persist in present
day related to people’s willingness to rely on algorithms in certain
conditions, despite general familiarity and presence of algorithms
across nearly every industry. Although Logg et al. did not explicitly
note the findings from Arkes et al. [59] regarding the impact of
expertise three-decades prior, their observations were remarkably
consistent and equally alarming. In their paper Arkes et al. [59]
expanded on the popular clinical vs. statistical debate in the 1980s
and provided one of the first empirical studies regarding specific
conditions impacting people’s willingness to rely on algorithms vs.
human judgment for prediction tasks. In a series of experiments,
Arkes et al. evaluated willingness to rely on an algorithm (i.e., a
simple classification rule) versus human judgment when three
different conditions were manipulated: incentivization, instruc-
tionalwarning, and expertise [59]. Arkes et al.made three important
observations: (1) “incentive for high performance resulted in less
use of the decision rule whether the incentive was given for each
correct judgment or for the best performance among a group of
judges … [which] actually resulted in poorer performance”, (2)
“warning subjects of the counterproductive results of abandoning
the rule caused the subjects to use the rule more”, and (3) “those
with expertise (or those who judged themselves to have expertise)
were less likely to use a decision rule than those with less expertise
… [and] [b]y choosing not to use the rule, such ‘experts’ performed
worse but had higher confidence in their performance than the
nonexperts.” [59]. They note (as did Logget al. [58]) the likely impact
of overconfidence bias as a cause for experts being lesswilling to rely
on the algorithmdecision aid. Specifically, Arkes comments: “One of
the dangers of overconfidence is that one feels that no assistance is
needed. If one assumes that his or her judgment is quite good, de-
cision aids would be entirely superfluous. Indeed, in [our experi-
ment] the more knowledgeable subjects were less likely to use the
rule, which resulted in inferior performance.” [59]. Arkes et al.
conclude with an important implication of these observations:
“Note that in both thepsychological andmedical diagnosis scenarios
described above, there exist well-meaning diagnosticians with high
motivation, high expertise, and few constraints on innovative ten-
dencies [e.g., lackof discipline to adhere to a decision rule]. These are
the conditions under which decision aids are less likely to be
useddto the detriment of those being served.” [59].

In 2016, as a follow-up study to their initial observations related
to algorithm aversion (the phenomenon that people often fail to
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use evidence-based algorithms after learning that they are imper-
fect), Dietvorst et al. investigate strategies to reduce algorithm
aversion by allowing people to exert some influence over the al-
gorithm output [60]. Dietvorst et al. hypothesize that “[i]f people’s
distaste for imperfect algorithms is in part driven by an intolerance
of inevitable error, then people may be more open to using
imperfect algorithms if they are given the opportunity to eliminate
or reduce such errors. Thus, people may be more willing to use an
imperfect algorithm if they are given the ability to intervene when
they suspect that the algorithm has it wrong.” [60]. In evaluating
this, Dietvorst et al. recognize that “[a]lthough people’s attempts to
adjust algorithmic forecasts often make them worse, the benefits
associated with getting people to use the algorithm may outweigh
the costs associated with degrading the algorithm’s performance.”
[60]. In a series of incentivized (non-expert) forecasting tasks in
which participants could choose between using their own judg-
ments or forecasts of an algorithm built by experts, Dietvorst et al.
observe evidence supporting their hypothesis: “Participants were
considerably more likely to choose to use an imperfect algorithm
when they could modify its forecasts [even after seeing it err] …
[and] … the preference for modifiable algorithms held even when
participants were severely restricted in the modifications they
could make.” [60]. Further, Dietvorst et al. note that participants
who were able to modify the imperfect algorithm’s forecasts “re-
ported higher satisfaction with their forecasting process and
thought that the algorithm performed better relative to themselves
compared with participants who could not modify the algorithm’s
forecasts.” [60]. In closing, Dietvorst note that participants’ inter-
vention “did oftenworsen the algorithm’s forecasts when given the
ability to adjust them. However, wemay have to accept this error so
that, overall, people make less error.” [60].

The discussion above provides, in our view, important insights
into the complex relationship between humandalgorithm in-
teractions. Despite the abundance of evidence in these disciplines
demonstrating algorithms generally outperform humans, people
tend to discount them in favor of their own judgmentsdevenwhen
their own judgments are known to be inferiordoften resulting in
lower accuracy than relying on the algorithm alone [46,47]. This
phenomenon is most pronounced when the individuals have a high
motivation to be accurate and possesses domain expertise in the
prediction task (e.g., physicians performing medical diagnoses)
[58,59]. Some researchers point to several sociopsychological fac-
tors based on anecdotal observations as potential causes [46];
others suggest it is a manifestation of overconfidence bias [58,59].
More recently, researchers found that this phenomenon is exacer-
bated when people are presented with the performance of the al-
gorithm, and thus, the inevitable susceptibility to err, which often
results in worse performance and impacts to business and society
can be costly [57]. In an effort to explore solutions to mediate the
impacts of algorithm aversion and increase the likelihood people
are willing to rely on algorithmic advice, Dietvorst et al. find that
allowing people to intervene and modify the algorithm’s output,
even under limited conditions, tend to result in higher satisfaction,
greater belief in the superiority of the algorithm, and higher like-
lihood to commit to using algorithms in subsequent tasks [60]. In a
general sense, these observations illustrate an interesting paradox:
to reduce error, we may need to accept error.1 Allowing for even
just the potential for such intervention, despite constrained cir-
cumstances, appears to cater to people’s desires to incorporate
their own judgments and feel they have some control over the
1 In other words, to achieve greater performance overall through algorithms, we
may need to tolerate reduced performance through human intervention in order to
increase the tendency for people to rely on them.
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outcome, thus resulting in a higher likelihood for adoption.
Consequently, people are likely to be more satisfied with the pro-
cess and performance will likely increase overall compared to the
alternative in which people are more prone to reject the algorithm
altogether in favor of their own judgments. Dietvorst et al. [60] note
the operational implications of these findings and suggest:

[F]raming the decision of whether or not to use an algorithm as
an all-or-nothing decision is likely to be counterproductive.
People are unlikely to commit to using an algorithm’s forecasts
exclusively after getting performance feedback or learning that
it is imperfect. Furthermore, forcing employees into a regime in
which they have to use an imperfect algorithm’s forecasts
exclusively may lead them to become dissatisfied or push for a
change. However, asking people to commit to an algorithm’s
forecasts that they can modify by a limited amount seems much
more palatable. Peoplewill bemuchmore likely to choose to use
an imperfect algorithm if they can modify its forecasts, and
employees will not necessarily be dissatisfied if they are
partially constrained to an imperfect algorithm’s forecast. . . . If
for some reason having employees making constrained adjust-
ments to an algorithm’s forecasts is not possible, [our study]
shows that having employees make unconstrained adjustments
to an algorithm’s forecasts can also substantially improve their
forecasting performance.

These findings and recommendations have implications across a
broad array of domains which are faced with increasing human-
dalgorithm interactions, particularly in those domains tradition-
ally dominated by human judgment (based on expertise and
experience) and for which there is high motivation to be accurate.
The empirical evidence is telling; however, what is more inter-
esting is to reflect on humandalgorithm interactions in distinct yet
relevant real-world circumstances involving these conditions in
context of these findings. For this purpose, we look at how things
have unfolded in medicine as well as how things are presently
unfolding in autonomous drivingda domain that everyone can
relate to. These examples allow us to explore how people and so-
ciety have grappled with the dynamics of humandalgorithm in-
teractions in these contexts and what seems to have ultimately
proven to be successful (or at least palatable) over time. Indeed, as
we discuss in the next section, it seems that irrespective of the
specific domain, allowing humandalgorithm integration is associ-
ated with an increase in people’s initial willingness to consider
algorithms enabling them to ultimately growmore trusting, reliant,
and accepting of the algorithms to influence the decision outcome.

1.3. Part III: Humandalgorithm integration in real-world domains

In medicine, we have had the luxury to look back onto two
(somewhat overlapping) eras and see how the issues have played
out over time. As the evidence mounted demonstrating the supe-
riority of algorithms, the idea that it was a dichotomous choice of
one or the other was quickly met with resistance and criticism.
Simply put, for various cited reasons (e.g., see Refs. [46,49,50]),
clinicians were not willing to yield their clinical decision-making
responsibilities to an algorithmdeven though algorithms have
been shown to provide superior performance. Over time, however,
as the debates ensued, clinicians began to trend toward an inte-
grated approach to bring algorithms into their scheme of clinical
decision making (as opposed to wholesale outsource which often
resulted in wholesale rejection) and the concept of “clinical and
statistical” was introduced and slowly emerged as a workable so-
lution [61]. Around that same time, when EBM was initially intro-
duced in 1992, the authors of the Working Group stressed the
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importance of integrating research evidence into the decision-
making scheme. At the outset, EBM was not presented as a
dichotomous choice, but many clinicians clinging to the value of
clinical judgment still reacted with criticism and outright rejection
as if it were (see EBM 25e27]). Once again, the importance of
judgment and experience in the scheme of clinical decision making
was highlighted by those concerned it would go to the wayside.
Although viewpoints were polarized, as the initial reactions sub-
sided, clinicians naturally trended toward a reasonable middle
ground and clinical decision making became an integrated and
multi-faceted approach of “clinical and statistical”. As Coen et al.
highlighted: “Perhaps EBM should be renamed ‘methods of incor-
porating epidemiologic evidence into clinical practice’… but this is
quite a cumbersome moniker.” [56].

