
Journal of Biogeography. 2023;00:1–14.	﻿�   | 1wileyonlinelibrary.com/journal/jbi

Received: 4 October 2022  | Revised: 19 May 2023  | Accepted: 6 June 2023

DOI: 10.1111/jbi.14689  

R E S E A R C H  A R T I C L E

Snow cover persistence as a useful predictor of alpine plant 
distributions

Thomas Panchard1  |   Olivier Broennimann1,2  |   Mathieu Gravey3  |    
Grégoire Mariethoz2  |   Antoine Guisan1,2

1Department of Ecology & Evolution, 
University of Lausanne, Lausanne, 
Switzerland
2Institute of Earth Surface Dynamics, 
University of Lausanne, Lausanne, 
Switzerland
3Institute for Interdisciplinary Mountain 
Research, Austrian Academy of Sciences, 
Innsbruck, Austria

Correspondence
Thomas Panchard, Department of Ecology 
& Evolution, University of Lausanne, 
Lausanne, Switzerland.
Email: tpanchard@gmail.com

Funding information
Schweizerischer Nationalfonds zur 
Förderung der Wissenschaftlichen 
Forschung; SNF INTEGRALP, Grant/
Award Number: CR23I2_162754

Handling Editor: Gerald M. Schneeweiss

Abstract
Aim: Snow cover persistence (SCP) has significant effects on plants in high-elevation 
ecosystems. It determines the length of the growing season, provides insulation against 
low temperatures and influences water availability, thereby shaping the vegetation 
mosaic. Despite its importance, SCP is rarely used in plant species distribution model-
ling. In this study, we examine whether incorporating SCP in plant species distribution 
models (SDMs) improves their predictive power. We investigate the link between spe-
cies' ecology and SDM improvements by the addition of various SCP predictors.
Location: Western Swiss Alps.
Taxon: 206 alpine flowering plants (angiosperms).
Methods: We produced three maps of landsat satellite-based SCP indices over an entire 
mountain region, one of them using an online open access platform allowing quick and 
easy replication and used them as a predictor in plant SDMs alongside commonly used 
predictors. We tested whether this improved the predictive performance of plant SDMs.
Results: All three SCP indices improved the overall SDM predictive accuracy, but the 
overall improvement was potentially limited by their correlation with other climatic 
predictors. Alpine plant species known for their dependence on snow benefited more 
from the additional snow information.
Main Conclusions: SCP should be used for predicting at least the distribution of alpine, 
snow-related plant species. Given that adding snow cover improves SDMs and that 
snow duration decreases as climate warms, future predictions of alpine plant distribu-
tions should account for both snow predictor and associated snow change scenarios.

K E Y W O R D S
plant distributions, remote sensing, snow cover persistence, species distribution models, Swiss 
Alps, vegetation

1  |  INTRODUC TION

Global environmental changes affect biodiversity through caus-
ing species range shifts, leading to habitat losses and gains 
(Díaz et al.,  2019). Species distribution models (SDMs; Guisan & 

Zimmermann, 2000; Guisan & Zimmermann, 2017) can both model 
the current and predict future distributions of species, making them 
a useful tool for conservation planning and decision-making (Algar 
et al.,  2009; Guisan et al.,  2013; Guisan & Zimmermann,  2000; 
Pineda & Lobo, 2009). Yet, SDMs' accuracy is key for their use in 
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conservation (Araújo et al., 2019). In particular, it is especially import-
ant to use ecologically meaningful predictors (Austin & Niel, 2011; 
Mod et al., 2016; Scherrer & Guisan, 2019), as models lacking critical 
ecological information are potentially at risk of missing their conser-
vation target (Guisan et al., 2013).

SDMs are based on the environmental niche concept, that is 
an n-dimensional hypervolume of species requirements in envi-
ronmental space (Hutchinson, 1957). This implies that species dis-
tributions are shaped by multiple environmental drivers. The most 
common predictors in plant SDMs are climatic (Mod et al.,  2016), 
typically various expressions of temperature and precipitations, 
sometimes complemented with topographic variables (e.g., slope; 
Truong et al.,  2017). Both are easy to obtain and give predictions 
of decent quality (Pradervand et al., 2014), but only partly explain 
plant distributions (Austin & Niel, 2011; Mod et al., 2016; Scherrer 
& Guisan, 2019) so that additional environmental information is ex-
pected to improve SDMs.

Snow in particular is known to be a relevant parameter in al-
pine and arctic environments (e.g., Billings & Bliss,  1959), yet has 
been largely overlooked in SDMs (Guisan et al., 1998; Niittynen & 
Luoto,  2018). Snow is critical for vegetation distribution in high-
elevation ecosystems (Evans et al., 1989; Rissanen et al., 2021; Verrall 
& Pickering, 2020; Walker et al., 1993) because the vegetation mo-
saic usually follows patterns of snow melting isoline, which defines 
the start of the growing season in alpine ecosystems (Friedel, 1961; 
Körner, 2003). The effects of snow cover persistence (SCP) on plants 
include protection against winter desiccation, ice blast, low tempera-
tures and herbivory, shorter growing season and water provision 
(Billings & Bliss, 1959; Walker et al., 1993), selecting different plant 
species depending whether they can complete their life cycle under 
these conditions (Friedel, 1961; Galen & Stanton, 1995; Körner, 2003). 
In particular, species found in snowbeds, where snow accumulates 
during winter and lasts longer in spring and summer, benefit from the 
insulation and water supply provided by snow, but require shorter 
life cycles. Conversely, plants avoiding snowbeds usually can have 
longer growing periods and need higher nutrient supply (Galen & 
Stanton, 1995; Gjaerevoll, 1956; Odland & Munkejord, 2008).

