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ABSTRACT

The replicability crisis has drawn attention to numerous weaknesses in psychol-
ogy and social science research practice. In this work we focus on three issues
that cannot be addressed with replication alone, and which deserve more attention:
Functional misspecification, structural misspecification, and unreliable interpreta-
tion of results. We demonstrate a number of possible consequences via simulation,
and provide recommendations for researchers to improve their research practice.
Psychologists and social scientists should engage with these areas of analytical
and statistical improvement, as they have the potential to seriously hinder scien-
tific progress. Every research question and hypothesis may present its own unique
challenges, and it is only through an awareness and understanding of varied sta-
tistical methods for predictive and causal modeling, that researchers will have the
tools with which to appropriately address them.

INTRODUCTION

Meta-researchers have increasingly drawn attention to the replicability crisis affecting psychology
and social science (Aarts et al., 2015; Stevens, 2017; Marsman et al., 2017; Shrout & Rodgers, 2018).
A key element of the crisis relates to common and fundamentally problematic statistical practices,
particularly those that affect the likelihood of false-positives such as statistical power. However,
we would argue that there are a number of fundamental analytical issues which cannot be addressed
through replication alone. These problematic practices relate to observational research and modeling
in psychology and social science, and may be broadly categorized as issues with model misspeci-
fication, and unreliable interpretations. For clarity, we subdivide the issue of misspecification into
functional and structural misspecification yielding three distinct issues.

The first issue relates to the ubiquitous use of parametric, linear models, and a failure to consider
more powerful techniques for both predictive and causal modeling. This issue is referred to as
functional misspecification. The second relates to another type of model misspecification, in this
case, the use of structurally misspecified implicit (e.g., multiple linear regression) or explicit (e.g.,
structural equation) causal models which do not sufficiently reflect the true structure in the data.
The final issue relates both to how predictive models are often (mis)interpreted as causal models,
and vice versa, and also to how these interpretations are likely to be unreliable given the models’
underlying limitations, assumptions, and misspecification. All of these issues affect a researcher’s
ability to accurately model some aspect of the joint distribution of the data, for the purpose of
predicting an outcome, estimating a causal effect, and drawing scientific conclusions. These issues
share a particularly problematic trait, which is that they cannot be addressed or identified through
replication alone. Indeed, in the presence of these issues, replications and larger sample sizes may
serve only to reinforce flawed conclusions and therefore to hinder scientific progress.
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The goal of this paper is to introduce and draw attention to fundamental issues in common research
practice through both didactic illustration and simulation, to provide some basic introductory the-
ory where necessary, and to provide recommendations for improving practice. While some of these
issues relating to research practice have been previously discussed (e.g., see Claesen et al. (2019);
Scheel et al. (in press)), we believe it is extremely important to continue to encourage and stimulate
consideration and engagement with the debate surrounding areas of possible analytical improve-
ment. Furthermore, in spite of researchers having already made important recommendations for
improving practice (e.g., Lakens et al. (2016); Scheel et al. (in press); Gigerenzer (2018); Jostmann
et al. (2016); Lakens & Evers (2014); Orben & Lakens (2020)) we see relatively little change in the
research communities of psychology and social science (Claesen et al., 2019; Scheel et al., in press).

Following a review of the literature, the paper is split into three main parts. In Part 1, we describe
how the typical models used in psychology are limited by their functional form and thereby func-
tionally misspecified, and discuss the implications of this issue and possible ways to address it. Part
2 is concerned with structural misspecification in causal modeling, and how the typical models used
in psychology and social science do not adequately reflect the true structure of the data. We dis-
cuss how this impacts interpretability, how a consideration for causal structure is essential when
designing a model, and we identify some challenges associated with undertaking causal modeling.
Part 3 introduces the notion of explainability as an alternative to interpretation, and as a means of
deriving insight from predictive models. We discuss interpretation in light of the relevant points
on limited functional form and structural misspecification covered in Parts 1 and 2, and consider
how interpretations in psychology and social science tend to be a conflation of causal and predictive
interpretations. Finally, we conclude this work with a discussion and by proposing four recommen-
dations for improving practice.

BACKGROUND - EXISTING PROBLEMS IN RESEARCH

A recent article titled ‘Declines in religiosity predict increases in violent crime - but not among coun-
tries with relatively high average IQ’ was retracted from the Journal of Psychological Science on the
basis of methodological weaknesses and political sensitivity. The Editor in Chief at the time, Steve
Lindsay apologized on multiple grounds, and stated that “In terms of science, Clark et al. may not be
worse than some other articles published in Psych Science during my editorship...” (Lindsay, 2020).
This may suggest that methodological weakness, as described in terms of “blurred distinctions be-
tween psychological constructs versus measures and speculations/extrapolations far removed from
the data” is somewhat par for the course in the “young science” (Lindsay, 2020) of psychology.
Indeed, over the last ten years, meta-researchers have drawn increasing attention to a purported
crisis in the human sciences (particularly psychology) known as the replication crisis. The crisis
has been discussed at length by many different meta-researchers (e.g., Oberauer & Lewandowsky
(2019); Botella & Duran (2019); Aarts et al. (2015); Stevens (2017); Marsman et al. (2017); Shrout
& Rodgers (2018); Yarkoni (2019)) who argue that research in the human sciences fails to replicate.

The issues relating to replication are attributed to range of causes including a lack of understand-
ing about and misuse of p-values and statistical tests (Cassidy et al., 2019; Gigerenzer, 2018; 2004;
Colquhoun, 2019; McShane et al., 2019), misunderstandings about statistical power and low sam-
ple sizes (Sassenberg & Ditrich, 2019; Baker et al., 2020; Correll et al., 2020), pressure to publish
(Shrout & Rodgers, 2018), academia and research being a strategy game with unscientific incen-
tives (Gigerenzer, 2018; DeDeo, 2020), a reluctance of journals to publish replications (Martin &
Clarke, 2017; Gernsbacher, 2019), and double-dipping and overfitting (Kassraian-Fard et al., 2016;
Kriegeskorte et al., 2009; Mayo, 2013; Yarkoni & Westfall, 2017).

Unfortunately, the problems do not end there. The range of identified methodological issues has
broadened considerably to include aspects that stand independently of replication and which re-
sult in invalid inference. These issues relate to the ways researchers test theories (Oberauer &
Lewandowsky, 2019; Fiedler, 2017); measurement problems (Flake & Fried, in press); immature
theories (Scheel et al., in press); a lack of meta-analyses (Schmidt & Oh, 2016); a lack of assump-
tions testing (Ernst & Albers, 2017); issues with the peer review process (Heesen & Bright, 2020);
reporting errors (Nuijten et al., 2016); and a lack of research practice standardization (Tong, 2019).
In particular, previous research has highlighted the tendency for the conflation of predictive and
causal approaches (Grosz et al., 2020; Yarkoni & Westfall, 2017; Shmueli, 2010), as well as overly
generous claims and warped interpretations (Yarkoni, 2019; Spellman, 2015; Scheel et al., in press).
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In our view, these latter two issues relate to some of the most fundamental aspects of research, and
are discussed in this article. Choosing between a predictive or causal approach to research repre-
sents a critical decision that broadly impacts everything from the formulation of hypotheses to the
conclusions drawn and interpretations made.

Altogether, there is evidence of a possible lack of understanding relating to the use of predictive
models in psychology and social science, and we discuss this issue in detail in Part 1. If researchers
choose to adopt a causal approach, it is equally important that they understand the associated pitfalls
and challenges. For example, there is a relatively well established modeling technique known as
Structural Equation Modeling (SEM) which explicitly encodes causal structure (Kline, 2005; Blanca
et al., 2018). One point to note about the use of SEM in psychology and social science is that the
way the technique is often presented and interpreted obfuscates its causal nature (Grosz et al., 2020).
This leads to an awkward conflation of causal modeling with predictive interpretations, resulting in
ambiguity and a lack of clarity regarding intentions and assumptions. It may be that researchers are
unaware that their SEMs are explicitly causal and fail to sufficiently understand how the results from
the analysis are underpinned by a number of restrictive (and often untestable) assumptions, which
we discuss further in Part 2.

If researchers choose prediction over causation, their scope for interpretation should be adapted
accordingly. Meta-researchers have drawn attention to how it is common for psychology and so-
cial science researchers to use associational/predictive techniques to test otherwise causal hypothe-
ses (Shmueli, 2010; Yarkoni & Westfall, 2017; Glymour, 1998; Hernan, 2018; Grosz et al., 2020).
Shmueli (2010) explains how “the type of statistical models used for testing causal hypotheses in the
social sciences are almost always association-based [i.e., predictive] models.” Given this underlying
interest in causal quantities, in Part 3 we present a means to derive useful insight relating to these
quantities, even when a wholly predictive approach is used.