Looking retrospectively, we see that within the domain of
medicine, what started out as a “clinical versus statistical” debate
naturally transitioned into a “clinical and statistical” integrated
solution. Interestingly, one may argue that the present-day
research related to humandalgorithm interactions offers a
reasonable explanation. Indeed, physicians possess high expertise,
are highly incentivized and motivated to provide accurate de-
cisions, and operate fairly autonomously. As noted previously:
these are the conditions under which people are most likely to rely
on their subjective judgment and least likely to accept algorithms
[58,59]. The solution proposed by Dietvorst et al. [60] appears to
have naturally taken shape. By structuring the scheme of clinical
decision making as an integrated approach based on statistical
evidence and subjective judgment, the clinician maintains the
ability to exert some influence on the overall outcomedwhether
that is by adjusting for idiosyncratic factors that are shown to be
under-represented by the statistical evidence or by relying on the
statistical evidence as an additional pillar to support the overall
foundation of the decision. While this approach seems to provide
the conditions that are most appealing for practitioners in terms of
their willingness to adopt, there is concern that clinicians are too
quick to find “exceptions” in the statistical data and adjust in favor
of their subjective judgment [62]. How those “exceptions” can and
should be moderated remains an open question.

In autonomous driving, the issues of humandalgorithm inter-
action can be viewed through the public’s willingness to embrace
automation to either supplement or supplant their own driving
tasksdtasks for which drivers generally consider themselves to
have expertise based on specialized knowledge and experience and
for which there are high stakes and serious safety concerns for
inaccurate decisions. For background, in 2014, SAE International
first published the standard J3016 Levels of Driving Automation
which defined six levels of vehicle automation ranging from Level
0 (no automation) to Level 5 (full automation), transitioning grad-
ually from “driver support features” to “automated driving fea-
tures” [63]. The SAE J3016 Levels of Driving Automation taxonomy
was subsequently adopted by the United States National Highway
Traffic Safety Administration (NHTSA) in 2016 as a formal taxon-
omy for describing increasing levels of automation and shifting
roles from the human to machine for executing dynamic driving
tasks. For context, the levels of the J3016 standard are: Level 0 (No
Automation), Level 1 (Driver Assistance), Level 2 (Partial Automa-
tion), Level 3 (Conditional Automation), Level 4 (High Automation),
Level 5 (Full Automation) [63]. In levels 0 through 2, the human
maintains full control with increasing assistance from technology
and in levels 3 through 5, the system is in control with decreasing
need for human intervention [63]. The levels codified by the J3016
standard provide a useful framework for considering people’s
willingness to engage in progressive levels of vehicle automation
and shifting responsibility and control from human to machine for
various driving tasks.
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First, from the perspective of safety it is important to consider
the necessity of moving toward automation in consumer vehicles.
For example, in 2016, the United States Department of Trans-
portation released the NHTSA fatal traffic crash data on American
roadways and the results were startling: human choices were
linked to 94% of serious crashes resulting in a call to “promote
vehicle technologies [to] … help reduce or eliminate human error
and mistakes that drivers make behind the wheel” [64]. These re-
sults alone demonstrate that the case for vehicle automation is
clear and people should embrace automation with open armsd-
after all, it will improve safety and save lives. However, once again,
they often don’t. In 2016 and 2017, surveys were conducted
regarding consumer interest in automation and the highest level of
automation in vehicles they would be willing to consider. In 2016,
Shoettle and Sivak analyzed 618 survey responses from participants
throughout the United States and found that 45.8% of respondents
preferred no self-driving capabilities, 38.7% preferred partially self-
driving capabilities, and only 15.5% preferred full self-driving ca-
pabilities [65]. When asked about the preferences for controlling
completely self-driving vehicles, Shoettle and Sivak found that “[n]
early all respondents (94.5%) would want to have a steering wheel
plus gas and brake pedals (or some other controls) available in
completely self-driving vehicles [65]. In 2017, Abraham et al.
released a follow-up to a survey completed in 2016 to explore
changes in perception from one year prior [66]. This was due in
large part because shortly after the initial data were collected from
the 2016 survey, the world saw the first fatality related to a highly
automated driving feature [67]. In their follow-up survey, Abraham
et al. analyzed 2976 survey responses from participants throughout
the United States and found “a significant decrease in the propor-
tion of respondents who were comfortable with the idea of a fully
self-driving car and an apparent shift toward more limited auto-
mation in the form of ‘features that actively help the driver while
the driver remains in control.’ Similarly, there was a proportional
decrease in those who were comfortable with features that peri-
odically take control of driving.” [66]. Further, Abraham et al. found
that among participants who reported theywould never purchase a
self-driving car, “[t]he most cited hesitation was discomfort with
the loss of control; other commonlymentioned factors included not
trusting the technology, a disbelief that it would be robust enough
to rely on exclusively, and a feeling that self-driving cars are un-
safe.” [66]. Abraham et al. conclude with the following [66]:

The perception that self-driving cars need to work perfectly to
be acceptable, combined with present and past experiences of
low-risk technology failure both in and out of vehicles, may lead
many consumers to believe the technology will never be good
enough such that they can trust it with their lives. The difficulty
here is that it remains an open question as to how safe a self-
driving vehicle needs to be in order to become socially accept-
able as a mobility option. . . . Encouraging the appropriate use of
driver assistance and other human-centric automated vehicle
systems by investing in educational resources that consumers
prefer may be an important stepping stone to improving con-
sumer interest, confidence, and trust in self-driving technology.

Around this same time, in 2017 the RAND Corporation released
their report “The Enemy of the Good: Estimating the Cost of
Waiting for Nearly Perfect Automated Vehicles,” which explored
this very issue [68]. The RAND Corporation open their report with
the current quandary:

[A] key question for the transportation industry, policymakers,
and the public is how safe [highly automated vehicles (HAVs)]
should be before they are allowed on the road for consumer use.
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From a utilitarian standpoint, it seems sensible that HAVs should
be allowed on U.S. roads once they are judged safer than the
average human driver so that the number of lives lost to road
fatalities can begin to be reduced as soon as possible. Yet, under
such a policy, HAVs would still cause many crashes, injuries, and
fatalitiesdalbeit fewer than their human counterparts. This may
not be acceptable to society, and some argue that the technology
should be significantly safer or even nearly perfect before HAVs
are allowed on the road. Yet waiting for HAVs that are many
times safer than human drivers misses opportunities to save
lives. It is the very definition of allowing perfect to be the enemy
of good. . . . The lack of consensus on how safe HAVs should be
before they are allowed on the road for consumer use reflects
different values and beliefs when it comes to humans versus
machines.

To explore this issue further, the RAND Corporation conducted a
series of analyses comparing road fatalities over several decades
under different theoretical policies in which HAVs are deployed
when they are just 10% better than the average human driver
(Improve10) or wait until they are 75% better (Improve 75) or 90%
better (Improve90) than the average human driver. From these
analyses, the RAND Corporation found [68]:

In the short term (within 15 years), more lives are cumulatively
saved under a more permissive policy (Improve10) than stricter
policies requiring greater safety advancements (Improve 75 or
Improve90) in nearly all conditions, and those savings can be
significantdhundreds of thousands of lives. The savings are
largest when HAVs under Improve10 are adopted quickly. . . . In
the long term (within 30 years), more lives are cumulative saved
under an Improve10 policy than either Improve75 or Improve90
policies under all combinations of conditions we explored.
Those savings can be even largerdin many cases, more than half
a million lives.

These data demonstrate the value of moving toward vehicle
automation sooner rather than later. Despite these findings, people
remain in disbelief and reluctant to accept the technology. In their
review of the literature related to consumer acceptance of auto-
mated vehicle technology between 2013 and 2019, Jing et al. note
that despite the rapid development of the technology, public
acceptance of automated vehicles is one of the major factors
affecting widespread distribution. Specifically, the term “safety”
was the most frequently occurring word in all of the collected
literature: “Some respondents even estimate autonomous driving
is not as safe as human driving. Hence, they are more willing to
accept [automated vehicles (AVs)] with manual driving options
than fully AVs without steering wheels. The deaths of AV accidents
reported in recent years may intensify public suspicion about the
safety issues, and safety concerns have proven to be a potential
deterrent to the acceptance of AVs.” [69].

The issues concerning autonomous driving once again illustrate
the pervasive impact of people’s reluctance to accept imperfect
algorithms and disjointed expectations that algorithms need to be
nearly perfect before accepting them. Ironically, despite the evi-
dence that automation in vehicles ismore-safe, the most commonly
cited reason for peoples’ hesitation to adopt is due to concerns that
they are less-safe. The barriers to improved safety and performance
are, once again, rooted in peoples’ reluctance to rely on the algo-
rithmsdparticularly after news of an accident where the technol-
ogy was involved. Despite the apparent aversion, the evidence
shows that people will be more willing to accept autonomous ve-
hicles if they still have the option to maintain control and can rely
7

on their own judgment and decisions [65]. Within the domain of
vehicle automation we see again that the findings from Dietvorst
et al. appear to generalize welldpeople are averse to relying on
algorithms after seeing them fail (even though the algorithms’
overall performance is better than human judgment alone) and
people tend to hold algorithms to higher standards than their hu-
man counterparts, demanding near perfect performance before
personally embracing them [57]. Further, we see that allowing the
human to have some control over the outcome of the driving task
tends to increase their willingness to work with the algorithmda
possible solution to reduce the effects of algorithm aversion pro-
posed by Dietvorst et al. [57].