Climate change, through the decrease in duration and thickness 
of snow cover (Solomon et al., 2007), affects plant phenology and 
ecophysiology (Bintanja & Andry, 2017; Rebetez & Reinhard, 2008; 
Tenenbaum,  2005). More specifically, the loss of snow insulation 
induces severe frost damages to plants (Wipf et al.,  2009), espe-
cially to snowbed species that have lower frost resistance (Bannister 
et al., 2005). Future changes in snow cover patterns caused by global 
warming should thus have severe effects on many alpine plant spe-
cies (Keller et al., 2005; Matteodo et al., 2016; Zong et al., 2022).

Existing evidence of the importance of snow distribution and 
duration for alpine plant species begs the question why so few 
SDMs in mountain regions included snow cover as predictor (Dubuis 
et al., 2013; Engler et al., 2011; Guisan et al., 1998; Randin, Engler, 
et al., 2009; Siniscalco et al., 2011). Snow parameters (e.g., onset and 
disappearance) are constrained by an interplay of many factors, such 
as wind, topography and solar radiation (Gottfried et al., 1999; Liston 

& Sturm,  1998), which makes it difficult to predict these parame-
ters spatially across rugged mountain landscapes (Rango et al., 1977; 
Zappa, 2008).

Recent advances in geographic information systems and re-
mote sensing technologies now allow obtaining high-quality snow 
cover data for the past and the present (Lievens et al., 2019; Olefs 
et al., 2020). This opened the way for larger-scale studies of the in-
fluence of snow cover on the distribution of plant species (Randin 
et al., 2020; Zimmermann et al., 2007). In a recent study, Niittynen 
and Luoto (2018) used a new approach to quantify SCP from a large 
dataset of Landsat satellite images and incorporate it as an additional 
predictor in plant SDMs. As introducing a snow index in SDMs for 
arctic plants improved drastically their performance, the same can 
be expected for alpine regions, yet this remained to be tested.

The goal of this study was, therefore, to assess the extent to 
which snow indices can improve plant SDMs in alpine landscapes, 
and more specifically (1) to test the importance of different SCP 
indices, including a newly developed approach using Google Earth 
Engine (GEE); (2) to assess whether the SCP indices provide com-
plementary or redundant information with topoclimatic predictors; 
and, finally, (3) to test if the added snow persistence indices provide 
relevant information for particular species, and if so, for which spe-
cies, under current climate.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

The 700 km2 study area is located in the Western part of Switzerland 
(46°10′–46°30’ N, 6°50′–7°10′ E) and contains all the Alps of the Vaud 
state. It spans a wide elevation gradient from 375 m in the Rhone plain 
to 3210 m at the top of the Diablerets massif. Vegetation is largely 
restricted by elevation, ranging from broadleaf forests at low eleva-
tion to alpine grasslands and nival vegetation at higher elevations. 
Humans had a marked influence on the landscape and vegetation 
(Randin, Engler, et al., 2009). It is a priority area for transdisciplinary 
research with many biological and environmental data available (see 
http://recha​lp.unil.ch; Figure 1, Von Daniken et al., 2014).

2.2  |  Species data observations

Plant data come from a field campaign carried out from 2002 to 
2009, 912 plots of 4 m2 were sampled (Figure 1; [Buri et al., 2017; 
Dubuis et al., 2011]), following a random-stratified equal sampling 
design (Hirzel & Guisan,  2002), with elevation (10 classes, from 
375 m to 3201 m a.s.l.), slope (three classes, 0–5°, 5–25° and >25°) 
and aspect (five classes, North, East, South, West and no aspect if 
slope <5°) as stratifying factors, and a minimal distance of 200 m 
between plots to minimize spatial auto-correlation (Chevalier 
et al., 2021; Pottier et al., 2013). The sampling was limited to open, 
non-forest vegetation.
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    |  3PANCHARD et al.

2.3  |  General analytical workflow

The analyses followed two steps. First, we built three different 
SCP index maps (Figure 2). Second, we tested the increase in pre-
dictive power when adding each SCP map to plant SDMs across 
206 species, when the SCP map was used alongside (i) other cli-
matic variables, (ii) topographical variables and (iii) both previous 
types of variables. We used this framework to assess which of the 
three SCP indices best improved the predictive power of plant 
SDMs.