PART 1: FUNCTIONAL MISSPECIFICATION

In this part we address certain issues that may arise when using modeling techniques that have lim-
ited functional form. When we refer to the functional form of a model as being limited we mean
that the model does not have the flexibility to sufficiently reflect the complexity of the relationships
between variables, possibly resulting in poor predictive ability and biased results. This may also be
referred to as functional misspecification. Identifying or deriving an adequately flexible functional
form with which to model the relationship between variables, in circumstances where causal rela-
tionships are not of concern, is somewhat synonymous with the task of prediction. As such, the
majority of this section will be written with consideration of its relevance to predictive modeling,
where the goal is to learn a function that optimally maps predictor variables to outcome variables.
However, a consideration for functional form is just as important for causal modeling, for which we
may be tasked with embedding models representing the relationships between variables into a larger
model representing the causal structure of the data generating process. For purposes of prediction
alone, it suffices to be solely concerned with finding the optimal mapping function to achieve some
desired level of predictive performance. Note that this goal is quite different from that of estimating
a parameter of the distribution (e.g., a treatment effect). We expect models that reflect the structure
of reality to also be robust predictors, but this is not necessarily the case the other way around; good
predictive functions do not necessarily reflect the structure of reality.

We begin by briefly introducing some of the technical formalism behind predictive modeling, and
list some of its wide ranging applications. Following this, we discuss the limitations of undertaking
prediction using the two most common and basic methods used in psychology and social science:
Correlation and linear regression models. We demonstrate how these methods, in the basic form
adopted in psychology and social science, are fundamentally limited in their ability to adapt to and
thereby model non-linearities present in the data. This motivates a need for more flexible, powerful,
data-adaptive predictive methods. Previous research has highlighted that the use of such techniques
is rare in psychology and social science, where it is much more usual to use models with restrictive
linear functional form (Yarkoni & Westfall, 2017; Blanca et al., 2018). Linear functions may be
useful to consider for their computational efficiency and for their tendency to naturally under-fit the
data, thereby improving generalization particularly when the quantity of data is limited. However,
these factors are not sufficient to fully explain the rarity of non-linear, powerful, and/or data adaptive
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techniques in psychology and social science, and we posit that a possible lack of awareness of these
alternative methods is more likely.

APPLICATIONS AND BASIC FORMALISM

The topic of identifying the optimal functional form with which to represent the relationship be-
tween variables is vast and well covered by many authors, particularly those in the field of machine
learning in the context of prediction (Bishop, 2006; Duda et al., 2001; Murphy, 2012). Prediction
has been described as “the study of the association between variables or the identification of the
variables which contribute to the prediction of another variable” (Blanca et al., 2018) and therefore
relates closely to the more general task of identifying the optimal function that maps between sets
of variables. The applications for predictive models are wide ranging, and include personalized
medicine (Rahbar et al., 2020), time series forecasting (Makridakis et al., 2020), facial and object
recognition (Krizhevsky et al., 2012; Jonsson et al., 2000), and many others. Such techniques are
therefore extremely valuable and influential in shaping our modern world.

The basic formalism for predictive modeling is as follows: Researchers may be confronted with a
dataset comprising samples from a population (xi,yi) ∈ X ×Y . In words, we have a set of samples
of predictors or random variables1, which take on values in the set X and which are related to some
outcome variables2 which take on values in the set Y . If the outcome is binary or categorical, the task
of prediction becomes equivalent to one of classification. The goal of prediction usually involves
finding a mapping function f : X → Y . We will use the terms predictive function and predictive
model to refer to the mapping function used to make predictions.

THE COMMON ASSUMPTION OF LINEAR FUNCTIONAL FORM

Variations on simple measures of correlation and linear parametric models (including linear SEMs)
were found to be the most frequently used modeling techniques in psychology research in recent
years (Blanca et al., 2018; Bolger et al., 2019).3 The principal assumption associated with these
models is that the true relationships between the variables are sufficiently represented as linear. Such
models therefore have a limited functional form - they can only represent relationships between
predictor and outcome variables that are able to be summarized in terms of a weighted sum. Of
course, in reality the true relationships between variables may be highly complex and nonlinear.
Indeed, assuming our dataset is sampled from a ‘true’ population distribution, there exists an optimal
functional form describing the functional relationships between the variables. Figure 1 illustrates
how the set of traditional models provides limited overlap with the set of realistic data distributions,
thereby having limited capacity to model complex real-world phenomena (Coyle et al., 2020; van
der Laan & Rose, 2018; van der Laan & Starmans, 2014).

Correlation is often used as a measure for the association or statistical dependence between variables
(i.e., to identify variables which may be good predictors). As one of the most common ways to
measure dependence, there are two important aspects or issues relating to correlation to bear in
mind. The first thing to note is that correlation is a non-linear metric for dependence. This can
be observed by comparing the plots (a)-(f) in Figure 2. These plots depict a number of bivariate
distributions along with their correlation coefficient (PCC). Compare, for instance, the change in
the shape of the bivariate distributions between Fig. 2(a) and Fig. 2(b). This change corresponds
with an increase in correlation of 0.2 - there is not much to visually distinguish them. Now contrast
this with a change of correlation from 0.8 to 0.95, which can be seen in Fig. 2(e) and Fig. 2(f) -
this change is visually more striking, even though the change in correlation is actually smaller (1.5
rather than 0.2). In other words, a change in correlation corresponds with a much greater increase in

1These variables are sometimes called ‘independent variables’, but because they are usually not indepen-
dent, we avoid this potentially unhelpful terminology.

2These variables are sometimes called ‘dependent variables’, but because other dependencies often exist we
also avoid this terminology.

3It might be argued that any arbitrary function can be represented as some linear sum of features, and
that therefore all models are fundamentally linear. However, using such a broadly encompassing definition
of the term ‘linear model’ makes discussion pedantic. As such, we use the term to describe the typical linear
regression model where the outcome is modeled as a linear sum of raw variables or low-order functions of these
variables (such as exponents: x1,x2; and interactions: x1x2 etc.).
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Traditional
Methods

Realistic

True

Machine Learning

Figure 1: Traditional techniques such as linear regression may be severely limited in their capacity
to model highly complex, non-linear data. Machine Learning methods may help to expand the
coverage of realistic data distributions, but the true distribution may still lie outside. Combining
flexible function approximation techniques from machine learning, with an incorporation of domain
knowledge and model structure, can help us get as close as possible to modelling the true data
distribution (van der Laan & Rose, 2011).

dependence when shifting at higher values (e.g., 0.7 to 0.9), than it does for lower values (e.g., 0.1
to 0.3). This first issue is important for researchers to understand when drawing conclusions about
relative levels of correlation. Intuitively, a correlation of one (or, indeed, negative one) represents
an asymptotic limit, and deviations in values of correlation far from this limit are less extreme than
those close to it.

The second, and perhaps more obvious aspect of note from Figures 2(g)-(j) is that the PCC catas-
trophically fails to capture non-linear dependence. Here, sinusoidal, quadratic, or toroidal relation-
ships (to take three examples) are associated with approximately zero correlation. This relates to
the assumption of linearity: If the relationship between the two variables is linear, then correlation
provides a measure of linear dependence; if the relationship is non-linear, then correlation may pro-
vide meaningless measures of dependence. In cases where the relationship is non-linear, researchers
will need to either linearize the relationship (e.g., by creating a new variable which accounts for this
non-linearity), or consider using an alternative measure of dependence.

One possible alternative to correlation, which serves as a more robust and general way to quantify
statistical dependence, is Shannon Mutual Information (M.I.), which provides us with a measure for
how much information one variable contains about another (Cover & Thomas, 2006; Kraskov et al.,
2004; Steeg & Galstyan, 2012; 2013; Gao et al., 2015; Kinney & Atwal, 2014). M.I. is defined as:

I(X;Y ) = H(X)−H(X|Y ) (1)

where H is entropy. Entropy describes the degree of surprise or uncertainty associated with a dis-
tribution and is computed as −

∑N
n p(xn) log p(xn) where N is the number of datapoints in the

sample distribution, xn is an individual datapoint and p(xn) is its corresponding probability.4 Re-
visiting Equation 1, we therefore see that mutual information can be interpreted as the difference
between the uncertainty in X and the uncertainty in X if we already know Y . M.I. ranges between
[0, H(.)], such that when the two distributions are identical, I(X;Y ) = H(X) = H(Y ). M.I. can-
not be negative, and as such it is not able to indicate the ‘direction’ of the association in the way that
correlation can. However, this is an acceptable limitation given that many non-linear relationships
are non-monotonic (i.e., they are not always either increasing or decreasing) and in such cases a
notion of positive or negative direction is unhelpful. Overall, M.I. is quite different from correla-
tion which, simply, indicates whether two variables with a linear functional relationship increase or
decrease together. Correlation thereby represents only a loose proxy for shared information, whilst
M.I. gives us an actual measure of statistical dependence between variables. The estimates for M.I.
are also shown in Figure 2, and it can be seen that M.I. not only handles non-linear relationships

4Note that this expression is for the entropy of discrete distributions (e.g., Bernoulli). A similar expression
exists for the entropy of continuous distributions and is known as the differential entropy.
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c d
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g h
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Figure 2: Simulations demonstrating the relationships between the Pearson measure of correlation,
and the Mutual Information metric for measuring statistical dependence. The upper six plots depict
linear bivariate relationships, whereas the lower four plots are non-linear.

between variables (compare the values of M.I. in plots (a)-(f)), but also increases linearly with the
degree of dependence of the variables (plots (g)-(j)).

