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Abstract. Two-way alternating automata were introduced by Vardi in
order to study the satisfiability problem for the modal µ-calculus ex-
tended with backwards modalities. In this paper, we present a very sim-
ple proof by way of Wadge games of the strictness of the hierarchy of
Motowski indices of two-way alternating automata over trees.
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1 Introduction

Since the seminal work of Büchi, the idea of translating a logic into appropriate
models of finite-state automata on infinite words or infinite trees has become
a central paradigm in the theory of verification of concurrent systems. One of
the reasons is that this translation reduces the model-checking issue to the non
emptyness problem for automata. Two hiearchies are classically used to measure
the complexity of recognizable sets of infinite words or trees: the Mostowski in-
dex hierarchy, and the Wadge hierarchy. Since it reflects the depth of nesting
of positive and negative conditions, the first hierarchy determines the combina-
torial complexity of the recognizing automaton and therefore is closely related
to the fixpoint alternation hierarchy of the modal µ-calculus, unveiling subtle
connections between this logic, (parity) automata and games. The second one
on the other hand captures the topological complexity of the languages accepted
by such machines. Indeed from a topological point of view, an infinite tree is
very similar to an infinite word, which is also very close to a real number. More-
over, evidences indicate that the two hierarchies are closely related. Thus, as is
well said in [NW05], “understanding the structure of these hierarchies helps us
to understand the trade-off between expressivness and efficiency in the model-
checking method”.

⋆ Research supported by a grant from the Swiss National Science Foundation, n.
100011-116508: Project “Topological Complexity, Games, Logic and Automata”.
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For ω-regular sets of infinite words, Wagner was the first to discover re-
markable relations between the two hierachies and completely describe them
[Wag77]. The strictness of the Mostowski hierarchy for both deterministic and
non-determinsitic automata on infinite trees was proved by Niwinski [Niw86] in
1986. The hierarchy problem for the alternating automata was solved by Brad-
field [Brad98a] in 1996 (ten years after their introduction by Muller and Schupp).
This was when he settled the hierarchy problem for the modal µ-calculus. For
what concerns the Wadge hierarchy, Murlak gave in [Mur05] a full description
of it for deterministic tree languages. In addition, he proved in [Mur08] that for
deterministic languages the Wadge hierarchy is a huge refinement of the weak
index hierarchy. It is therefore not unreasonable to conjecture that the same
situation holds for ω-regular tree languages too. A first step in this direction
was recently given by a nice work of Arnold and Niwinski. In [AN08] they have
shown that, if we restrict our attention to the so-called game languages, the
corresponding Wadge hierarchy is strict and its strictness implies the one of the
Mostowski hierarchy of alternating tree automata. Unfortunately at the moment
there is no description of the Wadge hierarchy for the classe of all recognizable
tree languages3.

Standard programming logics use forward modalities, which express weaker
preconditions. However, there is a growing interests in enriching standard lan-
guages by adding backward modalities, expressing stronger postconditions. This
kind of modalities motivates the study of procedures for the satisfiability problem
of this class of languages. This endeavor is not easy. Mainly because the inter-
action between these two kinds of modalities can be quite tricky. For instance,
even if modal µ-calculus with backwards modalities preserves the tree-model
property, it loses the finite model one.

Two-way alternating tree automata were introduced by Vardi in [Var98] in
order to prove the decidability of the satisfiability problem for the extension
of the modal µ-calculus with backward modalities. These automata were also
used by Grädel and Walukiewicz to solve the same problem but this time for
guarded fixed point logic in [GW99]. As for the standard, or “one-way” case, it is
natural to find an answer to the hierarchy problems for the two-way alternating
tree automata. It is not difficult to see that Arnold’s nice alternative proof of
the strictness of Mostowski hierarchy for alternating tree automata can also be
applied to the two-way case. Nevertheless, in this paper we would like to give
another – very simple – solution to this problem. The idea is – following the
approach of Arnold and Niwinski – to use Wadge games and the link between
the Wadge hierarchy of game languages and the Mostowski hierarchy of two-
way alternating automata. More precisely, we first obtain the hierarchy result
by giving a very simple game theoretical proof of the strictness of the Wadge
hierarchy of game languages – a result already proved in [AN08] – and then we
prove that the strictness of this hierarchy implies the strictness of the Mostowski
hierarchy of two-way alternating automata.