2.4  |  Remote sensing data

The remote sensing data consisted of satellite images (surface re-
flectance Tier 1, collection 2 Landsat TM 4 & 5, ETM+ 7 and OLI 
8) at a resolution of 30 m, ranging from 1984 to 2019, freely acces-
sible from the U.S. Geological Survey (https://www.usgs.gov). The 
satellite images intersecting our study area were selected in GEE 
(earth​engine.google.com). We only used images from the 50th to 
the 250th day of the year (DOY) to capture the start of the growing 
season while ignoring potential local variation of snow cover during 

the cold season. A total of 1272 images were extracted. We used 
the Fmask classification (Zhu et al., 2015; Zhu & Woodcock, 2012) 
to remove all the pixels obscured by clouds in every image. Due to 
the roughness of the terrain, we excluded the shadows of the moun-
tains from all the images using the ee.Terrain.hillShadow function 
available in GEE (Li et al., 2015). This function uses the azimuth and 
zenith of the sun together with a digital elevation model (DEM), here 
the Shuttle Radar Topography Mission (SRTM; Farr et al., 2007), to 
attribute a shadow value to every pixel. All shadowed pixels were 
removed from the data. Finally, we used the ee.Reducer.count func-
tion in GEE to export a map representing the number of values avail-
able for every pixel in the study area.

2.5  |  SCP map

Different approaches were used to build three SCP indices, each de-
termining, for every pixel in the study area, the mean ‘DOY’ at which 
the snowmelts (Figure 2). All approaches rely on the NDSI calculated 
on all images with different DOY. The widely used NDSI is based on 
the reflectance difference between the green and the 1.6 μm short-
wave infrared bands (Crane & Anderson, 1984; Dozier, 1989; Hall 
et al.,  1995; Hall et al.,  2002) and ranges from −1 (no snow) to 1 
(snow). The three SCP approaches differed in that the first one was 
entirely computed within GEE while the two others required export-
ing the NDSI maps to R where more advanced statistical analyses 
could be conducted, using two distinct NDSI thresholds to calculate 
the SCP indices.

Unless specified otherwise, all statistics and GIS manipulations 
were performed in R 3.5.3 (R Core Team 2019), using the raster 
package (Hijmans et al., 2019).

2.5.1  |  Approach 1: GEE

Each image was reclassified using the same Fmask snow classifica-
tion (Zhu et al.,  2015; Zhu & Woodcock,  2012), with snow being 
identified above NDSI values of 0.15. Across all images, every pixel 
in the study area was thus attributed a collection of presences and 
absences of snow, each associated with a DOY. Because Landsat 
images are not available continuously for every day, we applied to 
every pixel a temporal moving window of 10 days, based on the 
DOY of each image, taking the mean of the binary snow presence–
absence values in each window. This resulted, for every pixel, in a 
probability of snow occurrence for all DOY from the 50th day to 
the 250th day. The days of snowmelt for every pixel was defined as 
the first day in the year when this probability passed below 0.5. The 
pixels never reaching this threshold were considered as everlasting 
snow, and their value was set to 365.

We wanted this approach to be fully based on GEE, but with a 
resulting SCP map directly comparable to Macander et al. (2015) and 
Niittynen and Luoto (2018). As GEE did not allow fitting GLMs, as 
used in Niittynen and Luoto (2018), we used a mean moving window 

F I G U R E  1  Localization of the study area in the Swiss alps. 
The 912 vegetation sampling plots are symbolized with points. 
EPSG:21781.
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within GEE to calculate the final SCP index. Last, we rescaled the 
SCP map extracted from GEE to 25 m × 25 m using a bilinear interpo-
lation to match the resolution of the other environmental variables 
used in the SDMs. At this stage, a few pixels had DOY values based 
on none or very few snow values across the year. These pixels oc-
curred in very small patches scattered through the study area due to 
the presence of local hill shadow effects. We used a majority focal 
statistic in ARCMAP (ESRI, version 10.7) with a circle dimension of 
5 cells on all pixels having less than 10 available values to replace 
their statistically irrelevant original value by information from sur-
rounding pixels, thus obtaining continuous predictions. Predictions 
in these ‘filled gaps’ were rare and should therefore be considered 
with care. The resulting SCP map is referred to as ‘SCPgee’.

2.5.2  |  Approach 2: GLMs with 0.40 threshold

This approach is based on the previous work of Macander et al. (2015) 
and Niittynen and Luoto (2018). We produced binary maps from the 
NDSI maps exported from GEE, rescaled to 25 m × 25 m using a bi-
linear interpolation to match the resolution of other predictors. We 
used the standard threshold value of 0.40 to reclassify all images 

into snow/no-snow binary maps, then used to produce the SDC 
map. For this, we fitted, for each pixel independently, a GLM with 
binomial distribution and logistic link with the binary score of every 
image as the dependent variable and the DOY of the image acqui-
sition as the explanatory variable. This generated a probability of 
snow occurrence for every DOY from the 50th day to the 250th 
day. The final SCP map was produced by taking, for every pixel, the 
DOY where this probability of snow presence was <0.5. Finally, we 
applied the same method as used in the GEE approach to fill empty 
pixels. Hereafter, we refer to the resulting SCP map as ‘SCP0.40’.

2.5.3  |  Approach 3: GLMs with 0.15 threshold

The Fmask classification of snow in GEE uses many criteria to iden-
tify snow, but the main one is NDSI >0.15. Because the method of 
Macander et al. (2015) is based on NDSI >0.40, a difference in snow 
detection between both methods could simply result from the dif-
ferent thresholds used. To partial out this thresholding effect from 
the other snow detection criteria (i.e., GLM versus GEE), we pro-
duced a third map using the GLM method but with an NDSI thresh-
old of 0.15. Hereafter, we refer to this map as ‘SCP0.15’.