Humandalgorithm interactions in both medicine and autono-
mous vehicles are not too different from one another, despite the
apparent orthogonal relation of the two domains. The issue ulti-
mately boils down to trust and confidence with the algorithms.
People naturally trust themselves and their own judgment (how-
ever flawed it may be) over other sources, particularly when they
are the ones ultimately responsible for the outcome or have some
inherent incentive to be accurate. By introducing increasing levels
of automation designed to supplement the human as opposed to
immediately supplant the human, people tend to be more willing to
incrementally accept the increased intervention of automation and
slowly becomemore comfortable and trusting in the technology. As
comfort and trust in the technology evolves, reliance on the algo-
rithms will increase resulting in improved performance and safety
over time.
1.4. Part IV: Algorithms and the american legal system

As algorithms have advanced and automated decision systems
have become more accessible, researchers, advocates, and policy-
makers are debating when and where these systems are appro-
priatedincluding particularly sensitive domains such as criminal
justice [70]. Questions have been raised on how to fully assess the
short and long-term impacts of these systems and the appropri-
ateness of their applications given many operate as “black-boxes”
[70]. In an effort to keep pace with these types of issues, the first G7
Multi-stakeholder Conference on Artificial Intelligence was held in
Montreal, Canada in December 2018 with the overarching theme of
“Enabling the Responsible Adoption of AI” [71]. Over 200 experts in
artificial intelligence (AI) attended the conference, representing all
of the G7 countries and beyond, as well as key multi-stakeholder
perspectives from industry, academia, civil society, and govern-
ment. Among those in attendance was Geoff Hinton, world-
renowned computer scientist, industry leader in AI, and devel-
oper of the “Google Brain”. During an interview at the conference,
when prompted about AI’s eventual role in decisionmaking, Hinton
responded [72]:

I’m an expert on trying to get the technology to work, not an
expert on social policy. One place where I do have technical
expertise that’s relevant is [whether] regulators should insist
that you can explain how your AI system works. I think that
would be a complete disaster.

People can’t explain how they work, for most of the things they
do. When you hire somebody, the decision is based on all sorts
of things you can quantify, and then all sorts of gut feelings.
People have no idea how they do that. If you ask them to explain
their decision, you are forcing them to make up a story.

Neural nets have a similar problem.When you train a neural net,
it will learn a billion numbers that represent the knowledge it
has extracted from the training data. If you put in an image, out
comes the right decision, say, whether this was a pedestrian or
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not. But if you ask “Why did it think that?”well if there were any
simple rules for deciding whether an image contains a pedes-
trian or not, it would have been a solved problem ages ago.

In a follow-up question, when asked about how should people
trust these algorithms, Hinton responded [72]:

You should regulate them based on how they perform. You run
the experiments to see if the thing’s biased, or if it is likely to kill
fewer people than a person. With self-driving cars, I think
people kind of accept that now. That even if you don’t quite
know how a self-driving car does it all, if it has a lot fewer ac-
cidents than a person-driven car then it’s a good thing. I think
we’re going to have to do it like you would for people: You just
see how they perform, and if they repeatedly run into difficulties
then you say they’re not so good.

Hinton’s remarks during this interview were immediately met
with criticism, challenging the notion that scientists working to
develop algorithms can separate themselves from downstream
implications resulting from algorithm applications. For example,
Dr. Heather Roff from the University of Cambridge responded [73]:

This is a dangerous position to take. An expert on technology
who feels themselves divorced from social or policy implica-
tions does not understand that technology is not value neutral,
and that their decisionsdeven seemingly basic ones on how
many gradient descents to take in a systemdhave socio-
political implications. If one thinks they are only Scientists do-
ing Science, but then simultaneously think that regulators
should take an interest has fundamentally misunderstood their
role as scientists engaging in socially and morally important
questions. If your work requires legislation then you should
think about that at the design stage … period.

As illustrated by the exchange above, it would be a naïve
viewpoint to consider the issue of algorithm implementation in a
specific domain complete without consideration of the environ-
ment for which the algorithms are ultimately applied and the im-
plications of such applications. Within the broader criminal justice
context, law enforcement leaders are strategizing how to leverage
the benefits that algorithms provide within various aspects of
policing and criminal justice, but in doing so have stressed the
importance of maintaining public trust and upholding societal
values by ensuring algorithms are characterized by fairness,
accountability, transparency, and explainability [74e76]. In the case
of forensic science, an important consumer of the forensic results is
the legal system, which bears the ultimate responsibility for
ensuring all people receive fair and equitable justice under the law.
Although algorithms have demonstrated remarkable potential to
provide advanced scientific capabilities and promote objective
foundations to the ultimate issues in question, they do so often at
the cost of transparency and explainability [77e83]. In some cases,
algorithms may operate as a black-box due to trade secrets or other
legal protections asserted by the manufacturer. In others, they may
manifest as a black-box due to their computational complexity. In
either situation, legal actors have expressed concern that the
opacity of algorithms can stifle meaningful scrutiny and account-
ability of the systems thereby infringing on criminal defendants’
Constitutional rights [see 77e78, 80e81]. These issues are exacer-
bated by examples in which algorithms have indeed perpetuated
historic inequities (e.g., see Refs. [70,82,84,85]). Faced with these
concerns, courts have found themselves arbitrating complicated
legal questions forcing them to grapple with issues concerning the
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admissibility of algorithms and their implications to the law. Legal
scholars have begun to explore these issues in various contexts
within the American legal systemdmost notable and relevant to
our discussion are those by Imwinkelried [77] and Nutter [81],
which are briefly summarized below. Our intent here is to be
illustrative, not exhaustive, of the importance to consider broad
downstream legal implications of algorithms when deciding when
and how to apply them to a particular (and sensitive) domain, such
as forensic science for criminal justice purposes. Specific technol-
ogies and circumstances concerning their applications within the
criminal justice pipeline may create additional implications and it
would be impractical to cover them all in this discussion. Our dis-
cussion is intentionally generic in terms of the specific legal issues
and narrowly focused on the application of algorithms developed
for purposes of augmenting traditional forensic science methods
which rely predominantly on human judgment and expertise.
Although we borrow examples from probabilistic genotyping for
illustrative purposes, our focus is directed toward pattern and
impression evidence disciplines and is not meant to apply to all
types and applications of algorithms that have been, or could be,
introduced into litigation. Finally, we do not consider the issue to be
whether algorithms should be implemented into forensic practice
for criminal justice purposesdwe consider the issue to be how to
implement them in a way that is cognizant of the legal issues and
increases the likelihood legal stakeholders will be willing to
consider them within their own regulatory framework.

The legal issues concerning the application of algorithms to
pattern and impression evidence has yet to be fully explored. Only
recently legal scholars begun to unpack the issues and consider
how the legal system can adapt to the inevitable application of
algorithms while maintaining their gatekeeping function. In 2016,
Imwinkelried considers the issue in the context of the expanded
use of algorithms for probabilistic genotyping software introduced
in 2009 using TrueAllele software from Cybergenetics, Inc [77].
Probabilistic genotyping software analyzes DNA mixtures and
provides a statistic that helps assess whether or not a particular
defendant was one of the contributors. Although TrueAllele is not
the only probabilistic genotyping software available, it has received
attention in the United States due to its use and the manufacturer’s
assertion of trade secret protections when criminal defendants
have requested its source-code to examine its reliability. Ultimately,
courts have largely rejected defendant’s requests for disclosure and
independent review of source-code and ruled in favor of admissi-
bility, which has led to an outcry by defense litigators (see
Refs. [77e80]). After reviewing prior case law admitting testimony
based on technologies such as TrueAllele while denying defendants
access to the source-code, Imwinkelried presents a critical analysis
of the legal issue. In particular, Imwinkelried addresses the ques-
tion of whether the prosecution should be permitted to introduce
expert testimony based on a computerized technique without
presenting foundational testimony about the validity of the pro-
gram’s source code controlling the technique and, if so, whether
there are circumstances in which the defense ought to have access
to the source code despite the trade secret assertions protecting
such disclosure [77].

The first issue considered by Imwinkelried is the admissibility of
a computerized technique without providing foundational testi-
mony about the validity of the source-code controlling the tech-
nique. In other words, whether the evidence produced by the
system should be admitted without first revealing the underlying
code controlling the operation of the algorithm and the algorithm
itself. In the United States, a minority of non-federal jurisdictions
still rely on the 1923 Frye standard of “general acceptance” [86].
Under this standard, the proponent need not demonstrate foun-
dational validity at all; rather, as Imwinkelried describes, the
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proponent only needs to demonstrate whether the “theory or
technique has gained a certain degree of popularityd’general
acceptance’dwithin the relevant scientific fields.” [82]. In 1975,
however, the Federal Rules of Evidence took effect, which led to the
1993 ruling in Daubert v. Merrell Dow Pharmaceuticals, Inc. [87], the
first of a trilogy of Supreme Court decisions on the admissibility of
expert testimony (Daubert v. Merrell Dow Pharmaceuticals, Inc.
[1993] [87], General Electric Co. v. Joiner [1997] [88], and Kumho Tire
Co. v. Carmichael [1999] [89]dcollectively referred to as the “Dau-
bert standard”). Under the Daubert standard, the proponent must
demonstrate that the theory or technique rests on adequate vali-
dation for which trial judges bear that gatekeeping responsibility.
Today, federal and the majority of non-federal jurisdictions rely on
the Daubert standard as a framework for admissibility. It is under
this standard that many criminal defendant’s assert that a
computerized technique, without access to the underlying source-
code and algorithm itself, should be inadmissible due to the
inability to demonstrate its validity. However, as Imwinkelried
describes, courts have ruled that the burden of demonstrating the
validity of a technique can be met “by presenting testimony about
the validation studies investigating the accuracy of the software. . . .
[t]he very purpose of a validation study is to investigate whether
the theory or technique does what its proponent claims.” [77].
Imwinkelried argues (in the context of TrueAllele) [77]:

Federal Rule of Evidence 901(b)(9) [90] captures the essence of
the “authentication” or validation of a scientific technique. In
the words of 901(b)(9), the essential foundation is a “showing
that [the process or system] produces an accurate result.” [citing
90]. Validation studies summarizing the results of tests of the
technique and showing that the technique yields accurate re-
sults satisfy that standard. As a matter of logic, the court should
treat the studies as adequate validation under Daubert. The
proponent can shoulder the burden of Daubert without making
a further, separate showing about the source code of the soft-
ware controlling TrueAllele. The lack of testimony about the
source code might increase the degree of uncertainty in the
expert’s final opinion, but post-Daubert, the expert need not
vouch for his or her opinion as a certainty. In short, many courts
have reached the correct result that prosecution evidence based
on TrueAllele can be admitted, even without testimony about
the source code.