Linear regression is another very common modeling technique used for both predictive and causal
modeling and constitute a relatively small sub-class within the class of Generalized Linear Models.
There is one principal assumption for linear regression which is important for achieving both suc-
cessful causal and predictive modeling. Namely, that the outcome can be well approximated using
a weighted linear sum of the input variables. Indeed, the linearity imposes a strong functional con-
straint that restricts the function’s flexibility and is, therefore, an assumption about functional form
(van der Laan & Rose, 2011). Linear methods are unlikely to match the functional form of realistic
data distributions, and to get closer to the true functional form, researchers should consider using
more flexible predictive methods.

In certain scenarios, collecting more data or undertaking a replication may indirectly highlight prob-
lems relating to functional form. For instance, Vowels et al. (In Press) provide an example demon-
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strating how the direction of a coefficient alternates depending on the start and end points of a
longitudinal sample exhibiting sinusoidal/periodic fluctuation. However, in general, issues relating
to insufficient functional form stand independently of sample-size and replication.

IMPROVING ON THE FUNCTIONAL FORM OF LINEAR MODELS

In order to improve the predictive or associational performance of a predictive function, researchers
may need to explore either feature engineering approaches, or other functional approximation tech-
niques such as those commonly used in machine learning. Introducing hierarchical structure within
linear functions can improve the fit (Yarkoni, 2019; Gelman & Hill, 2007; Bolger et al., 2019), but
even hierarchical linear models are constrained according to linear functional associations.

Feature engineering involves the substitution of raw input variables with functions of these raw vari-
ables, sometimes called features. Depending on the functional form used to derive these features, the
features themselves may then be linearly related to the outcome, facilitating better overall functional
approximation. For instance, researchers may include more exotic basis functions such as sinusoidal
functions (Vowels et al., In Press) or kernels (Scholkopf, 2019), or simply combine features to form
new ones (e.g., interaction features which are composed by multiplying two variables together).
Feature engineering may thereby help to account for the non-linearities of the data in the features
themselves, but in doing so, each feature may need to be carefully chosen or designed. For example,
in Figure 2, the plot in the fourth row on the right has a simple basis function which is x2. While the
raw values of x could not be used to model the outcome as part of a linear sum, the squared values
could be used to essentially linearize the predictor in question. However, in real-world applications
(i.e., research scenarios with real data) we will not know the functional form a priori and it may be
difficult to ascertain. For instance, the underlying function may not be an exact quadratic function
x2, but some other, arbitrarily complex function. The feature engineering process may or may not
be guided by knowledge about the domain of interest. For example, in the case of a time series with
known seasonal variation (e.g., financial data exhibiting fluctuation due to the business cycle) the use
of sinusoidal basis functions may be well justified and aid prediction and generalization (Hamilton,
1994).

Besides generalized linear models with feature engineering, there exist many alternative and much
more powerful function approximation techniques, such as those common in machine learning.
These techniques are able to learn, or estimate, functional relationships from the data themselves
and can be used instead of, or in combination with, feature engineering. For instance, random
forests (Breiman, 2001b) comprise a group of decision trees that are capable of learning highly
non-linear relationships and interactions between variables, without these interactions needing to be
pre-specified. The mapping learned by the forest adapts to the data in order to minimize a perfor-
mance objective (e.g., mean squared error). Neural networks are an alternative approach to function
approximation which are also data-adaptive and are highly parameterized (Goodfellow et al., 2016).
They learn by iteratively updating their parameters according to an error signal until some criterion
for convergence is met. An example of predictions from a simple neural network compared with
those of a linear regressor on a bivariate problem is shown in Figure 3. It can be seen the neural
network has fit the data almost perfectly, whilst the linear regression approximates the mean slope
of the line, ignoring the cycling fluctuation. While prior knowledge may enable one to employ sinu-
soidal basis functions with linear regression in order to achieve a similar degree of fit, the advantage
with neural networks is that such prior feature engineering is not required (Hornik et al., 1989).

OVERFITTING AND DOUBLE-DIPPING

Overfitting and double-dipping refer to the consequences of various modeling practices which in-
crease the fit of a model to a specific data sample, but which negatively impact the validity and
generalizability of results. An awareness of overfitting becomes increasingly crucial when attempt-
ing to model non-linear functional relationships between variables. Overfitting and double-dipping
have been extensively covered elsewhere, particularly in the machine learning literature (where over-
fitting is sometimes associated with what is known as the bias-variance trade-off) (Belkin et al.,
2019; Bishop, 2006; Murphy, 2000; Yarkoni & Westfall, 2017; Mayo, 2013). Prior research has
highlighted how modeling practices that result in overfitting are common in psychology and social
science, as well as a number of other fields, and have been noted for their possible contribution
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Figure 3: Demonstrates how linear functional forms cannot capture the non-linear relationships. In
contrast, non-linear, data-adaptive techniques such as neural networks, can.

to the replicability crisis (Shrout & Rodgers, 2018; Gelman & Loken, 2013; Yarkoni & Westfall,
2017). Even the common forward and backward method for variable inclusion constitutes data-
driven overfitting practices which have the potential to significantly impact model generalizabil-
ity and interpretability, and yet these practices are routinely included as part of standard statistical
education and practice in psychology (e.g., see Field (2009)). When using powerful function ap-
proximation techniques, a consideration for overfitting is even more important. There are numerous
techniques for mitigating issues with overfitting, including regularization, cross-validation (e.g. k-
fold or Leave One Out cross-validation), train-test splits etc. and it is important that researchers in
psychology and social science familiarize themselves with these fundamental concepts, especially
when modeling complex associations between variables.

PART 1 SUMMARY AND DISCUSSION

In Part 1, we described how models with limited functional form may be unable to represent the
complex relationships between variables. Indeed, the assumption of linearity is often restrictive
and has been previously noted to be problematic (van der Laan & Rose, 2011; Asuero et al., 2006;
Onwuegbuzie & Daniel, 1999; Achen, 1977; King, 1986; Meehl, 1990; Taleb, 2019) and frequently
ignored (Ernst & Albers, 2017). Instances of functional misspecification may not be highlighted
through replication, and this issue therefore stands independently.

The typical analyses used in psychology and social science include simple measures of correlation,
and various manifestations of linear regression. While such techniques are limited in their predic-
tive capacity, there are many algorithms used in the field of machine learning which can learn an
appropriately flexible functional form from the data themselves. When using more powerful tech-
niques, it is especially important to validate models on an out-of-sample test set (e.g., by using
a cross-validation method, or train/test splitting) in order to avoid overfitting. However, it is worth
noting that overfitting (and the related problem of double-dipping) is also possible with simple linear
models, and prior meta-research suggests that researchers may be unaware of these issues.

Notwithstanding the argument for the use of flexible predictive models, we certainly do not wish
to discount simple linear models completely. Indeed, in the limited sample regime it may be ap-
propriate to approximate the relationships between variables using straight lines, or with low-order
polynomials. However, one argument against this would be that a well-tested flexible model (well-
tested in the sense that we are confident that it is not overfitting the sample) ought to arrive at a
similar solution to a linear model, in cases where a linear relationship is optimal. Techniques such
as k-fold cross-validation, or Leave One Out cross-validation, provide researchers with procedures
to fit and evaluate flexible (or indeed linear) models on small samples. Furthermore, and as we will

8



Preprint (accepted to the Journal of Psychological Methods)

discuss in Part 2, linear models impose their own form of structural/causal bias, which becomes
particularly problematic in situations exhibiting multivariate endogeneity.

Finally, the rarity of modeling techniques with powerful, data-adaptive functional form represents a
possible missed opportunity in psychology and social science. We encourage researchers to consider
the functional form of their models, and familiarize themselves with the associated pitfalls and
limitations (e.g., overfitting), in order that they can get closer to modeling the true relationships
underpinning the phenomenon under study.
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PART 2: CAUSAL/STRUCTURAL MISSPECIFICATION

Prior research has highlighted a reluctance to adopt explicit causal approaches (Grosz et al., 2020;
Hernan, 2018). Causal techniques provide the means to answer fundamental questions that help us
to develop an understanding of the world (Pearl, 2009; van der Laan & Rose, 2011). To the best of
our knowledge, we are not aware of a well-established theory in psychology or social science which
does not incorporate at least some level of consideration for cause and effect, and, if there is one, we
would question its utility in so far as it can help us understand the world. Models which sufficiently
align with the structure of reality may facilitate causal inference, even with observational (as opposed
to experimental) data (Glymour, 2001; Pearl, 2009; Pearl et al., 2016; Grosz et al., 2020) and have
wide ranging applications including advertisement (Bottou et al., 2013), policy making (Kreif &
DiazOrdaz, 2019), the evaluation of evidence within legal frameworks (Pearl, 2009; Siegerink et al.,
2016), and the development of medical treatments (Petersen et al., 2017; van der Laan & Rose,
2011). There are a number of challenges associated with adopting a causal approach.

Structural misspecification represents one of the principal challenges associated with causal in-
ference, and arises when the true causal structure and/or the functional form of the relationships
between variables in the data generating process are not sufficiently reflected in a causal model.
Structural misspecification results in biased effect size estimates which are not meaningfully inter-
pretable. In this Part, we consider structural misspecfication in a restricted linear setting for purposes
of demonstration. As we will show, even in this restricted setting, it is extremely important that the
model sufficiently accounts for the true structure of the data in order that the resulting model is inter-
pretable. This section is not intended as a technical guide to undertaking causal inference in general,
but we nonetheless provide basic technical examples where relevant (for more information on causal
inference see e.g., Pearl (2009); Petersen et al. (2017); Pearl et al. (2016); Glymour (2001); Angrist
& Krueger (2001); Rubin (2005); Gelman & Hill (2007); Imbens & Rubin (2015)).