3 Two first very partial attempts in this direction can be found in [DM07] and in
[DF∞].
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As we said, the main result can be obtained by applying the techniques pre-
sented in Arnold’s proof of the strictness of the fixpoint hierarchy for the modal
µ-calculus. Moreover we essentially make use of another already known result:
the strictness of the Wadge hierarchy of game languages [AN08]. Nevertheless,
this work is essentially methodological: it aims at stressing how much the Wadge
games may be used in order to obtain easy proofs in hierarchical questions re-
lated to parity automata over trees.

2 Preliminaries

2.1 Alternating Tree Automata

Let W be a non empty alphabet. A tree over Σ is a partial function t : W ∗ → Σ

with a prefix closed domain. Such trees may have infinite and finite branches. We
call them conciliatory. A tree is said to be finitely branching when W is finite
and binary if W = {1, 2}. Moreover, we call a tree full if it has only infinite
branches. The elements of t are called nodes, and the empty word ε is the root
of t. Let TΣ denote the set of full binary trees over Σ and T

≤ω
Σ denote the set

of full finitely branching trees over Σ. Given v ∈ dom(t), by t.v we denote the
subtree of t rooted in v. In the sequel we only consider full binary trees over Σ.
Thus, unless otherwise stated, when we speak of binary (resp. finitely branching)
tree, we mean full binary (resp. finitely branching) tree.

For every v ∈ {1, 2}∗, v.i, where i ∈ {1, 2}, are the successors of v. If i = 0,
then v.i = v, and for every i ∈ {1, 2} we have (v.i).− 1 = v. If v = ε, then v.− 1
is undefined. If v is a node in the binary tree t different from the root, then v.−1
denotes the (unique) ancestor of v.

Throughout the paper we will work with alternating automata running on
full binary trees where the acceptance condition is given by a parity condition.

More precisely, an alternating parity tree automatonA is a tuple 〈Σ, Q, δ, (ι, κ), Ω〉
where

– Σ is a finite non empty alphabet
– Q is a finite set of states
– δ is the transition function, it associates to every pair (q, a) ∈ Q × Σ an

element of the free distributive lattice generated by Q × {1, 2},
– (ι, κ) is a pairs of natural numbers, called the Mostowski index of the au-

tomata, given as follows: ι ∈ {0, 1} and ι < κ ∈ ω,
– Ω is a mapping from Q into {ι, . . . , κ} such that for every n ∈ {ι, . . . , κ}

there is a q ∈ Q such that Ω(q) = n.

Without loss of generality, we can suppose that for every (q, a) ∈ Q×Σ, δ(q, a)
is a finite non empty disjunction of finite non empty conjunctions. Thus, δ can
be seen as a function from Q × Σ into ℘(℘(Q × {1, 2})).

Let t ∈ TΣ , and let A an alternating parity tree automata over the alphabet
Σ defined as above. We define the parity game P(A, t) as follows:

– the set of player 0’s vertices is V0 = Q × {1, 2}∗
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– the set of player 1’s vertices is V1 = ℘(Q × {1, 2})× {1, 2}∗

– the initial position of the game is (qI , ε),
– there is an edge from a node (q, v) ∈ V0 to a node (S, w) ∈ V1 iff S ∈

δ(q, t(v)),
– there is an edge from a node (S, v) ∈ V1 to a node (q, v.i) ∈ V0, with i ∈ {1, 2}

iff (q, i) ∈ S,
– a play (q1, v1), (S1, w1), (q2, v2), (S2, w2), . . . is winning for player 0 iff the

greatest priority occurring infinitely often in the sequence Ω(q1), Ω(q2), . . .
is even.

We say that the automaton A accepts the tree t if player 0 has a winning strategy
in the parity game P(A, t) starting from (qI , ε). The language L(A) accepted by
the alternating parity tree automaton A over Σ is the subset of TΣ of binary
trees accepted by A. Note that the arena of P(A, t) is always a full finitely
branching tree.

We consider the following partial order on indices of alternating automata:

(ι, κ) ⊑ (ι′, κ′)

iff

either {ι, . . . , κ} ⊆ {ι′, . . . , κ′} or {ι + 2, . . . , κ + 2} ⊆ {ι′, . . . , κ′}

The hierarchy induced by the partial order ⊑ on the class of alternating parity
tree automata is called the Mostowski hierarchy of alternating tree automata.

Given the equivalence between formulae of the modal µ-calculus and alter-
nating parity tree automata, it is not surprising that the Mostowski hierarchy
corresponds to the fixpoint alternation hierarchy of the modal µ-calculus. By a
result of Bradfield [Brad98a,Brad98b], we know that both hierarchies are strict.