Ultimately, Imwinkelried argues that, in the context of proba-
bilistic genotyping software in particular, courts have rendered
appropriate decisions from a legal standpoint as to the admissibility
of algorithms without the requirement that the source-code (and
algorithm thereto) be released [77].

Admissibility, however, is only one of the legal issues to
consider. As Imwinkelried notes, “[e]ven when the proponent’s
item of evidence is admissible, the opponent has the right to attack
the weight or believability of the evidence. . . .The U.S. Supreme
Court has held that in criminal cases, the defendant’s right to attack
the weight of the prosecution’s evidence is of constitutional
dimension under the Sixth Amendment Confrontation Clause.”
[77]. Indeed, when handing down the ruling, the Daubert court
noted: “Vigorous cross-examination, presentation of contrary evi-
dence, and careful instruction on the burden of proof are the
traditional and appropriate means of attacking shaky but admis-
sible evidence.” [87]. This leads to the second issuedin the absence
of the underlying algorithm and source-code, are defendant’s
deprived of the ability to challenge the credibility of the evidence?
This question is more complicated. Although Imwinkelried recog-
nizes that prior courts have pointed to the existence of validation
studies as the means to enable opponents to evaluate the accuracy
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of the system, Imwinkelried also notes: “The answer does not turn
on themere existence of validation studies or even their availability
to the defense. Rather, the answer depends on the number of
studies, their quality, and a comparison between the test conditions
and the conditions in the instant case.” [77]. Consequently, if these
factors are not well established, it might seem that the source code
is warranted; however, such a decision has to be considered in light
of the countervailing argument of the proponent’s assertion of
trade secret protections and “[f]aced with competing legitimate
interests, a trial judge must attempt to strike a rational balance.”
[77]. Ultimately, Imwinkelried proposes a judge could accomplish
this by proceeding in two steps [77]:

First, a judge should assign to the accused seeking discovery the
burden of showing that the facts of the instant prosecution
exceed, or are at the margins of, the validation range of the
empirical studies relied on by the prosecution. More specifically,
the defendant must convince the judge that the available
studies do not adequately address the effect of a specified, ma-
terial variable or condition present in the instant case. The most
clear-cut case would be a fact situation in which none of the
available studies relied on by the prosecution experts tested the
application of the technique to fact situations involving the
condition. . . . [However], [t]he judge should certainly not accept
the ipse dixit assertion of the defense counsel that the omitted
condition is material in the sense that its presence could affect
the outcome of the test. . . . Rather, the judge ought to demand
that the defense present expert testimony explaining why it is
plausible that that condition could change the test result.

Assume that in the first step, the judge concludes that the de-
fense has met its burden. Even then the judge should not
automatically require the manufacturer to furnish the defense
with a printout or electronic version of the source code. Instead,
the judge could give the manufacturer a choice to: either (1)
allow the defense to test the application of the program to a fact
situation including the material condition or variable omitted
from the validation studies, or (2) provide the defense with the
source code. . . . By enabling the defense expert to conduct a new
validation study testing that application, the manufacturer
would afford the defense expert a fair opportunity to investigate
themerit of the criticism… [and ultimately] determinewhether
the inclusion of the additional condition could actuallydnot
merely theoreticallydaffect the outcome of the use of the
automated forensic technique.

Imwinkelried concludes: “Until courts guarantee the defense
[the ability to challenge trustworthiness], source codewill continue
to be a source of controversy and doubt about the marked trend
toward the automation of forensic analysis in the United States.”
[77].

In 2019, Nutter considers the issues with an added layer of
complicationwhen the evidence is the product of machine learning
algorithms [81]. The distinction is that the source code for machine
learning algorithms is practically uninterpretable, even for the
manufacturer. Thus, contrary to the prior discussion, disclosure of
source code in this context would not materially advance the a
party’s interests of ensuring the reliability of the algorithm. This
discussion is relevant to illustrate the legal issues when the algo-
rithm is truly a “black box” and a legal order for source code
disclosure is not a practical solution. In the discussion below,
although Nutter considers the issues in the context of general
“machine learning algorithms”, the issues are analogously appli-
cable to any algorithm that operates or manifests as a black-box
(due to legal protections outside of the Court’s realm of control or
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due to computational complexities); thus, for purposes of this
discussion, references to “machine learning algorithms” are
considered synonymous with “black-box algorithms” in general.

Nutter addresses the issues of machine learning evidence (e.g.,
black-box algorithms) in criminal prosecution from a prospective
standpoint, recognizing that it is only a matter of time until courts
will be required to grapple with these issues. In doing so, Nutter
“aims to look ahead to possible evidentiary issues when, not if, the
output of machine learning algorithms is used as substantive evi-
dence in criminal prosecution.” [81]. This context is particularly
important as it could enable proponents of forensic algorithms to
consider these issues a priori when the algorithms are developed
and ultimately implemented into forensic practice in a way that
recognizes the concerns from legal stakeholders and promotes
judicial efficacy.

Like Imwinkelried [77], Nutter first explores the legal issues
concerning evidence generated from machine learning algorithms
from the perspectives of admissibility [81]. Both Nutter [81] and
Imwinkelried [77] share similar perspectives on the issue of
admissibility under Evidence Rule 702 [91] and Daubert [87]d
although there is nothing inherently inadmissible, proponents of
the algorithm will need to ensure the validation of the system is
applicable to the circumstances of the existing case. However,
Nutter takes the discussion a step further and also considers the
implications of algorithms under the Constitution. Nutter notes
that “[s]everal constitutional provisions may be implicated by
machine learning identification in criminal prosecutions. De-
fendants may cite the Fifth Amendment’s Due Process Clause [92]
or the Sixth Amendment’s Confrontation Clause [93]” under the
premise of “guilt by black-box” [81]. Under such an argument,
Nutter suggests defendants might claim the lack of transparency
and explainability of how the algorithm arrived at the particular
conclusion deprives the defendant the ability to challenge its
credibility and disclosure of source-code is not the effective remedy
[81]. On the basis of a Due Process argument, with reference to
analogous past precedent, Nutter ultimately concludes that the
Court would most likely “find due process satisfied when (1) the
defendant can at least challenge the data that go into the algorithm
(a requirement that can be addressed with procedural rules of
discovery wholly within the Court’s control) and (2) the algorithm
possesses some sufficient level of accuracy, which can come to light
at a Daubert hearing on admissibility or cross-examination at trial.”
[81]. Consequently, and furthermore, Nutter argues that “it is likely
that the Sixth Amendment’s Confrontation Clausewould require an
expert to testify in-person and be subject to cross examination.”
[81]. Taken together, Nutter ultimately suggests that despite the
black-box nature of the algorithm, neither Constitutional provision
will categorically bar machine learning evidence; however, the
weight of such evidence may be impacted because of the machine
learning’s distinct unexplainably rendering it difficult, if not
impossible, to explain how the algorithm makes a particular
conclusion [81]. It is this inherent unexplainably that will present
the greatest challenge to proponents of algorithms that operate or
manifest as a black-boxddespite their admissibility.

Similar to Imwinkelried [77], Nutter recognizes that although
there is nothing inherently inadmissible about black-box algo-
rithms, questions remain regarding the weight of such evidence at
trial [81]. Accordingly, there will be “considerable onus on trial
counsel to persuade the trier of fact to discount the weight that the
evidence should be assigned … [and] [j]urors might be cautious to
assign much weight to machine learning evidence because of its
peculiar property that it is often not explainable.” [81]. Nutter ex-
plains [81]:
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It is an entirely open question the extent to which, in open court,
jurors would trust the validity of unexplainable machine
learning evidence. Indeed, this question is ripe for empirical
research by psychologists and legal scholars of scientific evi-
dence. Developers understand that the extent to which a person
trusts a machine in everyday life is highly variable and context-
dependent. Outside the courtroom, an individual’s trust in a
machine ranges from none or little (for a variety of reasons, one
of which is often because it is a machine [referencing 57]), to
passive trust in machines without so much as a second thought.
[Further] … [r]esearchers find trust in machines to be highly
variable and influenced by different factors like belief about the
functionality of the technology, belief that the technology is
helpful, and belief that the technology is reliable. . . . Inside the
courtroom, how jurors will respond to machine learning output
is very difficult to predict. . . . Additionally, inextricably linked to
the credibility of the machine is the credibility the jurors extend
to the testifying expert him- or herself. That human credibility
would likely affect credibility that jurors would extend to the
underlyingmachine, especially as the scientific evidence at issue
is particularly complex for laypeople. In that case, the prosecu-
tion or defense would surely already be familiar with the usual
tactics to use to attack the expert’s credibility.