F I G U R E  2  General workflow for the production of the three snow cover persistence (SCP) maps. First, the satellite images were selected 
and cleared from clouds and hill shadows. Then, images were treated with the three approaches to produce three SCP maps. The Google 
Earth Engine approach uses the Fmask classification to binarize snow presence/absence. For every pixel, a temporal moving window 
of 10 days, based on the day of the year (DOY) of each image and the presence or absence of snow results in the probability of snow 
occurrence for the 50th to the 250th DOY. The days of snowmelt for every pixel was defined as the first DOY when this probability passed 
below 0.5. Generalized linear model (GLM) approaches use the Normalized-Difference Snow Index (NDSI) to binarize the presence/absence 
of snow, based on two different thresholds (0.40 and 0.15, respectively). For every pixel, a GLM based on the DOY of each image and the 
presence or absence of snow results in the probability of snow occurrence for the 50th to the 250th DOY. The days of snowmelt for every 
pixel was defined as the first DOY when this probability passed below 0.5.
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    |  5PANCHARD et al.

2.5.4  |  Assessment of SCP indicators

To assess how the SCP indicators captured snow persistence in the 
field, we compared their values at field weather stations where snow 
measures were available. We computed simple correlations and 
tested whether SCP values obtained thought remote sensing tech-
niques were significantly different to the ones observed in weather 
stations. Detailed methods and results of this analysis are presented 
in Methods S1 and Table S1.

2.6  |  Environmental variables

2.6.1  |  Current climate

In addition to the SCP maps, we used a set of 5 environmental variables 
commonly used in SDM studies (Buri et al., 2017; Dubuis et al., 2011; 
Parolo & Rossi,  2008; Randin, Vittoz, et al.,  2009). Two climatic 
variables—mean temperature of the growing season (tmpr) and sum 
of precipitation of the growing season (prci)—were calculated from the 
daily MeteoSwiss Grid-Data Products at 1 km (Begert & Frei,  2018) 
for the 3 months June–August using the reference period 1981–2010, 
then downscaled to 25 m × 25 m throughout the study area using local 
elevation-based regressions (Broennimann, 2018). We only kept the 
mean for the months of the growing season (June, July and August) 
as reference period, and computed the mean temperature for these 
3 months. The precipitation index prci was also derived from daily 
MeteoSwiss data, downscaled with local regression with elevation het-
erogeneity to 25 m × 25 m. Three topographical variables—topographic 
position (topo), slope and daily potential incoming solar radiation 
(srad)—were all calculated from the Swiss DEM at a 25 m × 25 m resolu-
tion. The srad variable was computed with the ta_lighting module in 
SAGA GIS. Slope was calculated based on the surrounding elevation 
values in a neighbouring window of 3 pixels using the slope function 
from the spatial analyst extension in ArcGIS. The topo variable was 
calculated using the custom AML function in ArcGIS (https://www.wsl.
ch/staff/​nikla​us.zimme​rmann/​programs). It expresses the difference in 
elevation in meters of a given location compared to the surrounding 
terrain at various scales. Negative values indicate gullies and valley 
bottoms, values close to 0 indicate flat terrain or steady slopes and 
positive values indicate mountain tops and ridges.

2.6.2  |  Multicollinearity analyses

To visualize the relationship between the climatic, topographic and 
snow predictors, we calculated the matrix of Pearson correlation co-
efficients between all initial predictors using all the values of the 
different predictors. In addition, we performed a GLM to determine 
whether the SCP maps could be explained by the topoclimatic pre-
dictors. For the latter, topographic and climatic predictors were 
used, independently and together, as the explanatory variables and 
SCP as the response variable.

2.7  |  Species distribution models

We modelled all plant species with >30 occurrences over the set 
of sampled sites, resulting in models for 206 species (Table  S2). 
We used an ensemble approach in the biomod2 R package includ-
ing three different modelling techniques: (i) GLMs with a binomial 
family and logistic link, allowing linear and quadratic terms but no 
interaction; (ii) generalized additive models (GAM) with a binomial 
family, logistic link and smothers with 4 degrees-of-freedom; and (iii) 
gradient boosting machine with 1000 trees, an interaction depth of 
7, a shrinkage factor of 0.001 and a bag fraction of 0.5.

To test the models' prediction accuracy, we used 80% of the 
data for model training and 20% for model evaluation and repeated 
this 100 times. During each repetition, we used the area under the 
receiver-operating characteristic curve (AUC; Swets, 1988) and the 
true skill statistics (TSS; Allouche et al.,  2006) maximized across 
the whole range of thresholds between 0 and 1 (maxTSS; [Guisan & 
Zimmermann,  2017]) as threshold-independent predictive accuracy 
metrics, and calculated variable importance. For each species and SCP 
map, we then combined model predictions fitted with the three tech-
niques through a mean weighted by the respective maxTSS values.

Using this procedure, five different types of models were fitted, 
depending on the predictors included the following: (i) snow only 
(Snow), (ii) topographic and snow (Topo+Snow), (iii) climatic and 
snow (Clim+Snow), (iv) topographic and climatic (Topo+Clim), and (v) 
topographic, climatic and snow (Topo+Clim+Snow) (Figure S1).