RECOVERING CAUSAL EFFECTS

Given the frequency with which psychologists and social scientists adopt linear regression methods
to test causal theories (Shmueli, 2010; Blanca et al., 2018), it is extremely important that researchers
understand the structural bias associated with the use of such models. In this section, we demonstrate
how typical linear regression models used in psychology and social science impose a strong implicit
causal/structural form which is unlikely to reflect the true causal structure of the data, even when
the functional form is linear, and are therefore likely to be structurally misspecified. We show that,
through a consideration of the causal structure of the phenomenon under study, one can nonetheless
use linear regression to recover causal effects under a number of restrictive assumptions.
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Figure 4: Example causal Directed Acyclic Graphs (c-DAGs). Example (a) depicts the case where
all ‘predictor’ or causal variables are exogenous (i.e., they have no causal parents and are indepen-
dent of each other). This corresponds with the causal structure of a simple multiple regression,
where the dependent outcome y is a linear sum of the x variables. The empirical causal effect of
each variable is equivalent to the multiple regression coefficient estimates. Example (b) is adapted
from Peters et al. (2017). Example (c) depicts a graph with an unobserved confounding variable z.
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MULTIPLE REGRESSION WITHOUT STRUCTURAL MISSPECIFICATION

In this section we demonstrate the strong, implicit structural form associated with multiple regres-
sion. We begin by demonstrating that multiple linear regression (in its basic form) is not misspec-
ified (either functionally or structurally) with respect to the true data generating process when all
predictors are exogenous (see structure in Figure 4(a)). In such a scenario, the resulting model is
interpretable.

If the true data generating process could be described as a weighted sum of a set of input variables,
then our goal of prediction within the Ordinary Least Squares multiple linear regression framework
would also be adequate for causal modeling, causal parameter estimation, or causal inference. Such a
model might be depicted graphically as in Figure 4(a). In this scenario, there would exist parameters
θ∗ (also known as effect sizes) which represent the true parameters, and our OLS-derived parameters
would represent empirical/sample estimations thereof.

The graphs in Figure 4 are known as causal Directed Acyclic Graphs (c-DAGs), and they represent
a type of graphical representation often used in Structural Equation Modelling (SEM) (Pearl, 2009;
Koller & Friedman, 2009; Rohrer, 2018). The arrows indicate causal directional relationships be-
tween variables, parameterized by θ, and the grey nodes indicate observed variables. The acyclicity
pertains to the restriction that there can be no closed loops (i.e., feedback) in the graph. Graph
terminology (e.g., ‘parent’, ‘ancestor’, ‘descendant’, ‘child’) is useful in describing the top-level
relationships between variables. For example, a node with an incoming arrow is a child of its parent
variable, and further upstream or downstream variables are ancestors or descendants respectively.

In general, the arrows in a c-DAG indicate causal dependencies, and there is no implied functional
form that prescribes how the variables are combined at a node (i.e., there could be highly non-linear,
adaptive functions with interactions). Furthermore, the nodes represent variables which may each be
univariate or multivariate, and parametric or non-parametric. In other words, a node labelled x does
not restrict the dimensionality or (non-)parameterization of x itself. For instance, a node x could
comprise multiple predictors which do not conform to a parametric distribution. Hence, c-DAGs
encode the fundamental essence of the causal structure, without imposing potentially irrelevant re-
strictions. We have included some extra information in the c-DAG of Figure 4(a) for the sake of
demonstration. This particular c-DAG represents the intercept parameter of a multiple linear regres-
sion as a vector of ones multiplied by the parameter θ∗0 . The structural equations for this graph may
be represented in Equation 2:

xk=0 := 1

xk := Uk(0, 1) for k = 1, ..., (K − 1)

y :=
K−1∑
k=0

θ∗kxk +Uy(0, 1) for k = 0, ..., (K − 1)

(2)

Let us assume that Uk and Uy are N -dimensional vectors of identically and independently dis-
tributed (i.i.d.) normally distributed random noise. The ‘:=’ symbol denotes assignment rather than
equality. This distinction between assignment and equality is useful in reflecting the structural/causal
direction of the arrows in the c-DAG. For example, the outcome y is a function of its inputs, and
the equation should not be rearranged to imply that the inputs are a function of the outcome (the
arrows point in one direction). Equation 2 encodes that all the input variables are exogenous (i.e.,
completely independent of each other and determined only by i.i.d. noise) and that the outcome
is determined by a weighted linear combination of these variables. In this setting we might under-
standably refer to the input variables as the independent variables, and the outcome as the dependent
variable. As mentioned, these equations correspond with a simple multiple linear regression and can
be solved to find θ using OLS. We demonstrate this by undertaking a simulation for K = 4 with
θ∗0 = 3.3, θ∗1 = 0.1, θ∗2 = 0.3 and θ∗3 = 0.5. We set N = 5000 so that we do not have to be con-
cerned about the stochastic variability associated with small samples, and the results are θ̂0 = 3.31,
θ̂1 = 0.11, θ̂2 = 0.31, and θ̂3 = 0.50

From this demonstration it can be seen that the OLS regression successfully recovered θ̂ close to
θ∗. In this case, the data generating process directly matched the model we used to estimate the
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parameters and was therefore not misspecified. When there is no misspecification, the estimated
parameters may be interpreted as causal parameters that tell us about the phenomenon (in this case,
a simple, simulated phenomenon). Indeed, the parameters here can be interpreted as ‘one unit
increase in x1 yields a θ1 increase in y’, as is common practice in psychology and social science.
However, as we will see, the interpretability of this model is only possible because the structure of
the data matched the structure of a multiple linear regression, equivalent to Figure 4(a), where all
‘predictors’ are exogenous.

MULTIPLE REGRESSION - STRUCTURALLY MISSPECIFIED FOR REALISTIC PHENOMENA

In the previous section we showed how a simple multiple regression can be used to recover mean-
ingful, causal parameter estimates, so long as the true causal structure of the data corresponds with
the implicit causal structure implied by the multiple regression. There do exist other specific cases
when a multiple linear regression can recover meaningful estimates, even when the true structure is
more complex. Such cases arise when, for instance, the adjustment set (also referred to as the set
of control variables) required to estimate a target quantity matches that reflected in the regression.
However, the implicit causal structure of a linear regression is quite restrictive and, when modeling
real-world data, it is likely to be both functionally and structurally misspecified. In this section we
demonstrate what happens when structural misspecification occurs.

Let us see what happens when we follow the same procedure to try to estimate some parameters for
another simple data generating process which follows the example in Figure 4(b). We assume the
following data generating structural equations (adapted from Peters et al. (2017)):

x4 := U4, x2 := 0.8U2, x0 := x4 − 2x2 + 0.2U0, x1 := −2x0 + 0.5U1,

x3 := x2 + 0.1U3, x5 := 3x0 + 0.8U5, x6 := x1 + 0.5U6,

y := 2x3 − x1 + 0.2Uy, x7 := 0.5y + 0.1U7

(3)

For these equations we have simplified the notation to make things clearer: Uk ∼ N (0, 1). The
structural process is still linear and the additive noise is Gaussian, so we do not yet need to worry
about utilizing flexible function approximation techniques (such as those discussed in Part 1). Note
that x3 is only determined by x2, as well as its own exogeneous noise U3. This means that, if we
perform surgery on these equations by, for example, setting x3 to a different value or distribution,
we have cut off its dependence to its parent. Such graph surgery enables us to explore a range of
causal queries such as interventions and counterfactuals, and is formalized by Pearl’s do-calculus
(Pearl, 2009).

Given the simple linear form in Equation 3 for Figure 4(b), it is possible to traverse the paths in
the c-DAG and to combine the effects multiplicatively. Such a process should be familiar to those
who have studied path diagrams and SEM (Kline, 2005). For instance, the effect of x0 on y is the
multiplication of the effect of x0 → x1 with the effect of x1 → y. Together, we have the mediated
path: x0 → x1 → y. According to Equation 3 and Figure 4, the effect of x0 on y therefore
corresponds with −2 × −1 = 2. In this case, x1 is mediating the effect of x0 on y. Readers may
already be aware of the issue relating to biased effect estimates which results from the inclusion of
mediators in a regression analysis (see e.g., Cinelli et al. (2020); Rohrer (2018); Pearl (2009)). This
issue is trivially demonstrated by comparing the regressions of y onto x0 whilst (a) adjusting for x1

and (b) and not adjusting for x1. Here, adjusting for a variable is equivalent to controlling for it, but
the adjustment terminology is more appropriate for structural scenarios (Pearl, 2009). First, the data
are simulated according to Eq. 3, with N = 5000. The bivariate correlations and p-values for each
of these variables are shown in Table 1.