This last point raised by Nutter [81] brings us to our final point of
concern when considering the issue of introducing algorithms into
the legal system. From the discussion above, we see that the most
significant issues are less about whether the algorithms would be
admissible or notdprovided they were adequately validated in a
way that are representative of the circumstances for the case at
hand, then they are likely to be found admissible. Rather, the issues
are more so the extent to which fact-finders will be receptive of the
evidence generated by the algorithm and afford it the appropriate
weight. Thus, in addition to being considerate of issues that might
be raised concerning admissibility, proponents of the algorithms
will also need to concern themselves with factors that might in-
crease or decrease jurors’ and judges’ willingness to trust the re-
sults of the algorithm (and by extension, humandalgorithm
combination). This, in turn, causes us to think about two additional
issues and their implications to practice: (1) the extent towhich the
expert will need to be knowledgeable about the underlying algo-
rithm and method employed when faced with such challenges, and
(2) how the algorithm is implemented at the laboratory and used by
the expert.

To expand further on the first point, the implementation of an
algorithm will require more than a mere policy change. Such de-
cisions will need to be accompanied by robust training and edu-
cation to ensure experts are able to be responsive to questions and
challenges raised during testimony. Implementation without
proper education and training could detract from the overall
credibility of the evidence and undermine the benefits it is inten-
ded to provide. The depth of that knowledge, however, may depend
on how the algorithm is implemented and the extent to which the
final conclusion was dependent upon the algorithm. To expand
further on the second point, in some situations, such as probabi-
listic genotyping, the use of the algorithm is necessary to derive
information that is otherwise difficult to interpret by the human;
thus, the algorithms provide a capability that was otherwise non-
existent. The output of the algorithm is the sole basis of the infor-
mation. Laboratories (and experts) are much more limited in how
they use the algorithms in these contexts and fact-finders have
little choice but to rely on the algorithm or discount the
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information altogether. In other situations, such as traditional
pattern evidence disciplines, the use of algorithms can be done in
parallel with the human to assist with quantifying the value of
impressions independent from the value assigned by human
judgment alone. The output of the algorithm is a supplemental basis
of the information. Thus, the algorithms could be applied to im-
pressions that would normally be considered “no value” through
subjective interpretation alone (e.g., see Ref. [94]) thus providing
additional information for the courts to consider, or they could be
applied to impressions for which experts believe have associative
value through their subjective interpretation, but unable to sub-
stantiate empirically. It is this latter condition that we are partic-
ularly interested in exploring further since it characterizes the most
immediate point of concern among scientific and legal scholars
calling for algorithmsdthe need for empirical substantiation so
that conclusions do not rely solely on human judgment [3,7e9].

In circumstances where the algorithm is not a precondition for
interpretation, we have flexibility to consider different strategies
for how an algorithm could be implemented within the broader
examination methodology and the pros and cons of one approach
over anotherdboth in context of practitioners’willingness to adopt
the algorithm and fact-finders’ willingness to rely on evidence
generated by the algorithm. In the section that follows, we discuss
these issues further and ultimately propose a path forward for the
implementation of algorithms into forensic practice that is believed
to increase the likelihood for adoption across all stakeholders and
lead to an overall stronger foundation and improvement to the
quality and consistency of forensic science in general and pattern
evidence examination in particular.

1.5. Part V: A path forward for forensic science

Over the years, several forensic science disciplines have been
encouraged to adopt algorithms (i.e., statistical methods). The
perceived benefits of algorithms are wide-ranging, but the imme-
diate advantage (particularly for the pattern evidence domains) is
to provide an empirical foundation to the evaluation of forensic
evidence [3,7e9]. Although the calls for algorithms in forensic
science have prompted researchers to propose numerous potential
technology solutions, none have addressed the fundamental
questions or strategies of how algorithms should be (or could be)
implemented operationally. In the preceding discussions, we have
explored the benefits algorithms provide as well as issues of
humandalgorithm interactions in several different ways. Collec-
tively, these explorations have enabled us to characterize key
challenges and consider strategies to reduce the barriers for algo-
rithms to be implemented within forensic science. In this section,
we consider how, not if, algorithms could be implemented into
operational practice in such a way that forensic practitioners and
other legal and scientific stakeholders are likely to accept. With the
context of prior discussions in mind, we first explore different ways
that algorithms could be implemented operationally within the
examination methodology and implications of those approaches to
future practice. Then, we outline a path forward for laboratories to
consider as a strategy for implementing algorithms operationally
and progressively moving toward ensuring evidence is presented
with stronger scientific foundations.

In Parts I through III, we found that the implementation of al-
gorithms into domains traditionally dominated by human judg-
ment is often fraught with resistance [46,48e50,54,55]. People
tend to exhibit a general aversion to algorithms and prefer to rely
on their own judgmentdoften despite knowledge that their own
judgment is typically inferior to that of algorithms [57]. This phe-
nomenon is exacerbated when people possess domain expertise
[58,59], are faced with high-stakes decisions [58,59], and are
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presented with an algorithm that is susceptible to err [57].
Although the actual source of these reactions has not yet been fully
understood, some researchers have pointed to various sociopsy-
chological factors [46], overconfidence bias [58,59], and a general
lack of trust in algorithms’ abilities to account for idiosyncratic
factors [46] as possible explanations for the behaviors. Finally, both
anecdotal observations of humandalgorithm interactions in
different domains and recent research have suggested that people
tend to be more receptive to algorithms if they are integrated as a
factor that supplements as opposed to supplants human decision
making and the human retains some amount of influence on the
ultimate outcome [60,61]. The above provides important context
when considering the implementation of algorithms into forensic
science. Indeed, forensic science has the major conditions for which
algorithm aversion is most pronounced: (i) forensic examination
results (in the pattern evidence domains particularly) are tradi-
tionally based entirely on subjective judgment, (ii) forensic exam-
iners possess expertise, and (iii) forensic conclusions involve high-
stakes decision-making. Thus, we have no reason to expect the
reactions and behaviors of forensic practitioners to be substantially
different than what has been observed in research and other do-
mains explored. In fact, to some extent we have already observed
similar behaviors manifest. Practitioners’ reactions to the mere
notion of implementing statistical approaches have been met with
criticism and opposition from practitioners [38e41]. Further, when
given the opportunity to incorporate algorithms into their decision-
making, practitioners tended to disregard them in favor of their
own judgments [95]. In an appendix to a discussion regarding the
presentation of probabilities in a moot-court exercise related to
fingerprint evidence, Langenburg addresses a list of fears that he
has commonly heard from practitioners as he has traveled around
various jurisdictions providing training [96]. The anecdotal re-
actions outlined by Langenburg [96] in the context of fingerprint
examinations are eerily similar to those addressed by Grove &
Meehl [46]. The comparison and recognition of similarities be-
tween non-forensic and forensic domains related to reactions to
algorithmic interventions and humandalgorithm interactions are
important because they allow us to understand and be responsive
to the perspectives of forensic practitioners and consider strategies
for implementation such that practitioners might be more willing
to embrace.

In addition to characterizing the anticipated concerns from
forensic practitioners, we also need to be considerate of the needs
of the legal system as it relates to the implementation of algo-
rithms. Ultimately, the legal system is concerned with ensuring
defendants receive fair and equitable justice under the law.
Accordingly, courts will need to consider the admissibility of al-
gorithms against existing legal standards and ensure they are used
in away that does not infringe on defendants’ Constitutional rights.
In Part IV, we found that this can be particularly challenging given
the “black-box” nature of many algorithms and, in some cases, the
countervailing legal protections against disclosure of the actual
algorithm and source-code. Defendants will often argue the opacity
of algorithms fail to demonstrate reliability under Evidence Rule
702 and Daubert standards for admissibility. Further, defendants
might claim that “black-box” algorithms deprive them of their Fifth
Amendment right of Due Process and Sixth Amendment right of
Confrontation. Ultimately, legal scholars have opined that algo-
rithms are likely admissible under existing evidentiary rules and
standards; however, (i) they will likely need to be introduced as
part of expert testimony, (ii) experts will likely face challenges as a
proxy to the algorithm, and (iii) the weight fact-finders give to the
evidence could be impacted in unpredictable ways. At times, jurors
may be more receptive to the evidence because it is the product of
an algorithm. In others, jurors may be more skeptical because of
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their lack of trust and understanding of the system and deflection
of any negative perceptions theymay have of the creditability of the
expert. Accordingly, experts will need to have sufficient familiarity
with the algorithm and be able to answer to the challenges under
cross examination. Additionally, besides testifying to the overall
result, experts will need to be able to help educate fact-finders on
issues related to the validation of the algorithm, conceptual oper-
ation of the algorithm, how the algorithm is factored into the
overall examination methodology, and the extent and manner in
which the algorithm influences the overall interpretation of the
evidence. These details are important as they allow us to be
responsive to the perspectives of legal stakeholders and consider
strategies for implementation such that the legal actors are more
willing to embrace.

From the above discussion, we see that the implementation of
algorithms into many forensic science disciplines are likely to face
considerable headwind from practitioners and will require careful
consideration of the legal issues and resulting implications. These
anticipated challenges, however, we believe are outweighed by the
perceived benefits algorithms can provide to the overall evaluation
of the evidence. To some extent, as hinted by PCAST, ignoring the
calls for algorithms and failing to implement them as a means of
empirically substantiating subjective judgment could be inevitably
consequential to the enduring validity and admissibility of forensic
evidence [8]. However, blindly implementing without careful
planning and preparation could disastrous. For that reason, we turn
our attention to how algorithms can be implemented into forensic
practice in a responsible and practical manner. A responsible
implementation requires consideration of issues from a quality
assurance perspective to ensure the appropriate foundation has
been laid out to support the implementation. Oftentimes, focus is
directed toward whether the candidate method has been “vali-
dated” or “fit for purpose.” In our view, this is too narrow of a focus
and, without further context, too broad of a question (i.e., what is
the intended purpose and what is considered “fit” for such pur-
pose?). A proper foundation requires a formalized quality man-
agement system be in place to ensure conformance with requisite
requirements related to: education, training, protocols, validation,
verification, competency, and on-going monitoring schemes. Spe-
cific guidelines related to each of these elements are available in
other sources and within the context of specific examples, such as
algorithms for DNA mixture interpretation (e.g., see Refs. [97e99]).
For purposes of this discussion, each of these key topics are dis-
cussed in a more generic sense below.