To test whether the inclusion of the snow variables (SCP) does 
not improve the models by chance, we compared, for each species 
and each model including SCP, the accuracy of models fitted with 
each original SCP map with models including instead the same vari-
able with randomized values, hereafter called SCP shuffled. This 
ensures a similar size structure between the compared models (i.e., 
same numbers of predictors). This method has previously proven ef-
fective for testing the improvement of adding new variables in SDMs 
(Buri et al., 2017; Buri et al., 2020; le Roux et al., 2013; Niittynen & 
Luoto, 2018; Zimmermann et al., 2009).

Models based on SCP as a single predictor first allowed (i) quan-
tifying the predictive performance of this variable alone. Next, 
comparing the SDMs built with (ii) Topo+Snow and (iii) Clim+Snow 
allowed testing whether the SCP map conveyed complementary in-
formation to the climatic or topographic variables, respectively. We 
also built (iv) a Topo+Clim model without any snow predictor and 
compared it to (v) the Topo+Clim+Snow models to assess the addi-
tional predictive power of snow when added to the more tradition-
ally used topo-climatic models.

2.8  |  SDM comparisons

To examine the improvement in model performances, we compared 
AUC and maxTSS values of the ensemble models. We ran a Wilcoxon 
signed rank test between the evaluation metric of models with the 
SCP map (SCPgee, SCP0.15 or SCP0.40) and with the corresponding 
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shuffled version. We also compared the performances of the SCP 
maps with each other to assess which was the most suited for SDMs 
(le Roux et al., 2013).

We also fitted a general linear model to find out whether the 
model improvement was increasing with the species' elevation of 
occurrence (based on species occurrences' mean elevation), with the 
elevation as the predictor and the model improvement as the re-
sponse. Finally, we tested whether the species' ecological indicator 
values (EIV; Landolt et al.,  2010) had an influence on the models' 
improvements with a variance analysis, with the EIV as the explana-
tory variable and the model improvement as the response variable.

3  |  RESULTS

3.1  |  SCP map

The mean number of available images per pixel (i.e., non-cloudy or 
shaded) is 422 ± 138 with a maximum of 704. Pixels without any 
available images represent 0.16% of the study area and 0.3% pixels 
have less than 10 images available.

An important difference is observed in the mean snow melting 
DOY between the SCP maps computed with a 0.15 threshold (SCP0.15 
and SCPgee) and a 0.40 threshold (SCP0.40) (Figure 3). The mean snow 
melting DOYs over the study area are 91.2, 90.5 and 86.2 for SCPgee, 
SCP0.15 and SCP0.40. In all indices, the snow melting DOY ranges 
from 50 in the plain (the default minimum) to 365 (the default max-
imum) in the permanent snow patches of the Diablerets massif. The 
snow indices show a relatively high correlation with other climatic 

variables, but low correlation with topographic variables (Table 1). 
Accordingly, only the GLMs including climatic variables have a high 
deviance value (D2 = 0.52 for SCPgee and D2 = 0.78 for both SCP0.15 
and SCP0.40). GLMs including topographic predictors hardly explain 
SCP maps (D2 = 0.05 for SCPgee, D2 = 0.14 for SCP0.15 and D2 = 0.15 
for SCP0.40). When combined, GLM with climatic and topographic 
variables could predict a large part of the SCP maps (D2 = 0.54 for 
SCPgee, 0.83 for SCP0.15, 0.84 for SCP0.40).

When compared with the other two SCP maps, SCPgee shows 
a correlation of 0.76 with SCP0.15 and 0.77 with SCP0.40, whereas 
those two have a correlation of 0.98.

Observed and remotely sensed SCP show a high correlation 
(Table  S1), especially when comparing the station's value to the 
SCP15 (r = 0.82) or the SCP40 (r = 0.78). The correlation is lower be-
tween the stations' observed values and the SCPGEE (r = 0.77). There 
is no significant difference between the SCP values observed in the 
weather stations and the remotely sensed SCP maps (W = 5,097,752, 
p-value = 0.36 for the SCP40, W = 4,555,327, p-value = 0.16 for the 
SCP40 and W = 9,561,617, p-value = 0.17 for the SCPgee). The mean 
SCP difference between weather stations and remote sensed values 
is 10.6 days for SCPgee and SCP40 and 9.2 days for SCP15.

3.2  |  Species distribution models

3.2.1  |  Topo+Clim+Snow

The Topo+Clim+Snow (v) ensemble models integrating the SCPgee, 
SCP0.15 and SCP0.40 maps have always a significantly better 

F I G U R E  3  Different snow cover persistence (SCP) indices produced by the different approaches in the study area of the Swiss Alps. 
These indices are further used as predictors in SDMs. The colour-code represents the variation in SCP form the 50th to the 250th day of the 
year. EPSG:21781.
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    |  7PANCHARD et al.

evaluation, both in AUC and maxTSS, than the shuffled models 
(Wilcoxon signed rank test, all p-values and V-values in Tables  S3 
and S4). maxTSS increases by 0.01 for SCPgee, and by 0.02 for both 
SCP0.15 and SCP0.40, representing an improvement of model perfor-
mance of 1.4% for SCPgee, 2.5% for SCP0.15 and 2.3% for SCP0.40 
(Table S3).

SCP0.15 and SCP0.40 are performing significantly better than 
SCPgee (Wilcoxon signed rank test, V-value = 5695.5, p-value <0.001 
and V-value = 6389.5, p-value <0.001, respectively), but SCP0.15 and 
SCP0.40 do not differ (Wilcoxon signed rank test, V-value = 11,084, 
p-value = 0.32; Figure 4a). Respective maxTSS of the models are also 
presented in Table S3. Similar results are obtained with AUC as the 
evaluation metric (Table S4).