2.2 Playing the Wadge Games

Consider the space T
≤ω
B

, equipped with the standard Cantor topology. Then,

if L, M ⊆ T
≤ω

B
, we say that L is continuously reducible to M , if there exists

a continuous function f such that L = f−1(M). We write L ≤w M iff L is
continuously reducible to M . This is called the Wadge ordering. If L ≤w M and
M ≤w L, we write L ≡w M . If L ≤w M but not M ≤w L, we write L <w M .
Thus, the Wadge hierarchy is the partial order induced by <w on the equivalence
classes given by ≡w.

Let L and M be two arbitrary sets of full finitely branching trees. The Wadge
game W(L, M) is played by two players, player I and player II. Both players build
a tree, say tI and tII. At every round, player I plays first, both players add a
level to their corresponding tree: they add children (at least one) to the terminal
nodes of their corresponding tree. Player II is allowed to skip her turn, but not
forever.

We say that player II wins the game iff tI ∈ L ⇔ tII ∈ M . This game is
designed precisely in order to obtain:
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Lemma 1 ([Wad84]). Let L, M ⊆ T
≤ω
Σ . Then L ≤w M iff Player I has a

winning strategy in the game W(L, M).

2.3 Game Automata and Game Languages

Consider the alphabet Σ(ι,κ) = {0, 1} × {ι, . . . , κ} with ι ∈ {0, 1} and ι ≤ κ.
Then, to every full tree t over Σ(ι,κ), we associate a parity game P(t) as follows:
a node v in the tree is a position for player 0 iff the first component of the node
is 0, and the rank of the node corresponds to its second component.

The set W(ι,κ) corresponds to the class of trees in TΣ(ι,κ)
for which Player 0

has a winning strategy in the corresponding parity game P(t). For every index
(ι, κ), the set W(ι,κ) is called the the game language of index (ι, κ).

The languages W(ι,κ) are indeed ω-regular languages. More precisely, let
W(ι,κ) be the alternating tree automata AW

(ι,κ) = 〈ΣW , QW , δW , (ι, κ), ΩW 〉 where:

– ΣW = Σ(ι,κ)

– QW = {qι, . . . , qκ}
– for every q ∈ QW and every v ∈ dom(t)

δ(q, v) =

{

{{(qn, 1)}, {(qn, 2)}} if t(v) = (0, n),

{{(qn, 1), (qn, 2)}} if t(v) = (1, n).

– ΩW (qn) = n.

Then we have that L(AW
(ι,κ)) = W(ι,κ).

It is easy to see that every parity game P(A, t) can be effectively encoded
from the root into a full binary tree tW ∈ W(ι,κ), with (ι, κ) being the index of
the automata A, in such a way that Player 0 has a winning strategy in P(A, t) iff
she has a winning strategy in P(tW ). Moreover, this “encoding” is continuous.
More precisely, we have the following:

Proposition 1. Let A be any alternating parity tree automaton of index (ι, κ)
over Σ. Then L(A) ≤w W(ι,κ).

Proof. Let W ′
(ι,κ) be the class of all full finitely branching trees over Σ(ι,κ) for

which Player 0 has a winning strategy in the corresponding parity game P(t)
Then, the winning strategy for Player II in the Wadge Game W(L(A), W ′

(ι,κ)) is

given by just playing at every turn the arena of the parity game P(A, t), where
t is the finite tree precisely played by Player I at that moment. By Lemma 1 we
have that L(A) ≤w W(ι,κ). But clearly W ′

(ι,κ) ≤w W(ι,κ). Indeed, the winning

strategy for Player II in the Wadge Game W(W ′
(ι,κ), W(ι,κ)) is the following.

First, given the (finite) finitely branching tree t : {ǫ, 0, 1, . . . , n} → Σ, with
dom(t) = {ǫ, 0, 1, . . . , n}, let f(t) : {0, 1}∗ → Σ be the binary encoding of t given
by f(t)(ε) = f(t)(1j) = t(ε), with 1 ≤ j < n, f(t)(1n) = t(n) and f(t)(1j0) =
t(j), for 0 ≤ j < n. We say that ǫ ∈ dom(f(t)) corresponds to ǫ ∈ dom(t),
1n ∈ dom(f(t)) corresponds to n ∈ dom(t) and that for every 1 ≤ j < n,
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1j0 ∈ dom(f(t)) corresponds to j ∈ dom(t). We then define inductively for every
finite finitely branching tree t and for every node v ∈ dom(t), the binary encoding
f(t) of t and which is the (unique) node in dom(f(t)) corresponding to v.