The first pillar for a responsible implementation is to ensure
practitioners and other stakeholders have foundational education
related to the principles and theory underpinning the algorithmand
quantification of the forensic observations, such as probability, sta-
tistics, uncertainty, and logic and reasoning. This education is
distinct from training on the application of a specific algorithm and
should be applied broadly to both practitioners, criminal justice and
legal stakeholders, and, if possible, the public at large. For practi-
tioners, this education should enable them to understand and
articulate the epistemic limits of the evidence to which the algo-
rithm is being applied and inferences that can be formed during
evaluation. For legal stakeholders, this education should enable
judicial actors to understand howalgorithms could be applied, how
to evaluate the reliability of a given method (e.g., through key per-
formance characteristics represented in validation and verification
materials), and the extent to which the algorithms can and should
inform their ultimate judicial determinations. For the public at large,
this education should expose the public to the realities of forensic
evidence interpretation and the role algorithms can play in that
process so they have an understanding of the strengths and limita-
tions of forensic evidence for which the algorithms are applied.
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The second pillar for a responsible implementation is to ensure
practitioners have proper training on the algorithm, including
appropriate applications of the algorithm. Specifically, to the extent
possible, practitioners should understand and explain how the al-
gorithm works, such as what features are taken into account, how
they are accounted for, and how the output is calculated and the
extent to which outputs might change as inputs vary. Additionally,
practitioners should understand the key performance characteris-
tics of the algorithm and the contexts under which those were
tested to ensure the data are representative of real-world applica-
tions and the circumstances for a given case. In situations where
algorithms operate as black-boxes, practitioners may not have a
complete understanding of the innerworkings of the algorithm, but
should have, at a minimum, a conceptual understanding of the
details outlined above in order to understand the applicability and
strengths and limitations of the system.

The third pillar for a responsible implementation is to ensure
written protocols are in place to ensure the algorithm is applied
correctly, consistently, and appropriately to evidence in a given
case. Protocols related to the standard operations of the algorithm,
interpretation guidelines, reporting standards, technical review,
and adjudication of conflicts between practitioners’ subjective as-
sessments and algorithmic outputs, should be available and pub-
licly accessible. Protocols should clearly articulate what is
permissible for input into the algorithm, when the algorithm
should be applied, and how the results should be interpreted and
accounted for in an overall report. Limitations related to the
application of the algorithm and interpretation of the results
should also be available and publicly accessible.

The fourth pillar for a responsible implementation is to ensure
the algorithm has been subject to an appropriate validation to
demonstrate its key performance characteristics and “fit for pur-
pose” in a given application. This is a broad term that applies to the
foundational validation of the algorithm in terms of its conceptual
design, software implementation, and representativeness of case-
work applications. Prior to validation, the purpose of the algorithm
and how it is intended to be applied should be clearly defined to
enable a determination of whether the key performance charac-
teristics are acceptable for the intended purposes. The conceptual
design of the system should address how the algorithmworks, such
as what features are taken into account, how they are accounted for,
and how the output is calculated and the extent to which outputs
might change as inputs vary. The software implementation relates
to the accurate coding of the algorithm into a software code for
execution. Validation of correct implementation can be done by
testing the execution of the software under controlled conditions
for which a specific output is expected given the inputs or by a
review of the source-code. To enable this, both the software
executable and the source-code should be made publicly accessible
for independent review and testing, including the datasets that
have been used in the validation effort. If the source-code is not
able to be made publicly available, then it is even more critical that,
at a minimum, the software executable is available. The key per-
formance characteristics of the algorithm (e.g., sensitivity, speci-
ficity, repeatability, reproducibility) and the parameters for which
the key performance characteristics are calculated (e.g., decision
thresholds, etc.) should be derived through empirical testing of the
algorithm using samples for which ground truth are known and
which are representative in type, quality, and condition of those for
which the algorithmwill be applied in casework, as applicable (i.e.,
input samples should vary in type, quality, and condition to the
extent that differences in these attributes are accounted for by the
algorithm and will impact the output). If the algorithm requires
training data (e.g., AI/ML systems), the samples used for testing
should be distinct from those used during training. Uncertainty in
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the calculated performance characteristics should be accounted for
and available in the validation documentation. Meuwly et al. pro-
vide a detailed guideline for approaching validation for evidence
evaluation methods which we consider to be a reasonable frame-
work for addressing these issues [100]. Although the focus is spe-
cific to those methods which produce a likelihood ratio, the
concepts are applicable to the development and validation of many
algorithmic methods designed to assist with evidence evaluation
and forensic interpretation [100]. In particular, they address key
questions such as “what to measure?” (i.e., performance charac-
teristics), “how tomeasure?” (i.e., performance metrics), and “what
should be observed or deemed satisfactory?” (i.e., validation cri-
terion) [100].

The fifth pillar for a responsible implementation is to ensure the
algorithm has been subject to an appropriate verification to
demonstrate the validity of the system when applied by specific
end-users in accordance with a specific set of protocols and in a
specific operating environment. Verification (often referred to as
internal validation) is not intended to be a repeat of the founda-
tional validation as described above. Rather, it is intended to
demonstrate that the system is robust to applications in a specific
context (e.g., people, training, protocols) and the key performance
characteristics derived during validation are applicable to the
conditions and circumstances for which it is applied operationally.

The sixth pillar for a responsible implementation is to ensure
the individuals using the algorithm have demonstrated competency
related to the algorithm, its application, and interpretation of re-
sults. Collectively, the pillars of education and training form the
foundation for practitioners’ knowledge related to the algorithm.
Competency testing provides a means of evaluating whether an
individual has acquired and demonstrated the requisite knowledge
related to the algorithm as well as the ability to apply the algorithm
operationally in accordance with applicable protocols and within
the limits of its validation. Competency testing should be measured
against a minimum standard for acceptable performance and be
conducted prior to operational deployment of an algorithm by a
specific individual.

The seventh pillar for a responsible implementation is to ensure
the algorithm and its application operationally is subject to on-
going monitoring through proficiency testing and audits of case-
work applications. The on-going monitoring should account for
both the algorithm and its application by practitioners. This
monitoring should include (i) routine verification of the software
implementation of the algorithm to ensure software or hardware
changes do not impact its execution, (ii) the relevance and appro-
priateness of protocols governing the application of the algorithm,
and (iii) practitioners’ knowledge and abilities to correctly apply
the algorithm. This monitoring should be robust enough to detect
vulnerabilities or problems with the algorithm or its application
necessitating preventive or corrective action. Finally, the quality
assurance program should be agile enough to improve when pre-
ventive or corrective actions are warranted.

In addition to ensuring the necessary foundations are in place
from a quality assurance perspective to enable the implementation
of algorithms, the next task is to identify a practical implementation
scheme addressing how the algorithm will be deployed opera-
tionally. This should include where in the examination scheme the
algorithm will be implemented and the manner in which the
outcome of the evaluation will be reported to criminal justice
stakeholders. As indicated earlier, the deployment of an algorithm
may not necessarily need to be a binary choice of “all or nothing”
(either the human or the algorithm). Instead, implementation can
take many different forms with varying degrees to which the al-
gorithm impacts the overall outcome of the evaluation. Decisions
related to how the algorithm will be deployed will depend on the
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intended purpose the algorithm (i.e., is the output of the algorithm
intended as the sole-basis for the evidential information or is it
intended to be used as a supplemental basis for the information?),
the performance characteristics of the algorithm (i.e., is the algo-
rithm appropriate or “fit” for the intended purpose), and consid-
eration of the tradeoff between the potential benefits of the
algorithm and perceived risks for a given deployment scheme.
Consideration of these issues will be discipline and context
dependent. For purposes of exploring this issue further, we will do
so against the backdrop of friction ridge examination. We recog-
nize, however, that this discussion is likely applicable across several
other pattern evidence domains.

For context, friction ridge examination is traditionally carried
out by human experts and interpretations are based solely on their
subjective judgment. Empirical measurements are often not taken
and detailed standards for conclusions are non-existent leaving the
ultimate determination up to the opinion of the expert. Conse-
quently, assessments made during friction ridge examinations are
susceptible to variation from one analyst to another (inter-analyst)
as well as by the same analyst from one examination to another
(intra-analyst). When considering borderline impressions with
marginal quality, these variations might result in differences in the
overall conclusion. In the broad spectrum, however, while the lack
of empirical measurements and standards do not necessarily mean
the practice as a whole is unreliable or fraught with error, it does
raise questions as to how reliable the evidence is for the case at
hand. Thus, there is a need for the friction ridge community to
move towards integrating tools to quantitatively assess the quality
and strength of friction ridge impression evidence to enable stan-
dardization and provide empirical substantiation to analysts’
claims. As it relates to the implementation of algorithms, fortu-
nately, this can be accomplished in several different ways and does
not require algorithms to completely supplant the role of the
expert. Precisely how algorithms should be integrated into standard
operating procedures and the implications to practice, however, is
an open question. Dror and Mnookin [101] briefly touch on this in
the context of Automated Fingerprint Identification Systems (AFIS)
databases that have become ubiquitous tools for practitioners over
the last several decades to enable more efficient searching, storage,
and retrieval of friction ridge impressions and known exemplars. As
it relates to algorithms for decision making, however, we propose
there are three key issues that ultimately govern how algorithms
can be applied in practice: (i) whether algorithms are applied
before or after the expert has conducted a traditional examination
and formed a subjective opinion, (ii) the extent to which the re-
ported result was dependent upon the output of the algorithm, and
(iii) the manner in which conflicting outcomes between the ex-
pert’s judgement and the algorithm’s output are resolved. We
recognize that an additional point of debate is how forensic con-
clusions and statistical information (e.g. the output of an algorithm)
should be articulated to fact-finders and other criminal justice
stakeholders (e.g., see Refs. [102e104]). While we view that as
important, we consider it beyond the scope of the current issue.
This is because irrespective of how algorithms are implemented
into practice, the manner in which results are articulated to fact-
finders can be quantitative or qualitative, each having benefits
and limitations, and deserving of a separate discussion.