SCP map have a high importance in the models (Figure 4b), with 
a mean importance of 0.33 for SCP0.15 and 0.32 for SCP0.40, making 
it the second most important predictor after temperature. SCPgee 
has lower importance (0.17), ranking fourth among the 6 variables.

3.2.2  |  Additional models

Models integrating only climatic or topographic predictors with 
SCP maps always have a significantly higher maxTSS difference be-
tween the shuffled and the base model than the Topo+Clim mod-
els (Wilcoxon signed rank test, p-values and V-values in Table  S5; 
Figure  4c). The Topo+Snow models have significantly higher 
maxTSS improvement than Clim+Snow models. The performance 
difference between the base and the shuffled models is always 
significant (Wilcoxon signed rank test, p-values and V.values in 
Table S3). Models with only SCP as predictor have maxTSS values of 
0.44 ± 0.12, 0.52 ± 0.12 and 0.51 ± 0.12 for the SCPgee, SCP0.15 and 
SCP0.40, respectively (Figure 4d). The models failed to converge for 
15 species, 7.2% of the overall species' pool.

Hereafter, we use SCP0.15 as the most relevant SCP index for 
plant species to develop future analyses and projections.

3.3  |  Snow importance for species

The importance of adding the snow variable is variable among spe-
cies, improving 77.7% of the species models, with maxTSS improve-
ments of >5% for 43 species, and model degradation for 44 species. 
Anthyllis vulneraria shows the largest maxTSS decrease (−7.1%), and 
Phleum hirsutum the greatest increase (+14.2%) (Table S2). Snowbed 
species (Delarze et al., 1998), such as Salix herbacea, Veronica alpina, 

Poa alpine, have the highest improvement in maxTSS (5.5%, 5.4% and 
9.2%) (Figure 5).

Species elevation occurrences slightly explain model improve-
ments with snow as a predictor (GLM, p-value < 0.05, D2 = 0.027, 
Figure S2), but not EIVs (Anova, DF = 6, all p-value > 0.05).

For future climate scenarios (Figure  S3), we observe species-
specific changes in suitable habitats by species between traditional 
projections and the one with the SCP decrease added, but there 
is no general trend across species. Soldanella alpina shows, for in-
stance, slight decreases and gains in suitable areas, whereas Anthyllis 
vulneraria only slightly loses areas (Table S6).

4  |  DISCUSSION

This study is important in three ways. First, it is among the first to as-
sess the importance of SCP in plant SDMs in alpine ecosystems using 
advanced remote sensing methods involving a large number of im-
ages and within-pixel trend analyses. Overall, models improved with 
the addition of the SCP predictors, especially for snow-dependent 
species. Second, we provide a new method, allowing robust produc-
tion of SCP indices anywhere in the world, quickly in GEE. It brings 
ecologically relevant information and improved spatial predictions 
for a number of alpine species. Finally, our results also suggest that 
knowledge on species ecology is and should always remain the most 
important criteria for the selection of predictors in SDMs.

4.1  |  A new approach producing useful SCP maps

Our method for image selection resulted in a large pool of values 
available for each pixel. Ecological remote sensing studies often 
use a pool of images without clouds (Niittynen & Luoto,  2018; 
Zimmermann et al., 2007), or use a composite image made of multi-
ple images (Wylie et al., 2003), thus throwing away potentially useful 
data. However, this method has drawbacks: The cloud classification, 
although the best available at the time, is not perfect and can result 
in giving away snow information, leading to an underestimation of 
the SCP. In addition, using images from the 50th to the 250th DOY, 
while trying to attenuate imprecisions in the snow index due to vari-
ation in snowfall in winter, does not exclude the rare events of snow 
in the spring or at the end of summer. However, the validation of 
remotely sensed SCP maps using weather stations shows that, al-
though not perfect, all methods reproduce correctly the main trends 
in snow persistence (Table  S1). Despite being limited to the small 

TA B L E  1  Correlation between the SCP maps and other climatic variables and prediction of the generalized linear models (GLMs) 
computed with climatic/topographic/both predictors.

Tmpr Rhires Srad Slope Topo Corr_GLM_topo Corr_GLM_clim Corr_GLM_all

SCPgee −0.72 0.71 −0.16 0.05 0.11 0.22 0.72 0.74

SCP15 −0.90 0.86 −0.31 0.09 0.21 0.37 0.88 0.91

SCP40 −0.89 0.86 −0.33 0.08 0.19 0.39 0.88 0.92
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8  |    PANCHARD et al.

amount of weather stations available in our study area, the remotely 
sensed SCP maps produced in this article are representing a correct 
image of the snowmelt dynamics. They probably hold relevant infor-
mation about the snowmelt dates and should therefore be suitable 
as a predictor for plant species distributions models. Among the SCP 
maps tested, the SCP15 map seems to better represent SCP.