Table 1: Bivariate Pearson correlations and p-values for the DAG in Figure 4(b).
r(p) x0 x1 x2 x3 x4 x5 x6 x7

y .92(.00) -.92(.00) -.58(.00) -.56(.00) .76(.00) .91(.00) -.93(.00) 1.00(.00)

The results in Table 1 demonstrate a strong and statistically significant bivariate correlation between
each predictor and the outcome. Now, when only using x0 as a predictor, we estimate the coefficient
of x0 on y to be θ̂0 = 1.28. Recall that the true effect of x0 on y is 2. In spite of the large
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sample size, the output estimate is highly biased and does not seem to correspond with any of the
causal parameters in the original simulation. Indeed, regardless of how large the sample size is, this
coefficient estimate will converge to a value that is far from the true estimand. This is because the
structure of the data generating process was not considered: We simply applied a linear regression
to the data without accounting for the fact that the implicit structure of a linear regression does not
match the structure in the data. In this situation, the multiple regression model might still have
some (limited) utility as a purely predictive function, but its parameters should not be interpreted
as anything relevant to the causal structure of the phenomenon of interest because it is structurally
misspecified.

When confronted with the dilemma of multiple observed variables, typical practice in psychology
and social science might involve using the forward or backward method for variable inclusion (Field,
2009). Besides the problems associated with such practice (i.e., potential overfitting, as described in
Part 1), including variables according to some predictive/associational heuristic is likely to result in
structural misspecification because the rule for variable inclusion does not account for the underlying
structure. Another approach might be to simply include all variables in the model. Indeed, all the
xk variables are highly and statistically significantly correlated with the outcome y, so if we were
not already aware of the implicit causal structure of linear regression, this might seem like a sensible
thing to do. When we include all variables in the model, this results in θ̂ = −0.01. Recall again that
the true effect of x0 on y is 2. The estimate of −0.01 is highly biased. This is because including all
the variables in the model imposes the structure shown in Figure 4(a) which is clearly wrong.

Including x0 and the mediating variable x1 confirms that including mediating variables is problem-
atic: The regression including both x0 and x1 yields θ̂ = −.94. As expected, the effect of x0 on
the outcome is highly biased, and of the opposite sign (i.e., negative rather than positive) to the true
causal effect. It should now be clear that the use of what might be called naive multiple regression
cannot yield meaningfully interpretable parameters unless the model corresponds with Figure 4(a)
or other exceptional cases, and this is unlikely for real-world phenomena. Indeed, it is arguable as to
whether the interpretation of this parameter (and even its direction) is of any scientific value at all.

ADDRESSING STRUCTURAL MISSPECIFICATION USING CAUSAL INFERENCE TECHNIQUES

We have seen that using naive multiple regression is inadequate when trying to estimate a causal
effect from data with a non-trivial structure, even when the underlying functional form of the re-
lationships is linear. Even where the structure is of relatively low complexity, the resulting coeffi-
cient estimates can be wildly biased. This illustrates that, regardless of whether the functional form
matches the true functional form of the data (and in the linear simulations above, it did), it is impos-
sible to recover meaningful effect size estimations with a misspecified model. In order to recover
an unbiased estimate of the true effect, we need to understand techniques from the field of causal
inference.

Structural Equation Modelling (SEM) is reported to be one of the most common methods used in
psychology and social science (Blanca et al., 2018), and enables unbiased estimation of the parame-
ters. The reliability of SEM depends on the structure of the model matching, or at least subsuming,
the structure of the data generating process relevant to the estimation of the effect(s) of interest, as
well as a number of additional restrictive assumptions (Peters et al., 2017; VanderWeele, 2012). The
subsumption point relates to the notion that researchers, when faced with uncertainty about the struc-
ture of the data generating process, should choose to expand their model class rather than restrict it.
In other words, it is a stronger assumption to impose the absence of a causal effect than to permit
one. The choice to expand the model allows for the possibility of an effect in the data, whereas a
removal of a causal link enforces an absence of dependency and thereby represents a strong model
restriction that needs to be well justified before its imposition. Note that, in the presence of any
such structural uncertainty, one clearly needs to suitably adjust the confidence of and qualify any
associated interpretations and conclusions.

In practice, we rarely have access to the true model when we specify an SEM (D‘Amour, 2019;
Wang & Blei, 2019; Tenenbaum & Griffiths, 2002). Indeed, as the SEM grows in complexity and/or
its causal constraints, the chance of it becoming structurally misspecified increases. If certain as-
sumptions are made, and we reduce our goal to the estimation of a specific and restricted set of
effects (e.g., just the effect of x0 on y), it may be sufficient to leverage domain knowledge and
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causal inference techniques to acquire a reliable estimate without having to correctly specify the
full graph. For example, by identifying a sub-graph (sometimes referred to as a Markov blanket)
which, for a given adjustment set, can be considered independently of the wider structure, one might
significantly reduce the required complexity of the study design and analysis. Another way is by
identifying what is known as a minimal backdoor adjustment set, and an example of this is presented
in further detail below. In essence, one can identify the causal effect of x0 on y for the causal graph
in Figure 4(b) (which involves nine variables in total) using only three variables (x0, y, and x3 or
x3). Many techniques for identifying specific effects exist and include the use of targeted learning
(van der Laan & Starmans, 2014), g-computation (Robins, 1986), instrumental variables, propen-
sity score matching, and regression discontinuity designs (Blossfeld, 2009). Such techniques have
been extensively covered elsewhere (Peters et al., 2017; Pearl, 2009; Imbens & Rubin, 2015; Pearl
et al., 2016; Angrist & Krueger, 2001; van der Laan & Rose, 2011; van der Laan & Starmans, 2014;
Hernan & Robins, 2020).

Backdoor adjustment involves identifying what are known as backdoor paths, which are non-causal
paths that affect the estimation of a target parameter or effect. An example of a backdoor path
between x0 and y in Figure 4(b) is x0 ← x2 → x3 → y. x2 and x3 are therefore part of what is
known as the backdoor adjustment set; a set of variables which, if adjusted for, block the backdoor
path. We can adjust for all the backdoor variables, or the minimal set sufficient to block the path (in
our case, either x2 or x3 will do). Including x0 and x3 yields θ̂ = 2.00.

We have now recovered an unbiased estimate of the effect of x0 on y (which was approximately
equal to two), and we only needed to regress y onto two variables, despite our world knowledge dic-
tating that at least eight (not including the outcome) were involved in the data generating processes
as a whole (indeed, all variables in this simulation are highly and significantly correlated with the
outcome). If we are also interested in the mediation through x1 then we can undertake separate re-
gressions to break the problem down. The estimated parameters are then meaningfully interpretable
insofar as they correspond with the parameters in the true data generating process. In other words,
if θ = 2, then every unit increase in x0 results in two units increase in y.
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Figure 5: c-DAG for a time series setting, highlighting the complexity associated with identifying a
particular causal effect, especially when there may be unobserved confounding (Peters et al., 2017).

LONGITUDINAL CHALLENGES

The constraint associated with the uni-directionality of time may be helpful in identifying the causal
effect and correctly specifying a causal model. Indeed, time may represent a critical component
of the data generating process. However, researchers must be aware of the additional analytical
challenges associated with deriving estimates of causal effects for time-varying phenomena in order
to properly take advantage of the benefits that longitudinal data can afford.

Figure 5 depicts a simple scenario with two variables, x and y, and a hidden confounder z. Each
variable influences its own future as well as the future of the other variable. In the presence of the
unobserved confounder the causal effect between x and y (however this might be defined) is uniden-
tifiable. That is, it cannot be derived or estimated from observational quantities. The complexity of
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this graph could grow further still if we include causal arrows between x and y (and potentially
z) for the same time point (i.e., x and time one influences y at time one), or if we add any addi-
tional (un)observed variables. Therefore, causal effects may be considerably difficult to identify in
longitudinal data as a result of (1) difficulties avoiding the influence of confounders, and (2) diffi-
culties distinguishing between intra- and inter-timepoint dependencies. The first point derives from
the fact that conditions may change during the data collection window, and these changes manifest
as unobserved variables that confound the quantities of interest. The second depends somewhat on
the degree of temporal aggregation (i.e., are data being collected every hour, every minute, every
second, or every millisecond?).

These difficulties should not dissuade researchers from undertaking longitudinal research. On the
contrary, longitudinal data provides additional information that cross-sectional data simply cannot.
However, causal inference with time series data is challenging. In the context of causal inference
with observational data, one may never be able to rule out the potential for unobserved confounding.
This is particularly true when dealing with longitudinal measurements where there exist extended
periods of time during which unobserved causes have opportunity to influence the phenomenon of
interest. Interested researchers striving to make the most out of their longitudinal designs are directed
to an accessible introduction of the topic, and its use in psychology, by Gische et al. (2020). The
application of causal inference to time varying phenomena is a very current and ongoing research
topic in the fields of causality and machine learning (Peters et al., 2017; Krishnan et al., 2017;
Lohmann et al., 2012).

CHALLENGES, ASSUMPTIONS, AND LIMITATIONS OF CAUSAL MODELING

Using only naive multiple linear regression models, we were unable to acquire a meaningful effect
size estimate for non-trivial data generating process. Indeed, we used a relatively simplistic synthetic
simulation to demonstrate that multiple linear regression yields meaningless estimates, but in real-
world applications the graph may actually be significantly more complex which makes it extremely
challenging to correctly specify the structure of the c-DAG, and therefore to use techniques such as
backdoor adjustment.