Consider the following strategy for Player II in W(W ′
(ι,κ), W(ι,κ)):

1. at the first round, copy Player I’s move,
2. for every round n ≥ 2, for every terminal node v of the tree constructed by

Player I after round n− 1, if t is the tree constructed after Player I’s turn at
round n, then replace the terminal node corresponding to v with the binary
encoding of t.v.

By definition of the binary encoding, this is a well-defined winning strategy for
Player II. By transitivity of ≤w we therefore obtain that L(A) ≤w W(ι,κ). �

It is worth noticing that the game languages witnesses the strictness of the
Mostowski hierarchy of alternating tree automata4. This result was recently
strengthened by Arnold and Niwinski in [AN08]. In their paper, the authors
show that the class of game languages form a hierarchy with respect to the
Wadge reducibility. In this section we give a very short proof of the the same
results by exploiting the game-theoretical characterization of Wadge reducibility.
But before this, we explicitely establish the link between the Wadge hierarchy
and the Mostowski hierarchy.

Lemma 2. If the Wadge hierarchy of tree game languages is strict, then the

Mostowski hierarchy of alternating parity tree automata is strict too.

Proof. Suppose that the Wadge hierararchy of for tree game languages is strict,
but that the Mostowski index hierarchy for alternating parity tree automata
collapses. Assume it collapses to the (ι, n) level. Consider the automata recog-
nizing the game tree language W(ι,n+1). By hypothesis, there is an alternating
tree automaton A of index (ι, n) recognizing the same language. By Proposition
1, we are able to construct a winning strategy for Player I in the Wadge Game
W(W(ι,n+1), W(ι,n)). But this contradicts the strictness of the Wadge hierarchy
of tree game languages. �

We now start to give another proof of Arnold and Niwinski’s result. First,
we have the following lemma:

Lemma 3. For every n, Player I has a winning strategy in both W(W(1,n+1), W(0,n))
and W(W(0,n), W(1,n+1)).

Proof. We only prove that player I has a winning strategy in W(W(1,n+1), W(0,n)),
the other case being identical. We do this by describing the winning strategy for
player I in this game. As a first move, player I plays a finite binary tree over
{(1, 1)}. Then the strategy goes as follows:

4 Cf. [Brad98b].
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1. if player II skips, then for every terminal node add two children labelled by
(1, 1)

2. otherwise, at every terminal node, add two dual copies of what Player II has
already played as successors.

Clearly this is a winning strategy for player I in W(W(1,n+1), W(0,n)). �

Proposition 2 ([AN08]). The Wadge hierarchy for tree game languages is

strict.

Proof. It is trivial to verify that, for every n, player II has a winning strat-
egy in both W(W(0,n), W(0,n+1)) and W(W(0,n), W(1,n+2)), and dually in both
W(W(1,n+1), W(1,n+2)) and W(W(1,n+1), W(0,n+1)). Therefore, if we show that
player I has a winning strategy in W(W(0,n+1), W(0,n)) and W(W(1,n+2), W(0,n))
(and in the dual case) we are done. We only prove that player I has a winning
strategy in W(W(0,n+1), W(0,n)), the other cases being identical. We do this by
describing the winning strategy for player I in this game. As a first move, she
plays an finite binary tree over the alphabet {(1, 0)}. Then the strategy goes as
follows:

1. if player II skips, then for every terminal node add two nodes labelled by
(1, 0).

2. otherwise, by Lemma 3, apply the winning strategy for player I in the Wadge
game W(W(1,n+1), W(0,n)).

Clearly this is a winning strategy for player I in W(W(0,n+1), W(0,n)). �

By applying Proposition 2 to Lemma 2, we can therefore obtain, as a corol-
lary, an alternative very easy proof of the strictness of the Mostowski hierarchy
for alternating tree automata.

Corollary 1. The Mostowski hierarchy for alternating parity tree automata is

strict.

Mutatis mutandis, the same argument yields the strictness of the Mostowski
hierarchy of weak alternating parity automata.