Taking into account the factors outlined above, we propose to
approach the issue of algorithm implementation, and the different
ways algorithms can be implemented, similar to how the auto-
motive industry approached the issue of autonomous driving:
describing a formal taxonomy of six different levels of automation
(i.e., algorithm influence) ranging from Level 0 (no algorithm in-
fluence) to Level 5 (complete algorithm influence). Each level
represents a gradual transition from human tomachine as the basis
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for forensic conclusions. For pattern evidence disciplines (including
friction ridge examination), we propose the six different levels are:
Level 0 (No Algorithm), Level 1 (Algorithm Assistance), Level 2
(Algorithm Quality Control), Level 3 (Algorithm Informed Evalua-
tion), Level 4 (AlgorithmDominated Evaluation), Level 5 (Algorithm
only). In levels 0 through 2, the human serves as the predominant
basis for the evaluation and conclusionwith increasing influence of
the algorithm as a supplemental factor for quality control (used
after the expert opinion has been formed). In Levels 3 through 5, the
algorithm serves as the predominant basis for the evaluation and
conclusion with decreasing influence from the human. The rela-
tionship between human and algorithm as well as the basis for
conflict resolution and reported conclusions for each level is sum-
marized in Table 1 and described in the discussion that follows.

Level 0 characterizes traditional practices in the majority of
forensic science disciplines. Besides the use of automated tools,
such as AFIS to augment searching, storage, and retrieval tasks,
algorithms do not have any substantive role in the evaluation of the
evidence. The conclusion is based solely on the subjective opinion
of the expert. This level is deeply rooted in tradition and represents
the vast majority of forensic practitioners today (with the exception
of DNA). Although practitioners are most comfortable with this
approach, it has been the focus of increasing criticism from scien-
tific and legal actors for the lack of statistical support.

Level 1 represents the lowest level of algorithm implementa-
tion. The human relies on traditional practices for the evaluation of
the evidence and is responsible for forming an opinion indepen-
dent of the algorithm. The expert may then use the algorithm after
the initial opinion has been formed as an optional quality control.
The human is considered the ultimate authority on the overall
conclusion and is given complete discretion when to run the al-
gorithm and how the output of the algorithm is considered. Con-
flicts between the expert’s judgment and the algorithm output are
not required to be formally adjudicated by standard operating
procedures. At most, conflicts between the expert’s judgment and
the algorithm outputmay cause the expert to seek a second opinion
through formal procedures of consultation or verification; how-
ever, the output of the algorithm is not a formal component of the
examination scheme and therefore the results are not part of the
reported conclusion. Since the algorithm is applied after the expert
has formed their opinion and the algorithm is not part of the basis
Table 1
Levels of algorithm implementation describing the relationship between human and alg
level.

Level Name Narrative Definition

0 No algorithm The human is responsible for forming an expert opinion based on
observations without any use of the algorithm.

1 Algorithm
Assistance

The human is responsible for forming an expert opinion based on
observations. The algorithm may be used after an initial opinion
formed. The algorithm serves as an optional assistance tool suppl
the expert opinion that may be used at the discretion of the exa

2 Algorithm
Quality
Control

The human is responsible for forming an expert opinion based on
observations. The algorithm shall be used after the opinion has be
The algorithm serves as a required quality control supplemental
expert opinion to ensure the evidence conforms to specified crit
supporting a conclusion.

3 Algorithm
Informed
Evaluation

The human is responsible for forming an expert opinion based on
of the algorithm. The algorithm shall be used before the opinion
formed. The algorithm serves as an integrated factor informing t

4 Algorithm
Dominated
Evaluation

The algorithm is used as the basis for the conclusion. The human s
oversight capacity to ensure the algorithm is applied appropriate

5 Algorithm
Only

The algorithm is used as the basis for the conclusion without an
evaluation or oversight.
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for interpretation or the reported conclusion, courts are unlikely to
be concerned with the algorithm. This level may be appropriate
when practitioners have not had any prior experience with algo-
rithms. The key benefit of this level is that it provides flexibility for
when and how the algorithm is used and a means for practitioners
to slowly gain comfort with the algorithm and trust in the output.
The key limitation to this level is that there is no formal mechanism
to ensure experts are not improperly discounting the algorithm
when it might conflict with their subjective assessment.

Level 2 represents a level of implementation in which the al-
gorithm is used as a quality control for the ultimate conclusion
reported. The human relies on traditional practices for the evalu-
ation of the evidence and is responsible for forming an opinion
independent of the algorithm. The expert then uses the algorithm
after the opinion has been formed as a required quality control
supplemental to the expert opinion to ensure the evidence con-
forms to specified criteria supporting a conclusion. In this scenario,
the ultimate authority on the reported conclusion is governed by
the standard operating procedures. In order for a particular
conclusion to be warranted, the expert opinion must be supported
by the algorithm output and conforming to criteria specified by the
standard operating procedures (e.g., minimum threshold for a
quantitative algorithm output). If the expert opinion is not sup-
ported by the algorithm, then the conflict is formally adjudicated in
accordance with the standard operating procedures. The protocols
proposed by Montani et al. [105] to provide a reasonable frame-
work for addressing conflicts between human and algorithmwithin
standard operating procedures. Although the algorithm has a ma-
terial impact on the overall conclusion reported from a quality
control standpoint, since it was applied after the expert has formed
their opinion and therefore is not part of the basis for interpreta-
tion, courts are less likely to be concerned with the algorithm. The
admissibility of the algorithm may be challenged; however, even if
the algorithm was found to be inadmissible (e.g., novel algorithms
that are not widely adopted and therefore are not yet “generally
accepted”), it is unlikely to materially affect the admissibility of the
evidence overall since the ultimate conclusion reported is still
based on the expert opinion. This level is appropriate when prac-
titioners have gained some experience with the algorithms and
have established reasonable trust in the output. The key benefit of
this level is that the algorithm is implemented in a way that
orithm as well as the basis for conflict resolution and reported conclusions for each

Human Role Algorithm Role Conflict
Resolution

Basis for
Conclusion

subjective Evaluation N/A N/A Expert Opinion

subjective
has been
emental to
miner.

Evaluation Supplemental
Assistance
(optional)

Expert
Discretion

Expert Opinion

subjective
en formed.
to the
eria

Evaluation Supplemental
Quality Control

Standard
Operating
Procedures

Expert Opinion
(Algorithm
Supported)

the output
has been
he opinion.

Human-
Algorithm
Integrated
Evaluation

Human-
Algorithm
Integrated
Evaluation

Standard
Operating
Procedures

Algorithm
Output (Human
Supported)

erves in an
ly.

Procedural
Oversight

Evaluation Standard
Operating
Procedures

Algorithm
Output

y human N/A Evaluation N/A Algorithm
Output
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provides empirical support for the expert opinion, but does not
alter traditional interpretation practices related to the expert
opinion. The key limitation to this level is that the expert does not
have the opportunity to leverage the output of the algorithm as a
factor when evaluating the overall value of the evidence.

Level 3 represents a key transition point between human and
algorithm. In Level 2, the algorithm was used supplemental to the
expert opinion (after the expert formed the opinion). At this level,
the algorithm is used before the opinion has been formed. In this
scenario, the algorithm serves as factor informing the expert
opinion; thus, the expert has the benefit of being able to incorpo-
rate the output of the algorithm along with their subjective judg-
ment. The ultimate authority on the reported conclusion is
governed by the standard operating procedures. In order for a
particular conclusion to be warranted, the algorithm output must
conform to criteria specified by the standard operating procedures
and must be supported by the expert opinion. If the algorithm
output is not supported by the expert opinion, then the conflict is
formally adjudicated in accordance with the standard operating
procedures (e.g., see Montani et al. [105]). Since the algorithm is
applied before the expert has formed their opinion and therefore
serves as a basis for interpretation, courts are more likely to be
concerned with the algorithm at this level than in lower levels. The
admissibility of the algorithm may be challenged since it was a
factor taken into consideration when forming the expert opinion;
however, similar to lower levels, if the algorithm were found to be
inadmissible, it is less likely to materially affect the admissibility of
the evidence overall since the algorithm output was one of many
factors taken into account when forming the expert opinion. This
level is appropriate when practitioners have gained considerable
experience with the algorithm and have established trust in the
output. The key benefit of this level is that the algorithm is
implemented in a way enables the expert to leverage the output of
the algorithm as a factor when evaluating the overall value of the
evidence. The key limitation to this level is that the interpretation
remains dependent on subjective elements from the expert.