More generally, it is extremely difficult to obtain reliable effect size estimates from observational
data concerning complex real-world social phenomena using these techniques. Indeed, Neal (2020)
provides a particularly extreme example where the naive approach yields as much as 407% error
in an effect size estimate. The infamous ‘crud’ factor (Orben & Lakens, 2020; Meehl, 1990) that
describes the way that “everything [in social science] correlates to some extent with everything else”
also makes causal inference in social science and psychology particularly challenging.5 This relates
to the fact that social scientists are often concerned with the study of complex social systems with
dynamic, multivariate interdependencies. Such systems may not exhibit readily identifiable cause
and effect pairs (Blossfeld, 2009). As such, researchers are faced with the challenge of identifying
suitable backdoor adjustment variables, as well as other structural entities such as colliders, media-
tors, instrumental variables, proxy variables etc. in order to facilitate the identification of the causal
effect using the observed data (for techniques, see e.g., Cinelli et al. (2020); Rubin (2005); Imbens
& Rubin (2015); Angrist & Krueger (2001); Pearl (2009); Wang & Blei (2019); D‘Amour (2019)).

In the same way that we chose to identify a single causal effect using the backdoor adjustment
method, it may be beneficial for researchers to attempt to simplify their causal research questions.
For example, in contrast with the typical use of SEM in psychology and social science (where the
researcher attempts to derive multiple effect estimates simultaneously), targeted learning adopts the
philosophy by ‘targeting’ a specific causal effect of interest, and orienting the analysis around its
estimation using machine learning to reduce both functional and structural misspecification (van
der Laan & Rose, 2011). The ‘no free lunch theorem’ familiar to machine learners applies here:
causal inference yields the most information, but it may also be the most challenging (Wolpert
& Macready, 1997). Attempting to undertake inference across multivariate, complex, linear SEM
graphs is therefore extremely ambitious in light of its limited functional form and likely structural
misspecification, and is highly unlikely to yield meaningful estimates.

5See Orben & Lakens (2020) for a discussion of different definitions and origins of ‘crud’. We refer,
in particular, to Lykken’s definition that considers crud to be the result of complex, multivariate interactions
associated with psychological and social phenomena (Lykken, 1968).
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Even once a researcher believes that they have accounted for the difficulties described above, and
have simplified their research question or hypothesis, their consequent estimations then rest on var-
ious assumptions such as ignorability - that there are no further latent/unobserved factors that have
yet to be accounted for. Figure 4(c) depicts the presence of an unobserved confounder z. Such
an assumption may be strong, untestable, and unrealistic. Other assumptions may also be relevant,
such as the positivity and stable unit treatment value assumptions (see e.g. Imbens & Rubin (2015)
for a discussion of these assumptions). Other problems relating to the restrictive nature of such
assumptions, as well as the semantic leap required to move from a graph to real-world causal rela-
tionships, are discussed by Korb & Wallace (1997), VanderWeele (2012), Dawid (2008), Kaiser &
Sipos (2021), and Vowels et al. (2021c). It is important researchers familiarize themselves with all
relevant assumptions and limitations before undertaking causal inference, and make them explicit in
their work (e.g., when they use SEM).

The simulations above assumed linear structural equations. However, and as discussed earlier, c-
DAGs do not restrict the functional forms relating the variables. Indeed, in real-world scenarios
the assumption of linearity may impair the capacity of the model to estimate unbiased coefficients,
in much the same way as it limited predictive models (Coyle et al., 2020; van der Laan & Rose,
2011; van der Laan & Starmans, 2014; van der Laan & Rose, 2018). The difficulties of effect
estimation are therefore compounded by the difficulties associated with identifying an appropriate
functional form for the dependencies between variables (i.e., identifying what Blossfeld (2009) calls
“effect shapes”). Unless the structure of the model and its functional form sufficiently match those
of the true data generating process, and we have an identifiable causal effect, the model may be
misspecified and uninterpretable.

Notwithstanding these challenges, exploratory work can still be of value (Shrout & Rodgers, 2018).
Part of the development process for SEMs (or, more generally, the underlying theory about the
phenomenon) could involve causal directionality tests and validation via causal discovery techniques
(Peters et al., 2017; Vowels et al., 2021d;c; Scholkopf, 2019; Glymour et al., 2019; Heinze-Deml
et al., 2018; Spirtes & Zhang, 2016). Such techniques, at least under certain assumptions, may be
able to test the directionality of the causal effects (Goudet et al., 2019; Mooij et al., 2010), identify
backdoor adjustment set variables (Gultchin et al., 2020), estimate the magnitude of causal effects
using flexible function approximation techniques (Yoon et al., 2018; Shi et al., 2019), induce the
structure embedded in the data (Glymour et al., 2019), or infer hidden confounders from proxy
variables using variational inference (Louizos et al., 2017a). However, these techniques are not
without their own pitfalls and limitations, and, following a similar principle to Steegan et al. (2016),
researchers are encouraged to explore and test the dependencies of their exploratory insights and
conclusions on their choice of analytical methodology.

PART 2 SUMMARY

We described how difficult it is to obtain reliable causal effect size estimates, and we have also
demonstrated how a failure to consider the causal structure may yield biased, meaningless effect
sizes, regardless of whether the researcher adopts a predictive or causal approach, and regardless
of sample-size or replicability. We provided one example of a causal inference technique known
as backdoor adjustment, as a way to identify the causal effect of interest. Doing so enabled us to
simplify the analytical problem from one of estimating all path coefficients in a complex graph,
to one of estimating a specific effect by identifying variables from an adjustment set. In practice,
identifying these backdoor variables is non-trivial, because it requires sufficient causal knowledge.
Causal inference rests on a number of strong assumptions, perhaps the strongest of all being that of
ignorability: That there are no unobserved confounders. Finally, researchers must also consider the
functional form used to represent the causal dependencies between the variables. As such, problems
with identifiability, ignorability, misspecification due to incorrect structure, and misspecification due
to limited functional form have the potential to compound each other. In summary, it is important
that researchers recognize the significant difficulties associated with estimating meaningful causal
effects with observational data. However, it is worth also recognizing the value in persevering - as
scientists we are primarily interested in answering causal questions.
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PART 3: UNRELIABLE INTERPRETATIONS

In this part, we introduce explainability and interpretability, and describe how both structurally and
functionally misspecified models may be neither explainable, nor interpretable. We discuss a range
of problems relating to conflated and unreliable interpretations in psychology and social science. In
our view, the conflation arises not just as a result of an alleged taboo against causal inference (Grosz
et al., 2020), but also due to an apparent lack of understanding concerning the limitations associated
with the interpretability of misspecified models with limited functional form and/or incorrect causal
structure.

EXPLAINABILITY AND INTERPRETABILITY

Scrutinizing the parameters of a model in a predictive sense is referred to as explaining, in that we are
explaining the behavior of the model, rather than interpreting the model’s parameters in relation to
some external real-world causal phenomenon (Rudin, 2019). The explainabilty of a model describes
the ease with which one can why a model makes a certain prediction or classification, based on its
functional form or algorithmic rules (Rudin, 2019), and is therefore a term particularly relevant to
predictive approaches.

In contrast, we use the term interpretation to describe the process of using a model to understand
something about the structure in the data or phenomenon, and the term is therefore of particular
relevance to causal approaches. Explainability is not sufficient for interpretability because even if
a model is structurally well specified, it cannot be interpreted if it is functionally misspecified. As
we will show, linear models, such as those which are typical in psychology and social science, are
not immune to problems affecting interpretability both for reasons of functional misspecification as
well as structural misspecification (see Parts 1 and 2).

EXPLAINING LINEAR MODELS

Linear models are deceptively simple to explain and interpret because the model coefficients are
both directly interpretable as quantities in the real world (i.e. causal effects), as well as useful in
explaining why the model makes a certain prediction (e.g. a one unit increase in x0 corresponds
with a θ̂0 increase in ŷ). The deception occurs because of the two problems introduced in parts 1
and 2, notably functional and structural misspecification.

In the presence of functional misspecification, complex cancellation effects may render the coef-
ficients of linear models incapable of explaining the model’s predictions (Lundberg et al., 2020;
Breiman, 2001a; Haufe et al., 2014). The result will be that both the coefficients’ magnitudes (i.e.,
how much the corresponding variable is associated with the outcome) as well as the ordinal levels of
their importance (i.e. which ones are most associated with model outcome) are arbitrary.6 In order
to demonstrate the issue of (un)explainability in the presence of misspecified functional form, we
generate a synthetic example, closely following that of Lundberg et al. (2020).7 The relationship
between the outcome and two particular features in a semi-synthetic dataset is modified to include
an increasing amount of non-linearity following the relationships in Equation 4.

y = σ((1− q)(0.388x1 − 0.325) + q(1.714x2
1 − 1) + 1.265x2 + 0.0233) (4)

Here, σ is the logistic link function, q is the degree of non-linearity, which is varied between zero
(describing a linear relationship) and one (describing a model with a quadratic relationship), y is the
outcome, and x1 and x2 are the two predictor variables. The choice of the factors (e.g., 0.388) and
intercepts (e.g.,−0.325) are arbitrary, and derive from the classic NHANES I dataset (Launer, 1994;
Fang & Alderman, 2000) from which the predictors and outcome are drawn. Multiple copies of the
dataset are created with different levels of non-linearity between the predictors and the outcome
(by increasing q from zero to one). The contour plots in the lowest plot in Figure 6 demonstrate
how the relationships between the variables changes with increasing non-linearity. An irrelevant

6This applies regardless of whether the coefficients are standardized.
7Full code for the original example can be found here: https://github.com/suinleelab/

treeexplainer-study/.
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variable is then introduced into the dataset, which does not relate to the outcome (i.e., it is statistically
independent).