2.4 Two-Way Alternating Parity Tree Automata

A two-way alternating parity automaton on binary trees is defined exactly as a
(one-way) alternating atomata, except for the transition function and therefore
for the parity game defining the acceptance condition. The transition function δ

associates to every pair (q, a) ∈ Q×Σ an element of the free distributive lattice
generated by Q×{−1, 0, 1, 2}. The associated paritiy game is defined as follows.

Let t ∈ TΣ, and let A a two-way alternating parity tree automata over the
alphabet Σ defined as above. Then the parity game P(A, t) is defined by the
following conditions:
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– the set of player 0 vertices is V0 = Q × {−1, 0, 1, 2}∗

– the set of player 1 vertices is V1 = ℘(Q × {−1, 0, 1, 2})× {−1, 0, 1, 2}∗

– the initial position of the game is (qI , ε),
– there is an edge from a node (q, v) ∈ V0 to a node (S, w) ∈ V1 iff S ∈

δ(q, t(v)),
– remember that if i = 0, then v.i = v, and that for every i ∈ {1, 2} we have

(v.i).− 1 = v. If v = ε, then v.− 1 is undefined. Thus, there is an edge from
a node (S, v) ∈ V1 to a node (q, v.i) ∈ V0, with i ∈ {−1, 0, 1, 2} iff (q, i) is
defined and is a member of S,

– a play (q1, v1), (S1, w1), (q2, v2), (S2, w2), . . . is winning for player 0 iff the
greatest priority occurring infinitely often in the sequence Ω(q1), Ω(q2), . . .
is even.

As for the “one-way” case, we say that the automaton A accepts the tree t if
player 0 has a winning strategy in the parity game P(A, t) starting from (qI , ε).
The language L(A) accepted by the to way alternating parity tree automaton
A over Σ is the subset of TΣ of binary trees accepted by A. Note also that for
two-way alternating parity automata, the arena of P(A, t) is always a full finitely
branching tree.

The hierarchy induced on the class of two-way alternating parity tree au-
tomata by the partial order ⊑ on indices of two-way automata is called the
Mostowski hierarchy of two-way alternating parity tree automata.

This class of automata constitute the natural automata counterpart of the
modal µ-calculus with backward modalities, that is the logic resulting from the
addition of a universal backward modality and an existential backward modality
to standard modal µ-calculus [Var98].

3 The strictness of the hierarchy

In order to solve the hierarchy problem for two-way alternating automata, we
would like to apply the same argument as the one used in order to establish
the strictness of the Mostowski hierarchy for one-way alternating automata over
trees. Thence, as before we must establish a link between the Wadge hierarchy
of game languages and the Mostowski hierarchy of two-way automata.

Remember that when constructing the parity game associated to the run of
a two-way alternating automaton over a binary trees, the two new “backward”
symbols −1 and 0 behave in fact as the usual “forward” symbols 1 and 2, that
is to say the arena of the parity game a full finitely branching tree. Therefore,
exactly as in the one-way case, we obtain the following proposition, whose proof
is the same as for Proposition 1:

Proposition 3. Let A be any two-way alternating parity tree automaton of in-

dex (ι, κ) over Σ. Then L(A) ≤w W(ι,κ).

Everything is now ready to prove the strictness of the Mostowski hierarchy for
two-way alternating parity automata over trees. The remaining short step con-
sists in establishing a relation between the Mostowski hierarchy and the Wadge
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hierarchy for game languages in the same way as it was done in the one-way
case.

Lemma 4. If the Wadge hierarchy of tree game languages is strict, then the

Mostowski hierarchy of two-way alternating parity tree automata is strict too.

Proof. Suppose that the Wadge hierararchy of tree game languages is strict,
but that the Mostowski index hierarchy for two-way alternating parity tree au-
tomata collapses. Assume it collapses to the (ι, n) level. Consider the (two-way)
automaton recognizing the game tree language W(ι,n+1). By hypothesis, there is
a two-way alternating tree automaton A of index (ι, n) recognizing the same lan-
guage. By Proposition 3, we are able to construct a winning strategy for Player
I in the Wadge Game W(W(ι,n+1), W(ι,n)). But this contradicts the strictness of
the Wadge hierarchy of tree game languages. �

Thus, by Lemma 4 and Proposition 2, we obtain the hierarchy result for
two-way alternating parity automata:

Theorem 1. The Mostowski hierarchy of two-way alternating parity tree au-

tomata is strict

The correspondence between formulae of the modal µ-calculus with backward
modalities and two-way alternating tree automata, also gives the strictness of
the fixpoint hierarchy for this extension of the modal µ-calculus.
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