The two different approaches—GEE and GLMs—gave similar SCP 
maps, but the GEE produced noisier results. This result, also con-
firmed by the validation of the SCP maps, can first be explained by 
the statistical methods available in GEE. Indeed, we had to use a 
mean moving window approach, which is more sensitive to outliers 
than the GLM method. In addition, the Fmask classification used to 
classify snow and clouds absence or presence in each image also has 

reported weaknesses (Richiardi et al., 2021; Stillinger et al., 2019). 
This imperfection can sometimes lead to snow being classified as 
clouds, leading to an underestimation of the SCP indices. On the 
other hand, ‘dark’ clouds (thin and transparent clouds) can be classi-
fied as snow, leading to overestimation of the SCP indices. All these 
factors are probably leading to a suboptimal snow index in GEE com-
pared to the R approach.

In turn, GEE offers an easier-to-use method for the scientific 
community than the more tedious GLM approach in R. Despite the 
imperfections of this approach, this SCP index holds consistent in-
formation (Table S1), and thanks to its implementation in GEE allows 
quick and reproducible replication around the world. In addition, 
using all available images and removing residual clouds with the 

F I G U R E  4  Boxplot of evaluations of the different models. (a) Overall maxTSS of the ensemble models Topo+Clim and different SCP 
maps. (b) Variable importance for the different models built with Topo+Clim and different SCP maps. (c) Difference in maxTSS between the 
original model and the shuffled one, for Topo+Clim+Snow, Clim+Snow, Topo+Snow models with different SCP maps. (d) maxTSS of the 
Snow, Clim+Snow, Topo+Snow and Topo+Clim+Snow models built with different SCP maps.
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    |  9PANCHARD et al.

Fmask classification results in a larger data set, here more than three 
times larger than the manual selection of images used by Niittynen 
and Luoto  (2018). Although we did not formally compare the two 
approaches, the large increase in the amount of data available could 
constitute an improvement, but more does not necessarily mean 
better and the negative points discussed above may cancel out the 
potential ameliorations brought by the larger amount of data. Hence, 
further research is needed to investigate this question.

Finally, all data processing is handled by the Google Data Center 
Infrastructure, drastically reducing the amount of time and re-
sources needed for computations. Our results highlight the need for 
more advanced statistical tools (like GLMs) in GEE.

4.2  |  Snow cover improves plant species 
distribution predictions

We show that snow is a critical parameter for some species in al-
pine ecosystems. The large majority of species in our study, along 
the whole elevation gradient, saw marginal to good improvement in 
plant distribution predictions. The GEE method shows smaller model 
improvements than the more advanced GLM one, but all approaches 
improved overall SDM accuracy. The two GLM approaches with two 
different thresholds yielded similar results, showing that it is not bet-
ter than the GEE approach because of the snow detection sensitivity 

but because either the snow classification methods or the statistical 
method for assessing the day of snowmelt were better with GLMs.

However, the improvements found in our study were not as high 
as those reported by Niittynen and Luoto (2018). First, the models we 
obtained can be, on average across all species, considered as yield-
ing good predictions (Guisan & Zimmermann,  2017; Swets,  1988). 
Even those built with the shuffled SCP predictors have rather high 
evaluation scores, overall leaving little room for improvement. The 
fact that the other climatic variables used in our study are already 
of good quality at fine resolution, at least for temperature, probably 
hindered the ability of the additional information brought by the SCP 
maps to improve the plant distribution models, especially given the 
high correlation between the SCP and other climatic predictors. This 
is supported by the models built with the SCP maps and either the 
topographic or the climatic predictors. The climate-only models have 
low amelioration by SCP, whereas topographic-only models are im-
proved by almost 30%, highlighting that SCP maps have most redun-
dant information with the climatic variables, especially temperature, 
which are most often used in SDMs (Mod et al., 2016). Therefore, 
adding an SCP predictor could particularly help increase SDMs when 
good-quality temperature data are not available.

Another explanation for the smaller improvements in SDM per-
formance is that the mountain species (i.e., not all alpine) considered 
here might overall interact less with snow than the strictly arctic 
species considered in Niittynen and Luoto  (2018). Our study area 
shows a broad elevation gradient, from the lowland to the highest 
peaks, implying that low- and mid-elevation species or species oc-
curring strictly below the tree line might not be driven by snow pat-
terns. Moreover, even alpine plant species vary in their dependence 
on SCP (Randin, Vuissoz, et al., 2009). Some rely on snowbeds for 
insulation, while others avoid snow accumulation to extend their 
growing season (Galen & Stanton, 1995; Gjaerevoll, 1956; Odland & 
Munkejord, 2008).

Snow could also have effects on plants that cannot be eas-
ily transcribed in an SCP map. For example, at the resolution used 
here, snow depth or microclimatic variations are not properly con-
sidered. Some effects of snow on species act at a very fine scale 
(Ford et al.,  2013), microtopography having a prominent role on 
snow distribution (Liston & Sturm,  1998). Boserup  (2018) showed 
that, for a small subset of our study area, using remote sensing im-
ages of higher resolution (Worldview2 at 1.3 m or Sentinel at 10 m 
resolution) can yield better results, despite a shorter time period of 
image availability. However, accurate images like worldview2 are not 
open access and their acquisition can quickly become expensive for 
a large study area (700 km2 here). Finally, snow can also have indirect 
effects not easily captured in our maps. For example, water released 
by snowmelt does not only affect the place at which the snowpack is 
located, but also downstream.

Finally, the use of presence–absence data here could also have 
hindered the full potential of SCP. Fitting SDMs with abundance 
data in future SDM studies could make the SCP index more import-
ant, as already illustrated by Randin, Jaccard, et al.  (2009) for the 
importance of landuse in SDMs.