Two models were fit to these synthetic data: a linear logistic regressor, and a machine learning
algorithm known as XGBoost (Chen & Guestrin, 2016). XGBoost is a data-driven algorithm with
a flexible/adaptive functional form. The upper plot in Figure 6 shows how the logistic regressor’s
classification error (cross-entropy loss, or ‘log loss’) increases as the non-linearity increases. This
is expected – the linear model is unable to model the non-linearities in the data. In contrast, the
XGBoost model’s error remains low, because it is able to adapt to the non-linearity. Notably, when
q is close to zero (i.e., the percent non-linearity is low), the linear model actually outperforms the
XGBoost model, and has the potential to directly match the data generating process.

The middle plot shows how the assigned contribution of the irrelevant variable to the model’s out-
come changes as the non-linearity increases. Given that this variable is unrelated to the outcome,
this contribution should be zero. The assigned contribution is measured in two ways: For the lo-
gistic model, the coefficient associated with the variable is used, and for the XGBoost model, we
use an explainability technique (discussed further below). Note that, as q increases, the magnitude
of the coefficient for the irrelevant variable in the logistic model increases with the non-linearity.
This is reflected in the plot as an increase in assigned importance. This is highly problematic for
explainability (and clearly also interpretability) - it results in irrelevant variables being assigned pre-
dictive importance even when they are not. In contrast, the XGBoost model ignores the irrelevant
variable (as one would expect) regardless of the degree of non-linearity, and the associated variable
importances (which are derived using a model explainability technique described below) remain
near zero.

x1

x2

y

Figure 6: Demonstrates how the predictive performance of a logistic regressor drops as non-
linearity increases, whereas the XGBoost (Chen & Guestrin, 2016) model does not (top); shows
how irrelevant feature attribution increases with non-linearity for the linear regressor, but for XG-
Boost it does not (middle); the relationship between variables in the dataset for these experiments be-
comes increasingly non-linear. These experiments were close adaptations of those by Lundberg et al.
(2020), original code for which may be found at https://github.com/slundberg/shap.
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EXPLAINING COMPLEX PREDICTIVE MODELS - CAMELS IN THE COUNTRYSIDE

In Part 1 we suggested that researchers explore machine learning (ML) methods which facilitate the
modeling of complex, non-linear relationships between variables. These techniques are applicable to
predictive as well as causal approaches. In the latter case, the ML techniques may be integrated into
causal models and perform the role of the arrows in the c-DAGs (there are other ways to integrate
ML in causal models, see e.g., van der Laan & Rose (2018)).

ML models may have many hundreds, thousands, or millions of parameters, and as a result, they
are often referred to as ‘black-boxes’, owing to their opacity both in terms of explanation, as well
as interpretation. The benefit of such models is that they provide us with powerful predictive oppor-
tunities and, when used correctly, can help us avoid issues relating to functional misspecification.8
Furthermore, great strides have been made in developing model explainability techniques, which
provide us with a means to interrogate these black-boxes to understand why they make certain pre-
dictions. However, explainability does not imply interpretability, and we now describe a famous
example which highlights how mitigating functional misspecification does not help us achieve in-
terpretable models.

One of the principal limitations of purely predictive approaches relates to their inherent structural
misspecification (see Part 2). The problem can be demonstrated with an example involving the
classification of images of cows and camels, where images of cows frequently feature countryside
backgrounds and images of camels tend to feature sandy or desert regions (Arjovsky et al., 2020).
A predictive function will not respect the orthogonality and semantics of the animal or background,
and the background provides a convenient cue, albeit one which is irrelevant, with which to classify
the animal. Hence, a cow in a desert may be wrongly classified as a camel, and a camel with a coun-
tryside background may be wrongly classified as a cow. This issue may never become problematic
in practice, so long as the function is not exposed to a new distribution of images, where the joint
distribution of backgrounds and animals changes. This highlights how predictive models, owing to
their structural misspecification, are sensitive to what is known as covariate or distributional shift.
This problem is notably resolved when the structure of the problem is appropriately encoded into
the model.9

This example concerning issues relating to classification of high-dimensional image data may ap-
pear somewhat unrelated to the typical data that psychologists are concerned with, but actually the
problem is just as important in the low-dimensional setting. Indeed, predictive models are usually
fit by minimizing an error criterion (e.g., mean squared error or binary cross entropy), and there is
therefore nothing to restrict these models from leveraging any or all statistical correlations present
in the data. The use of predictive model explainability techniques (discussed in more detail below)
can be used to help identify whether the model might be leveraging factors which have the poten-
tial to be spurious or problematic, and can be used to provide insight, particularly if the included
predictors are restricted to those which the researcher a priori knows to be causally relevant. For
example, a recent paper used model explainability (specifically, random forest variable importance
weights) to investigate the predictive generality of theoretically relevant constructs in relationships
research (Joel et al., 2020). Unfortunately, the explainability techniques limited to telling us which
variables are useful and by how much, rather than anything about the underlying causal structure.
Consequentially, predictive models are rarely interpretable without structural constraints.

EXPLAINABILITY TECHNIQUES

The ability to interrogate and explain our predictive models is important, particularly given that the
deployment of such models for automated decision making processes have the potential to seriously
impact individuals’ lives (Hardt et al., 2016; Kilbertus et al., 2017; Locatello et al., 2019; Cao &
Daume III, 2019; Liu et al., 2019; Howard & Borenstein, 2018; Rose, 2010; Louizos et al., 2017b;
Moyer et al., 2018; Buolamwini & Gebru, 2018). Indeed, the European Union has recently decreed
that the use of machine learning algorithms (which includes the use of predictive functions) be
undertaken in such a way that any individual affected by an automated decision has the right to

8By ‘correctly’ we mean to say that the model balances bias (function inflexibility) and variance (too much
flexibility) to achieve an appropriate level of functional complexity to model the relationships in the data.

9An example of structure being used to independently reason about compositional elements (appearance
and motion) in video can be seen in Vowels et al. (2021b).
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an explanation regarding that decision (Aas et al., 2019; European Union, 2016). In the previous
section we described the camels in the countryside problem, whereby powerful predictive models
with flexible functional form do not respect causal structure in the data. However, complex models
(often called black-boxes) are more difficult to explain than linear models, and we therefore need
explainability techniques to do the explaining for us.

Model explainability is a burgeoning area of machine learning, in which commendable strides have
been made in recent years (e.g., Alaa & van der Schaar (2019); Wachter et al. (2018); Lundberg et al.
(2020)). The techniques facilitate a form of meta-modeling, whereby a simpler, human-interpretable
and thereby explainable model is used to represent the more complex, underlying model (Rudin,
2019). One popular meta-modeling explainability technique derives from a game theoretic approach
to quantifying the contribution of multiple players in a collaborative game; namely, Shapley values
(Shapley, 1953). Recently, Shapley values have been adapted to yield meaningful explanations of
models that correspond well with human intuition (Lundberg & Lee, 2017; Lundberg et al., 2017;
2020; Sundararajan & Najmi, 2020; Chen et al., 2020; Vowels et al., 2021a). Indeed, the Shapley
method was used with XGBoost in the experiments demonstrating the problems with linear model
interpretability above (Figure 6).

The family of Shapley methods provide breakdowns which indicate how much each input variable
or feature contributes to a model’s prediction for any individual datapoint. They work by conceiving
of the variables as the players in a collaborative game, where the aim is to maximize the predictive
performance of the model. By iteratively examining how much each variable and each combination
of variables contributes towards the performance of the model, the method not only enables one
to establish the relative contributions of each variable/variable interaction, but also by how much
the model output changes in response to a particular change in each variable/variable interaction.10

Such individualized prediction and explanation is particularly important for individualized treat-
ment assignments (for example), and thereby mitigates concerns regarding the use of aggregation
in psychology and social science (Bolger et al., 2019; Fisher et al., 2018). The methods can be
used equally for complex functions (such as neural networks) as well as for simple linear functions.
By combining powerful function approximation with explainability techniques, we may be able to
achieve accurate forecasts and outcome predictions, while maintaining the capacity to understand
what our model is actually doing when it makes a prediction.