Level 4 represents a level of implementation in which the al-
gorithm is used as the basis for the ultimate conclusion reported. In
this scenario, the human does not form an expert opinion; rather,
the expert determines whether the circumstances of the evidence
are appropriate for the application of the algorithm and ensures it is
applied correctly and in accordance with standard operating pro-
cedures. The ultimate authority on the reported conclusion is
governed by the standard operating procedures. Since the algo-
rithm serves as the basis for the conclusion, courts are more likely
to be concerned with the algorithm at this level than in lower
levels. The admissibility of the algorithmmay be challenged since it
served as the basis for the reported conclusion. Experts will need to
have in-depth knowledgeable about the algorithm and be able to be
responsive to questions and challenges to the weight of the evi-
dence during testimony. At this level, if the algorithmwere found to
be inadmissible, it is likely to materially affect the admissibility of
the evidence overall since the algorithm output was the basis for
the ultimate conclusion. This level is appropriate when the tech-
nology is capable of this type of autonomy and practitioners have
gained expert knowledge and experience with the algorithm and
have established trust in the output. The key benefit of this level is
that the algorithm is implemented in a way enables the expert to
oversee the process and ensure appropriate application of the al-
gorithm while the reported results are based on the algorithm
output rendering them less susceptible to variations caused by
human interpretation. The key limitation to this level is that courts
may be less receptive to algorithms that operate or manifest as a
“black-box” and are difficult to explain how the algorithm gener-
ated a particular result.
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Level 5 represents the highest level of algorithm implementa-
tion for which the algorithm operates in a “lights-out” mode
without any human involvement or oversight. In this scenario, the
algorithm is fully autonomous and reported results are automati-
cally generated by the machine. The admissibility and weight of the
results of the algorithm may be challenged since it operates fully
autonomously. At this level, if the algorithm were found to be
inadmissible, it is almost certain to materially affect the admissi-
bility of the evidence overall since the algorithmwas the sole basis
for the ultimate conclusion. This level is appropriate for high-
performance algorithms and high-throughput operations where
this level of automation is necessary and stakeholders have been
informed, understood and accepted the benefits and risks associ-
ated with such deployment. The key benefit of this level is that the
reported results are based entirely on the algorithm output and
completely objective. The key limitation to this level is that prac-
titioners are completely supplanted by the algorithm and without
an expert able to testify to the application and overall process,
courts are unlikely to be receptive to algorithms as a basis for
substantive evidence that lack transparency and explainability to
how the algorithm generated a particular result.

The levels of algorithm implementation summarized in Table 1
and described above illustrate different ways in which algorithms
can be implementeddeach with different implications to practice.
On the one hand, from a scientific perspective, practitioners should
swiftly move toward implementing algorithms at higher levels
such that the algorithms provide the predominant basis for con-
clusions. Doing so would promote improved objectivity and con-
sistency in the reported results. On the other hand, practitioners
and courts are unlikely to be receptive to such a swift transition and
become almost entirely dependent on algorithms without having
the opportunity to gain comfort with the systems and establish
trust in the outcome. Further, at higher levels of implementation,
practitioners are likely to be expected to have a greater depth and
breadth of knowledge about the algorithm and be responsive to
questions and challenges during testimony. This may be concerning
for practitioners that have traditionally required very little to no
need for formal education in algorithms and statistical principles.
We propose that the optimal approach is for practitioners to
identify a target level of implementation that is practical given the
current state of available technology and consideration of the
tradeoff between the potential benefits and perceived risks for a
given deployment scheme, then establish a plan for implementa-
tion that begins with Level 1 as a pilot phase and progresses
sequentially through the various levels toward the target. Doing so
will allow practitioners to gradually gain comfort with the systems,
trust in the outcome, and time to increase their depth and breadth
of knowledge that will be expected of them during testimony.

Using friction ridge examination as an example, given the cur-
rent state of technology available for implementation, target levels
of implementation might include Levels 2 or 3deither of which are
achievable [37,106] and least impactful to traditional practices.
Level 1 should be short-lived as a pilot phase and first step to gain
initial comfort with the system and evaluate the performance of the
algorithmwhen applied operationally. Level 4 is possible as a target
given current technology, but likely unsettling to many practi-
tioners and some stakeholders since available algorithms do not
fully account for all the types of features and distinguishing char-
acteristics practitioners are able to take into consideration during
their subjective assessments. Aside from high-quality samples,
such as known-to-known comparisons (i.e., “ten-prints”), Level 5
implementation is likely not practical given the current state of
available technology for latent print impressions involving partial
and degraded samples. In addition to the technology considerations
yielding Levels 2 and 3 as optimal targets, they offer several other
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benefits that appear to balance the interests and needs of the
various stakeholders. Some of these benefits include: (i) practi-
tioners are more likely to adopt algorithms since they remain
empowered to express their expert opinion, (ii) fact-finders would
no longer be required to rely on testimony ipse dixit as the algo-
rithm would provide a means of ensuring analysts’ opinions to be
empirically supported, (iii) the resource burden on forensic labo-
ratories that would be necessary for educating and training prac-
titioners related to the underpinnings of the algorithm and
statistical concepts is minimal compared to what would be
necessary to ensure a depth of knowledge necessary to support
Level 4 or 5 implementation, (iv) courts are less likely to be faced
with resource-intensive admissibility challenges or concerns of
Constitutional infringements since the algorithms are merely sup-
plemental to the evaluation of the evidence (versus the predomi-
nant basis thereof), and (v) the admissibility of the algorithm can be
considered distinct from the admissibility of the expert opinion. As
the technology advances in coming years and practitioners (and
other criminal justice stakeholders) become more acclimated with
the use of algorithms in forensic science, the expectation is that
implementation schemes will continue to progress toward higher
levels. Irrespective of the level of implementation, however, the
expert will remain critical as a steward to the overall process and
necessary for the admissibility of the evidence under the Sixth
Amendment [93].

2. Conclusion

The implementation of algorithms (e.g., statistical methods) in
forensic science is complicated. Although scientific and legal
scholars have raised concern that many forensic conclusions lack
empirical support and researchers have proposed various statistical
or algorithmic approaches, the practitioner community has been
reluctant to apply them operationally and their implications to
litigation have yet to be fully demonstrated. Reactions from prac-
titioners to statistical interventions have ranged from passive
skepticism to outright opposition, often in favor of traditional
experience and expertise as a sufficient basis for conclusions. In this
paper, we exploredwhy practitioners are generally in opposition to
algorithms and how their concerns might be overcome. We
accomplished this by considering issues concerning human-
dalgorithm interactions in both real world domains and laboratory
studies as well as issues concerning the litigation of algorithms in
the American legal system. Ultimately, recognizing the need to
heed the calls for algorithms is inevitable, we propose how, not if,
algorithms could be implemented into operational practice that is
both responsible and practical, such that forensic practitioners and
other legal and scientific stakeholders are likely to accept.

Following our exploration of the different issues, we made
several observations that enabled us to characterize key challenges
to implementation. On the topic of humandalgorithm interactions,
we found that people tend to exhibit a general aversion to algo-
rithms and prefer to rely on their own judgmentdoften despite
knowledge that their own judgment is typically inferior to that of
algorithms. This phenomenon is exacerbated when people possess
domain expertise, are faced with high-stakes decisions, and are
presented with an algorithm that is susceptible to err. Indeed,
forensic science has the conditions for which algorithm aversion is
most pronounced. From both anecdotal observations of human-
dalgorithm interactions in different domains and recent research,
we found that people tend to be more receptive to algorithms if
they are integrated as a factor that supplements as opposed to
supplants human decision making and the human retains some
amount of influence on the ultimate outcome. On the topic of liti-
gating algorithms in the American legal system, we found that this
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can be particularly challenging given the “black-box” nature of
many algorithms and, in some cases, the countervailing legal pro-
tections against disclosure of the actual algorithm and source-code.
The opacity of algorithms will often trigger admissibility challenges
as well as raise concerns over infringements to Defendants’
Constitutional rights provided by the Fifth and Sixth Amendments.

In our view, despite these issues, algorithms will ultimately be
inevitable to ensure the enduring validity and admissibility of
forensic evidence for decades to come. In recent years many
forensic science disciplines have been put on notice by formal
bodies expressing concern from scientific and legal perspectives
that expert opinions need to be empirically supported with sta-
tistical data (e.g., see Refs. [3,7e9]). An abrupt shift requiring im-
mediate implementation of statistical and algorithmicmethods as a
condition for admissibility would be impractical and unrealistic;
however, we believe it will only be a matter of time until patience
wears and courts limit deference to experts and accept opinions
ipse dixit. Recognizing the inevitable need for algorithms in forensic
science and taking into consideration the issues concerning
humandalgorithm interaction and litigation of algorithms, we
propose a strategy for approaching the implementation of algo-
rithms in a responsible and practical manner by: (i) outlining the
foundations that need to be in place from a quality assurance
perspective before algorithms should be implemented, such as
education, training, protocols, validation, verification, competency,
and on-going monitoring schemes; and (ii) proposing a formal
taxonomy of six different levels of algorithm implementation
ranging from Level 0 (no algorithm influence) to Level 5 (complete
algorithm influence) describing various ways in which algorithms
can be implemented, similar to how the automotive industry
approached the issue of autonomous driving. Each level represents
a gradual transition from human to machine as the basis for
forensic conclusions and include: Level 0 (No Algorithm), Level 1
(Algorithm Assistance), Level 2 (Algorithm Quality Control), Level 3
(Algorithm Informed Evaluation), Level 4 (Algorithm Dominated
Evaluation), Level 5 (Algorithm only). In levels 0 through 2, the
human serves as the predominant basis for the evaluation and
conclusion with increasing influence of the algorithm as a supple-
mental factor for quality control (used after the expert opinion has
been formed). In Levels 3 through 5, the algorithm serves as the
predominant basis for the evaluation and conclusion with
decreasing influence from the human. We propose the optimal
approach is for practitioners to identify a target level of imple-
mentation that is practical given the current state of available
technology and consideration of the tradeoff between the potential
benefits and perceived risks for a given deployment scheme, then
establish a plan for implementation that begins with Level 1 as a
pilot phase and progresses sequentially through the various levels
toward the target. Proceeding in this fashion will increase the
likelihood for adoption across all stakeholders and lead to an
overall stronger foundation and improvement to the quality and
consistency of forensic science.
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