F I G U R E  5  Continuous predictions for Soldanella alpina (maxTSS 
improvement of 9% with SCP predictor) and Anthyllis vulneraria 
(−7% of maxTSS) in the study area in the swiss Alps for current 
climate, modelled with and without SCP predictor. EPSG:21781.
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10  |    PANCHARD et al.

4.3  |  Species ecology matters

Model improvement proved highly variable among species, suggest-
ing that species ecology remains a key aspect to consider when se-
lecting predictors in SDMs (Austin & Niel, 2011; Mod et al., 2016; 
Scherrer & Guisan, 2019). Many of the species that had a reduction 
in model performance have little or no interaction with snow, such 
as low-elevation species for which the start of the growing season 
does not depend on snow.

Some high-elevation plant species also saw their models de-
graded by the addition of a snow predictor, such as Androsaceae 
chamaejasme, Poa minor and Saxifraga aizoides (all occurring above 
2100 m in our dataset). Thus, being at high-elevation does not mean 
necessarily that snow is a relevant predictor. These species probably 
do not have a strong relationship with SCP thus resulting in a deg-
radation of independent model evaluation when SCP is added as a 
predictor.

In addition, the taxonomic resolution used in this study can 
probably explain why some species have their models' evaluation 
degraded after the addition of the SCP predictor. Indeed, some tax-
onomic groups used here, mainly because of their laborious identifi-
cation in the field, species complex or subspecies that have slightly 
different ecology. For example, Anthoxanthum odoratum aggr. com-
prises A. alpinum and A. odoratum s. str., the first occurring at higher 
altitude pastures with longer SCP thus may have a greater relation-
ship with SCP than the second one. This is the same situation for the 
species with the strongest decrease in model's accuracy, Anthyllis 
vulneraria s. l., which comprises two subspecies, A. vulneraria subsp. 
alpestris and A. vulneraria subsp. carpatica.

Globally, model improvement was higher for species occurring at 
high elevation, showing the overall importance of snow for many al-
pine species. Among species for which snow largely improved model 
performance are snowbed species and species of snowless windy 
slopes. The first group of species strongly relies on snow cover for 
cold insulation or as a moisture source during the growing season. 
Species such as Salix herbacea, Veronica alpina, or Soldanella alpina are 
typical snowbed species and saw the highest improvements. Species 
living in windy environments, where the SCP is shorter, also see 
improvement by the SCP index. The position of the species along a 
‘snow persistence gradient’ does not really explain the improvements 
in model's performance. Other species such as Helictotrichon versi-
color, Homogyne alpina, Vaccinium gaultherioides and Dryas octopetala, 
which have already been the subject of studies of the importance of 
snow cover in SDMs (Beck et al., 2005), saw moderate to good im-
provements in model accuracy. This reveals the importance of SCP 
to also inform on areas with reduced snow cover, such as windy envi-
ronments on ridges, which are also critical for some species.

4.4  |  Perspectives for future projections

Alpine and Arctic ecosystems are both driven by snow cover, and 
should thus experience drastic changes caused by climate change 

in the near future (Randin, Engler, et al., 2009), already observable 
in the Alps (Rumpf et al., 2022). To our knowledge, there is no ac-
curate snow cover decrease scenario available for the Swiss Alps. 
Therefore, for illustrative purposes, we used here a basic snow 
decrease scenario based on existing knowledge (Beniston, 2003) 
to simulate the effect of climate change-induced SCP decrease in 
plant distributions (Method S2, Figure S3 and Table S6). This illus-
trates the need for better knowledge and scenarios of the evolution 
of climatic variables other than temperature and precipitation in 
the future. Niittynen et al. (2018) already showed that taking snow 
cover decrease into account in future projections of plant SDMs 
could lead to dramatic differences compared to a temperature 
increase only. However, the latter study reported larger species 
losses than in our study, likely due to the striking topographical dif-
ferences between the two areas. In the Arctic, species must migrate 
longer distances in latitude to reach a similar difference in tempera-
ture as a small altitudinal shift allows in the Alps, but this remains 
to be tested.

In our prospective future projections, results are highly variable 
among species. Most species are predicted to shift to higher eleva-
tion, both when predicted with and without the SCP variable. This is 
in agreement with the current knowledge on warming scenarios in 
the Alps (Engler et al., 2011; Parolo & Rossi, 2008; Randin, Engler, 
et al., 2009). Generally speaking, plants predicted to experience a 
large decrease in habitat suitability under warming have their loss 
attenuated when the SCP decrease map was used in the models 
(e.g., Salix herbacea, Veronica alpina, Ligusticum mutellina, Soldanella 
alpina). A cause may be the melting of medium and long-lasting 
snow, simulated in our SCP decrease scenario maps, which starts to 
be observed in the Alps (Rumpf et al., 2022) and offers new suitable 
habitats for alpine species at medium to high elevation.

5  |  CONCLUSION

Our study shows the importance of accounting for snow in plant 
SDMs developed in alpine ecosystems. Our approach and find-
ings support that SCP indices should be more systematically taken 
into consideration as predictors when modelling the distribution 
of plant species that interact with snow. We further proposed a 
method to calculate the necessary snow indices at any place on 
Earth.
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