From a research standpoint, explainability techniques allow researchers to understand, in a purely
associational sense, which variables and interactions between variables are important when making
a prediction. For example, if one identifies that a variable, previously considered to be important,
contributes negligible predictive value then one might investigate whether this variable does or does
not fit into a particular theoretical framework. We would therefore argue that researchers should con-
sider a combination of predictive methods with explainability tools as a useful means to contribute
new knowledge, particularly during the early and/or exploratory stages of investigation. However,
just because a predictive model finds a particular feature (ir-)relevant to making a prediction, does
not mean that this degree of association is meaningful outside of the function/model (as with camels
in the countryside). Furthermore, an explainability technique represents a form of model in its own
right, and the process of modeling a model brings its own difficulties (see e.g., Rudin (2019); Kumar
et al. (2020)). Indeed, if the explanation model is good at explaining the data in a simple, human-
readable form, then the explanation model provides evidence that a simpler, more explainable model
was possible to begin with. These difficulties notwithstanding, the explainability techniques provide
a valuable means to leverage predictive model for exploratory research.

Finally, and as with functional misspecification and causal misspecification, the distinction between
explanation and interpretation stands independently of replicability. However, we acknowledge that
it is always important to temper the strength of explanations and/or interpretations according to the
sample size and strength of the identified associations or causes.

PART 3 SUMMARY

In Part 3, we have described how either functional and/or structural misspecification result in un-
interpretable models. In such cases, any attempt to interpret the models in spite of these limita-
tions results in conflation and unreliability. The interpretations are conflated because a misspecified

10Interested readers are directed to Lundberg et al. (2020).
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model cannot be interpreted causally, and they are unreliable because predictive models can only
be explained. This distinction is important because, if a structural misspecfication has occurred
(perhaps because we intentionally adopted a predictive/non-causal approach), one can restrict the
purview of scientific conclusions to the specific mathematics of the algorithm used for prediction.
In other words, powerful function approximation techniques may be able to accurately predict out-
comes and have the flexibility to match the functional form of the true data distribution, but they do
not necessarily respect or reflect the causal structure in the data generating process.

Does all of this mean that predictive techniques cannot generate understanding? Not entirely. There
are many scenarios, particularly during the exploratory stages of a research project, for which re-
searchers may not yet have a strong, empirically supported inductive bias or theory about the data
generating process. Rather than testing specific theoretical hypotheses during these early stages, it
may be pertinent to ask more general research questions concerning the existence of associations
(causal or not). The goal may then be to amass varied evidence (e.g., by using predictive models)
to gradually uncover a basis for the development of an increasingly refined theory (Gelman, 2014;
Shrout & Rodgers, 2018; Oberauer & Lewandowsky, 2019; Tong, 2019). Furthermore, predictive
techniques can be used to evaluate the predictive validity of psychological theory (Yarkoni & West-
fall, 2017). Explainability techniques may then be useful in building up an intuition about ‘what is
important’ in the phenomenon of interest. However, these techniques are not without their own lim-
itations, and we urge researchers to engage broadly with experts in the practice of these techniques
to ensure that (a) their approaches are optimal for their research, and (b) that their interpretations (or
explanations) are tempered according to the limitations of their models.

RECOMMENDATIONS AND CONCLUSION

The replicability crisis has drawn attention to numerous weaknesses in typical psychology and social
science research practice. However, in our view, issues relating to functional misspecification, struc-
tural misspecification, and unreliable interpretations have not been sufficiently identified in prior
work. These issues are characterized by their shared orthogonality to replication and sample-size.
Indeed, facing any of these issues, replication may actually serve to reinforce flawed conclusions,
rather than to highlight and rectify them.

1. We recommend that psychologists and social scientists give more consideration to predictive
approaches, particularly during the exploratory stages of a research project.

The inherent complexity and non-linearity of the typical phenomena of interest to psychologists and
social scientists may make the goal of causal inference arbitrarily complex (Meehl, 1990). This
may partly explain why researchers in psychology and social science are generally discouraged
from drawing causal conclusions from observational data, despite them doing so implicitly anyway
(Grosz et al., 2020; Dowd, 2011). Indeed, the use of SEM could be taken as evidence of intention
to undertake causal research, as the very structure of the model is an imposition of the researcher’s
view on the data generating process. The use of an explicit causal graph with opaque predictive
interpretations represents a further example of the conflation of predictive and causal approaches.
In cases where the models themselves are misspecified both in terms of linear functional form and
untestable structural assumptions, the interpretation of such models becomes unreliable.

When researchers wish to model the relationships between variables, either as part of a causal model,
or for purposes of prediction alone, then it may be highly advantageous for them to consider tech-
niques common in machine learning, particularly in combination with model explainability tech-
niques. Indeed, Yarkoni & Westfall (2017) have previously made a similar recommendation. A
wide range of powerful predictive modeling techniques exist, including neural networks (Goodfel-
low et al., 2016), random forests (Breiman, 2001b), gradient boosting machines (Chen & Guestrin,
2016). Such powerful function approximation techniques can be used to leverage as many associa-
tions present in the data sample as possible. In the case of predictive modeling, a consideration for
the causal structure of the data is possible but not necessary. Incorporating causal inductive bias may
aid in generalization, but it is not strictly necessary to achieve good predictive performance. Unfor-
tunately, the use of techniques with potentially data-adaptive, flexible functional form is extremely
rare in psychology and social science, where the use of models with restrictive linear functional
form is ubiquitous (Yarkoni & Westfall, 2017; Blanca et al., 2018).
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2. We recommend that psychologists and social scientists seek collaboration with statisticians and
machine learning engineers/researchers, whose principal focus is to understand, practice, and de-
velop predictive and causal modeling techniques.

Given that there exist dedicated fields for the development of modeling approaches (e.g., statistics,
machine learning, causal inference), it is perhaps unrealistic to expect an applied researcher in psy-
chology or social science, to have expertise in the practice of predictive and explanatory or causal
modeling, particularly when the mathematical knowledge required to understand these techniques
is both significant and rare in these fields (Boker & Wenger, 2007). Furthermore, new methods are
continually being developed and updated.

We therefore recommend that they seek collaboration with experts in the practice of their chosen
analytical approach.11 This recommendation does not abdicate researchers from their responsibility
to attain a basic understanding and awareness for these problems, even if they are not the ones
ultimately responsible for writing the code or running the analysis. By introducing researchers to
these fundamental considerations for research, along with some basic background theory, we hope
that this article helps researchers to identify potential areas of weakness in their research process,
such that they can seek appropriate collaboration and guidance.

3. We recommend researchers be transparent about whether they are adopting a predictive or causal
approach and to qualify their interpretations.

Meta-researchers have previously highlighted how psychologists and social scientists tend to mix
causal and predictive language (Grosz et al., 2020). Similarly, meta-researchers have drawn attention
to how it is common for psychology and social science researchers to use associational/predictive
techniques to test otherwise causal hypotheses (Shmueli, 2010; Yarkoni & Westfall, 2017; Glymour,
1998; Hernan, 2018; Grosz et al., 2020). This leads to an awkward conflation of causal modeling
with predictive interpretations, resulting in ambiguity and a lack of clarity regarding intentions and
assumptions.

We have also discussed how unreliable interpretations may stem from functional and structural mis-
specification, and how these issues may be common in the fields of psychology and social science.
We encourage researchers to ask themselves what an interpretation of an effect size or parameter
derived using a naive (i.e., misspecified) model actually means: Is it actually an explanation for how
much the output of the model changes with respect to a change in the input; or is it being inter-
preted causally (e.g., this childhood intervention increased well-being by θ-amount)? In either case,
researchers need to be transparent and clearly articulate whether they are adopting a predictive or
causal approach. Each approach is associated with assumptions and limitations which need to be
clearly stated in order to contextualize any explanations or interpretations which are made. Predic-
tive model explainability tools have their own limitations and may actually contradict the results
of causal investigations: While the inclusion of a mediator in a regression can completely block a
causal path reducing the estimated effect to zero, a strong effect might be indicated by an explanation
of a predictive model.

Similarly to Grosz et al. (2020), we therefore recommend that researchers clearly state their approach
as well as its associated assumptions and limitations, and moderate their explanations, interpreta-
tions, and conclusions accordingly.

4. We recommend that researchers distill their research questions and hypotheses. Researchers
should distill and simplify causal questions so that they are both minimal and sufficient. For exam-
ple, in our discussion of causal inference, we chose to identify a single causal effect, and for this it
was sufficient to identify the minimal backdoor adjustment set necessary to render this causal effect
identifiable. As such, a full graph did not need to be specified, even though it may need to be consid-
ered in order to find the backdoor adjustment variables. Researchers should temper their eagerness
to specify and interpret large (causal) SEM graphs which are almost invariably accepted as valid a
priori (VanderWeele, 2020; Ropovik, 2015). Here, we appreciate Dawid’s (Dawid, 2008) reference
to Bourdieu who warns of ”sliding from the model of reality to the reality of the model” (Bourdieu,
1977). van der Laan & Rose (2011) also recommend a “targeted” approach. More generally, by

11Note that this recommendation has been made by researchers previously in various contexts (e.g., Lakens
et al. (2016)).
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distilling our research questions and hypotheses, we may be able to increase the chance that our
modeling attempts are successful and potentially reduce some of the burden on sample size.

While we have focused on the fields of psychology and social science, we feel the highlighted issues
are relevant to all empirical human sciences fields. There is little doubt that the lack of understanding
about the assumptions, limitations, and pitfalls associated with predictive and explanatory modeling
represent fundamental issues. Every research question and hypothesis may present its own unique
challenges, and it is only through an awareness and understanding of varied statistical methods for
predictive and causal modeling, that researchers will have the tools with which to appropriately
address them.
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